Cipolla's algorithm: Difference between revisions

From Rosetta Code
Content added Content deleted
m (Phix/mpfr)
(Added Wren)
Line 2,183: Line 2,183:
(791399408049, 208600591990, True)
(791399408049, 208600591990, True)
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, True)</pre>
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, True)</pre>

=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-big}}
<lang ecmascript>import "/big" for BigInt

class Point {
construct new(x, y) {
_x = x
_y = y
}

x { _x }
y { _y }

toString { "(%(x), %(y))" }
}

var bigBig = BigInt.ten.pow(50) + BigInt.new(151)

var c = Fn.new { |ns, ps|
var n = BigInt.new(ns)
var p = (ps != "") ? BigInt.new(ps) : bigBig

// Legendre symbol, returns 1, 0 or p - 1
var ls = Fn.new { |a| a.modPow((p - BigInt.one) / BigInt.two, p) }

// Step 0, validate arguments
if (ls.call(n) != BigInt.one) return [BigInt.zero, BigInt.zero, false]

// Step 1, find a, omega2
var a = BigInt.zero
var omega2
while (true) {
omega2 = (a * a + p - n) % p
if (ls.call(omega2) == p - BigInt.one) break
a = a.inc
}

// multiplication in Fp2
var mul = Fn.new { |aa, bb|
return Point.new((aa.x * bb.x + aa.y * bb.y * omega2) % p,
(aa.x * bb.y + bb.x * aa.y) % p)
}

// Step 2, compute power
var r = Point.new(BigInt.one, BigInt.zero)
var s = Point.new(a, BigInt.one)
var nn = ((p + BigInt.one) >> 1) % p
while (nn > BigInt.zero) {
if ((nn & BigInt.one) == BigInt.one) r = mul.call(r, s)
s = mul.call(s, s)
nn = nn >> 1
}

// Step 3, check x in Fp
if (r.y != BigInt.zero) return [BigInt.zero, BigInt.zero, false]

// Step 5, check x * x = n
if (r.x * r.x % p != n) return [BigInt.zero, BigInt.zero, false]

// Step 4, solutions
return [r.x, p - r.x, true]
}

System.print(c.call("10", "13"))
System.print(c.call("56", "101"))
System.print(c.call("8218", "10007"))
System.print(c.call("8219", "10007"))
System.print(c.call("331575", "1000003"))
System.print(c.call("665165880", "1000000007"))
System.print(c.call("881398088036", "1000000000039"))
System.print(c.call("34035243914635549601583369544560650254325084643201", ""))</lang>

{{out}}
<pre>
[6, 7, true]
[37, 64, true]
[9872, 135, true]
[0, 0, false]
[855842, 144161, true]
[475131702, 524868305, true]
[791399408049, 208600591990, true]
[82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, true]
</pre>


=={{header|zkl}}==
=={{header|zkl}}==

Revision as of 17:00, 15 January 2021

Cipolla's algorithm is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Cipolla's algorithm

Solve x² ≡ n (mod p)

In computational number theory, Cipolla's algorithm is a technique for solving an equation of the form x² ≡ n (mod p), where p is an odd prime and x ,n ∊ Fp = {0, 1, ... p-1}.

To apply the algorithm we need the Legendre symbol, and arithmetic in Fp².

Legendre symbol

  • The Legendre symbol ( a | p) denotes the value of a ^ ((p-1)/2) (mod p)
  • (a | p) ≡ 1 if a is a square (mod p)
  • (a | p) ≡ -1 if a is not a square (mod p)
  • (a | p) ≡ 0 is a ≡ 0


Arithmetic in Fp²

Let ω a symbol such as ω² is a member of Fp and not a square, x and y members of Fp. The set Fp² is defined as {x + ω y }. The subset { x + 0 ω} of Fp² is Fp. Fp² is somewhat equivalent to the field of complex number, with ω analoguous to i, and i² = -1 . Remembering that all operations are modulo p, addition, multiplication and exponentiation in Fp² are defined as :

  • (x1 + ω y1) + (x2 + ω y2) := (x1 + x2 + ω (y1 + y2))
  • (x1 + ω y1) * (x2 + ω y2) := (x1*x2 + y1*y2*ω²) + ω (x1*y2 + x2*y1)
    • (0 + ω) * (0 + ω) := (ω² + 0 ω) ≡ ω² in Fp
  • (x1 + ω y1) ^ n := (x + ω y) * (x + ω y) * ... ( n times) (1)


Algorithm pseudo-code

  • Input : p an odd prime, and n ≠ 0 in Fp
  • Step 0. Check that n is indeed a square  : (n | p) must be ≡ 1
  • Step 1. Find, by trial and error, an a > 0 such as (a² - n) is not a square : (a²-n | p) must be ≡ -1.
  • Step 2. Let ω² = a² - n. Compute, in Fp2 : (a + ω) ^ ((p + 1)/2) (mod p)

To compute this step, use a pair of numbers, initially [a,1], and use repeated "multiplication" which is defined such that [c,d] times [e,f] is (mod p) [ c*c + ω²*f*f, d*e + c*f ].

  • Step 3. Check that the result is ≡ x + 0 * ω in Fp2, that is x in Fp.
  • Step 4. Output the two positive solutions, x and p - x (mod p).
  • Step 5. Check that x * x ≡ n (mod p)


Example from Wikipedia

n := 10 , p := 13
Legendre(10,13) → 1         // 10 is indeed a square
a := 2                      // try
ω² := a*a - 10             // ≡ 7 ≡ -6
Legendre (ω² , 13) → -1    // ok - not square
(2 + ω) ^ 7 → 6 + 0 ω      // by modular exponentiation (1)
                            // 6 and (13 - 6) = 7 are solutions
(6 * 6) % 13 → 10           // = n . Checked.

Task

Implement the above.

Find solutions (if any) for

  • n = 10 p = 13
  • n = 56 p = 101
  • n = 8218 p = 10007
  • n = 8219 p = 10007
  • n = 331575 p = 1000003


Extra credit

  • n 665165880 p 1000000007
  • n 881398088036 p 1000000000039
  • n = 34035243914635549601583369544560650254325084643201 p = 10^50 + 151


See also:



C

Translation of: FreeBasic

<lang c>#include <stdbool.h>

  1. include <stdint.h>
  2. include <stdio.h>
  3. include <stdlib.h>
  4. include <time.h>

struct fp2 {

   int64_t x, y;

};

uint64_t randULong(uint64_t min, uint64_t max) {

   uint64_t t = (uint64_t)rand();
   return min + t % (max - min);

}

// returns a * b mod modulus uint64_t mul_mod(uint64_t a, uint64_t b, uint64_t modulus) {

   uint64_t x = 0, y = a % modulus;
   while (b > 0) {
       if ((b & 1) == 1) {
           x = (x + y) % modulus;
       }
       y = (y << 1) % modulus;
       b = b >> 1;
   }
   return x;

}

//returns b ^^ power mod modulus uint64_t pow_mod(uint64_t b, uint64_t power, uint64_t modulus) {

   uint64_t x = 1;
   while (power > 0) {
       if ((power & 1) == 1) {
           x = mul_mod(x, b, modulus);
       }
       b = mul_mod(b, b, modulus);
       power = power >> 1;
   }
   return x;

}

// miller-rabin prime test bool isPrime(uint64_t n, int64_t k) {

   uint64_t a, x, n_one = n - 1, d = n_one;
   uint32_t s = 0;
   uint32_t r;
   if (n < 2) {
       return false;
   }
   // limit 2^63, pow_mod/mul_mod can't handle bigger numbers
   if (n > 9223372036854775808ull) {
       printf("The number is too big, program will end.\n");
       exit(1);
   }
   if ((n % 2) == 0) {
       return n == 2;
   }
   while ((d & 1) == 0) {
       d = d >> 1;
       s = s + 1;
   }
   while (k > 0) {
       k = k - 1;
       a = randULong(2, n);
       x = pow_mod(a, d, n);
       if (x == 1 || x == n_one) {
           continue;
       }
       for (r = 1; r < s; r++) {
           x = pow_mod(x, 2, n);
           if (x == 1) return false;
           if (x == n_one) goto continue_while;
       }
       if (x != n_one) {
           return false;
       }
   continue_while: {}
   }
   return true;

}

int64_t legendre_symbol(int64_t a, int64_t p) {

   int64_t x = pow_mod(a, (p - 1) / 2, p);
   if ((p - 1) == x) {
       return x - p;
   } else {
       return x;
   }

}

struct fp2 fp2mul(struct fp2 a, struct fp2 b, int64_t p, int64_t w2) {

   struct fp2 answer;
   uint64_t tmp1, tmp2;
   tmp1 = mul_mod(a.x, b.x, p);
   tmp2 = mul_mod(a.y, b.y, p);
   tmp2 = mul_mod(tmp2, w2, p);
   answer.x = (tmp1 + tmp2) % p;
   tmp1 = mul_mod(a.x, b.y, p);
   tmp2 = mul_mod(a.y, b.x, p);
   answer.y = (tmp1 + tmp2) % p;
   return answer;

}

struct fp2 fp2square(struct fp2 a, int64_t p, int64_t w2) {

   return fp2mul(a, a, p, w2);

}

struct fp2 fp2pow(struct fp2 a, int64_t n, int64_t p, int64_t w2) {

   struct fp2 ret;
   if (n == 0) {
       ret.x = 1;
       ret.y = 0;
       return ret;
   }
   if (n == 1) {
       return a;
   }
   if ((n & 1) == 0) {
       return fp2square(fp2pow(a, n / 2, p, w2), p, w2);
   } else {
       return fp2mul(a, fp2pow(a, n - 1, p, w2), p, w2);
   }

}

void test(int64_t n, int64_t p) {

   int64_t a, w2;
   int64_t x1, x2;
   struct fp2 answer;
   printf("Find solution for n = %lld and p = %lld\n", n, p);
   if (p == 2 || !isPrime(p, 15)) {
       printf("No solution, p is not an odd prime.\n\n");
       return;
   }
   //p is checked and is a odd prime
   if (legendre_symbol(n, p) != 1) {
       printf(" %lld is not a square in F%lld\n\n", n, p);
       return;
   }
   while (true) {
       do {
           a = randULong(2, p);
           w2 = a * a - n;
       } while (legendre_symbol(w2, p) != -1);
       answer.x = a;
       answer.y = 1;
       answer = fp2pow(answer, (p + 1) / 2, p, w2);
       if (answer.y != 0) {
           continue;
       }
       x1 = answer.x;
       x2 = p - x1;
       if (mul_mod(x1, x1, p) == n && mul_mod(x2, x2, p) == n) {
           printf("Solution found: x1 = %lld, x2 = %lld\n\n", x1, x2);
           return;
       }
   }

}

int main() {

   srand((size_t)time(0));
   test(10, 13);
   test(56, 101);
   test(8218, 10007);
   test(8219, 10007);
   test(331575, 1000003);
   test(665165880, 1000000007);
   //test(881398088036, 1000000000039);
   return 0;

}</lang>

Output:
Find solution for n = 10 and p = 13
Solution found: x1 = 7, x2 = 6

Find solution for n = 56 and p = 101
Solution found: x1 = 37, x2 = 64

Find solution for n = 8218 and p = 10007
Solution found: x1 = 9872, x2 = 135

Find solution for n = 8219 and p = 10007
 8219 is not a square in F10007

Find solution for n = 331575 and p = 1000003
Solution found: x1 = 144161, x2 = 855842

Find solution for n = 665165880 and p = 1000000007
Solution found: x1 = 524868305, x2 = 475131702

C#

<lang csharp>using System; using System.Numerics;

namespace CipollaAlgorithm {

   class Program {
       static readonly BigInteger BIG = BigInteger.Pow(10, 50) + 151;
       private static Tuple<BigInteger, BigInteger, bool> C(string ns, string ps) {
           BigInteger n = BigInteger.Parse(ns);
           BigInteger p = ps.Length > 0 ? BigInteger.Parse(ps) : BIG;
           // Legendre symbol. Returns 1, 0, or p-1
           BigInteger ls(BigInteger a0) => BigInteger.ModPow(a0, (p - 1) / 2, p);
           // Step 0: validate arguments
           if (ls(n) != 1) {
               return new Tuple<BigInteger, BigInteger, bool>(0, 0, false);
           }
           // Step 1: Find a, omega2
           BigInteger a = 0;
           BigInteger omega2;
           while (true) {
               omega2 = (a * a + p - n) % p;
               if (ls(omega2) == p - 1) {
                   break;
               }
               a += 1;
           }
           // Multiplication in Fp2
           BigInteger finalOmega = omega2;
           Tuple<BigInteger, BigInteger> mul(Tuple<BigInteger, BigInteger> aa, Tuple<BigInteger, BigInteger> bb) {
               return new Tuple<BigInteger, BigInteger>(
                   (aa.Item1 * bb.Item1 + aa.Item2 * bb.Item2 * finalOmega) % p,
                   (aa.Item1 * bb.Item2 + bb.Item1 * aa.Item2) % p
               );
           }
           // Step 2: Compute power
           Tuple<BigInteger, BigInteger> r = new Tuple<BigInteger, BigInteger>(1, 0);
           Tuple<BigInteger, BigInteger> s = new Tuple<BigInteger, BigInteger>(a, 1);
           BigInteger nn = ((p + 1) >> 1) % p;
           while (nn > 0) {
               if ((nn & 1) == 1) {
                   r = mul(r, s);
               }
               s = mul(s, s);
               nn >>= 1;
           }
           // Step 3: Check x in Fp
           if (r.Item2 != 0) {
               return new Tuple<BigInteger, BigInteger, bool>(0, 0, false);
           }
           // Step 5: Check x * x = n
           if (r.Item1 * r.Item1 % p != n) {
               return new Tuple<BigInteger, BigInteger, bool>(0, 0, false);
           }
           // Step 4: Solutions
           return new Tuple<BigInteger, BigInteger, bool>(r.Item1, p - r.Item1, true);
       }
       static void Main(string[] args) {
           Console.WriteLine(C("10", "13"));
           Console.WriteLine(C("56", "101"));
           Console.WriteLine(C("8218", "10007"));
           Console.WriteLine(C("8219", "10007"));
           Console.WriteLine(C("331575", "1000003"));
           Console.WriteLine(C("665165880", "1000000007"));
           Console.WriteLine(C("881398088036", "1000000000039"));
           Console.WriteLine(C("34035243914635549601583369544560650254325084643201", ""));
       }
   }

}</lang>

Output:
(6, 7, True)
(37, 64, True)
(9872, 135, True)
(0, 0, False)
(855842, 144161, True)
(475131702, 524868305, True)
(791399408049, 208600591990, True)
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, True)

D

Translation of: Kotlin

<lang D>import std.bigint; import std.stdio; import std.typecons;

enum BIGZERO = BigInt(0);

/// https://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method BigInt modPow(BigInt b, BigInt e, BigInt n) {

   if (n == 1) return BIGZERO;
   BigInt result = 1;
   b = b % n;
   while (e > 0) {
       if (e % 2 == 1) {
           result = (result * b) % n;
       }
       e >>= 1;
       b = (b*b) % n;
   }
   return result;

}

alias Point = Tuple!(BigInt, "x", BigInt, "y"); alias Triple = Tuple!(BigInt, "x", BigInt, "y", bool, "b");

Triple c(string ns, string ps) {

   auto n = BigInt(ns);
   BigInt p;
   if (ps.length > 0) {
       p = BigInt(ps);
   } else {
       p = BigInt(10)^^50 + 151;
   }
   // Legendre symbol, returns 1, 0 or p - 1
   auto ls = (BigInt a) => modPow(a, (p-1)/2, p);
   // Step 0, validate arguments
   if (ls(n) != 1) return Triple(BIGZERO, BIGZERO, false);
   // Step 1, find a, omega2
   auto a = BIGZERO;
   BigInt omega2;
   while (true) {
       omega2 = (a * a + p - n) % p;
       if (ls(omega2) == p-1) break;
       a++;
   }
   // multiplication in Fp2
   auto mul = (Point aa, Point bb) => Point(
       (aa.x * bb.x + aa.y * bb.y * omega2) % p,
       (aa.x * bb.y + bb.x * aa.y) % p
   );
   // Step 2, compute power
   auto r = Point(BigInt(1), BIGZERO);
   auto s = Point(a, BigInt(1));
   auto nn = ((p+1) >> 1) % p;
   while (nn > 0) {
       if ((nn & 1) == 1) r = mul(r, s);
       s = mul(s, s);
       nn >>= 1;
   }
   // Step 3, check x in Fp
   if (r.y != 0) return Triple(BIGZERO, BIGZERO, false);
   // Step 5, check x * x = n
   if (r.x*r.x%p!=n) return Triple(BIGZERO, BIGZERO, false);
   // Step 4, solutions
   return Triple(r.x, p-r.x, true);

}

void main() {

   writeln(c("10", "13"));
   writeln(c("56", "101"));
   writeln(c("8218", "10007"));
   writeln(c("8219", "10007"));
   writeln(c("331575", "1000003"));
   writeln(c("665165880", "1000000007"));
   writeln(c("881398088036", "1000000000039"));
   writeln(c("34035243914635549601583369544560650254325084643201", ""));

}</lang>

Output:
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(6, 7, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(37, 64, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(9872, 135, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(0, 0, false)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(855842, 144161, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(475131702, 524868305, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(791399408049, 208600591990, true)
Tuple!(BigInt, "x", BigInt, "y", bool, "b")(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, true)

EchoLisp

<lang scheme> (lib 'struct) (lib 'types) (lib 'bigint)

test equality mod p

(define-syntax-rule (mod= a b p) (zero? (% (- a b) p)))

(define (Legendre a p) (powmod a (/ (1- p) 2) p))

Arithmetic in Fp²

(struct Fp² ( x y ))

a + b

(define (Fp²-add Fp²:a Fp²:b p ω2) (Fp² (% (+ a.x b.x) p) (% (+ a.y b.y) p)))

a * b

(define (Fp²-mul Fp²:a Fp²:b p ω2) (Fp² (% (+ (* a.x b.x) (* ω2 a.y b.y)) p) (% (+ (* a.x b.y) (* a.y b.x)) p)))

a * a

(define (Fp²-square Fp²:a p ω2) (Fp² (% (+ (* a.x a.x) (* ω2 a.y a.y)) p) (% (* 2 a.x a.y) p)))

a ^ n

(define (Fp²-pow Fp²:a n p ω2) (cond ((= 0 n) (Fp² 1 0)) ((= 1 n) (Fp² a.x a.y)) ((= 2 n) (Fp²-mul a a p ω2)) ((even? n) (Fp²-square (Fp²-pow a (/ n 2) p ω2) p ω2)) (else (Fp²-mul a (Fp²-pow a (1- n) p ω2) p ω2))))

x^2 ≡ n (mod p) ?

(define (Cipolla n p)

check n is a square

(unless (= 1 (Legendre n p)) (error "not a square (mod p)" (list n p)))

iterate until suitable 'a' found

(define a (for ((t (in-range 2 p))) ;; t = tentative a #:break (= (1- p) (Legendre (- (* t t) n) p)) => t )) (define ω2 (- (* a a) n)) ;; (writeln 'a-> a 'ω2-> ω2 'ω-> 'ω) ;; (Fp² a 1) = a + ω (define r (Fp²-pow (Fp² a 1) (/ (1+ p) 2) p ω2)) ;; (writeln 'r r) (define x (Fp²-x r)) (assert (zero? (Fp²-y r))) ;; hope that ω has vanished (assert (mod= n (* x x) p)) ;; checking the result (printf "Roots of %d are (%d,%d) (mod %d)" n x (% (- p x) p) p)) </lang>

Output:
(Cipolla 10 13)
Roots of 10 are (6,7) (mod 13)
(% (* 6 6) 13) → 10 ;; checking

(Cipolla 56 101)
Roots of 56 are (37,64) (mod 101)

(Cipolla 8218 10007)
Roots of 8218 are (9872,135) (mod 10007)

Cipolla 8219 10007)
❌ error: not a square (mod p) (8219 10007)

(Cipolla 331575 1000003)
Roots of 331575 are (855842,144161) (mod 1000003)
(% ( * 855842 855842) 1000003) → 331575

F#

The function

This task uses Extensible Prime Generator (F#) <lang fsharp> // Cipolla's algorithm. Nigel Galloway: June 16th., 2019 let Cipolla n g =

 let rec fN i g e l=match e with n when n=0I->i |_ when e%2I=1I->fN ((i*g)%l) ((g*g)%l) (e/2I) l |_-> fN i ((g*g)%l) (e/2I) l
 let rec fG g=match (n/g+g)>>>1 with n when bigint.Abs(g-n)>>>1<2I->n+1I |g->fG g
 let a,b=let rec fI i=let q=i*i-n in if fN 1I q ((g-1I)/2I) g>1I then (i,q) else fI (i+1I) in fI(fG (bigint(sqrt(double n))))
 let fE=Seq.unfold(fun(n,i)->Some((n,i),((n*n+i*i*b)%g,(2I*n*i)%g)))(a,1I)|>Seq.cache
 let rec fL Πn Πi α β=match 2I**α with
                       Ω when Ω<β->fL Πn Πi (α+1) β
                      |Ω when Ω>β->let n,i=Seq.item (α-1) fE in fL ((Πn*n+Πi*i*b)%g) ((Πn*i+Πi*n)%g) 0 (β-Ω/2I)    
                      |_->let n,i=Seq.item α fE in ((Πn*n+Πi*i*b)%g)
 if fN 1I n ((g-1I)/2I) g<>1I then None else Some(fL 1I 0I 0 ((g+1I)/2I))

</lang>

The Task

<lang fsharp> let test=[(10I,13I);(56I,101I);(8218I,10007I);(8219I,10007I);(331575I,1000003I);(665165880I,1000000007I);(881398088036I,1000000000039I);(34035243914635549601583369544560650254325084643201I,10I**50+151I)] test|>List.iter(fun(n,g)->match Cipolla n g with Some r->printfn "Cipolla %A %A -> %A (%A) check %A" n g r (g-r) ((r*r)%g) |_->printfn "Cipolla %A %A -> has no result" n g) </lang>

Output:
Cipolla 10 13 -> 7 (6) check 10
Cipolla 56 101 -> 64 (37) check 56
Cipolla 8218 10007 -> 135 (9872) check 8218
Cipolla 8219 10007 -> has no result
Cipolla 331575 1000003 -> 144161 (855842) check 331575
Cipolla 665165880 1000000007 -> 475131702 (524868305) check 665165880
Cipolla 881398088036 1000000000039 -> 208600591990 (791399408049) check 881398088036
Cipolla 34035243914635549601583369544560650254325084643201 100000000000000000000000000000000000000000000000151 -> 17436881171909637738621006042549786426312886309400 (82563118828090362261378993957450213573687113690751) check 34035243914635549601583369544560650254325084643201
Real: 00:00:00.089, CPU: 00:00:00.090, GC gen0: 2, gen1: 0

FreeBASIC

LongInt version

Had a close look at the EchoLisp code for step 2. Used the FreeBASIC code from the Miller-Rabin task for prime testing. <lang freebasic>' version 08-04-2017 ' compile with: fbc -s console ' maximum for p is 17 digits to be on the save side

' TRUE/FALSE are built-in constants since FreeBASIC 1.04 ' But we have to define them for older versions.

  1. Ifndef TRUE
   #Define FALSE 0
   #Define TRUE Not FALSE
  1. EndIf

Type fp2

   x As LongInt
   y As LongInt

End Type

Function mul_mod(a As ULongInt, b As ULongInt, modulus As ULongInt) As ULongInt

   ' returns a * b mod modulus
   Dim As ULongInt x, y = a mod modulus
   While b > 0
       If (b And 1) = 1 Then
           x = (x + y) Mod modulus
       End If
       y = (y Shl 1) Mod modulus
       b = b Shr 1
   Wend
   Return x

End Function

Function pow_mod(b As ULongInt, power As ULongInt, modulus As ULongInt) As ULongInt

   ' returns b ^ power mod modulus
   Dim As ULongInt x = 1
   While power > 0
       If (power And 1) = 1 Then
           ' x = (x * b) Mod modulus
           x = mul_mod(x, b, modulus)
       End If
       ' b = (b * b) Mod modulus
       b = mul_mod(b, b, modulus)
       power = power Shr 1
   Wend
   Return x

End Function

Function Isprime(n As ULongInt, k As Long) As Long

   ' miller-rabin prime test
   If n > 9223372036854775808ull Then ' limit 2^63, pow_mod/mul_mod can't handle bigger numbers
       Print "number is to big, program will end"
       Sleep
       End
   End If
   ' 2 is a prime, if n is smaller then 2 or n is even then n = composite
   If n = 2 Then Return TRUE
   If (n < 2) OrElse ((n And 1) = 0) Then Return FALSE
   Dim As ULongInt a, x, n_one = n - 1, d = n_one
   Dim As UInteger s
   While (d And 1) = 0
       d = d Shr 1
       s = s + 1
   Wend
   While k > 0
       k = k - 1
       a = Int(Rnd * (n -2)) +2          ' 2 <= a < n
       x = pow_mod(a, d, n)
       If (x = 1) Or (x = n_one) Then Continue While
       For r As Integer = 1 To s -1
           x = pow_mod(x, 2, n)
           If x = 1 Then Return FALSE
           If x = n_one Then Continue While
       Next
       If x <> n_one Then Return FALSE
   Wend
   Return TRUE

End Function

Function legendre_symbol (a As LongInt, p As LongInt) As LongInt

   Dim As LongInt x = pow_mod(a, ((p -1) \ 2), p)
   If p -1 = x Then
       Return x - p
   Else
       Return x
   End If

End Function

Function fp2mul(a As fp2, b As fp2, p As LongInt, w2 As LongInt) As fp2

   Dim As fp2 answer
   Dim As ULongInt tmp1, tmp2
   ' needs to be broken down in smaller steps to avoid overflow
   ' answer.x = (a.x * b.x + a.y * b.y * w2) Mod p
   ' answer.y = (a.x * b.y + a.y * b.x) Mod p
   tmp1 = mul_mod(a.x, b.x, p)
   tmp2 = mul_mod(a.y, b.y, p)
   tmp2 = mul_mod(tmp2, w2, p)
   answer.x = (tmp1 + tmp2) Mod p
   tmp1 = mul_mod(a.x, b.y, p)
   tmp2 = mul_mod(a.y, b.x, p)
   answer.y = (tmp1 + tmp2) Mod p
   Return answer

End Function

Function fp2square(a As fp2, p As LongInt, w2 As LongInt) As fp2

   Return fp2mul(a, a, p, w2)

End Function

Function fp2pow(a As fp2, n As LongInt, p As LongInt, w2 As LongInt) As fp2

   If n = 0 Then Return Type (1, 0)
   If n = 1 Then Return a
   If n = 2 Then Return fp2square(a, p, w2)
   If (n And 1) = 0 Then
       Return fp2square(fp2pow(a, n \ 2, p, w2), p , w2)
   Else
       Return fp2mul(a, fp2pow(a, n -1, p, w2), p, w2)
   End If

End Function

' ------=< MAIN >=------

Data 10, 13, 56, 101, 8218, 10007,8219, 10007 Data 331575, 1000003, 665165880, 1000000007 Data 881398088036, 1000000000039

Randomize Timer Dim As LongInt n, p, a, w2 Dim As LongInt i, x1, x2 Dim As fp2 answer

For i = 1 To 7

   Read n, p
   Print
   Print "Find solution for n =";n ; " and p =";p
   If p = 2 OrElse Isprime(p,15) = FALSE Then
       Print "No solution, p is not a odd prime"
       Continue For
   End If
   ' p is checked and is a odd prime
   If legendre_symbol(n, p) <> 1 Then
       Print n; " is not a square in F";Str(p)
       Continue For
   End If
   Do 
       Do
           a = Rnd * (p -2) +2
           w2 = a * a - n
       Loop Until legendre_symbol(w2, p) = -1
       answer = Type(a, 1)
       answer = fp2pow(answer, (p +1) \ 2, p, w2)
       If answer.y <> 0 Then Continue Do
       x1 = answer.x : x2 = p - x1
       If mul_mod(x1, x1, p) = n AndAlso mul_mod(x2, x2, p) = n Then
           Print "Solution found: x1 ="; x1; ", "; "x2 ="; x2
           Exit Do
       End If
   Loop            ' loop until solution is found

Next

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
Find solution for n = 10 and p = 13
Solution found: x1 = 7, x2 = 6

Find solution for n = 56 and p = 101
Solution found: x1 = 37, x2 = 64

Find solution for n = 8218 and p = 10007
Solution found: x1 = 9872, x2 = 135

Find solution for n = 8219 and p = 10007
 8219 is not a square in F10007

Find solution for n = 331575 and p = 1000003
Solution found: x1 = 144161, x2 = 855842

Find solution for n = 665165880 and p = 1000000007
Solution found: x1 = 475131702, x2 = 524868305

Find solution for n = 881398088036 and p = 1000000000039
Solution found: x1 = 791399408049, x2 = 208600591990

GMP version

Library: GMP

<lang freebasic>' version 12-04-2017 ' compile with: fbc -s console

  1. Include Once "gmp.bi"

Type fp2

   x As Mpz_ptr
   y As Mpz_ptr

End Type

Data "10", "13" Data "56", "101" Data "8218", "10007" Data "8219", "10007" Data "331575", "1000003" Data "665165880", "1000000007" Data "881398088036", "1000000000039" Data "34035243914635549601583369544560650254325084643201" ', 10^50 + 151

Function fp2mul(a As fp2, b As fp2, p As Mpz_ptr, w2 As Mpz_ptr) As fp2

   Dim As fp2 r
   r.x = Allocate(Len(__Mpz_struct)) : Mpz_init(r.x)
   r.y = Allocate(Len(__Mpz_struct)) : Mpz_init(r.y)
   Mpz_mul (r.x, a.y, b.y)
   Mpz_mul (r.x, r.x, w2)
   Mpz_addmul(r.x, a.x, b.x)
   Mpz_mod (r.x, r.x, p)
   Mpz_mul (r.y, a.x, b.y)
   Mpz_addmul(r.y, a.y, b.x)
   Mpz_mod (r.y, r.y, p)
   Return r

End Function

Function fp2square(a As fp2, p As Mpz_ptr, w2 As Mpz_ptr) As fp2

   Return fp2mul(a, a, p, w2)

End Function

Function fp2pow(a As fp2, n As Mpz_ptr, p As Mpz_ptr, w2 As Mpz_ptr) As fp2

   If Mpz_cmp_ui(n, 0) = 0 Then
       Mpz_set_ui(a.x, 1)
       Mpz_set_ui(a.y, 0)
       Return a
   End If
   If Mpz_cmp_ui(n, 1) = 0 Then Return a
   If Mpz_cmp_ui(n, 2) = 0 Then Return fp2square(a, p, w2)
   If Mpz_tstbit(n, 0) = 0 Then
       Mpz_fdiv_q_2exp(n, n, 1) ' even
       Return fp2square(fp2pow(a, n, p, w2), p, w2)
   Else
       Mpz_sub_ui(n, n, 1)      ' odd
       Return fp2mul(a, fp2pow(a, n, p, w2), p, w2)
   End If

End Function

' ------=< MAIN >=------

Dim As Long i Dim As ZString Ptr zstr Dim As String n_str, p_str

Dim As Mpz_ptr a, n, p, p2, w2, x1, x2 a = Allocate(Len(__Mpz_struct)) : Mpz_init(a) n = Allocate(Len(__Mpz_struct)) : Mpz_init(n) p = Allocate(Len(__Mpz_struct)) : Mpz_init(p) p2 = Allocate(Len(__Mpz_struct)) : Mpz_init(p2) w2 = Allocate(Len(__Mpz_struct)) : Mpz_init(w2) x1 = Allocate(Len(__Mpz_struct)) : Mpz_init(x1) x2 = Allocate(Len(__Mpz_struct)) : Mpz_init(x2)

Dim As fp2 answer answer.x = Allocate(Len(__Mpz_struct)) : Mpz_init(answer.x) answer.y = Allocate(Len(__Mpz_struct)) : Mpz_init(answer.y)

For i = 1 To 8

   Read n_str
   Mpz_set_str(n, n_str, 10)
   If i < 8 Then
       Read p_str
       Mpz_set_str(p, p_str, 10)
   Else
       p_str = "10^50 + 151" ' set up last n
       Mpz_set_str(p, "1" + String(50, "0"), 10)
       Mpz_add_ui(p, p, 151)
   End If
   Print "Find solution for n = "; n_str; " and p = "; p_str
   If Mpz_tstbit(p, 0) = 0 OrElse Mpz_probab_prime_p(p, 20) = 0 Then
       Print p_str; "is not a odd prime"
       Print
       Continue For
   End If
   ' p is checked and is a odd prime
   ' legendre symbol needs to be 1
   If Mpz_legendre(n, p) <> 1 Then
       Print n_str; " is not a square in F"; p_str
       Print
       Continue For
   End If
   Mpz_set_ui(a, 1)
   Do
       Do
           Do
               Mpz_add_ui(a, a, 1)
               Mpz_mul(w2, a, a)
               Mpz_sub(w2, w2, n)
           Loop Until Mpz_legendre(w2, p) = -1
           Mpz_set(answer.x, a)
           Mpz_set_ui(answer.y, 1)
           Mpz_add_ui(p2, p, 1)       ' p2 = p + 1
           Mpz_fdiv_q_2exp(p2, p2, 1) ' p2 = p2 \ 2 (p2 shr 1)
           answer = fp2pow(answer, p2, p, w2)
       Loop Until Mpz_cmp_ui(answer.y, 0) = 0
       Mpz_set(x1, answer.x)
       Mpz_sub(x2, p, x1)
       Mpz_powm_ui(a, x1, 2, p)
       Mpz_powm_ui(p2, x2, 2, p)
       If Mpz_cmp(a, n) = 0 AndAlso Mpz_cmp(p2, n) = 0 Then Exit Do
   Loop
   zstr = Mpz_get_str(0, 10, x1)
   Print "Solution found: x1 = "; *zstr;
   zstr = Mpz_get_str(0, 10, x2)
   Print ", x2 = "; *zstr
   Print

Next

Mpz_clear(x1) : Mpz_clear(p2) : Mpz_clear(p) : Mpz_clear(a) : Mpz_clear(n) Mpz_clear(x2) : Mpz_clear(w2) : Mpz_clear(answer.x) : Mpz_clear(answer.y)

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
Find solution for n = 10 and p = 13
Solution found: x1 = 6, x2 = 7

Find solution for n = 56 and p = 101
Solution found: x1 = 37, x2 = 64

Find solution for n = 8218 and p = 10007
Solution found: x1 = 9872, x2 = 135

Find solution for n = 8219 and p = 10007
8219 is not a square in F10007

Find solution for n = 331575 and p = 1000003
Solution found: x1 = 855842, x2 = 144161

Find solution for n = 665165880 and p = 1000000007
Solution found: x1 = 524868305, x2 = 475131702

Find solution for n = 881398088036 and p = 1000000000039
Solution found: x1 = 208600591990, x2 = 791399408049

Find solution for n = 34035243914635549601583369544560650254325084643201 and p = 10^50 + 151
Solution found: x1 = 17436881171909637738621006042549786426312886309400, x2 = 82563118828090362261378993957450213573687113690751

Go

int

Implementation following the pseudocode in the task description. <lang go>package main

import "fmt"

func c(n, p int) (R1, R2 int, ok bool) {

   // a^e mod p
   powModP := func(a, e int) int {
       s := 1
       for ; e > 0; e-- {
           s = s * a % p
       }
       return s
   }
   // Legendre symbol, returns 1, 0, or -1 mod p -- that's 1, 0, or p-1.
   ls := func(a int) int {
       return powModP(a, (p-1)/2)
   }
   // Step 0, validate arguments
   if ls(n) != 1 {
       return
   }
   // Step 1, find a, ω2
   var a, ω2 int
   for a = 0; ; a++ {
       // integer % in Go uses T-division, add p to keep the result positive
       ω2 = (a*a + p - n) % p
       if ls(ω2) == p-1 {
           break
       }
   }
   // muliplication in fp2
   type point struct{ x, y int }
   mul := func(a, b point) point {
       return point{(a.x*b.x + a.y*b.y*ω2) % p, (a.x*b.y + b.x*a.y) % p}
   }
   // Step2, compute power
   r := point{1, 0}
   s := point{a, 1}
   for n := (p + 1) >> 1 % p; n > 0; n >>= 1 {
       if n&1 == 1 {
           r = mul(r, s)
       }
       s = mul(s, s)
   }
   // Step3, check x in Fp
   if r.y != 0 {
       return
   }
   // Step5, check x*x=n
   if r.x*r.x%p != n {
       return
   }
   // Step4, solutions
   return r.x, p - r.x, true

}

func main() {

   fmt.Println(c(10, 13))
   fmt.Println(c(56, 101))
   fmt.Println(c(8218, 10007))
   fmt.Println(c(8219, 10007))
   fmt.Println(c(331575, 1000003))

}</lang>

Output:
6 7 true
37 64 true
9872 135 true
0 0 false
855842 144161 true

big.Int

Extra credit: <lang go>package main

import (

   "fmt"
   "math/big"

)

func c(n, p big.Int) (R1, R2 big.Int, ok bool) {

   if big.Jacobi(&n, &p) != 1 {
       return
   }
   var one, a, ω2 big.Int
   one.SetInt64(1)
   for ; ; a.Add(&a, &one) {
       // big.Int Mod uses Euclidean division, result is always >= 0
       ω2.Mod(ω2.Sub(ω2.Mul(&a, &a), &n), &p)
       if big.Jacobi(&ω2, &p) == -1 {
           break
       }
   }
   type point struct{ x, y big.Int }
   mul := func(a, b point) (z point) {
       var w big.Int
       z.x.Mod(z.x.Add(z.x.Mul(&a.x, &b.x), w.Mul(w.Mul(&a.y, &a.y), &ω2)), &p)
       z.y.Mod(z.y.Add(z.y.Mul(&a.x, &b.y), w.Mul(&b.x, &a.y)), &p)
       return
   }
   var r, s point
   r.x.SetInt64(1)
   s.x.Set(&a)
   s.y.SetInt64(1)
   var e big.Int
   for e.Rsh(e.Add(&p, &one), 1); len(e.Bits()) > 0; e.Rsh(&e, 1) {
       if e.Bit(0) == 1 {
           r = mul(r, s)
       }
       s = mul(s, s)
   }
   R2.Sub(&p, &r.x)
   return r.x, R2, true

}

func main() {

   var n, p big.Int
   n.SetInt64(665165880)
   p.SetInt64(1000000007)
   R1, R2, ok := c(n, p)
   fmt.Println(&R1, &R2, ok)
   n.SetInt64(881398088036)
   p.SetInt64(1000000000039)
   R1, R2, ok = c(n, p)
   fmt.Println(&R1, &R2, ok)
   n.SetString("34035243914635549601583369544560650254325084643201", 10)
   p.SetString("100000000000000000000000000000000000000000000000151", 10)
   R1, R2, ok = c(n, p)
   fmt.Println(&R1)
   fmt.Println(&R2)

}</lang>

Output:
475131702 524868305 true
791399408049 208600591990 true
82563118828090362261378993957450213573687113690751
17436881171909637738621006042549786426312886309400

J

Based on the echolisp implementation:

<lang J>leg=: dyad define

 x (y&|)@^ (y-1)%2

)

mul2=: conjunction define

 m| (*&{. + n**&{:), (+/ .* |.)

)

pow2=: conjunction define

 if. 0=y do. 1 0
 elseif. 1=y do. x
 elseif. 2=y do. x (m mul2 n) x
 elseif. 0=2|y do. (m mul2 n)~ x (m pow2 n) y%2
 elseif. do. x (m mul2 n) x (m pow2 n) y-1
 end.

)

cipolla=: dyad define

 assert. 1=1 p: y [ 'y must be prime'
 assert. 1= x leg y [ 'x must be square mod y'
 a=.1 
 whilst. (0 ~:{: r) do. a=. a+1
   while. 1>: leg&y@(x -~ *:) a do. a=.a+1 end.
   w2=. y|(*:a) - x
   r=. (a,1) (y pow2 w2) (y+1)%2
 end.
 if. x =&(y&|) *:{.r do.
   y|(,-){.r
 else.
   smoutput 'got ',":~.y|(,-){.r
   assert. 'not a valid square root'
 end.

)</lang>

Task examples:

<lang J> 10 cipolla 13 6 7

  56 cipolla 101

37 64

  8218 cipolla 10007

9872 135

  8219 cipolla 10007

|assertion failure: cipolla | 1=x leg y['x must be square mod y'

  331575 cipolla 1000003

855842 144161

  665165880x cipolla 1000000007x

524868305 475131702

  881398088036x cipolla 1000000000039x

208600591990 791399408049

  34035243914635549601583369544560650254325084643201x cipolla (10^50x) + 151

17436881171909637738621006042549786426312886309400 82563118828090362261378993957450213573687113690751</lang>

Java

Translation of: Kotlin
Works with: Java version 8

<lang Java>import java.math.BigInteger; import java.util.function.BiFunction; import java.util.function.Function;

public class CipollasAlgorithm {

   private static final BigInteger BIG = BigInteger.TEN.pow(50).add(BigInteger.valueOf(151));
   private static final BigInteger BIG_TWO = BigInteger.valueOf(2);
   private static class Point {
       BigInteger x;
       BigInteger y;
       Point(BigInteger x, BigInteger y) {
           this.x = x;
           this.y = y;
       }
       @Override
       public String toString() {
           return String.format("(%s, %s)", this.x, this.y);
       }
   }
   private static class Triple {
       BigInteger x;
       BigInteger y;
       boolean b;
       Triple(BigInteger x, BigInteger y, boolean b) {
           this.x = x;
           this.y = y;
           this.b = b;
       }
       @Override
       public String toString() {
           return String.format("(%s, %s, %s)", this.x, this.y, this.b);
       }
   }
   private static Triple c(String ns, String ps) {
       BigInteger n = new BigInteger(ns);
       BigInteger p = !ps.isEmpty() ? new BigInteger(ps) : BIG;
       // Legendre symbol, returns 1, 0 or p - 1
       Function<BigInteger, BigInteger> ls = (BigInteger a)
           -> a.modPow(p.subtract(BigInteger.ONE).divide(BIG_TWO), p);
       // Step 0, validate arguments
       if (!ls.apply(n).equals(BigInteger.ONE)) {
           return new Triple(BigInteger.ZERO, BigInteger.ZERO, false);
       }
       // Step 1, find a, omega2
       BigInteger a = BigInteger.ZERO;
       BigInteger omega2;
       while (true) {
           omega2 = a.multiply(a).add(p).subtract(n).mod(p);
           if (ls.apply(omega2).equals(p.subtract(BigInteger.ONE))) {
               break;
           }
           a = a.add(BigInteger.ONE);
       }
       // multiplication in Fp2
       BigInteger finalOmega = omega2;
       BiFunction<Point, Point, Point> mul = (Point aa, Point bb) -> new Point(
           aa.x.multiply(bb.x).add(aa.y.multiply(bb.y).multiply(finalOmega)).mod(p),
           aa.x.multiply(bb.y).add(bb.x.multiply(aa.y)).mod(p)
       );
       // Step 2, compute power
       Point r = new Point(BigInteger.ONE, BigInteger.ZERO);
       Point s = new Point(a, BigInteger.ONE);
       BigInteger nn = p.add(BigInteger.ONE).shiftRight(1).mod(p);
       while (nn.compareTo(BigInteger.ZERO) > 0) {
           if (nn.and(BigInteger.ONE).equals(BigInteger.ONE)) {
               r = mul.apply(r, s);
           }
           s = mul.apply(s, s);
           nn = nn.shiftRight(1);
       }
       // Step 3, check x in Fp
       if (!r.y.equals(BigInteger.ZERO)) {
           return new Triple(BigInteger.ZERO, BigInteger.ZERO, false);
       }
       // Step 5, check x * x = n
       if (!r.x.multiply(r.x).mod(p).equals(n)) {
           return new Triple(BigInteger.ZERO, BigInteger.ZERO, false);
       }
       // Step 4, solutions
       return new Triple(r.x, p.subtract(r.x), true);
   }
   public static void main(String[] args) {
       System.out.println(c("10", "13"));
       System.out.println(c("56", "101"));
       System.out.println(c("8218", "10007"));
       System.out.println(c("8219", "10007"));
       System.out.println(c("331575", "1000003"));
       System.out.println(c("665165880", "1000000007"));
       System.out.println(c("881398088036", "1000000000039"));
       System.out.println(c("34035243914635549601583369544560650254325084643201", ""));
   }

}</lang>

Output:
(6, 7, true)
(37, 64, true)
(9872, 135, true)
(0, 0, false)
(855842, 144161, true)
(475131702, 524868305, true)
(791399408049, 208600591990, true)
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, true)

Julia

Translation of: Perl

<lang julia>using Primes

function legendre(n, p)

   if p != 2 && isprime(p)
       x = powermod(BigInt(n), div(p - 1, 2), p)
       return x == 0 ? 0 : x == 1 ? 1 : -1
   end
   return -1

end

function cipolla(n, p)

   if legendre(n, p) != 1
       return NaN
   end
   a, w2 = BigInt(0), BigInt(0)
   while true
       w2 = (a^2 + p - n) % p
       if legendre(w2, p) < 0
           break
       end
       a += 1
   end
   r, s, i = (1, 0), (a, 1), p + 1
   while (i >>= 1) > 0
       if isodd(i)
           r = ((r[1] * s[1] + r[2] * s[2] * w2) % p, (r[1] * s[2] + s[1] * r[2]) % p)
       end
       s = ((s[1] * s[1] + s[2] * s[2] * w2) % p, (2 * s[1] * s[2]) % p)
   end
   return r[2] != 0 ? NaN : r[1]

end

const ctests = [(10, 13),

               (56, 101),
               (8218, 10007),
               (8219, 10007),
               (331575, 1000003),
               (665165880, 1000000007),
               (881398088036, 1000000000039),
               (big"34035243914635549601583369544560650254325084643201",
                   big"100000000000000000000000000000000000000000000000151")]

for (n, p) in ctests

  r = cipolla(n, p)
  println(r > 0 ? "Roots of $n are ($r, $(p - r)) mod $p." : "No solution for ($n, $p)")

end

</lang>

Output:
Roots of 10 are (6, 7) mod 13.
Roots of 56 are (37, 64) mod 101.
Roots of 8218 are (9872, 135) mod 10007.
No solution for (8219, 10007)
Roots of 331575 are (855842, 144161) mod 1000003.
Roots of 665165880 are (475131702, 524868305) mod 1000000007.
Roots of 881398088036 are (791399408049, 208600591990) mod 1000000000039.
Roots of 34035243914635549601583369544560650254325084643201 are (82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400) mod 100000000000000000000000000000000000000000000000151.

Kotlin

Translation of: Go

<lang scala>// version 1.2.0

import java.math.BigInteger

class Point(val x: BigInteger, val y: BigInteger)

val bigZero = BigInteger.ZERO val bigOne = BigInteger.ONE val bigTwo = BigInteger.valueOf(2L) val bigBig = BigInteger.TEN.pow(50) + BigInteger.valueOf(151L)

fun c(ns: String, ps: String): Triple<BigInteger, BigInteger, Boolean> {

   val n = BigInteger(ns)
   val p = if (!ps.isEmpty()) BigInteger(ps) else bigBig
   // Legendre symbol, returns 1, 0 or p - 1
   fun ls(a: BigInteger) = a.modPow((p - bigOne) / bigTwo, p)
   // Step 0, validate arguments
   if (ls(n) != bigOne) return Triple(bigZero, bigZero, false)
   // Step 1, find a, omega2
   var a = bigZero
   var omega2: BigInteger
   while (true) {
       omega2 = (a * a + p - n) % p
       if (ls(omega2) == p - bigOne) break
       a++
   }
   // multiplication in Fp2
   fun mul(aa: Point, bb: Point) =
       Point(
           (aa.x * bb.x + aa.y * bb.y * omega2) % p,
           (aa.x * bb.y + bb.x * aa.y) % p
       )
   // Step 2, compute power
   var r = Point(bigOne, bigZero)
   var s = Point(a, bigOne)
   var nn = ((p + bigOne) shr 1) % p
   while (nn > bigZero) {
       if ((nn and bigOne) == bigOne) r = mul(r, s)
       s = mul(s, s)
       nn = nn shr 1
   }
   // Step 3, check x in Fp
   if (r.y != bigZero) return Triple(bigZero, bigZero, false)
   // Step 5, check x * x = n
   if (r.x * r.x % p != n) return Triple(bigZero, bigZero, false)
   // Step 4, solutions
   return Triple(r.x, p - r.x, true)

}

fun main(args: Array<String>) {

   println(c("10", "13"))
   println(c("56", "101"))
   println(c("8218", "10007"))
   println(c("8219", "10007"))
   println(c("331575", "1000003"))
   println(c("665165880", "1000000007"))
   println(c("881398088036", "1000000000039"))
   println(c("34035243914635549601583369544560650254325084643201", ""))

}</lang>

Output:
(6, 7, true)
(37, 64, true)
(9872, 135, true)
(0, 0, false)
(855842, 144161, true)
(475131702, 524868305, true)
(791399408049, 208600591990, true)
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, true)

Perl

Translation of: Raku
Library: ntheory

<lang perl>use bigint; use ntheory qw(is_prime);

sub Legendre {

   my($n,$p) = @_;
   return -1 unless $p != 2 && is_prime($p);
   my $x = ($n->as_int())->bmodpow(int(($p-1)/2), $p); # $n coerced to BigInt
   if    ($x==0) { return  0 }
   elsif ($x==1) { return  1 }
   else          { return -1 }

}

sub Cipolla {

   my($n, $p) = @_;
   return undef if Legendre($n,$p) != 1;
   my $w2;
   my $a = 0;
   $a++ until Legendre(($w2 = ($a**2 - $n) % $p), $p) < 0;
   my %r = ( x=> 1,  y=> 0 );
   my %s = ( x=> $a, y=> 1 );
   my $i = $p + 1;
   while (1 <= ($i >>= 1)) {
       %r = ( x => (($r{x} * $s{x} + $r{y} * $s{y} * $w2) % $p),
              y => (($r{x} * $s{y} + $s{x} * $r{y})       % $p)
            ) if $i % 2;
       %s = ( x => (($s{x} * $s{x} + $s{y} * $s{y} * $w2) % $p),
              y => (($s{x} * $s{y} + $s{x} * $s{y})       % $p)
            )
   }
   $r{y} ? undef : $r{x}

}

my @tests = (

   (10, 13),
   (56, 101),
   (8218, 10007),
   (8219, 10007),
   (331575, 1000003),
   (665165880, 1000000007),
   (881398088036, 1000000000039),

);

while (@tests) {

  $n = shift @tests;
  $p = shift @tests;
  my $r = Cipolla($n, $p);
  $r ? printf "Roots of %d are (%d, %d) mod %d\n", $n, $r, $p-$r, $p
     : print  "No solution for ($n, $p)\n"

}</lang>

Output:
Roots of 10 are (6, 7) mod 13
Roots of 56 are (37, 64) mod 101
Roots of 8218 are (9872, 135) mod 10007
No solution for (8219, 10007)
Roots of 331575 are (855842, 144161) mod 1000003
Roots of 665165880 are (475131702, 524868305) mod 1000000007
Roots of 881398088036 are (791399408049, 208600591990) mod 1000000000039

Phix

Translation of: Kotlin
Library: Phix/mpfr

<lang Phix>include mpfr.e

procedure legendre(mpz r, a, p) -- Legendre symbol, returns 1, 0 or p - 1 (in r)

   mpz_sub_ui(r,p,1)
   {} = mpz_fdiv_q_ui(r, r, 2)
   mpz_powm(r,a,r,p)

end procedure

procedure mul_point(sequence a, b, mpz omega2, p) -- (modifies a)

   mpz {xa,ya} = a,
       {xb,yb} = b,
       xaxb = mpz_init(),
       yayb = mpz_init(),
       xayb = mpz_init(),
       xbya = mpz_init()
   mpz_mul(xaxb,xa,xb)
   mpz_mul(yayb,ya,yb)
   mpz_mul(xayb,xa,yb)
   mpz_mul(xbya,xb,ya)
   mpz_mul(yayb,yayb,omega2)
   mpz_add(xaxb,xaxb,yayb)
   mpz_mod(xa,xaxb,p)      -- xa := mod(xaxb+yayb*omega2,p)
   mpz_add(xayb,xayb,xbya)
   mpz_mod(ya,xayb,p)      -- ya := mod(xayb+xbya,p)
   {xaxb,yayb,xayb,xbya} = mpz_clear({xaxb,yayb,xayb,xbya})

end procedure

function cipolla(object no, po) mpz n = mpz_init(no),

   p = mpz_init(po),
   t = mpz_init()

   -- Step 0, validate arguments
   legendre(t,n,p)
   if mpz_cmp_si(t,1)!=0 then return {"0","0","false"} end if

   -- Step 1, find a, omega2
   integer a = 0
   mpz omega2 = mpz_init(),
       pm1 = mpz_init()
   mpz_sub_ui(pm1,p,1)
   while true do
       mpz_sub(t,p,n)
       mpz_add_ui(t,t,a*a)
       mpz_mod(omega2,t,p)
       legendre(t,omega2,p)
       if mpz_cmp(t,pm1)=0 then exit end if
       a += 1
   end while

   -- Step 2, compute power
   sequence r = {mpz_init(1),mpz_init(0)},
            s = {mpz_init(a),mpz_init(1)}
   mpz nn = mpz_init()
   mpz_add_ui(nn,p,1)
   {} = mpz_fdiv_q_ui(nn, nn, 2)
   mpz_mod(nn,nn,p)
   while mpz_cmp_si(nn,0)>0 do
       if mpz_fdiv_ui(nn,2)=1 then
           mul_point(r,s,omega2,p)
       end if
       mul_point(s,s,omega2,p)
       {} = mpz_fdiv_q_ui(nn, nn, 2)
   end while
   -- Step 3, check x in Fp
   if mpz_cmp_si(r[2],0)!=0 then return {"0","0","false"} end if 

   -- Step 5, check x * x = n
   mpz_powm_ui(t,r[1],2,p)
   if mpz_cmp(t,n)!=0 then return {"0","0","false"} end if 

   -- Step 4, solutions
   mpz_sub(p,p,r[1])
   return {mpz_get_str(r[1]), mpz_get_str(p), "true"}

end function

constant tests = {{10,13},

                 {56,101},
                 {8218,10007},
                 {8219,10007},
                 {331575,1000003},
                 {665165880,1000000007},
                 {"881398088036","1000000000039"},
                 {"34035243914635549601583369544560650254325084643201",
                  "100000000000000000000000000000000000000000000000151"}}

for i=1 to length(tests) do

   object {n,p} = tests[i]
   ?{n,p,cipolla(n,p)}

end for</lang> Obviously were you to use that in anger, you would probably rip out a few mpz_get_str() and return NULL/false rather than "0"/"false", etc.

Output:
{10,13,{"6","7","true"}}
{56,101,{"37","64","true"}}
{8218,10007,{"9872","135","true"}}
{8219,10007,{"0","0","false"}}
{331575,1000003,{"855842","144161","true"}}
{665165880,1000000007,{"475131702","524868305","true"}}
{"881398088036","1000000000039",{"791399408049","208600591990","true"}}
{"34035243914635549601583369544560650254325084643201","100000000000000000000000000000000000000000000000151",
 {"82563118828090362261378993957450213573687113690751","17436881171909637738621006042549786426312886309400","true"}}

PicoLisp

Translation of: Go

<lang PicoLisp># from @lib/rsa.l (de **Mod (X Y N)

  (let M 1
     (loop
        (when (bit? 1 Y)
           (setq M (% (* M X) N)) )
        (T (=0 (setq Y (>> 1 Y)))
           M )
        (setq X (% (* X X) N)) ) ) )

(de legendre (N P)

  (**Mod N (/ (dec P) 2) P) )

(de mul ("A" B P W2)

  (let (A (copy "A")  B (copy B))
     (set
        "A"
        (%
           (+
              (* (car A) (car B))
              (* (cadr A) (cadr B) W2) )
           P )
        (cdr "A")
        (%
           (+
              (* (car A) (cadr B))
              (* (car B) (cadr A)) )
           P ) ) ) )

(de ci (N P)

  (and
     (=1 (legendre N P))
     (let
        (A 0
           W2 0
           R NIL
           S NIL )
        (loop
           (setq W2
              (% (- (+ (* A A) P) N) P) )
           (T (= (dec P) (legendre W2 P)))
           (inc 'A) )
        (setq R (list 1 0)  S (list A 1))
        (for
           (N
              (% (>> 1 (inc P)) P)
              (> N 0)
              (>> 1 N) )
           (and (bit? 1 N) (mul R S P W2))
           (mul S S P W2) )
        (=0 (cadr R))
        (=
           N
           (% (* (car R) (car R)) P) )
        (list (car R) (- P (car R))) ) ) )

(println (ci 10 13)) (println (ci 56 101)) (println (ci 8218 10007)) (println (ci 8219 10007)) (println (ci 331575 1000003)) (println (ci 665165880 1000000007)) (println (ci 881398088036 1000000000039)) (println (ci 34035243914635549601583369544560650254325084643201 (+ (** 10 50) 151)))</lang>

Output:
(6 7)
(37 64)
(9872 135)
NIL
(855842 144161)
(475131702 524868305)
(791399408049 208600591990)
(82563118828090362261378993957450213573687113690751 17436881171909637738621006042549786426312886309400)

Python

<lang python>

  1. Converts n to base b as a list of integers between 0 and b-1
  2. Most-significant digit on the left

def convertToBase(n, b): if(n < 2): return [n]; temp = n; ans = []; while(temp != 0): ans = [temp % b]+ ans; temp /= b; return ans;

  1. Takes integer n and odd prime p
  2. Returns both square roots of n modulo p as a pair (a,b)
  3. Returns () if no root

def cipolla(n,p): n %= p if(n == 0 or n == 1): return (n,-n%p) phi = p - 1 if(pow(n, phi/2, p) != 1): return () if(p%4 == 3): ans = pow(n,(p+1)/4,p) return (ans,-ans%p) aa = 0 for i in xrange(1,p): temp = pow((i*i-n)%p,phi/2,p) if(temp == phi): aa = i break; exponent = convertToBase((p+1)/2,2) def cipollaMult((a,b),(c,d),w,p): return ((a*c+b*d*w)%p,(a*d+b*c)%p) x1 = (aa,1) x2 = cipollaMult(x1,x1,aa*aa-n,p) for i in xrange(1,len(exponent)): if(exponent[i] == 0): x2 = cipollaMult(x2,x1,aa*aa-n,p) x1 = cipollaMult(x1,x1,aa*aa-n,p) else: x1 = cipollaMult(x1,x2,aa*aa-n,p) x2 = cipollaMult(x2,x2,aa*aa-n,p) return (x1[0],-x1[0]%p)

print "Roots of 2 mod 7: " +str(cipolla(2,7)) print "Roots of 8218 mod 10007: " +str(cipolla(8218,10007)) print "Roots of 56 mod 101: " +str(cipolla(56,101)) print "Roots of 1 mod 11: " +str(cipolla(1,11)) print "Roots of 8219 mod 10007: " +str(cipolla(8219,10007)) </lang>

Output:
Roots of 2 mod 7: (4, 3)
Roots of 8218 mod 10007: (9872, 135)
Roots of 56 mod 101: (37, 64)
Roots of 1 mod 11: (1, 10)
Roots of 8219 mod 10007: ()

Racket

Translation of: EchoLisp

<lang racket>#lang racket

(require math/number-theory)

math/number-theory allows us to parameterize a "current-modulus"
which obviates the need for p to be passed around constantly

(define (Cipolla n p) (with-modulus p (mod-Cipolla n)))

(define (mod-Legendre a)

 (modexpt a (/ (sub1 (current-modulus)) 2)))

Arithmetic in Fp²

(struct Fp² (x y))

(define-syntax-rule (Fp²-destruct* (a a.x a.y) ...)

 (begin (match-define (Fp² a.x a.y) a) ...)  )
a + b

(define (Fp²-add a b ω2)

 (Fp²-destruct* (a a.x a.y) (b b.x b.y))
 (Fp² (mod+ a.x b.x) (mod+ a.y b.y)))
a * b

(define (Fp²-mul a b ω2)

 (Fp²-destruct* (a a.x a.y) (b b.x b.y))
 (Fp² (mod+ (* a.x b.x) (* ω2 a.y b.y)) (mod+ (* a.x b.y) (* a.y b.x))))

a * a

(define (Fp²-square a ω2)

 (Fp²-destruct* (a a.x a.y))
 (Fp² (mod+ (sqr a.x) (* ω2 (sqr a.y))) (mod* 2 a.x a.y)))

a ^ n

(define (Fp²-pow a n ω2)

 (Fp²-destruct* (a a.x a.y))
 (cond 
   ((= 0 n) (Fp² 1 0))
   ((= 1 n) a)
   ((= 2 n) (Fp²-mul a a ω2))
   ((even? n) (Fp²-square (Fp²-pow a (/ n 2) ω2) ω2))
   (else (Fp²-mul a (Fp²-pow a (sub1 n) ω2) ω2))))

x^2 ≡ n (mod p) ?

(define (mod-Cipolla n)

 ;; check n is a square
 (unless (= 1 (mod-Legendre n)) (error 'Cipolla "~a not a square (mod ~a)" n (current-modulus)))
 ;; iterate until suitable 'a' found
 (define a (for/first ((t (in-range 2 (current-modulus))) ;; t = tentative a
                       #:when (= (sub1 (current-modulus))
                                 (mod-Legendre (- (* t t) n))))
             t))
 (define ω2 (- (* a a) n))
 ;; (Fp² a 1) = a + ω
 (define r (Fp²-pow (Fp² a 1) (/ (add1 (current-modulus)) 2) ω2))
 (define x (Fp²-x r))
 (unless (zero? (Fp²-y r)) (error 'Cipolla "ω has not vanished")) ;; hope that ω has vanished
 (unless (mod= n (* x x)) (error 'Cipolla "result check failed")) ;; checking the result
 (values x (mod- (current-modulus) x)))

(define (report-Cipolla n p)

 (with-handlers ((exn:fail? (λ (x) (eprintf "Caught error: ~s~%" (exn-message x)))))
   (define-values (r1 r2) (Cipolla n p))
   (printf "Roots of ~a are (~a,~a)  (mod ~a)~%" n  r1 r2 p)))

(module+ test

 (report-Cipolla 10 13)
 (report-Cipolla 56 101)
 (report-Cipolla 8218 10007)
 (report-Cipolla 8219 10007)
 (report-Cipolla 331575 1000003)
 (report-Cipolla 665165880 1000000007)
 (report-Cipolla 881398088036 1000000000039)
 (report-Cipolla 34035243914635549601583369544560650254325084643201
                 100000000000000000000000000000000000000000000000151))</lang>
Output:
Roots of 10 are (6,7)  (mod 13)
Roots of 56 are (37,64)  (mod 101)
Roots of 8218 are (9872,135)  (mod 10007)
Caught error: "Cipolla: 8219 not a square (mod 10007)"
Roots of 331575 are (855842,144161)  (mod 1000003)
Roots of 665165880 are (524868305,475131702)  (mod 1000000007)
Roots of 881398088036 are (208600591990,791399408049)  (mod 1000000000039)
Roots of 34035243914635549601583369544560650254325084643201 are (17436881171909637738621006042549786426312886309400,82563118828090362261378993957450213573687113690751)  (mod 100000000000000000000000000000000000000000000000151)

Raku

(formerly Perl 6)

Works with: Rakudo version 2016.10
Translation of: Sidef

<lang perl6># Legendre operator (𝑛│𝑝) sub infix:<│> (Int \𝑛, Int \𝑝 where 𝑝.is-prime && (𝑝 != 2)) {

   given 𝑛.expmod( (𝑝-1) div 2, 𝑝 ) {
       when 0  {  0 }
       when 1  {  1 }
       default { -1 }
   }

}

  1. a coordinate in a Field of p elements

class Fp {

   has Int $.x;
   has Int $.y;

}

sub cipolla ( Int \𝑛, Int \𝑝 ) {

   note "Invalid parameters ({𝑛}, {𝑝})"
     and return Nil if (𝑛│𝑝) != 1;
   my $ω2;
   my $a = 0;
   loop {
       last if ($ω2 = ($a² - 𝑛) % 𝑝)│𝑝 < 0;
       $a++;
   }
   # define a local multiply operator for Field coordinates
   multi sub infix:<*> ( Fp $a, Fp $b ){
       Fp.new: :x(($a.x * $b.x + $a.y * $b.y * $ω2) % 𝑝),
               :y(($a.x * $b.y + $b.x * $a.y)       % 𝑝)
   }
   my $r = Fp.new: :x(1),  :y(0);
   my $s = Fp.new: :x($a), :y(1);
   for (𝑝+1) +> 1, * +> 1 ... 1 {
       $r *= $s if $_ % 2;
       $s *= $s;
   }
   return Nil if $r.y;
   $r.x;

}

my @tests = (

   (10, 13),
   (56, 101),
   (8218, 10007),
   (8219, 10007),
   (331575, 1000003),
   (665165880, 1000000007),
   (881398088036, 1000000000039),
   (34035243914635549601583369544560650254325084643201,
     100000000000000000000000000000000000000000000000151)

);

for @tests -> ($n, $p) {

  my $r = cipolla($n, $p);
  say $r ?? "Roots of $n are ($r, {$p-$r}) mod $p"
         !! "No solution for ($n, $p)"

} </lang>

Output:
Roots of 10 are (6, 7) mod 13
Roots of 56 are (37, 64) mod 101
Roots of 8218 are (9872, 135) mod 10007
Invalid parameters (8219, 10007)
No solution for (8219, 10007)
Roots of 331575 are (855842, 144161) mod 1000003
Roots of 665165880 are (475131702, 524868305) mod 1000000007
Roots of 881398088036 are (791399408049, 208600591990) mod 1000000000039
Roots of 34035243914635549601583369544560650254325084643201 are (82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400) mod 100000000000000000000000000000000000000000000000151

Sage

Works with: Sage version 7.6

<lang sage> def eulerCriterion(a, p):

   return -1 if pow(a, int((p-1)/2), p) == p-1 else 1

def cipollaMult(x1, y1, x2, y2, u, p):

   return ((x1*x2 + y1*y2*u) % p), ((x1*y2 + x2*y1) % p)

def cipollaAlgorithm(n, p):

   a = Mod(n, p)
   out = []
   if eulerCriterion(a, p) == -1:
       print "❌ " + str(a) + " is not a quadratic residue modulo " + str(p)
       return False
   if not is_prime(p):
       conglst = []                                    #congruence list
       crtlst = []
       factors = []
       for k in list(factor(p)):
           factors.append(int(k[0]))
       for f in factors:
           conglst.append(cipollaAlgorithm(a, f))
       for i in Permutations([0, 1] * len(factors), len(factors)).list():
           for j in range(len(factors)):
               crtlst.append(int(conglst[ j ][ i[j] ]))
           out.append(crt(crtlst, factors))
           crtlst = []
       return sorted(out)
   if pow(p, 1, 4) == 3:
       temp = pow(a, int((p+1)/4), p)
       return [temp, p - temp]


   t = randrange(2, p)
   u = pow(t**2 - a, 1, p)
   while (eulerCriterion(u, p) == 1):
       t = randrange(2, p)
       u = pow(t**2 - a, 1, p)
   x0, y0 = t, 1
   x, y = t, 1
   for i in range(int((p + 1) / 2) - 1):
       x, y = cipollaMult(x, y, x0, y0, u, p)
   out.extend([x, p - x])
   return sorted(out)

</lang>

Output:
sage: cipollaAlgorithm(10, 13)
[6, 7]
sage: cipollaAlgorithm(56, 101)
[37, 64]
sage: cipollaAlgorithm(8218, 10007)
[135, 9872]
sage: cipollaAlgorithm(331575, 1000003)
[144161, 855842]
sage: cipollaAlgorithm(8219, 10007)
❌ 8219 is not a quadratic residue modulo 10007
False

Scala

Imperative solution

<lang Scala>object CipollasAlgorithm extends App {

 private val BIG = BigInt(10).pow(50) + BigInt(151)
 println(c("10", "13"))
 println(c("56", "101"))
 println(c("8218", "10007"))
 println(c("8219", "10007"))
 println(c("331575", "1000003"))
 println(c("665165880", "1000000007"))
 println(c("881398088036", "1000000000039"))
 println(c("34035243914635549601583369544560650254325084643201", ""))
 private def c(ns: String, ps: String): Triple = {
   val (n, p) = (BigInt(ns), if (ps.isEmpty) BIG else BigInt(ps))
   // Legendre symbol, returns 1, 0 or p - 1
   def ls(a: BigInt) = a.modPow((p - BigInt(1)) / BigInt(2), p)
   // multiplication in Fp2
   def mul(aa: Point, bb: Point, omega2: BigInt) =
     new Point((aa.x * bb.x + aa.y * bb.y * omega2) % p, (aa.x * bb.y + (bb.x * aa.y)) % p)
   // Step 0, validate arguments
   if (ls(n) != BigInt(1)) new Triple(0, 0, false)
   else {
     // Step 1, find a, omega2
     var (a, flag, omega2) = (BigInt(0), true, BigInt(0))
     while (flag) {
       omega2 = (a * a + p - n) % p
       if (ls(omega2) == p - BigInt(1)) flag = false else a = a + BigInt(1)
     }
     // Step 2, compute power
     var (nn, r, s) = ((p + BigInt(1) >> 1) % p, new Point(BigInt(1), 0), new Point(a, BigInt(1)))
     while (nn > 0) {
       if ((nn & BigInt(1)) == BigInt(1)) r = mul(r, s, omega2)
       s = mul(s, s, omega2)
       nn = nn >> 1
     }
     // Step 3, check x in Fp
     if (r.y != 0) new Triple(0, 0, false)
     else // Step 5, check x * x = n
     if ((r.x * r.x) % p != n) new Triple(0, 0, false)
     else new Triple(r.x, p - r.x, true) // Step 4, solutions
   }
 }
 private class Point(val x: BigInt, val y: BigInt)
 private class Triple(val x: BigInt, val y: BigInt, val b: Boolean) {
   override def toString: String = f"($x%s, $y%s, $b%s)"
 }

}</lang>

Output:

See it running in your browser by ScalaFiddle (JavaScript, non JVM) or by Scastie (JVM).

Sidef

Translation of: Go

<lang ruby>func cipolla(n, p) {

   legendre(n, p) == 1 || return nil
   var (a = 0, ω2 = 0)
   loop {
       ω2 = ((a*a - n) % p)
       if (legendre(ω2, p) == -1) {
           break
       }
       ++a
   }
   struct point { x, y }
   func mul(a, b) {
       point((a.x*b.x + a.y*b.y*ω2) % p, (a.x*b.y + b.x*a.y) % p)
   }
   var r = point(1, 0)
   var s = point(a, 1)
   for (var n = ((p+1) >> 1); n > 0; n >>= 1) {
       r = mul(r, s) if n.is_odd
       s = mul(s, s)
   }
   r.y == 0 ? r.x : nil

}

var tests = [

   [10, 13],
   [56, 101],
   [8218, 10007],
   [8219, 10007],
   [331575, 1000003],
   [665165880, 1000000007],
   [881398088036 1000000000039],
   [34035243914635549601583369544560650254325084643201, 10**50 + 151],

]

for n,p in tests {

   var r = cipolla(n, p)
   if (defined(r)) {
       say "Roots of #{n} are (#{r} #{p-r}) mod #{p}"
   } else {
       say "No solution for (#{n}, #{p})"
   }

}</lang>

Output:
Roots of 10 are (6 7) mod 13
Roots of 56 are (37 64) mod 101
Roots of 8218 are (9872 135) mod 10007
No solution for (8219, 10007)
Roots of 331575 are (855842 144161) mod 1000003
Roots of 665165880 are (475131702 524868305) mod 1000000007
Roots of 881398088036 are (791399408049 208600591990) mod 1000000000039
Roots of 34035243914635549601583369544560650254325084643201 are (82563118828090362261378993957450213573687113690751 17436881171909637738621006042549786426312886309400) mod 100000000000000000000000000000000000000000000000151

Visual Basic .NET

Translation of: C#

<lang vbnet>Imports System.Numerics

Module Module1

   ReadOnly BIG = BigInteger.Pow(10, 50) + 151
   Function C(ns As String, ps As String) As Tuple(Of BigInteger, BigInteger, Boolean)
       Dim n = BigInteger.Parse(ns)
       Dim p = If(ps.Length > 0, BigInteger.Parse(ps), BIG)
       ' Legendre symbol. Returns 1, 0, or p-1
       Dim ls = Function(a0 As BigInteger) BigInteger.ModPow(a0, (p - 1) / 2, p)
       ' Step 0: validate arguments
       If ls(n) <> 1 Then
           Return Tuple.Create(BigInteger.Zero, BigInteger.Zero, False)
       End If
       ' Step 1: Find a, omega2
       Dim a = BigInteger.Zero
       Dim omega2 As BigInteger
       Do
           omega2 = (a * a + p - n) Mod p
           If ls(omega2) = p - 1 Then
               Exit Do
           End If
           a += 1
       Loop
       ' Multiplication in Fp2
       Dim mul = Function(aa As Tuple(Of BigInteger, BigInteger), bb As Tuple(Of BigInteger, BigInteger))
                     Return Tuple.Create((aa.Item1 * bb.Item1 + aa.Item2 * bb.Item2 * omega2) Mod p, (aa.Item1 * bb.Item2 + bb.Item1 * aa.Item2) Mod p)
                 End Function
       ' Step 2: Compute power
       Dim r = Tuple.Create(BigInteger.One, BigInteger.Zero)
       Dim s = Tuple.Create(a, BigInteger.One)
       Dim nn = ((p + 1) >> 1) Mod p
       While nn > 0
           If nn Mod 2 = 1 Then
               r = mul(r, s)
           End If
           s = mul(s, s)
           nn >>= 1
       End While
       ' Step 3: Check x in Fp
       If r.Item2 <> 0 Then
           Return Tuple.Create(BigInteger.Zero, BigInteger.Zero, False)
       End If
       ' Step 5: Check x * x = n
       If r.Item1 * r.Item1 Mod p <> n Then
           Return Tuple.Create(BigInteger.Zero, BigInteger.Zero, False)
       End If
       ' Step 4: Solutions
       Return Tuple.Create(r.Item1, p - r.Item1, True)
   End Function
   Sub Main()
       Console.WriteLine(C("10", "13"))
       Console.WriteLine(C("56", "101"))
       Console.WriteLine(C("8218", "10007"))
       Console.WriteLine(C("8219", "10007"))
       Console.WriteLine(C("331575", "1000003"))
       Console.WriteLine(C("665165880", "1000000007"))
       Console.WriteLine(C("881398088036", "1000000000039"))
       Console.WriteLine(C("34035243914635549601583369544560650254325084643201", ""))
   End Sub

End Module</lang>

Output:
(6, 7, True)
(37, 64, True)
(9872, 135, True)
(0, 0, False)
(855842, 144161, True)
(475131702, 524868305, True)
(791399408049, 208600591990, True)
(82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, True)

Wren

Translation of: Kotlin
Library: Wren-big

<lang ecmascript>import "/big" for BigInt

class Point {

   construct new(x, y) {
       _x = x
       _y = y
   }
   x { _x }
   y { _y }
   toString { "(%(x), %(y))" }

}

var bigBig = BigInt.ten.pow(50) + BigInt.new(151)

var c = Fn.new { |ns, ps|

   var n = BigInt.new(ns)
   var p = (ps != "") ? BigInt.new(ps) : bigBig
   // Legendre symbol, returns 1, 0 or p - 1
   var ls = Fn.new { |a| a.modPow((p - BigInt.one) / BigInt.two, p) }
   // Step 0, validate arguments
   if (ls.call(n) != BigInt.one) return [BigInt.zero, BigInt.zero, false]
   // Step 1, find a, omega2
   var a = BigInt.zero
   var omega2
   while (true) {
       omega2 = (a * a + p - n) % p
       if (ls.call(omega2) == p - BigInt.one) break
       a = a.inc
   }
   // multiplication in Fp2
   var mul = Fn.new { |aa, bb|
       return Point.new((aa.x * bb.x + aa.y * bb.y * omega2) % p,
                        (aa.x * bb.y + bb.x * aa.y) % p)
   }
   // Step 2, compute power
   var r = Point.new(BigInt.one, BigInt.zero)
   var s = Point.new(a, BigInt.one)
   var nn = ((p + BigInt.one) >> 1) % p
   while (nn > BigInt.zero) {
       if ((nn & BigInt.one) == BigInt.one) r = mul.call(r, s)
       s = mul.call(s, s)
       nn = nn >> 1
   }
   // Step 3, check x in Fp
   if (r.y != BigInt.zero) return [BigInt.zero, BigInt.zero, false]
   // Step 5, check x * x = n
   if (r.x * r.x % p != n) return [BigInt.zero, BigInt.zero, false]
   // Step 4, solutions
   return [r.x, p - r.x, true]

}

System.print(c.call("10", "13")) System.print(c.call("56", "101")) System.print(c.call("8218", "10007")) System.print(c.call("8219", "10007")) System.print(c.call("331575", "1000003")) System.print(c.call("665165880", "1000000007")) System.print(c.call("881398088036", "1000000000039")) System.print(c.call("34035243914635549601583369544560650254325084643201", ""))</lang>

Output:
[6, 7, true]
[37, 64, true]
[9872, 135, true]
[0, 0, false]
[855842, 144161, true]
[475131702, 524868305, true]
[791399408049, 208600591990, true]
[82563118828090362261378993957450213573687113690751, 17436881171909637738621006042549786426312886309400, true]

zkl

Translation of: EchoLisp

Uses lib GMP (GNU MP Bignum Library). <lang zkl>var [const] BN=Import("zklBigNum"); //libGMP fcn modEq(a,b,p) { (a-b)%p==0 } fcn Legendre(a,p){ a.powm((p - 1)/2,p) }

class Fp2{ // Arithmetic in Fp^2

  fcn init(_x,_y){ var [const] x=BN(_x), y=BN(_y) }	// two big ints
  //fcn add(b,p){ self((x + b.x)%p,(y + b.y)%p) }	// a + b
  fcn mul(b,p,w2){ self(( x*b.x + y*b.y*w2 )%p, (x*b.y + y*b.x) %p) } // a * b
  fcn square(p,w2){ mul(self,p,w2) }          	// a * a == self.mul(self,p,w2)
  fcn pow(n,p,w2){				// a ^ n
     if     (n==0)     self(1,0);
     else if(n==1)     self;
     else if(n==2)     square(p,w2);
     else if(n.isEven) pow(n/2,p,w2).square(p,w2);
     else 		mul(pow(n-1,p,w2),p,w2)
  }

}

fcn Cipolla(n,p){ n=BN(n); // x^2 == n (mod p) ?

  if(Legendre(n,p)!=1)   // check n is a square
     throw(Exception.AssertionError("not a square (mod p)"+vm.arglist));
  // iterate until suitable 'a' found (the first one found)
  a:=[BN(2)..p].filter1('wrap(a){ Legendre(a*a-n,p)==(p-1) });
  w2:=a*a - n;
  r:=Fp2(a,1).pow((p + 1)/2,p,w2);	    // (Fp2 a 1) = a + w2
  x:=r.x;
  _assert_(r.y==0,"r.y==0 : "+r.y);	    // hope that w has vanished
  _assert_(modEq(n,x*x,p),"modEq(n,x*x,p)"); // checking the result
  println("Roots of %d are (%d,%d)  (mod %d)".fmt(n,x,(p-x)%p,p));
  return(x,(p-x)%p);

}</lang> <lang zkl>foreach n,p in (T( T(10,13),T(56,101),T(8218,10007),T(8219,10007),T(331575,1000003), T(665165880,1000000007),T(881398088036,1000000000039), T("34035243914635549601583369544560650254325084643201", BN(10).pow(50) + 151) )){

  try{ Cipolla(n,p) }catch{ println(__exception) }

}</lang>

Output:
Roots of 10 are (6,7)  (mod 13)
Roots of 56 are (37,64)  (mod 101)
Roots of 8218 are (9872,135)  (mod 10007)
AssertionError(not a square (mod p)L(8219,10007))
Roots of 331575 are (855842,144161)  (mod 1000003)
Roots of 665165880 are (524868305,475131702)  (mod 1000000007)
Roots of 881398088036 are (208600591990,791399408049)  (mod 1000000000039)
Roots of 34035243914635549601583369544560650254325084643201 are (17436881171909637738621006042549786426312886309400,82563118828090362261378993957450213573687113690751)  (mod 100000000000000000000000000000000000000000000000151)