# Fivenum

Fivenum
You are encouraged to solve this task according to the task description, using any language you may know.

Many big data or scientific programs use boxplots to show distributions of data.   In addition, sometimes saving large arrays for boxplots can be impractical and use extreme amounts of RAM.   It can be useful to save large arrays as arrays with five numbers to save memory.

For example, the   R   programming language implements Tukey's five-number summary as the fivenum function.

Given an array of numbers, compute the five-number summary.

Note

While these five numbers can be used to draw a boxplot,   statistical packages will typically need extra data.

Moreover, while there is a consensus about the "box" of the boxplot,   there are variations among statistical packages for the whiskers.

## 11l

Translation of: Python

<lang 11l>F fivenum(array)

```  V n = array.len
V x = sorted(array)
V n4 = floor((n + 3.0) / 2.0) / 2.0
V d = [1.0, n4, (n + 1) / 2, n + 1 - n4, Float(n)]
[Float] sum_array
L(e) 5
V fl = Int(floor(d[e] - 1))
V ce = Int(ceil(d[e] - 1))
sum_array.append(0.5 * (x[fl] + x[ce]))
R sum_array
```

V x = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970,

```     -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163,
1.04312009, -0.10305385, 0.75775634, 0.32566578]
```

print(fivenum(x))</lang>

Output:
```[-1.9506, -0.676741, 0.233247, 0.746071, 1.73132]
```

### Direct C Translation

Translation of: C

procedure Main is

```  package Real_Io is new Float_IO (Long_Float);
use Real_Io;
```
```  type Data_Array is array (Natural range <>) of Long_Float;
subtype Five_Num_Type is Data_Array (0 .. 4);
```
```  procedure Sort is new Ada.Containers.Generic_Array_Sort
(Index_Type => Natural, Element_Type => Long_Float,
Array_Type => Data_Array);
```
```  function Median (X : Data_Array) return Long_Float with
Pre => X'Length > 0;
```
```  function Median (X : Data_Array) return Long_Float is
M : constant Natural := X'First + X'Last / 2;
begin
if X'Length rem 2 = 1 then
return X (M);
else
return (X (M - 1) + X (M)) / 2.0;
end if;
end Median;
```
```  procedure fivenum (X : Data_Array; Result : out Five_Num_Type) is
Temp      : Data_Array := X;
m         : Natural    := X'Length / 2;
Lower_end : Natural    := (if X'Length rem 2 = 0 then m - 1 else m);
begin
Sort (Temp);
Result (0) := Temp (Temp'First);
Result (2) := Median (Temp);
Result (4) := Temp (Temp'Last);
Result (1) := Median (Temp (1 .. Lower_end));
Result (3) := Median (Temp (m .. Temp'Last));
end fivenum;
```
```  procedure print (Result : Five_Num_Type; Aft : Natural) is
begin
Put ("[");
for I in Result'Range loop
Put (Item => Result (I), Fore => 1, Aft => Aft, Exp => 0);
if I < Result'Last then
Put (", ");
else
Put_Line ("]");
end if;
end loop;
New_Line;
end print;
```
```  X1 : Data_Array :=
(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0);
X2 : Data_Array := (36.0, 40.0, 7.0, 39.0, 41.0, 15.0);
X3 : Data_Array :=
(0.140_828_34, 0.097_487_90, 1.731_315_07, 0.876_360_09, -1.950_595_94,
0.734_385_55, -0.030_357_26, 1.466_759_70, -0.746_213_49, -0.725_887_72,
0.639_051_60, 0.615_015_27, -0.989_837_80, -1.004_478_74, -0.627_594_69,
0.662_061_63, 1.043_120_09, -0.103_053_85, 0.757_756_34, 0.325_665_78);
Result : Five_Num_Type;
```

begin

```  fivenum (X1, Result);
print (Result, 1);
fivenum (X2, Result);
print (Result, 1);
fivenum (X3, Result);
print (Result, 9);
```

end Main; </lang>

Output:
```[6.0, 36.0, 40.0, 48.0, 49.0]

[7.0, 25.5, 25.5, 41.0, 41.0]

[-1.950595940, -0.627594690, 0.119158120, 1.599037385, 1.731315070]
```

### Using Ada Enumeration

procedure Main is

```  package Real_Io is new Float_IO (Long_Float);
use Real_Io;
```
```  type Data_Array is array (Natural range <>) of Long_Float;
```
```  type fivenum_index is (minimum, lower_hinge, median, upper_hinge, maximum);
type Five_Num_Type is array (fivenum_index) of Long_Float;
```
```  procedure Sort is new Ada.Containers.Generic_Array_Sort
(Index_Type => Natural, Element_Type => Long_Float,
Array_Type => Data_Array);
```
```  function Median (X : Data_Array) return Long_Float with
Pre => X'Length > 0;
```
```  function Median (X : Data_Array) return Long_Float is
M : constant Natural := X'First + X'Last / 2;
begin
if X'Length rem 2 = 1 then
return X (M);
else
return (X (M - 1) + X (M)) / 2.0;
end if;
end Median;
```
```  procedure fivenum (X : Data_Array; Result : out Five_Num_Type) is
Temp      : Data_Array := X;
m         : Natural    := X'Length / 2;
Lower_end : Natural    := (if X'Length rem 2 = 0 then m - 1 else m);
begin
Sort (Temp);
Result (minimum)     := Temp (Temp'First);
Result (lower_hinge) := Median (Temp (0 .. Lower_end));
Result (median)      := Median (Temp);
Result (upper_hinge) := Median (Temp (m .. Temp'Last));
Result (maximum)     := Temp (Temp'Last);
end fivenum;
```
```  procedure print (Result : Five_Num_Type) is
package five_io is new Enumeration_IO (fivenum_index);
use five_io;
begin
for I in fivenum_index loop
Put("   ");
Put (Item => I, Width => 12);
end loop;
New_Line;
Put ("[");
for I in Result'Range loop
Put (Item => Result (I), Fore => 3, Aft => 9, Exp => 0);
if I < Result'Last then
Put (", ");
else
Put_Line ("]");
end if;
end loop;
New_Line;
end print;
```
```  X1 : Data_Array :=
(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0);
X2 : Data_Array := (36.0, 40.0, 7.0, 39.0, 41.0, 15.0);
X3 : Data_Array :=
(0.140_828_34, 0.097_487_90, 1.731_315_07, 0.876_360_09, -1.950_595_94,
0.734_385_55, -0.030_357_26, 1.466_759_70, -0.746_213_49, -0.725_887_72,
0.639_051_60, 0.615_015_27, -0.989_837_80, -1.004_478_74, -0.627_594_69,
0.662_061_63, 1.043_120_09, -0.103_053_85, 0.757_756_34, 0.325_665_78);
Result : Five_Num_Type;
```

begin

```  fivenum (X1, Result);
print (Result);
fivenum (X2, Result);
print (Result);
fivenum (X3, Result);
print (Result);
```

end Main; </lang>

Output:
```   MINIMUM        LOWER_HINGE    MEDIAN         UPPER_HINGE    MAXIMUM
[  6.000000000,  11.000000000,  40.000000000,  48.000000000,  49.000000000]

MINIMUM        LOWER_HINGE    MEDIAN         UPPER_HINGE    MAXIMUM
[  7.000000000,  15.000000000,  25.500000000,  41.000000000,  41.000000000]

MINIMUM        LOWER_HINGE    MEDIAN         UPPER_HINGE    MAXIMUM
[ -1.950595940,  -0.736050605,   0.119158120,   1.599037385,   1.731315070]
```

## AppleScript

<lang applescript>use AppleScript version "2.4" -- Mac OS X 10.10. (Yosemite) or later. use framework "Foundation"

on fivenum(listOfNumbers, l, r)

```   script o
property lst : missing value

on medianFromRange(l, r)
set m1 to (l + r) div 2
set m2 to m1 + (l + r) mod 2
set median to my lst's item m1
if (m2 > m1) then set median to (median + (my lst's item m2)) / 2

return {median, m1, m2}
end medianFromRange
end script

if ((listOfNumbers is {}) or (r - l < 0)) then return missing value
set o's lst to current application's class "NSMutableArray"'s arrayWithArray:(listOfNumbers)
tell o's lst to sortUsingSelector:("compare:")
set o's lst to o's lst as list

set {median, m1, m2} to o's medianFromRange(l, r)
set {lowerQuartile} to o's medianFromRange(l, m1)
set {upperQuartile} to o's medianFromRange(m2, r)

return {o's lst's beginning, lowerQuartile, median, upperQuartile, o's lst's end}
```

end fivenum

-- Test code: set x to {15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43} set y to {36, 40, 7, 39, 41, 15} set z to {0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.4667597, -0.74621349, -0.72588772, ¬

```   0.6390516, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}
```

return {fivenum(x, 1, count x), fivenum(y, 1, count y), fivenum(z, 1, count z)}</lang>

Output:

<lang applescript>{{6, 25.5, 40, 42.5, 49}, {7, 15, 37.5, 40, 41}, {-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507}}</lang>

## C

Translation of: Kotlin

<lang c>#include <stdio.h>

1. include <stdlib.h>

double median(double *x, int start, int end_inclusive) {

```   int size = end_inclusive - start + 1;
if (size <= 0) {
printf("Array slice cannot be empty\n");
exit(1);
}
int m = start + size / 2;
if (size % 2) return x[m];
return (x[m - 1] + x[m]) / 2.0;
```

}

int compare (const void *a, const void *b) {

```   double aa = *(double*)a;
double bb = *(double*)b;
if (aa > bb) return 1;
if (aa < bb) return -1;
return 0;
```

}

int fivenum(double *x, double *result, int x_len) {

```   int i, m, lower_end;
for (i = 0; i < x_len; i++) {
if (x[i] != x[i]) {
printf("Unable to deal with arrays containing NaN\n\n");
return 1;
}
}
qsort(x, x_len, sizeof(double), compare);
result[0] = x[0];
result[2] = median(x, 0, x_len - 1);
result[4] = x[x_len - 1];
m = x_len / 2;
lower_end = (x_len % 2) ? m : m - 1;
result[1] = median(x, 0, lower_end);
result[3] = median(x, m, x_len - 1);
return 0;
```

}

int show(double *result, int places) {

```   int i;
char f[7];
sprintf(f, "%%.%dlf", places);
printf("[");
for (i = 0; i < 5; i++) {
printf(f, result[i]);
if (i < 4) printf(", ");
}
printf("]\n\n");
```

}

int main() {

```   double result[5];
```
```   double x1[11] = {15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0};
if (!fivenum(x1, result, 11)) show(result, 1);
```
```   double x2[6] = {36.0, 40.0, 7.0, 39.0, 41.0, 15.0};
if (!fivenum(x2, result, 6)) show(result, 1);
```
```   double x3[20] = {
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
};
if (!fivenum(x3, result, 20)) show(result, 9);
```
```   return 0;
```

}</lang>

Output:
```[6.0, 25.5, 40.0, 42.5, 49.0]

[7.0, 15.0, 37.5, 40.0, 41.0]

[-1.950595940, -0.676741205, 0.233247060, 0.746070945, 1.731315070]
```

## C#

Translation of: Java

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Text;

namespace Fivenum {

```   public static class Helper {
public static string AsString<T>(this ICollection<T> c, string format = "{0}") {
StringBuilder sb = new StringBuilder("[");
int count = 0;
foreach (var t in c) {
if (count++ > 0) {
sb.Append(", ");
}
sb.AppendFormat(format, t);
}
return sb.Append("]").ToString();
}
}
```
```   class Program {
static double Median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1;
if (size <= 0) throw new ArgumentException("Array slice cannot be empty");
int m = start + size / 2;
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0;
}
```
```       static double[] Fivenum(double[] x) {
foreach (var d in x) {
if (Double.IsNaN(d)) {
throw new ArgumentException("Unable to deal with arrays containing NaN");
}
}
double[] result = new double[5];
Array.Sort(x);
result[0] = x.First();
result[2] = Median(x, 0, x.Length - 1);
result[4] = x.Last();
int m = x.Length / 2;
int lowerEnd = (x.Length % 2 == 1) ? m : m - 1;
result[1] = Median(x, 0, lowerEnd);
result[3] = Median(x, m, x.Length - 1);
return result;
}
```
```       static void Main(string[] args) {
double[][] x1 = new double[][]{
new double[]{ 15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
new double[]{ 36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
new double[]{
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
},
};
foreach(var x in x1) {
var result = Fivenum(x);
Console.WriteLine(result.AsString("{0:F8}"));
}
}
}
```

}</lang>

Output:
```[6.00000000, 25.50000000, 40.00000000, 42.50000000, 49.00000000]
[7.00000000, 15.00000000, 37.50000000, 40.00000000, 41.00000000]
[-1.95059594, -0.67674121, 0.23324706, 0.74607095, 1.73131507]```

## C++

Translation of: D

<lang cpp>#include <algorithm>

1. include <iostream>
2. include <ostream>
3. include <vector>

///////////////////////////////////////////////////////////////////////////// // The following is taken from https://cpplove.blogspot.com/2012/07/printing-tuples.html

// Define a type which holds an unsigned integer value template<std::size_t> struct int_ {};

template <class Tuple, size_t Pos> std::ostream& print_tuple(std::ostream& out, const Tuple& t, int_<Pos>) {

```   out << std::get< std::tuple_size<Tuple>::value - Pos >(t) << ", ";
return print_tuple(out, t, int_<Pos - 1>());
```

}

template <class Tuple> std::ostream& print_tuple(std::ostream& out, const Tuple& t, int_<1>) {

```   return out << std::get<std::tuple_size<Tuple>::value - 1>(t);
```

}

template <class... Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& t) {

```   out << '(';
print_tuple(out, t, int_<sizeof...(Args)>());
return out << ')';
```

}

/////////////////////////////////////////////////////////////////////////////

template <class RI> double median(RI beg, RI end) {

```   if (beg == end) throw std::runtime_error("Range cannot be empty");
auto len = end - beg;
auto m = len / 2;
if (len % 2 == 1) {
return *(beg + m);
}
```
```   return (beg[m - 1] + beg[m]) / 2.0;
```

}

template <class C> auto fivenum(C& c) {

```   std::sort(c.begin(), c.end());
```
```   auto cbeg = c.cbegin();
auto cend = c.cend();
```
```   auto len = cend - cbeg;
auto m = len / 2;
auto lower = (len % 2 == 1) ? m : m - 1;
double r2 = median(cbeg, cbeg + lower + 1);
double r3 = median(cbeg, cend);
double r4 = median(cbeg + lower + 1, cend);
```
```   return std::make_tuple(*cbeg, r2, r3, r4, *(cend - 1));
```

}

int main() {

```   using namespace std;
vector<vector<double>> cs = {
{ 15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0 },
{ 36.0, 40.0, 7.0, 39.0, 41.0, 15.0 },
{
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
}
};
```
```   for (auto & c : cs) {
cout << fivenum(c) << endl;
}
```
```   return 0;
```

}</lang>

Output:
```(6, 25.5, 40, 43, 49)
(7, 15, 37.5, 40, 41)
(-1.9506, -0.676741, 0.233247, 0.746071, 1.73132)```

## D

Translation of: Java

<lang d>import std.algorithm; import std.exception; import std.math; import std.stdio;

double median(double[] x) {

```   enforce(x.length >= 0, "Array slice cannot be empty");
int m = x.length / 2;
if (x.length % 2 == 1) {
return x[m];
}
return (x[m-1] + x[m]) / 2.0;
```

}

double[] fivenum(double[] x) {

```   foreach (d; x) {
enforce(!d.isNaN, "Unable to deal with arrays containing NaN");
}
```
```   double[] result;
result.length = 5;
```
```   x.sort;
result[0] = x[0];
result[2] = median(x);
result[4] = x[\$-1];
```
```   int m = x.length / 2;
int lower = (x.length % 2 == 1) ? m : m - 1;
result[1] = median(x[0..lower+1]);
result[3] = median(x[lower+1..\$]);
```
```   return result;
```

}

void main() {

```   double[][] x1 = [
[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
]
];
foreach(x; x1) {
writeln(fivenum(x));
}
```

}</lang>

Output:
```[6, 25.5, 40, 43, 49]
[7, 15, 37.5, 40, 41]
[-1.9506, -0.676741, 0.233247, 0.746071, 1.73132]```

## Delphi

Translation of: Java

<lang Delphi> program Fivenum;

{\$APPTYPE CONSOLE}

uses

``` System.SysUtils,
System.Generics.Collections;
```

function Median(x: TArray<Double>; start, endInclusive: Integer): Double; var

``` size, m: Integer;
```

begin

``` size := endInclusive - start + 1;
if (size <= 0) then
raise EArgumentException.Create('Array slice cannot be empty');
m := start + size div 2;
if (odd(size)) then
Result := x[m]
else
Result := (x[m - 1] + x[m]) / 2;
```

end;

function FiveNumber(x: TArray<Double>): TArray<Double>; var

``` m, lowerEnd: Integer;
```

begin

``` SetLength(result, 5);
TArray.Sort<double>(x);
result[0] := x[0];
result[2] := median(x, 0, length(x) - 1);
result[4] := x[length(x) - 1];
m := length(x) div 2;
if odd(length(x)) then
lowerEnd := m
else
lowerEnd := m - 1;
result[1] := median(x, 0, lowerEnd);
result[3] := median(x, m, length(x) - 1);
```

end;

function ArrayToString(x: TArray<double>): string; var

``` i: Integer;
```

begin

``` Result := '[';
for i := 0 to High(x) do
begin
if i > 0 then
Result := Result + ',';
Result := Result + format('%.4f', [x[i]]);
end;
Result := Result + ']';
```

end;

var

``` xl: array of TArray<double> = [[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0,
39.0, 47.0, 43.0], [36.0, 40.0, 7.0, 39.0, 41.0, 15.0], [0.14082834,
0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726,
1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -
1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634,
0.32566578]];
x: TArray<double>;
```

begin

``` for x in xl do
writeln(ArrayToString(FiveNumber(x)), #10);
```
``` readln;
```

end.</lang>

Output:
```[6,0000,25,5000,40,0000,42,5000,49,0000]

[7,0000,15,0000,37,5000,40,0000,41,0000]

[-1,9506,-0,6767,0,2332,0,7461,1,7313]
```

## F#

Translation of: C#

<lang fsharp>open System

// Take from https://stackoverflow.com/a/1175123 let rec last = function

```   | hd :: [] -> hd
| _ :: tl -> last tl
| _ -> failwith "Empty list."
```

let median x =

```   for e in x do
if Double.IsNaN(e) then failwith "unable to deal with lists containing NaN"
```
```   let size = List.length(x)
if size <= 0 then failwith "Array slice cannot be empty"
let m = size / 2
if size % 2 = 1 then x.[m]
else (x.[m - 1] + x.[m]) / 2.0
```

let fivenum x =

```   let x2 = List.sort(x)
let m = List.length(x2) / 2
let lowerEnd = if List.length(x2) % 2 = 1 then m else m - 1
[List.head x2, median x2.[..lowerEnd], median x2, median x2.[m..], last x2]
```

[<EntryPoint>] let main _ =

```   let x1 = [
[15.0; 6.0; 42.0; 41.0; 7.0; 36.0; 49.0; 40.0; 39.0; 47.0; 43.0];
[36.0; 40.0; 7.0; 39.0; 41.0; 15.0];
[
0.14082834;  0.09748790;  1.73131507;  0.87636009; -1.95059594;
0.73438555; -0.03035726;  1.46675970; -0.74621349; -0.72588772;
0.63905160;  0.61501527; -0.98983780; -1.00447874; -0.62759469;
0.66206163;  1.04312009; -0.10305385;  0.75775634;  0.32566578
]
]
```
```   for a in x1 do
let y = fivenum a
Console.WriteLine("{0}", y);
```
```   0 // return an integer exit code</lang>
```
Output:
```[(6, 25.5, 40, 42.5, 49)]
[(7, 15, 37.5, 40, 41)]
[(-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507)]```

## Factor

<lang factor>USING: combinators combinators.smart kernel math math.statistics prettyprint sequences sorting ; IN: rosetta-code.five-number

<PRIVATE

bisect ( seq -- lower upper )
```   dup length even? [ halves ]
[ dup midpoint@ 1 + [ head ] [ tail* ] 2bi ] if ;
```
(fivenum) ( seq -- summary )
```   natural-sort {
[ infimum ]
[ bisect drop median ]
[ median ]
[ bisect nip median ]
[ supremum ]
} cleave>array ;
```

PRIVATE>

ERROR: fivenum-empty data ; ERROR: fivenum-nan data ;

fivenum ( seq -- summary )
```   {
{ [ dup empty? ] [ fivenum-empty ] }
{ [ dup [ fp-nan? ] any? ] [ fivenum-nan ] }
[ (fivenum) ]
} cond ;
```
fivenum-demo ( -- )
```   { 15 6 42 41 7 36 49 40 39 47 43 }
{ 36 40 7 39 41 15 }
{  0.14082834  0.09748790  1.73131507  0.87636009
-1.95059594  0.73438555 -0.03035726  1.46675970
-0.74621349 -0.72588772  0.63905160  0.61501527
-0.98983780 -1.00447874 -0.62759469  0.66206163
1.04312009 -0.10305385  0.75775634  0.32566578 }
[ fivenum . ] tri@ ;
```

MAIN: fivenum-demo</lang>

Output:
```{ 6 25+1/2 40 42+1/2 49 }
{ 7 15 37+1/2 40 41 }
{ -1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507 }
```

## Go

Translation of: Perl

<lang go>package main

import (

```   "fmt"
"math"
"sort"
```

)

func fivenum(a []float64) (n5 [5]float64) {

```   sort.Float64s(a)
n := float64(len(a))
n4 := float64((len(a)+3)/2) / 2
d := []float64{1, n4, (n + 1) / 2, n + 1 - n4, n}
for e, de := range d {
floor := int(de - 1)
ceil := int(math.Ceil(de - 1))
n5[e] = .5 * (a[floor] + a[ceil])
}
return
```

}

var (

```   x1 = []float64{36, 40, 7, 39, 41, 15}
x2 = []float64{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
x3 = []float64{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
}
```

)

func main() {

```   fmt.Println(fivenum(x1))
fmt.Println(fivenum(x2))
fmt.Println(fivenum(x3))
```

}</lang>

Output:
```[7 15 37.5 40 41]
[6 25.5 40 42.5 49]
[-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507]
```

Alternate:

This solution is aimed at handling larger data sets more efficiently. It replaces the O(n log n) sort with O(n) quickselect. It also does not attempt to reproduce the R result exactly, to average values to get a median of an even number of data values, or otherwise estimate quantiles. The quickselect here leaves the input partitioned around the selected value, which allows another small optimization: The first quickselect call partitions the full input around the median. The second call, to get the first quartile, thus only has to process the partition up to the median. The third call, to get the minimum, only has to process the partition up to the first quartile. The 3rd quartile and maximum are obtained similarly. <lang go>package main

import (

```   "fmt"
"math/rand"
```

)

func fivenum(a []float64) (n [5]float64) {

```   last := len(a) - 1
m := last / 2
n[2] = qsel(a, m)
q1 := len(a) / 4
n[1] = qsel(a[:m], q1)
n[0] = qsel(a[:q1], 0)
a = a[m:]
q3 := last - m - q1
n[3] = qsel(a, q3)
a = a[q3:]
n[4] = qsel(a, len(a)-1)
return
```

}

func qsel(a []float64, k int) float64 {

```   for len(a) > 1 {
px := rand.Intn(len(a))
pv := a[px]
last := len(a) - 1
a[px], a[last] = a[last], pv
px = 0
for i, v := range a[:last] {
if v < pv {
a[px], a[i] = v, a[px]
px++
}
}
a[px], a[last] = pv, a[px]
if px == k {
return pv
}
if k < px {
a = a[:px]
} else {
a = a[px+1:]
k -= px + 1
}
}
return a[0]
```

}

var (

```   x1 = []float64{36, 40, 7, 39, 41, 15}
x2 = []float64{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
x3 = []float64{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
}
```

)

func main() {

```   fmt.Println(fivenum(x1))
fmt.Println(fivenum(x2))
fmt.Println(fivenum(x3))
```

}</lang>

Output:
```[7 15 36 40 41]
[6 15 40 43 49]
[-1.95059594 -0.62759469 0.14082834 0.73438555 1.73131507]
```

## Groovy

Translation of: Java

<lang groovy>class Fivenum {

```   static double median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1
if (size <= 0) {
throw new IllegalArgumentException("Array slice cannot be empty")
}
int m = start + (int) (size / 2)
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0
}
```
```   static double[] fivenum(double[] x) {
for (Double d : x) {
if (d.isNaN()) {
throw new IllegalArgumentException("Unable to deal with arrays containing NaN")
}
}
double[] result = new double[5]
Arrays.sort(x)
result[0] = x[0]
result[2] = median(x, 0, x.length - 1)
result[4] = x[x.length - 1]
int m = (int) (x.length / 2)
int lowerEnd = (x.length % 2 == 1) ? m : m - 1
result[1] = median(x, 0, lowerEnd)
result[3] = median(x, m, x.length - 1)
return result
}
```
```   static void main(String[] args) {
double[][] xl = [
[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
]
]
for (double[] x : xl) {
println("\${fivenum(x)}")
}
}
```

}</lang>

Output:
```[6.0, 25.5, 40.0, 42.5, 49.0]
[7.0, 15.0, 37.5, 40.0, 41.0]
[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]```

Translation of: Python

<lang haskell>import Data.List (sort)

fivenum

``` :: (Fractional a, Ord a)
=> [a] -> [a]
```

fivenum [] = [] fivenum xs

``` | l >= 5 =
fmap
((/ 2) . ((+) . (!!) s . floor <*> (!!) s . ceiling) . pred)
[1, q, succ l / 2, succ l - q, l]
| otherwise = s
where
l = realToFrac \$ length xs
q = realToFrac (floor \$ (l + 3) / 2) / 2
s = sort xs
```

testValues :: [Double] testValues =

``` [ 0.14082834
, 0.09748790
, 1.73131507
, 0.87636009
, -1.95059594
, 0.73438555
, -0.03035726
, 1.46675970
, -0.74621349
, -0.72588772
, 0.63905160
, 0.61501527
, -0.98983780
, -1.00447874
, -0.62759469
, 0.66206163
, 1.04312009
, -0.10305385
, 0.75775634
, 0.32566578
]
```

main :: IO () main = print \$ fivenum testValues</lang>

Output:
`[-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507]`

## J

Solution <lang j>midpts=: (1 + #) <:@(] , -:@[ , -) -:@<.@-:@(3 + #) NB. mid points of y quartiles=: -:@(+/)@((<. ,: >.)@midpts { /:~@]) NB. quartiles of y fivenum=: <./ , quartiles , >./ NB. fivenum summary of y</lang> Example Usage <lang j> test1=: 15 6 42 41 7 36 49 40 39 47 43

```  test2=: 36 40 7 39 41 15
test3=: , 0 ". ];._2 noun define
0.14082834  0.09748790  1.73131507  0.87636009 -1.95059594
0.73438555 -0.03035726  1.46675970 -0.74621349 -0.72588772
0.63905160  0.61501527 -0.98983780 -1.00447874 -0.62759469
0.66206163  1.04312009 -0.10305385  0.75775634  0.32566578
```

)

```  fivenum &> test1;test2;test3
6      25.5       40     42.5      49
7        15     37.5       40      41
```

_1.9506 _0.676741 0.233247 0.746071 1.73132</lang>

## Java

Translation of: Kotlin

<lang java>import java.util.Arrays;

public class Fivenum {

```   static double median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1;
if (size <= 0) throw new IllegalArgumentException("Array slice cannot be empty");
int m = start + size / 2;
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0;
}
```
```   static double[] fivenum(double[] x) {
for (Double d : x) {
if (d.isNaN())
throw new IllegalArgumentException("Unable to deal with arrays containing NaN");
}
double[] result = new double[5];
Arrays.sort(x);
result[0] = x[0];
result[2] = median(x, 0, x.length - 1);
result[4] = x[x.length - 1];
int m = x.length / 2;
int lowerEnd = (x.length % 2 == 1) ? m : m - 1;
result[1] = median(x, 0, lowerEnd);
result[3] = median(x, m, x.length - 1);
return result;
}
```
```   public static void main(String[] args) {
double xl[][] = {
{15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
{36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
{
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
}
};
for (double[] x : xl) System.out.printf("%s\n\n", Arrays.toString(fivenum(x)));
}
```

}</lang>

Output:
```[6.0, 25.5, 40.0, 42.5, 49.0]

[7.0, 15.0, 37.5, 40.0, 41.0]

[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
```

## Julia

Works with: Julia version 0.6

<lang julia>function mediansorted(x::AbstractVector{T}, i::Integer, l::Integer)::T where T

```   len = l - i + 1
len > zero(len) || throw(ArgumentError("Array slice cannot be empty."))
mid = i + len ÷ 2
return isodd(len) ? x[mid] : (x[mid-1] + x[mid]) / 2
```

end

function fivenum(x::AbstractVector{T}) where T<:AbstractFloat

```   r = Vector{T}(5)
xs = sort(x)
mid::Int = length(xs) ÷ 2
lowerend::Int = isodd(length(xs)) ? mid : mid - 1
r[1] = xs[1]
r[2] = mediansorted(xs, 1, lowerend)
r[3] = mediansorted(xs, 1, endof(xs))
r[4] = mediansorted(xs, mid, endof(xs))
r[end] = xs[end]
return r
```

end

for v in ([15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],

```         [36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578])
println("# ", v, "\n -> ", fivenum(v))
```

end</lang>

Output:
```# [15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0]
-> [6.0, 15.0, 40.0, 42.0, 49.0]
# [36.0, 40.0, 7.0, 39.0, 41.0, 15.0]
-> [7.0, 11.0, 37.5, 39.5, 41.0]
# [0.140828, 0.0974879, 1.73132, 0.87636, -1.9506, 0.734386, -0.0303573, 1.46676, -0.746213, -0.725888, 0.639052, 0.615015, -0.989838, -1.00448, -0.627595,0.662062, 1.04312, -0.103054, 0.757756, 0.325666]
-> [-1.9506, -0.725888, 0.233247, 0.734386, 1.73132]```

## Kotlin

The following uses Tukey's method for calculating the lower and upper quartiles (or 'hinges') which is what the R function, fivenum, appears to use.

As arrays containing NaNs and nulls cannot really be dealt with in a sensible fashion in Kotlin, they've been excluded altogether. <lang scala>// version 1.2.21

fun median(x: DoubleArray, start: Int, endInclusive: Int): Double {

```   val size = endInclusive - start + 1
require (size > 0) { "Array slice cannot be empty" }
val m = start + size / 2
return if (size % 2 == 1) x[m] else (x[m - 1] + x[m]) / 2.0
```

}

fun fivenum(x: DoubleArray): DoubleArray {

```   require(x.none { it.isNaN() }) { "Unable to deal with arrays containing NaN" }
val result = DoubleArray(5)
x.sort()
result[0] = x[0]
result[2] = median(x, 0, x.size - 1)
result[4] = x[x.lastIndex]
val m = x.size / 2
var lowerEnd = if (x.size % 2 == 1) m else m - 1
result[1] = median(x, 0, lowerEnd)
result[3] = median(x, m, x.size - 1)
return result
```

}

fun main(args: Array<String>) {

```   var xl = listOf(
doubleArrayOf(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0),
doubleArrayOf(36.0, 40.0, 7.0, 39.0, 41.0, 15.0),
doubleArrayOf(
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
)
)
xl.forEach { println("\${fivenum(it).asList()}\n") }
```

}</lang>

Output:
```[6.0, 25.5, 40.0, 42.5, 49.0]

[7.0, 15.0, 37.5, 40.0, 41.0]

[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
```

## Lua

<lang lua>function slice(tbl, low, high)

```   local copy = {}
```
```   for i=low or 1, high or #tbl do
copy[#copy+1] = tbl[i]
end
```
```   return copy
```

end

-- assumes that tbl is sorted function median(tbl)

```   m = math.floor(#tbl / 2) + 1
if #tbl % 2 == 1 then
return tbl[m]
end
return (tbl[m-1] + tbl[m]) / 2
```

end

function fivenum(tbl)

```   table.sort(tbl)
```
```   r0 = tbl[1]
r2 = median(tbl)
r4 = tbl[#tbl]
```
```   m = math.floor(#tbl / 2)
if #tbl % 2 == 1 then
low = m
else
low = m - 1
end
r1 = median(slice(tbl, nil, low+1))
r3 = median(slice(tbl, low+2, nil))
```
```   return r0, r1, r2, r3, r4
```

end

x1 = {

```   {15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
{36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
{
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
}
```

}

for i,x in ipairs(x1) do

```   print(fivenum(x))
```

end</lang>

Output:
```6       25.5    40      43      49
7       15      37.5    40      41
-1.95059594     -0.676741205    0.23324706      0.746070945     1.73131507```

## MATLAB / Octave

<lang Matlab> function r = fivenum(x) r = quantile(x,[0:4]/4); end; </lang>

Output:
```
fivenum([15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43])
ans =
6.0000   20.2500   40.0000   42.7500   49.0000

fivenum([36, 40, 7, 39, 41, 15])
ans =
7.0000   15.0000   37.5000   40.0000   41.0000

fivenum([0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578])
ans =
-1.95060  -0.67674   0.23325   0.74607   1.73132

```

## Modula-2

<lang modula2>MODULE Fivenum; FROM FormatString IMPORT FormatString; FROM LongStr IMPORT RealToStr; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE WriteLongReal(v : LONGREAL); VAR buf : ARRAY[0..63] OF CHAR; BEGIN

```   RealToStr(v, buf);
WriteString(buf)
```

END WriteLongReal;

PROCEDURE WriteArray(arr : ARRAY OF LONGREAL); VAR i : CARDINAL; BEGIN

```   WriteString("[");
FOR i:=0 TO HIGH(arr) DO
WriteLongReal(arr[i]);
WriteString(", ")
END;
WriteString("]")
```

END WriteArray;

(* Assumes that the input is sorted *) PROCEDURE Median(x : ARRAY OF LONGREAL; beg,end : CARDINAL) : LONGREAL; VAR m,cnt : CARDINAL; BEGIN

```   cnt := end - beg + 1;
m := cnt / 2;
IF cnt MOD 2 = 1 THEN
RETURN x[beg + m]
END;
RETURN (x[beg + m - 1] + x[beg + m]) / 2.0
```

END Median;

TYPE Summary = ARRAY[0..4] OF LONGREAL; PROCEDURE Fivenum(input : ARRAY OF LONGREAL) : Summary;

```   PROCEDURE Sort();
VAR
i,j : CARDINAL;
t : LONGREAL;
BEGIN
FOR i:=0 TO HIGH(input) DO
FOR j:=0 TO HIGH(input) DO
IF (i#j) AND (input[i] < input[j]) THEN
t := input[i];
input[i] := input[j];
input[j] := t
END
END
END
END Sort;
```

VAR

```   result : Summary;
size,m,low : CARDINAL;
```

BEGIN

```   size := HIGH(input);
Sort();
```
```   result[0] := input[0];
result[2] := Median(input,0,size);
result[4] := input[size];
```
```   m := size / 2;
IF (size MOD 2 = 1) THEN
low := m
ELSE
low := m - 1
END;
result[1] := Median(input, 0, m);
result[3] := Median(input, m+1, size);
```
```   RETURN result;
```

END Fivenum;

TYPE

```   A6 = ARRAY[0..5] OF LONGREAL;
A11 = ARRAY[0..10] OF LONGREAL;
A20 = ARRAY[0..19] OF LONGREAL;
```

VAR

```   a6 : A6;
a11 : A11;
a20 : A20;
```

BEGIN

```   a11 := A11{15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0};
WriteArray(Fivenum(a11));
WriteLn;
WriteLn;
```
```   a6 := A6{36.0, 40.0, 7.0, 39.0, 41.0, 15.0};
WriteArray(Fivenum(a6));
WriteLn;
WriteLn;
```
```   a20 := A20{
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578
};
WriteArray(Fivenum(a20));
WriteLn;
```
```   ReadChar
```

END Fivenum.</lang>

Output:
```[6.000000000000000, 25.499999999999900, 40.000000000000000, 42.499999999999900, 49.000000000000000, ]

[7.000000000000000, 15.000000000000000, 35.500000000000000, 40.000000000000000, 40.499999999999900, ]

[-1.950594000000000, -0.676741205000000, 0.233247060000000, 0.746070945000000, 1.731315070000000, ]```

## Nim

Translation of: Kotlin

<lang Nim>import algorithm

type FiveNum = array[5, float]

template isOdd(n: SomeInteger): bool = (n and 1) != 0

func median(x: openArray[float]; startIndex, endIndex: Natural): float =

``` let size = endIndex - startIndex + 1
assert(size > 0, "array slice cannot be empty")
let m = startIndex + size div 2
result = if size.isOdd: x[m] else: (x[m-1] + x[m]) / 2
```

func fivenum(x: openArray[float]): FiveNum =

``` let x = sorted(x)
let m = x.len div 2
let lowerEnd = if x.len.isOdd: m else: m - 1
result[0] = x[0]
result[1] = median(x, 0, lowerEnd)
result[2] = median(x, 0, x.high)
result[3] = median(x, m, x.high)
result[4] = x[^1]
```

const Lists = [@[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],

```              @[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
@[0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,
0.73438555, -0.03035726,  1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385,  0.75775634,  0.32566578]]
```

for list in Lists:

``` echo ""
echo list
echo "  →  ", list.fivenum</lang>
```
Output:
```@[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0]
→  [6.0, 25.5, 40.0, 42.5, 49.0]

@[36.0, 40.0, 7.0, 39.0, 41.0, 15.0]
→  [7.0, 15.0, 37.5, 40.0, 41.0]

@[0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.7343855500000001, -0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516000000001, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]
→  [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]```

## Perl

<lang Perl>use POSIX qw(ceil floor);

sub fivenum {

```  my(@array) = @_;
my \$n = scalar @array;
die "No values were entered into fivenum!" if \$n == 0;
my @x = sort {\$a <=> \$b} @array;
my \$n4 = floor((\$n+3)/2)/2;
my @d = (1, \$n4, (\$n +1)/2, \$n+1-\$n4, \$n);
my @sum_array;
for my \$e (0..4) {
my \$floor = floor(\$d[\$e]-1);
my \$ceil  =  ceil(\$d[\$e]-1);
push @sum_array, (0.5 * (\$x[\$floor] + \$x[\$ceil]));
}
return @sum_array;
```

}

my @x = (15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43); my @tukey = fivenum(\@x); say join (',', @tukey);

1. ----------

@x = (36, 40, 7, 39, 41, 15), @tukey = fivenum(\@x); say join (',', @tukey);

1. ----------

@x = (0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,

```    0.73438555, -0.03035726,  1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385,  0.75775634,  0.32566578);
```

@tukey = fivenum(\@x); say join (',', @tukey);</lang>

Output:
```6,25.5,40,42.5,49
7,15,37.5,40,41
-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507```

## Phix

<lang Phix>function median(sequence tbl, integer lo, hi)

```   integer l = hi-lo+1
integer m = lo+floor(l/2)
if remainder(l,2)=1 then
return tbl[m]
end if
return (tbl[m-1]+tbl[m])/2
```

end function

function fivenum(sequence tbl)

```   tbl = sort(tbl)
integer l = length(tbl),
m = floor(l/2)+remainder(l,2)

atom r1 = tbl[1],
r2 = median(tbl,1,m),
r3 = median(tbl,1,l),
r4 = median(tbl,m+1,l),
r5 = tbl[l]

return {r1, r2, r3, r4, r5}
```

end function

constant x1 = {15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43},

```        x2 = {36, 40, 7, 39, 41, 15},
x3 = {0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}
```

?fivenum(x1) ?fivenum(x2) ?fivenum(x3)</lang>

Output:
```{6,25.5,40,43,49}
{7,15,37.5,40,41}
{-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507}
```

## PicoLisp

<lang PicoLisp>(de median (Lst)

```  (let N (length Lst)
(if (bit? 1 N)
(get Lst (/ (inc N) 2))
(setq Lst (nth Lst (/ N 2)))
(/ (+ (car Lst) (cadr Lst)) 2) ) ) )
```

(de fivenum (Lst) # destructive

```  (let
(Len (length Lst)
M (/ Len 2)
S (sort Lst) )
(list
(format (car S) *Scl)
(format
(median (head (+ M (% Len 2)) S))
*Scl )
(format (median S) *Scl)
(format (median (tail M S)) *Scl)
(format (last S) *Scl) ) ) )
```

(scl 2) (println (fivenum (36.0 40.0 7.0 39.0 41.0 15.0))) (scl 8) (println

```  (fivenum
(0.14082834 0.09748790 1.73131507 0.87636009 -1.95059594
0.73438555 -0.03035726 1.46675970 -0.74621349 -0.72588772
0.63905160 0.61501527 -0.98983780 -1.00447874 -0.62759469
0.66206163 1.04312009 -0.10305385 0.75775634 0.32566578 ) ) )</lang>
```
Output:
```("7.00" "15.00" "37.50" "40.00" "41.00")
("-1.95059594" "-0.67674120" "0.23324706" "0.74607094" "1.73131507")
```

## Python

### Python: Standard commands

Translation of: Perl

Work with: Python 2

Work with: Python 3 <lang python>from __future__ import division import math import sys

def fivenum(array):

```   n = len(array)
if n == 0:
print("you entered an empty array.")
sys.exit()
x = sorted(array)

n4 = math.floor((n+3.0)/2.0)/2.0
d = [1, n4, (n+1)/2, n+1-n4, n]
sum_array = []

for e in range(5):
floor = int(math.floor(d[e] - 1))
ceil = int(math.ceil(d[e] - 1))
sum_array.append(0.5 * (x[floor] + x[ceil]))

return sum_array
```

x = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]

y = fivenum(x) print(y)</lang>

Output:
`[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]`

### Python: Pandas library

There are many ways to compute this kind of summary statistics (see wp:Percentile#Definitions). The Python Pandas library supports a range.

Pandas is a well known Python library. Its Dataframe.describe method produces summary stats from data.

(Though these 25% and 75% values do not correspond to the Fivenum Tukey quartile values specified in this task) <lang python>import pandas as pd pd.DataFrame([1, 2, 3, 4, 5, 6]).describe()</lang>

Output:
```              0
count  6.000000
mean   3.500000
std    1.870829
min    1.000000
25%    2.250000
50%    3.500000
75%    4.750000
max    6.000000```

To get the fivenum values asked for, the pandas.DataFrame.quantile function can be used: <lang python>import pandas as pd pd.DataFrame([1, 2, 3, 4, 5, 6]).quantile([.0, .25, .50, .75, 1.00], interpolation='nearest')</lang>

Output:
```      0
0.00  1
0.25  2
0.50  3
0.75  5
1.00  6```

The interpolation value supports more of the differing ways of calculation in use.

### Python: Functional – without imports

Works with: Python 3 <lang python># fiveNums :: [Float] -> (Float, Float, Float, Float, Float) def fiveNums(xs):

```   def median(xs):
lng = len(xs)
m = lng // 2
return xs[m] if (
0 != lng % 2
) else (xs[m - 1] + xs[m]) / 2

ys = sorted(xs)
lng = len(ys)
m = lng // 2
return (
ys[0],
median(ys[0:(m + (lng % 2))]),
median(ys),
median(ys[m:]),
ys[-1]
) if 0 < lng else None

```
1. TEST --------------------------------------------------------------------

for xs in [[15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],

```          [36, 40, 7, 39, 41, 15],
[
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578
]]:
print(
fiveNums(xs)
)</lang>
```
Output:
```(6, 25.5, 40, 42.5, 49)
(7, 15, 37.5, 40, 41)
(-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507)```

## R

The fivenum function is built-in, see R manual.

<lang R>x <- c(0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578)

fivenum(x)</lang>

Output

`[1] -1.9505959 -0.6767412  0.2332471  0.7460709  1.7313151`

## Racket

Racket's =quantile= functions use a different method to Tukey; so a new implementation was made.

<lang racket>#lang racket/base (require math/private/statistics/quickselect)

racket's quantile uses "Method 1" of https://en.wikipedia.org/wiki/Quartile
Tukey (fivenum) uses "Method 2", so we will need a specialist median

(define (fivenum! data-v)

``` (define (tukey-median start end)
(define-values (n/2 parity) (quotient/remainder (- end start) 2))
(define mid (+ start n/2))
(if (zero? parity)
(/ (+ (data-kth-value! (+ mid (sub1 parity))) (data-kth-value! mid)) 2)
(data-kth-value! mid)))
```
``` (define n-data (let ((l (vector-length data-v)))
(if (zero? l)
(raise-argument-error 'data-v "nonempty (Vectorof Real)" data-v)
l)))

(define (data-kth-value! n) (kth-value! data-v n <))
```
``` (define subset-size (let-values (((n/2 parity) (quotient/remainder n-data 2))) (+ n/2 parity)))

(vector (data-kth-value! 0)
(tukey-median 0 subset-size)
(tukey-median 0 n-data)
(tukey-median (- n-data subset-size) n-data)
(data-kth-value! (sub1 n-data))))
```

(define (fivenum data-seq)

``` (fivenum! (if (and (vector? data-seq) (not (immutable? data-seq)))
data-seq
(for/vector ((datum data-seq)) datum))))
```

(module+ test

``` (require rackunit
racket/vector)
(check-equal? #(14 14 14 14 14) (fivenum #(14)) "Minimal case")
(check-equal? #(8 11 14 17 20) (fivenum #(8 14 20)) "3-value case")
(check-equal? #(8 11 15 18 20) (fivenum #(8 14 16 20)) "4-value case")
```
``` (define x1-seq #(36 40 7 39 41 15))
(define x1-v (vector-copy x1-seq))
(check-equal? x1-seq x1-v "before fivenum! sequence and vector were not `equal?`")
(check-equal? #(7 15 #e37.5 40 41) (fivenum! x1-v) "Test against Go results x1")
(check-not-equal? x1-seq x1-v "fivenum! did not mutate mutable input vectors")

(check-equal? #(6 #e25.5 40 #e42.5 49) (fivenum #(15 6 42 41 7 36 49 40 39 47 43)) "Test against Go results x2")

(check-equal? #(-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507)
(fivenum (vector 0.14082834  0.09748790  1.73131507  0.87636009 -1.95059594  0.73438555
-0.03035726  1.46675970 -0.74621349 -0.72588772  0.63905160  0.61501527
-0.98983780 -1.00447874 -0.62759469  0.66206163  1.04312009 -0.10305385
0.75775634  0.32566578))
"Test against Go results x3"))</lang>
```

This program passes its tests silently.

## Raku

(formerly Perl 6)

Translation of: Perl

<lang perl6>sub fourths ( Int \$end ) {

```   my \$end_22 = \$end div 2 / 2;
```
```   return 0, \$end_22, \$end/2, \$end - \$end_22, \$end;
```

} sub fivenum ( @nums ) {

```   my @x = @nums.sort(+*)
or die 'Input must have at least one element';
```
```   my @d = fourths(@x.end);
```
```   return ( @x[@d».floor] Z+ @x[@d».ceiling] ) »/» 2;
```

}

say .&fivenum for [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],

```                 [36, 40, 7, 39, 41, 15], [
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,
0.73438555, -0.03035726,  1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385,  0.75775634,  0.32566578,
```

]; </lang>

Output:
```(6 25.5 40 42.5 49)
(7 15 37.5 40 41)
(-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507)```

## Relation

Min, median and max are built in, quarter1 and quarter3 calculated. <lang Relation> program fivenum(X) rename X^ x order x 1 dup project x min, x median, x max, x count set q1 = x_count / 4 set q1min = floor(q1) set q1weight = q1 - q1min set q3 = x_count * 3 / 4 set q3min = floor(q3) set q3weight = q3 - q3min swap dup select rownumber = q1min + 1 or rownumber = q1min + 2 extend w = q1weight * (rownumber - 1) - (rownumber-1-1) * (1-q1weight) extend xw = x * w project xw sum rename xw_sum x_quarter1 swap select rownumber = q3min + 1 or rownumber = q3min + 2 extend w = q3weight * (rownumber - 1) - (rownumber-1-1) * (1-q3weight) extend xw = x * w project xw sum rename xw_sum x_quarter3 join cross join cross project x_min, x_quarter1, x_median, x_quarter3, x_max print end program

relation a insert 3 insert 4 insert 18 insert 12 insert 17 insert 5 insert 6 insert 11 insert 8 run fivenum("a") </lang>

Output:
x_min x_quarter1 x_median x_quarter3 x_max
3 5.25 8 15.75 18

## REXX

Programming note:   this REXX program uses a unity─based array. <lang rexx>/*REXX program computes the five─number summary (LO─value, p25, medium, p75, HI─value).*/ parse arg x if x= then x= 15 6 42 41 7 36 49 40 39 47 43 /*Not specified? Then use the defaults*/ say 'input numbers: ' space(x) /*display the original list of numbers.*/ call 5num /*invoke the five─number function. */ say ' five─numbers: ' result /*display " " " results. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ bSort: procedure expose @.; parse arg n; m=n-1 /*N: the number of @ array elements.*/

```        do m=m  for m  by -1  until ok;   ok= 1 /*keep sorting the  @  array 'til done.*/
do j=1  for m;      k= j + 1;         /*set  K  to the next item in  @ array.*/
if @.j<=@.k  then iterate             /*Is  @.J  in numerical order?   Good. */
parse value @.j @.k 0 with @.k @.j ok /*swap two elements and  flag as ¬done.*/
end   /*j*/
end     /*m*/;          return
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ med: arg s,e; \$=e-s+1; m=s+\$%2; if \$//2 then return @.m; _=m-1; return (@._+@.m)/2 /*──────────────────────────────────────────────────────────────────────────────────────*/ 5num: #= words(x); if #==0 then return '***error*** array is empty.'

```      parse var x . 1 LO . 1 HI .               /*assume values for LO and HI (for now)*/
q2= # % 2;                                er= '***error***  element'
do j=1  for #;     @.j= word(x, j)
if \datatype(@.j, 'N')  then return  er   j   "isn't numeric: "   @.j
LO= min(LO, @.j);  HI= max(HI, @.j)
end   /*j*/                 /* [↑] traipse thru array, find min,max*/
call bSort #                              /*use a bubble sort (easiest to code). */
if #//2  then p25= q2                     /*calculate the second quartile number.*/
else p25= q2 - 1                 /*    "      "     "       "       "   */
return LO  med(1, p25)   med(1, #)   med(q2, #)   HI  /*return list of 5 numbers.*/</lang>
```
output   when using the default input of:     15 6 42 41 7 36 49 40 39 47 43
```input numbers:  15 6 42 41 7 36 49 40 39 47 43
five─numbers:  6 15 40 42 49
```
output   when using the (internal) default inputs of:     36 40 7 39 41 15
```input numbers:  36 40 7 39 41 15
five─numbers:  7 11 37.5 39.5 41
```

## Ring

<lang ring> rem1 = 0 rem2 = 0 rem3 = 0 rem4 = 0 rem5 = 0 fn1 = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43] fn2 = [36, 40, 7, 39, 41, 15] fn3 = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,

```     0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]
```

decimals(1) fivenum(fn1) showarray([rem1,rem2,rem3,rem4,rem5]) fivenum(fn2) showarray([rem1,rem2,rem3,rem4,rem5]) decimals(8) fivenum(fn3) showarray([rem1,rem2,rem3,rem4,rem5])

func median(table,low,high)

```    l = high-low+1
m = low + floor(l/2)
if l%2 = 1
return table[m]
ok
return (table[m-1]+table[m])/2

```

func fivenum(table)

```    table = sort(table)
low   = len(table)
m     = floor(low/2)+low%2
rem1  = table[1]
rem2  = median(table,1,m)
rem3  = median(table,1,low)
rem4  = median(table,m+1,low)
rem5  = table[low]
return [rem1, rem2, rem3, rem4, rem5]
```

func showarray vect

```    svect = ""
for n in vect
svect += " " + n + ","
next
? "[" + left(svect, len(svect) - 1) + "]"
```

</lang>

Output:
```[6,25.5,40,43,49]
[7,15,37.5,40,41]
[-1.95059594,-0.67674121,0.23324706,0.74607095,1.73131507]
```

## Ruby

Translation of: Perl

<lang ruby>def fivenum(array)

``` sorted_arr = array.sort
n = array.size
n4 = (((n + 3).to_f / 2.to_f) / 2.to_f).floor
d = Array.[](1, n4, ((n.to_f + 1) / 2).to_i, n + 1 - n4, n)
sum_array = []
(0..4).each do |e| # each loops have local scope, for loops don't
index_floor = (d[e] - 1).floor
index_ceil  = (d[e] - 1).ceil
sum_array.push(0.5 * (sorted_arr[index_floor] + sorted_arr[index_ceil]))
end
sum_array
```

end

test_array = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43] tukey_array = fivenum(test_array) p tukey_array test_array = [36, 40, 7, 39, 41, 15] tukey_array = fivenum(test_array) p tukey_array test_array = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,

```             0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385, 0.75775634,  0.32566578]
```

tukey_array = fivenum(test_array) p tukey_array </lang>

Output:
```[6.0, 15.0, 40.0, 43.0, 49.0]
[7.0, 15.0, 36.0, 40.0, 41.0]
[-1.95059594, -0.72588772, 0.14082834, 0.75775634, 1.73131507]```

## SAS

<lang sas>/* build a dataset */ data test; do i=1 to 10000; x=rannor(12345); output; end; keep x; run;

/* compute the five numbers */ proc means data=test min p25 median p75 max; var x; run;</lang>

Output

 Analysis Variable : x Minimum 25th Pctl Median 75th Pctl Maximum -4.0692299 -0.6533022 0.0066299 0.6768043 4.1328026

## Scala

### Array based solution

<lang Scala>import java.util

object Fivenum extends App {

``` val xl = Array(
Array(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0),
Array(36.0, 40.0, 7.0, 39.0, 41.0, 15.0),
Array(0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780,
-1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578)
)
```
``` for (x <- xl) println(f"\${util.Arrays.toString(fivenum(x))}%s\n\n")
```
``` def fivenum(x: Array[Double]): Array[Double] = {
require(x.forall(!_.isNaN), "Unable to deal with arrays containing NaN")
```
```   def median(x: Array[Double], start: Int, endInclusive: Int): Double = {
val size = endInclusive - start + 1
require(size > 0, "Array slice cannot be empty")
val m = start + size / 2
if (size % 2 == 1) x(m) else (x(m - 1) + x(m)) / 2.0
}
```
```   val result = new Array[Double](5)
util.Arrays.sort(x)
result(0) = x(0)
result(2) = median(x, 0, x.length - 1)
result(4) = x(x.length - 1)
val m = x.length / 2
val lowerEnd = if (x.length % 2 == 1) m else m - 1
result(1) = median(x, 0, lowerEnd)
result(3) = median(x, m, x.length - 1)
result
}
```

}</lang>

Output:
See it running in your browser by ScalaFiddle (JavaScript, non JVM) or by Scastie (JVM).

## Sidef

Translation of: Raku

<lang ruby>func fourths(e) {

```   var t = ((e>>1) / 2)
[0, t, e/2, e - t, e]
```

}

func fivenum(nums) {

```   var x = nums.sort
var d = fourths(x.end)
```
```   ([x[d.map{.floor}]] ~Z+ [x[d.map{.ceil}]]) »/» 2
```

}

var nums = [

```   [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],
[36, 40, 7, 39, 41, 15], [
0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,
0.73438555, -0.03035726,  1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385,  0.75775634,  0.32566578,
```

]]

nums.each { say fivenum(_).join(', ') }</lang>

Output:
```6, 25.5, 40, 42.5, 49
7, 15, 37.5, 40, 41
-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507```

## Stata

First build a dataset:

<lang stata>clear set seed 17760704 qui set obs 10000 gen x=rnormal()</lang>

The summarize command produces all the required statistics, and more:

<lang stata>qui sum x, detail di r(min),r(p25),r(p50),r(p75),r(max)</lang>

Output

`-3.6345866 -.66536 .0026834 .68398139 3.7997103`

It's also possible to use the tabstat command

<lang stata>tabstat x, s(mi q ma)</lang>

Output

```    variable |       min       p25       p50       p75       max
-------------+--------------------------------------------------
x | -3.634587   -.66536  .0026834  .6839814   3.79971
----------------------------------------------------------------```

Another example:

<lang stata>clear mat a=0.14082834\0.09748790\1.73131507\0.87636009\-1.95059594\ /// 0.73438555\-0.03035726\1.46675970\-0.74621349\-0.72588772\ /// 0.63905160\0.61501527\-0.98983780\-1.00447874\-0.62759469\ /// 0.66206163\1.04312009\-0.10305385\0.75775634\0.32566578 svmat a tabstat a1, s(mi q ma)</lang>

Output

```    variable |       min       p25       p50       p75       max
-------------+--------------------------------------------------
a1 | -1.950596 -.6767412  .2332471   .746071  1.731315
----------------------------------------------------------------```

## VBA

Uses Quicksort.

Translation of: Phix
<lang vb>Option Base 1

Private Function median(tbl As Variant, lo As Integer, hi As Integer)

```   Dim l As Integer: l = hi - lo + 1
Dim m As Integer: m = lo + WorksheetFunction.Floor_Precise(l / 2)
If l Mod 2 = 1 Then
median = tbl(m)
Else
median = (tbl(m - 1) + tbl(m)) / 2
End if
```

End Function Private Function fivenum(tbl As Variant) As Variant

```   Sort tbl, UBound(tbl)
Dim l As Integer: l = UBound(tbl)
Dim m As Integer: m = WorksheetFunction.Floor_Precise(l / 2) + l Mod 2
Dim r(5) As String
r(1) = CStr(tbl(1))
r(2) = CStr(median(tbl, 1, m))
r(3) = CStr(median(tbl, 1, l))
r(4) = CStr(median(tbl, m + 1, l))
r(5) = CStr(tbl(l))
fivenum = r
```

End Function Public Sub main()

```   Dim x1 As Variant, x2 As Variant, x3 As Variant
x1 = [{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}]
x2 = [{36, 40, 7, 39, 41, 15}]
x3 = [{0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}]
Debug.Print Join(fivenum(x1), " | ")
Debug.Print Join(fivenum(x2), " | ")
Debug.Print Join(fivenum(x3), " | ")
```
End Sub</lang>
Output:
```6 | 25,5 | 40 | 43 | 49
7 | 15 | 37,5 | 40 | 41
-1,95059594 | -0,676741205 | 0,23324706 | 0,746070945 | 1,73131507```

## Visual Basic .NET

Translation of: C#

<lang vbnet>Imports System.Runtime.CompilerServices Imports System.Text

Module Module1

```   <Extension()>
Function AsString(Of T)(c As ICollection(Of T), Optional format As String = "{0}") As String
Dim sb As New StringBuilder("[")
Dim it = c.GetEnumerator()
If it.MoveNext() Then
sb.AppendFormat(format, it.Current)
End If
While it.MoveNext()
sb.Append(", ")
sb.AppendFormat(format, it.Current)
End While
Return sb.Append("]").ToString()
End Function
```
```   Function Median(x As Double(), start As Integer, endInclusive As Integer) As Double
Dim size = endInclusive - start + 1
If size <= 0 Then
Throw New ArgumentException("Array slice cannot be empty")
End If
Dim m = start + size \ 2
Return If(size Mod 2 = 1, x(m), (x(m - 1) + x(m)) / 2.0)
End Function
```
```   Function Fivenum(x As Double()) As Double()
For Each d In x
If Double.IsNaN(d) Then
Throw New ArgumentException("Unable to deal with arrays containing NaN")
End If
Next
```
```       Array.Sort(x)
Dim result(4) As Double
```
```       result(0) = x.First()
result(2) = Median(x, 0, x.Length - 1)
result(4) = x.Last()
```
```       Dim m = x.Length \ 2
Dim lowerEnd = If(x.Length Mod 2 = 1, m, m - 1)
```
```       result(1) = Median(x, 0, lowerEnd)
result(3) = Median(x, m, x.Length - 1)
```
```       Return result
End Function
```
```   Sub Main()
Dim x1 = {
New Double() {15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
New Double() {36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
New Double() {
0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516, 0.61501527,
-0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
}
}
For Each x In x1
Dim result = Fivenum(x)
Console.WriteLine(result.AsString("{0:F8}"))
Next
End Sub
```

End Module</lang>

Output:
```[6.00000000, 25.50000000, 40.00000000, 42.50000000, 49.00000000]
[7.00000000, 15.00000000, 37.50000000, 40.00000000, 41.00000000]
[-1.95059594, -0.67674121, 0.23324706, 0.74607095, 1.73131507]```

## Wren

Translation of: Go
Library: Wren-sort

<lang ecmascript>import "/sort" for Sort

var fivenum = Fn.new { |a|

```   Sort.quick(a)
var n5 = List.filled(5, 0)
var n = a.count
var n4 = ((n + 3)/2).floor / 2
var d = [1, n4, (n + 1)/2, n + 1 - n4, n]
var e = 0
for (de in d) {
var floor = (de - 1).floor
var ceil  = (de - 1).ceil
n5[e] = 0.5 * (a[floor] + a[ceil])
e = e + 1
}
return n5
```

}

var x1 = [36, 40, 7, 39, 41, 15] var x2 = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43] var x3 = [

```   0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,
0.73438555, -0.03035726,  1.46675970, -0.74621349, -0.72588772,
0.63905160,  0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163,  1.04312009, -0.10305385,  0.75775634,  0.32566578
```

] for (x in [x1, x2, x3]) System.print(fivenum.call(x))</lang>

Output:
```[7, 15, 37.5, 40, 41]
[6, 25.5, 40, 42.5, 49]
[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
```

## zkl

Uses GNU GSL library. <lang zkl>var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library) fcn fiveNum(v){ // V is a GSL Vector, --> min, 1st qu, median, 3rd qu, max

```  v.sort();
return(v.min(),v.quantile(0.25),v.median(),v.quantile(0.75),v.max())
```

}</lang> <lang zkl>fiveNum(GSL.VectorFromData(

```  15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0)).println();
```

println(fiveNum(GSL.VectorFromData(36.0, 40.0, 7.0, 39.0, 41.0, 15.0)));

v:=GSL.VectorFromData(

```  0.14082834,  0.09748790,  1.73131507,  0.87636009, -1.95059594,  0.73438555,
-0.03035726,  1.46675970, -0.74621349, -0.72588772,  0.63905160,  0.61501527,
-0.98983780, -1.00447874, -0.62759469,  0.66206163,  1.04312009, -0.10305385,
0.75775634,  0.32566578);
```

println(fiveNum(v));</lang>

Output:
```L(6,25.5,40,42.5,49)
L(7,20.25,37.5,39.75,41)
L(-1.9506,-0.652168,0.233247,0.740228,1.73132)
```