Addition chains

From Rosetta Code
Addition chains is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

An addition chain of length r for n is a sequence 1 = a(0) < a(1) < a(2) ... < a(r) = n , such as a(k) = a(i) + a(j) ( i < k and j < k , i may be = j) . Each member is the sum of two earlier members, not necessarily distincts.

A Brauer chain for n is an addition chain where a(k) = a(k-1) + a(j) with j < k. Each member uses the previous member as a summand.

We are interested in chains of minimal length L(n).

Task

For each n in {7,14,21,29,32,42,64} display the following : L(n), the count of Brauer chains of length L(n), an example of such a Brauer chain, the count of non-brauer chains of length L(n), an example of such a chain. (NB: counts may be 0 ).

Extra-credit: Same task for n in {47, 79, 191, 382 , 379, 12509}

References

  • OEIS sequences A079301, A079302. [1]
  • Richard K. Guy - Unsolved problems in Number Theory - C6 - Addition chains.

Example

  • minimal chain length l(19) = 6
  • brauer-chains(19) : count = 31 Ex: ( 1 2 3 4 8 11 19)
  • non-brauer-chains(19) : count = 2 Ex: ( 1 2 3 6 7 12 19)



11l

Translation of: Python
F bauer(n)
   V chain = [0] * n
   V in_chain = [0B] * (n + 1)
   [Int] best
   V best_len = n
   V cnt = 0

   F extend_chain(Int x, Int =pos) -> Void
      I @best_len - pos < 32 & x < @n >> (@best_len - pos)
         R

      @chain[pos] = x
      @in_chain[x] = 1B
      pos++

      I @in_chain[@n - x]
         I pos == @best_len
            @cnt++
         E
            @best = @chain[0 .< pos]
            @best_len = pos
            @cnt = 1
      E I pos < @best_len
         L(i) (pos - 1 .< -1).step(-1)
            V c = x + @chain[i]
            I c < @n
               @extend_chain(c, pos)

      @in_chain[x] = 0B

   extend_chain(1, 0)
   R (best [+] [n], cnt)

L(n) [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
   V (best, cnt) = bauer(n)
   print("L(#.) = #., count of minimum chain: #.\ne.g.: #.\n".format(n, best.len - 1, cnt, best))
Output:
L(7) = 4, count of minimum chain: 5
e.g.: [1, 2, 4, 6, 7]

L(14) = 5, count of minimum chain: 14
e.g.: [1, 2, 4, 8, 12, 14]

L(21) = 6, count of minimum chain: 26
e.g.: [1, 2, 4, 8, 16, 20, 21]

L(29) = 7, count of minimum chain: 114
e.g.: [1, 2, 4, 8, 16, 24, 28, 29]

L(32) = 5, count of minimum chain: 1
e.g.: [1, 2, 4, 8, 16, 32]

L(42) = 7, count of minimum chain: 78
e.g.: [1, 2, 4, 8, 16, 32, 40, 42]

L(64) = 6, count of minimum chain: 1
e.g.: [1, 2, 4, 8, 16, 32, 64]

L(47) = 8, count of minimum chain: 183
e.g.: [1, 2, 4, 8, 12, 13, 26, 39, 47]

L(79) = 9, count of minimum chain: 492
e.g.: [1, 2, 4, 8, 16, 24, 26, 52, 78, 79]

L(191) = 11, count of minimum chain: 7172
e.g.: [1, 2, 4, 8, 16, 32, 48, 52, 53, 106, 159, 191]

L(382) = 11, count of minimum chain: 4
e.g.: [1, 2, 4, 8, 16, 17, 33, 50, 83, 166, 332, 382]

L(379) = 12, count of minimum chain: 6583
e.g.: [1, 2, 4, 8, 16, 32, 64, 96, 104, 105, 210, 315, 379]

C

Translation of: Kotlin
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TRUE 1
#define FALSE 0

typedef int bool;

typedef struct {
    int x, y;
} pair;

int* example = NULL;
int exampleLen = 0;

void reverse(int s[], int len) {
    int i, j, t;
    for (i = 0, j = len - 1; i < j; ++i, --j) {
        t = s[i];
        s[i] = s[j];
        s[j] = t;
    }
}

pair tryPerm(int i, int pos, int seq[], int n, int len, int minLen);

pair checkSeq(int pos, int seq[], int n, int len, int minLen) {
    pair p;
    if (pos > minLen || seq[0] > n) {
        p.x = minLen; p.y = 0;
        return p;
    }
    else if (seq[0] == n) {
        example = malloc(len * sizeof(int));
        memcpy(example, seq, len * sizeof(int));
        exampleLen = len;
        p.x = pos; p.y = 1;
        return p;
    }
    else if (pos < minLen) {
        return tryPerm(0, pos, seq, n, len, minLen);
    }
    else {
        p.x = minLen; p.y = 0;
        return p;
    }
}

pair tryPerm(int i, int pos, int seq[], int n, int len, int minLen) {
    int *seq2;
    pair p, res1, res2;
    size_t size = sizeof(int);    
    if (i > pos) {
        p.x = minLen; p.y = 0;
        return p;
    }
    seq2 = malloc((len + 1) * size);
    memcpy(seq2 + 1, seq, len * size);
    seq2[0] = seq[0] + seq[i];
    res1 = checkSeq(pos + 1, seq2, n, len + 1, minLen);
    res2 = tryPerm(i + 1, pos, seq, n, len, res1.x);
    free(seq2);
    if (res2.x < res1.x)
        return res2;
    else if (res2.x == res1.x) {
        p.x = res2.x; p.y = res1.y + res2.y;
        return p;
    }
    else {
        printf("Error in tryPerm\n");
        p.x = 0; p.y = 0;
        return p;
    }
}

pair initTryPerm(int x, int minLen) {
    int seq[1] = {1};
    return tryPerm(0, 0, seq, x, 1, minLen);
}

void printArray(int a[], int len) {
    int i;
    printf("[");
    for (i = 0; i < len; ++i) printf("%d ", a[i]);
    printf("\b]\n");
}

bool isBrauer(int a[], int len) {
    int i, j;
    bool ok;
    for (i = 2; i < len; ++i) {
        ok = FALSE;
        for (j = i - 1; j >= 0; j--) {
            if (a[i-1] + a[j] == a[i]) {
                ok = TRUE;
                break;
            }
        }
        if (!ok) return FALSE;
    }
    return TRUE;
}

bool isAdditionChain(int a[], int len) {
    int i, j, k;
    bool ok, exit;
    for (i = 2; i < len; ++i) {
        if (a[i] > a[i - 1] * 2) return FALSE;
        ok = FALSE; exit = FALSE;
        for (j = i - 1; j >= 0; --j) {
            for (k = j; k >= 0; --k) {
               if (a[j] + a[k] == a[i]) { ok = TRUE; exit = TRUE; break; }
            }
            if (exit) break;
        }
        if (!ok) return FALSE;
    }
    if (example == NULL && !isBrauer(a, len)) {
        example = malloc(len * sizeof(int));
        memcpy(example, a, len * sizeof(int));
        exampleLen = len;
    }
    return TRUE;
}

void nextChains(int index, int len, int seq[], int *pcount) {
    for (;;) {
        int i;
        if (index < len - 1) {
           nextChains(index + 1, len, seq, pcount);
        }
        if (seq[index] + len - 1 - index >= seq[len - 1]) return;
        seq[index]++;
        for (i = index + 1; i < len - 1; ++i) {
            seq[i] = seq[i-1] + 1;
        }
        if (isAdditionChain(seq, len)) (*pcount)++;
    }
}

int findNonBrauer(int num, int len, int brauer) {
    int i, count = 0;
    int *seq = malloc(len * sizeof(int));
    seq[0] = 1;
    seq[len - 1] = num;
    for (i = 1; i < len - 1; ++i) {
        seq[i] = seq[i - 1] + 1;
    }
    if (isAdditionChain(seq, len)) count = 1;
    nextChains(2, len, seq, &count);
    free(seq);
    return count - brauer;
}

void findBrauer(int num, int minLen, int nbLimit) {
    pair p = initTryPerm(num, minLen);
    int actualMin = p.x, brauer = p.y, nonBrauer;
    printf("\nN = %d\n", num);
    printf("Minimum length of chains : L(%d) = %d\n", num, actualMin);
    printf("Number of minimum length Brauer chains : %d\n", brauer);
    if (brauer > 0) {
        printf("Brauer example : ");
        reverse(example, exampleLen);
        printArray(example, exampleLen);
    }
    if (example != NULL) {
        free(example);
        example = NULL; 
        exampleLen = 0;
    }
    if (num <= nbLimit) {
        nonBrauer = findNonBrauer(num, actualMin + 1, brauer);
        printf("Number of minimum length non-Brauer chains : %d\n", nonBrauer);
        if (nonBrauer > 0) {
            printf("Non-Brauer example : ");
            printArray(example, exampleLen);
        }
        if (example != NULL) {
            free(example);
            example = NULL; 
            exampleLen = 0;
        }
    }
    else {
        printf("Non-Brauer analysis suppressed\n");
    }
}

int main() {
    int i;
    int nums[12] = {7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379};
    printf("Searching for Brauer chains up to a minimum length of 12:\n");
    for (i = 0; i < 12; ++i) findBrauer(nums[i], 12, 79);
    return 0;
}
Output:
Searching for Brauer chains up to a minimum length of 12:

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : [1 2 3 4 7]
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : [1 2 3 4 7 14]
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : [1 2 3 4 7 14 21]
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1 2 4 5 8 13 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : [1 2 3 4 7 11 18 29]
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1 2 3 6 9 11 18 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32]
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : [1 2 3 4 7 14 21 42]
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1 2 4 5 8 13 21 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32 64]
Number of minimum length non-Brauer chains : 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains : 183
Brauer example : [1 2 3 4 7 10 20 27 47]
Number of minimum length non-Brauer chains : 37
Non-Brauer example : [1 2 3 5 7 14 19 28 47]

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains : 492
Brauer example : [1 2 3 4 7 9 18 36 43 79]
Number of minimum length non-Brauer chains : 129
Non-Brauer example : [1 2 3 5 7 12 24 31 48 79]

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains : 7172
Brauer example : [1 2 3 4 7 8 15 22 44 88 103 191]
Non-Brauer analysis suppressed

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains : 4
Brauer example : [1 2 4 5 9 14 23 46 92 184 198 382]
Non-Brauer analysis suppressed

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains : 6583
Brauer example : [1 2 3 4 7 10 17 27 44 88 176 203 379]
Non-Brauer analysis suppressed

C#

Translation of: Java
using System;

namespace AdditionChains {
    class Program {
        static int[] Prepend(int n, int[] seq) {
            int[] result = new int[seq.Length + 1];
            Array.Copy(seq, 0, result, 1, seq.Length);
            result[0] = n;
            return result;
        }

        static Tuple<int, int> CheckSeq(int pos, int[] seq, int n, int min_len) {
            if (pos > min_len || seq[0] > n) return new Tuple<int, int>(min_len, 0);
            if (seq[0] == n) return new Tuple<int, int>(pos, 1);
            if (pos < min_len) return TryPerm(0, pos, seq, n, min_len);
            return new Tuple<int, int>(min_len, 0);
        }

        static Tuple<int, int> TryPerm(int i, int pos, int[] seq, int n, int min_len) {
            if (i > pos) return new Tuple<int, int>(min_len, 0);

            Tuple<int, int> res1 = CheckSeq(pos + 1, Prepend(seq[0] + seq[i], seq), n, min_len);
            Tuple<int, int> res2 = TryPerm(i + 1, pos, seq, n, res1.Item1);

            if (res2.Item1 < res1.Item1) return res2;
            if (res2.Item1 == res1.Item1) return new Tuple<int, int>(res2.Item1, res1.Item2 + res2.Item2);

            throw new Exception("TryPerm exception");
        }

        static Tuple<int, int> InitTryPerm(int x) {
            return TryPerm(0, 0, new int[] { 1 }, x, 12);
        }

        static void FindBrauer(int num) {
            Tuple<int, int> res = InitTryPerm(num);
            Console.WriteLine();
            Console.WriteLine("N = {0}", num);
            Console.WriteLine("Minimum length of chains: L(n)= {0}", res.Item1);
            Console.WriteLine("Number of minimum length Brauer chains: {0}", res.Item2);
        }

        static void Main(string[] args) {
            int[] nums = new int[] { 7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379 };
            Array.ForEach(nums, n => FindBrauer(n));
        }
    }
}
Output:
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

C++

While this worked, something made it run extremely slow.

Translation of: D
#include <iostream>
#include <tuple>
#include <vector>

std::pair<int, int> tryPerm(int, int, const std::vector<int>&, int, int);

std::pair<int, int> checkSeq(int pos, const std::vector<int>& seq, int n, int minLen) {
    if (pos > minLen || seq[0] > n) return { minLen, 0 };
    else if (seq[0] == n)           return { pos, 1 };
    else if (pos < minLen)          return tryPerm(0, pos, seq, n, minLen);
    else                            return { minLen, 0 };
}

std::pair<int, int> tryPerm(int i, int pos, const std::vector<int>& seq, int n, int minLen) {
    if (i > pos) return { minLen, 0 };

    std::vector<int> seq2{ seq[0] + seq[i] };
    seq2.insert(seq2.end(), seq.cbegin(), seq.cend());
    auto res1 = checkSeq(pos + 1, seq2, n, minLen);
    auto res2 = tryPerm(i + 1, pos, seq, n, res1.first);

    if (res2.first < res1.first)       return res2;
    else if (res2.first == res1.first) return { res2.first, res1.second + res2.second };
    else                               throw std::runtime_error("tryPerm exception");
}

std::pair<int, int> initTryPerm(int x) {
    return tryPerm(0, 0, { 1 }, x, 12);
}

void findBrauer(int num) {
    auto res = initTryPerm(num);
    std::cout << '\n';
    std::cout << "N = " << num << '\n';
    std::cout << "Minimum length of chains: L(n)= " << res.first << '\n';
    std::cout << "Number of minimum length Brauer chains: " << res.second << '\n';
}

int main() {
    std::vector<int> nums{ 7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379 };
    for (int i : nums) {
        findBrauer(i);
    }

    return 0;
}
Output:
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

D

Translation of: Scala
import std.stdio;
import std.typecons;

alias Pair = Tuple!(int, int);

auto check_seq(int pos, int[] seq, int n, int min_len) {
    if (pos>min_len || seq[0]>n) return Pair(min_len, 0);
    else if (seq[0] == n)        return Pair(    pos, 1);
    else if (pos<min_len)        return try_perm(0, pos, seq, n, min_len);
    else                         return Pair(min_len, 0);
}

auto try_perm(int i, int pos, int[] seq, int n, int min_len) {
    if (i>pos) return Pair(min_len, 0);

    auto res1 = check_seq(pos+1, [seq[0]+seq[i]]~seq, n, min_len);
    auto res2 = try_perm(i+1, pos, seq, n, res1[0]);

    if (res2[0] < res1[0])       return res2;
    else if (res2[0] == res1[0]) return Pair(res2[0], res1[1]+res2[1]);
    else                         throw new Exception("Try_perm exception");
}

auto init_try_perm = function(int x) => try_perm(0, 0, [1], x, 12);

void find_brauer(int num) {
    auto res = init_try_perm(num);
    writeln;
    writeln("N = ", num);
    writeln("Minimum length of chains: L(n)= ", res[0]);
    writeln("Number of minimum length Brauer chains: ", res[1]);
}

void main() {
    auto nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379];
    foreach (i; nums) {
        find_brauer(i);
    }
}
Output:
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

EchoLisp

;; 2^n
(define exp2 (build-vector 32 (lambda(i)(expt 2 i))))

;; counters and results
(define-values (*minlg* *counts* *chains* *calls*) '(0 null null 0))

(define (register-hit chain lg  )
(define idx (if (brauer? chain lg) 0 1))
    (when (< lg *minlg*) 
        (set! *counts* (make-vector 2 0))
        (set! *chains* (make-vector 2 ""))
        (set! *minlg* lg))
    (vector+= *counts* idx 1)
    (vector-set! *chains* idx (vector->list chain)))
 
;; is chain a brauer chain ?        
(define (brauer? chain lg)
    (for [(i (in-range 1 lg))]
        #:break (not (vector-search* (- [chain i] [chain (1- i)]) chain)) => #f
        #t))
        
;; all min chains to target n (brute force)
(define (chains n chain  lg   (a)  (top) (tops null))
(++ *calls*)
(set! top [chain  lg])
    (cond 
    [(> lg *minlg*) #f] ;; too long
    [(= n top) (register-hit chain lg)]  ;; hit 
    [(< n top) #f] ;; too big
    [(and (< *minlg* 32) (< (* top [exp2 (- *minlg* lg)]) n)) #f] ;; too small
    [else
    (for*  ([i (in-range lg -1 -1)] [j (in-range lg (1- i) -1)])      
          (set! a (+ [chain i] [chain j]))
          #:continue (<= a top) ;; increasing sequence
          #:continue (memq a tops) ;; prevent duplicates
          (set! tops (cons a tops))
          (vector-push chain a)
          (chains n chain  (1+ lg))
          (vector-pop chain))]))
          
          
(define (task n)
    (set!-values (*minlg* *calls*) '(Infinity 0 ))
    (chains n (make-vector 1 1) 0)
    (printf "L(%d) = %d - brauer-chains: %d  non-brauer: %d  chains: %a %a " 
         n *minlg* [*counts* 0] [*counts* 1] [*chains* 0] [*chains* 1]))
Output:
(for-each task {7 14 21 29 32 42 64})

L(7) = 4 - brauer-chains: 5 non-brauer: 0 chains: (1 2 3 4 7)  
L(14) = 5 - brauer-chains: 14 non-brauer: 0 chains: (1 2 3 4 7 14)  
L(21) = 6 - brauer-chains: 26 non-brauer: 3 chains: (1 2 3 4 7 14 21) (1 2 4 5 8 13 21) 
L(29) = 7 - brauer-chains: 114 non-brauer: 18 chains: (1 2 3 4 7 11 18 29) (1 2 3 6 9 11 18 29) 
L(32) = 5 - brauer-chains: 1 non-brauer: 0 chains: (1 2 4 8 16 32)  
L(42) = 7 - brauer-chains: 78 non-brauer: 6 chains: (1 2 3 4 7 14 21 42) (1 2 4 5 8 13 21 42) 
L(64) = 6 - brauer-chains: 1 non-brauer: 0 chains: (1 2 4 8 16 32 64) 

;; a few extras
(task 47)
L(47) = 8 - brauer-chains: 183 non-brauer: 37 chains: (1 2 3 4 7 10 20 27 47) (1 2 3 5 7 14 19 28 47) 
(task 79)
L(79) = 9 - brauer-chains: 492 non-brauer: 129 chains: (1 2 3 4 7 9 18 36 43 79) (1 2 3 5 7 12 24 31 48 79) 

FreeBASIC

Const maxLen = 13
Const maxNonBrauer = 191

Dim Shared As uInteger brauerCount, nonBrauerCount
brauerCount = 0
nonBrauerCount = 0
Dim Shared As String brauerExample, nonBrauerExample
brauerExample = ""
nonBrauerExample = ""

Function isBrauer(a() As Integer) As Boolean
    Dim As Integer i, j, ok
    
    For i = 2 To Ubound(a)
        ok = False
        For j = i - 1 To 0 Step -1
            If a(i - 1) + a(j) = a(i) Then
                ok = True
                Exit For
            End If
        Next
        If Not ok Then Return False
    Next
    Return True
End Function

Function Join(arr() As Integer, separator As String) As String
    Dim As String result = ""
    For i As Integer = Lbound(arr) To Ubound(arr)
        result &= Str(arr(i))
        If i < Ubound(arr) Then result &= separator
    Next
    Return result
End Function

Function AdditionChains(target As Integer, length As Integer, chosen() As Integer) As Integer
    Dim As Integer le = Ubound(chosen) + 1
    Dim As Integer last = chosen(Ubound(chosen))
    Dim As Integer i, j, k
    Dim As Integer nextVal
    Dim As Integer newChosen(le)
    
    If last = target Then
        If le < length Then
            brauerCount = 0
            nonBrauerCount = 0
        End If
        If isBrauer(chosen()) Then
            brauerCount += 1
            brauerExample = Join(chosen(), ", ")
        Else
            nonBrauerCount += 1
            nonBrauerExample = Join(chosen(), ", ")
        End If
        Return le
    End If
    If le = length Then Return length
    If target > maxNonBrauer Then
        For i = le - 1 To 0 Step -1
            nextVal = last + chosen(i)
            If nextVal <= target And nextVal > last And i < length Then
                For j = 0 To Ubound(chosen)
                    newChosen(j) = chosen(j)
                Next
                newChosen(Ubound(newChosen)) = nextVal
                length = AdditionChains(target, length, newChosen())
            End If
        Next
    Else
        Dim As Integer ndone(0 To target)
        Dim As Integer ndoneCount = 0
        Dim As Boolean found
        Do
            found = False
            For i = le - 1 To 0 Step -1
                nextVal = last + chosen(i)
                If nextVal <= target And nextVal > last And i < length Then
                    For k = 1 To ndoneCount
                        If ndone(k) = nextVal Then
                            found = True
                            Exit For
                        End If
                    Next
                    If Not found Then
                        ndoneCount += 1
                        ndone(ndoneCount) = nextVal
                        For j = 0 To Ubound(chosen)
                            newChosen(j) = chosen(j)
                        Next
                        newChosen(Ubound(newChosen)) = nextVal
                        length = AdditionChains(target, length, newChosen())
                    End If
                End If
            Next
            le -= 1
            If le = 0 Then Exit Do
            last = chosen(le - 1)
        Loop
    End If
    Return length
End Function

Dim As Integer nums(1 To 12) = {7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379}
Print "Searching for Brauer chains up to a minimum length of "; maxLen - 1

Dim As Integer numIndex, num, le

For numIndex = 1 To 12
    num = nums(numIndex)
    brauerCount = 0
    nonBrauerCount = 0
    Dim As Integer chosen(0) = {1}
    le = AdditionChains(num, maxLen, chosen())
    
    Print !"\nN = "; num
    Print "Minimum length of chains : L(" & num; ") = "; le - 1
    Print "Number of minimum length Brauer chains : "; brauerCount
    If brauerCount > 0 Then Print "Brauer example : ["; brauerExample; "]"
Next

Sleep

Go

Version 1

Translation of: Kotlin
package main

import "fmt"

var example []int

func reverse(s []int) {
    for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
        s[i], s[j] = s[j], s[i]
    }
}

func checkSeq(pos, n, minLen int, seq []int) (int, int) {
    switch {
    case pos > minLen || seq[0] > n:
        return minLen, 0
    case seq[0] == n:
        example = seq
        return pos, 1
    case pos < minLen:
        return tryPerm(0, pos, n, minLen, seq)
    default:
        return minLen, 0
    }
}

func tryPerm(i, pos, n, minLen int, seq []int) (int, int) {
    if i > pos {
        return minLen, 0
    }
    seq2 := make([]int, len(seq)+1)
    copy(seq2[1:], seq)
    seq2[0] = seq[0] + seq[i]
    res11, res12 := checkSeq(pos+1, n, minLen, seq2)
    res21, res22 := tryPerm(i+1, pos, n, res11, seq)
    switch {
    case res21 < res11:
        return res21, res22
    case res21 == res11:
        return res21, res12 + res22
    default:
        fmt.Println("Error in tryPerm")
        return 0, 0
    }
}

func initTryPerm(x, minLen int) (int, int) {
    return tryPerm(0, 0, x, minLen, []int{1})
}

func findBrauer(num, minLen, nbLimit int) {
    actualMin, brauer := initTryPerm(num, minLen)
    fmt.Println("\nN =", num)
    fmt.Printf("Minimum length of chains : L(%d) = %d\n", num, actualMin)
    fmt.Println("Number of minimum length Brauer chains :", brauer)
    if brauer > 0 {
        reverse(example)
        fmt.Println("Brauer example :", example)
    }
    example = nil
    if num <= nbLimit {
        nonBrauer := findNonBrauer(num, actualMin+1, brauer)
        fmt.Println("Number of minimum length non-Brauer chains :", nonBrauer)
        if nonBrauer > 0 {
            fmt.Println("Non-Brauer example :", example)
        }
        example = nil
    } else {
        println("Non-Brauer analysis suppressed")
    }
}

func isAdditionChain(a []int) bool {
    for i := 2; i < len(a); i++ {
        if a[i] > a[i-1]*2 {
            return false
        }
        ok := false
    jloop:
        for j := i - 1; j >= 0; j-- {
            for k := j; k >= 0; k-- {
                if a[j]+a[k] == a[i] {
                    ok = true
                    break jloop
                }
            }
        }
        if !ok {
            return false
        }
    }
    if example == nil && !isBrauer(a) {
        example = make([]int, len(a))
        copy(example, a)
    }
    return true
}

func isBrauer(a []int) bool {
    for i := 2; i < len(a); i++ {
        ok := false
        for j := i - 1; j >= 0; j-- {
            if a[i-1]+a[j] == a[i] {
                ok = true
                break
            }
        }
        if !ok {
            return false
        }
    }
    return true
}

func nextChains(index, le int, seq []int, pcount *int) {
    for {
        if index < le-1 {
            nextChains(index+1, le, seq, pcount)
        }
        if seq[index]+le-1-index >= seq[le-1] {
            return
        }
        seq[index]++
        for i := index + 1; i < le-1; i++ {
            seq[i] = seq[i-1] + 1
        }
        if isAdditionChain(seq) {
            (*pcount)++
        }
    }
}

func findNonBrauer(num, le, brauer int) int {
    seq := make([]int, le)
    seq[0] = 1
    seq[le-1] = num
    for i := 1; i < le-1; i++ {
        seq[i] = seq[i-1] + 1
    }
    count := 0
    if isAdditionChain(seq) {
        count = 1
    }
    nextChains(2, le, seq, &count)
    return count - brauer
}

func main() {
    nums := []int{7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379}
    fmt.Println("Searching for Brauer chains up to a minimum length of 12:")
    for _, num := range nums {
        findBrauer(num, 12, 79)
    }
}
Output:
Searching for Brauer chains up to a minimum length of 12:

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : [1 2 3 4 7]
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : [1 2 3 4 7 14]
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : [1 2 3 4 7 14 21]
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1 2 4 5 8 13 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : [1 2 3 4 7 11 18 29]
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1 2 3 6 9 11 18 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32]
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : [1 2 3 4 7 14 21 42]
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1 2 4 5 8 13 21 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32 64]
Number of minimum length non-Brauer chains : 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains : 183
Brauer example : [1 2 3 4 7 10 20 27 47]
Number of minimum length non-Brauer chains : 37
Non-Brauer example : [1 2 3 5 7 14 19 28 47]

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains : 492
Brauer example : [1 2 3 4 7 9 18 36 43 79]
Number of minimum length non-Brauer chains : 129
Non-Brauer example : [1 2 3 5 7 12 24 31 48 79]

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains : 7172
Brauer example : [1 2 3 4 7 8 15 22 44 88 103 191]
Non-Brauer analysis suppressed

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains : 4
Brauer example : [1 2 4 5 9 14 23 46 92 184 198 382]
Non-Brauer analysis suppressed

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains : 6583
Brauer example : [1 2 3 4 7 10 17 27 44 88 176 203 379]
Non-Brauer analysis suppressed


Version 2

Translation of: Phix

Much faster than Version 1 and can now complete the non-Brauer analysis for N > 79 in a reasonable time.

package main

import (
    "fmt"
    "time"
)

const (
    maxLen       = 13
    maxNonBrauer = 382
)

func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

func contains(s []int, n int) bool {
    for _, i := range s {
        if i == n {
            return true
        }
    }
    return false
}

func isBrauer(a []int) bool {
    for i := 2; i < len(a); i++ {
        ok := false
        for j := i - 1; j >= 0; j-- {
            if a[i-1]+a[j] == a[i] {
                ok = true
                break
            }
        }
        if !ok {
            return false
        }
    }
    return true
}

var (
    brauerCount, nonBrauerCount     int
    brauerExample, nonBrauerExample string
)

func additionChains(target, length int, chosen []int) int {
    le := len(chosen)
    last := chosen[le-1]
    if last == target {
        if le < length {
            brauerCount = 0
            nonBrauerCount = 0
        }
        if isBrauer(chosen) {
            brauerCount++
            brauerExample = fmt.Sprint(chosen)
        } else {
            nonBrauerCount++
            nonBrauerExample = fmt.Sprint(chosen)
        }
        return le
    }
    if le == length {
        return length
    }
    if target > maxNonBrauer {
        for i := le - 1; i >= 0; i-- {
            next := last + chosen[i]
            if next <= target && next > chosen[len(chosen)-1] && i < length {
                length = additionChains(target, length, append(chosen, next))
            }
        }
    } else {
        var ndone []int
        for {
            for i := le - 1; i >= 0; i-- {
                next := last + chosen[i]
                if next <= target && next > chosen[len(chosen)-1] && i < length &&
                    !contains(ndone, next) {
                    ndone = append(ndone, next)
                    length = additionChains(target, length, append(chosen, next))
                }
            }
            le--
            if le == 0 {
                break
            }
            last = chosen[le-1]
        }
    }
    return length
}

func main() {
    start := time.Now()
    nums := []int{7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379}
    fmt.Println("Searching for Brauer chains up to a minimum length of", maxLen-1)
    for _, num := range nums {
        brauerCount = 0
        nonBrauerCount = 0
        le := additionChains(num, maxLen, []int{1})
        fmt.Println("\nN =", num)
        fmt.Printf("Minimum length of chains : L(%d) = %d\n", num, le-1)
        fmt.Println("Number of minimum length Brauer chains :", brauerCount)
        if brauerCount > 0 {
            fmt.Println("Brauer example :", brauerExample)
        }
        fmt.Println("Number of minimum length non-Brauer chains :", nonBrauerCount)
        if nonBrauerCount > 0 {
            fmt.Println("Non-Brauer example :", nonBrauerExample)
        }
    }
    fmt.Printf("\nTook %s\n", time.Since(start))
}
Output:

Timing is for an Intel Core i7 8565U machine:

Searching for Brauer chains up to a minimum length of 12

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : [1 2 3 4 7]
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : [1 2 3 4 7 14]
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : [1 2 3 4 7 14 21]
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1 2 4 5 8 13 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : [1 2 3 4 7 11 18 29]
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1 2 3 6 9 11 18 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32]
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : [1 2 3 4 7 14 21 42]
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1 2 4 5 8 13 21 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : [1 2 4 8 16 32 64]
Number of minimum length non-Brauer chains : 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains : 183
Brauer example : [1 2 3 4 7 10 20 27 47]
Number of minimum length non-Brauer chains : 37
Non-Brauer example : [1 2 3 5 7 14 19 28 47]

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains : 492
Brauer example : [1 2 3 4 7 9 18 36 43 79]
Number of minimum length non-Brauer chains : 129
Non-Brauer example : [1 2 3 5 7 12 24 31 48 79]

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains : 7172
Brauer example : [1 2 3 4 7 8 15 22 44 88 103 191]
Number of minimum length non-Brauer chains : 2615
Non-Brauer example : [1 2 3 4 7 9 14 23 46 92 99 191]

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains : 4
Brauer example : [1 2 4 5 9 14 23 46 92 184 198 382]
Number of minimum length non-Brauer chains : 0

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains : 6583
Brauer example : [1 2 3 4 7 10 17 27 44 88 176 203 379]
Number of minimum length non-Brauer chains : 2493
Non-Brauer example : [1 2 3 4 7 14 17 31 62 124 131 248 379]

Took 1m52.920399026s

Groovy

Translation of: Java
class AdditionChains {
    private static class Pair {
        int f, s

        Pair(int f, int s) {
            this.f = f
            this.s = s
        }
    }

    private static int[] prepend(int n, int[] seq) {
        int[] result = new int[seq.length + 1]
        result[0] = n
        System.arraycopy(seq, 0, result, 1, seq.length)
        return result
    }

    private static Pair check_seq(int pos, int[] seq, int n, int min_len) {
        if (pos > min_len || seq[0] > n) return new Pair(min_len, 0)
        else if (seq[0] == n) return new Pair(pos, 1)
        else if (pos < min_len) return try_perm(0, pos, seq, n, min_len)
        else return new Pair(min_len, 0)
    }

    private static Pair try_perm(int i, int pos, int[] seq, int n, int min_len) {
        if (i > pos) return new Pair(min_len, 0)

        Pair res1 = check_seq(pos + 1, prepend(seq[0] + seq[i], seq), n, min_len)
        Pair res2 = try_perm(i + 1, pos, seq, n, res1.f)

        if (res2.f < res1.f) return res2
        else if (res2.f == res1.f) return new Pair(res2.f, res1.s + res2.s)
        else throw new RuntimeException("Try_perm exception")
    }

    private static Pair init_try_perm(int x) {
        return try_perm(0, 0, [1] as int[], x, 12)
    }

    private static void find_brauer(int num) {
        Pair res = init_try_perm(num)
        System.out.println()
        System.out.println("N = " + num)
        System.out.println("Minimum length of chains: L(n)= " + res.f)
        System.out.println("Number of minimum length Brauer chains: " + res.s)
    }

    static void main(String[] args) {
        int[] nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
        for (int i : nums) {
            find_brauer(i)
        }
    }
}
Output:
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

Haskell

Implementation using backtracking.

import Data.List (union)

-- search strategies
total [] = []
total (x:xs) = brauer (x:xs) `union` total xs

brauer [] = []
brauer (x:xs) = map (+ x) (x:xs)

-- generation of chains with given strategy
chains _ 1 = [[1]]
chains sums n = go [[1]]
  where
    go ch = let next = ch >>= step
                complete = filter ((== n) . head) next
            in if null complete then go next else complete

    step ch = (: ch) <$> filter (\s -> s > head ch && s <= n) (sums ch)

-- the predicate for Brauer chains
isBrauer [_] = True
isBrauer [_,_] = True
isBrauer (x:y:xs) = (x - y) `elem` (y:xs) && isBrauer (y:xs)

Usage examples

λ> chains total 9
[[9,8,4,2,1],[9,5,4,2,1],[9,6,3,2,1]]

λ> chains total 13
[[13,12,8,4,2,1],[13,9,8,4,2,1],[13,12,6,4,2,1],[13,7,6,4,2,1],[13,9,5,4,2,1],[13,8,5,4,2,1],
[13,12,6,3,2,1],[13,7,6,3,2,1],[13,10,5,3,2,1],[13,8,5,3,2,1]]

λ> chains brauer 13
[[13,12,8,4,2,1],[13,9,8,4,2,1],[13,12,6,4,2,1],[13,7,6,4,2,1],[13,9,5,4,2,1],[13,12,6,3,2,1],
[13,7,6,3,2,1],[13,10,5,3,2,1],[13,8,5,3,2,1]]

λ> filter (not . isBrauer) $ chains total 13
[[13,8,5,4,2,1]]

Tasks implementation

task :: Int -> IO()
task n =
  let ch = chains total n
      br = filter isBrauer ch
      nbr = filter (not . isBrauer) ch
  in do
    printf "L(%d) = %d\n" n (length (head ch) - 1)
    printf "Brauer chains(%i)\t: count = %i\tEx: %s\n" n (length br) (show $ reverse $ head br)
    if not $ null nbr
      then
      printf "non-Brauer chains(%i)\t: count = %i\tEx: %s\n\n" n (length ch - length br) (show $ reverse $ head nbr)
      else
      putStrLn "No non Brauer chains\n"
λ> mapM_ task [7,14,21,29,32,42,64]
L(7) = 4
Brauer chains(7)	: count = 5	Ex: [1,2,4,6,7]
No non Brauer chains

L(14) = 5
Brauer chains(14)	: count = 14	Ex: [1,2,4,8,12,14]
No non Brauer chains

L(21) = 6
Brauer chains(21)	: count = 26	Ex: [1,2,4,8,16,20,21]
non-Brauer chains(21)	: count = 3	Ex: [1,2,4,8,9,12,21]

L(29) = 7
Brauer chains(29)	: count = 114	Ex: [1,2,4,8,16,24,28,29]
non-Brauer chains(29)	: count = 18	Ex: [1,2,4,8,12,13,16,29]

L(32) = 5
Brauer chains(32)	: count = 1	Ex: [1,2,4,8,16,32]
No non Brauer chains

L(42) = 7
Brauer chains(42)	: count = 78	Ex: [1,2,4,8,16,32,40,42]
non-Brauer chains(42)	: count = 6	Ex: [1,2,4,8,16,18,24,42]

L(64) = 6
Brauer chains(64)	: count = 1	Ex: [1,2,4,8,16,32,64]
No non Brauer chains

For the extra task used compiled code, not GHCi.

extraTask :: Int -> IO()
extraTask n =
  let ch = chains brauer n
  in do
    printf "L(%d) = %d\n" n (length (head ch) - 1)
    printf "Brauer chains(%i)\t: count = %i\tEx: %s\n" n (length ch) (show $ reverse $ head ch)
    putStrLn "Non-Brauer analysis suppressed\n"

main = mapM_ extraTask [47, 79, 191, 382, 379]
L(47) = 8
Brauer chains(47)	: count = 183	Ex: [1,2,4,8,12,13,26,39,47]
Non-Brauer analysis suppressed

L(79) = 9
Brauer chains(79)	: count = 492	Ex: [1,2,4,8,16,24,26,52,78,79]
Non-Brauer analysis suppressed

L(191) = 11
Brauer chains(191)	: count = 7172	Ex: [1,2,4,8,16,32,48,52,53,106,159,191]
Non-Brauer analysis suppressed

L(382) = 11
Brauer chains(382)	: count = 4	Ex: [1,2,4,8,16,17,33,50,83,166,332,382]
Non-Brauer analysis suppressed

L(379) = 12
Brauer chains(379)	: count = 6583	Ex: [1,2,4,8,16,32,64,96,104,105,210,315,379]
Non-Brauer analysis suppressed

Calculation took about 16 seconds (compiled with -O2 flag). If one doesn't need to count all chains, but just get an example it will be found much faster due to Haskell laziness.

Nearly optimal chains

In practical work use binary chains or the smart algorithm given in F. Bergeron, J. Berstel, and S. Brlek, published in Journal de théorie des nombres de Bordeaux, 6 no. 1 (1994), p. 21-38, [2].

binaryChain 1 = [1]
binaryChain n | even n = n : binaryChain (n `div` 2)
              | odd n = n : binaryChain (n - 1)

dichotomicChain n
  | n == 3  = [3, 2, 1]
  | n == 2 ^ log2 n = takeWhile (> 0) $ iterate (`div` 2) n
  | otherwise = let k = n `div` (2 ^ ((log2 n + 1) `div` 2))
                in chain n k
  where
    chain n1 n2 
      | n2 <= 1 = minChain n1
      | otherwise = case n1 `divMod` n2 of
          (q, 0) -> minChain q `mul` minChain n2
          (q, r) -> [r] `add` (minChain q `mul` chain n2 r)

    c1 `mul` c2 = map (head c2 *) c1 ++ tail c2
    c1 `add` c2 = map (head c2 +) c1 ++ c2
 
    log2 = floor . logBase 2 . fromIntegral
λ> binaryChain 191
[191,190,95,94,47,46,23,22,11,10,5,4,2,1]

λ> dichotomicChain 191
[191,187,176,88,44,22,11,8,4,3,2,1]

λ> binaryChain 1910
[1910,955,954,477,476,238,119,118,59,58,29,28,14,7,6,3,2,1]

λ> dichotomicChain 1910
[1910,1888,944,472,236,118,59,44,22,15,14,7,6,3,2,1]

Java

Translation of: D
public class AdditionChains {
    private static class Pair {
        int f, s;

        Pair(int f, int s) {
            this.f = f;
            this.s = s;
        }
    }

    private static int[] prepend(int n, int[] seq) {
        int[] result = new int[seq.length + 1];
        result[0] = n;
        System.arraycopy(seq, 0, result, 1, seq.length);
        return result;
    }

    private static Pair check_seq(int pos, int[] seq, int n, int min_len) {
        if (pos > min_len || seq[0] > n) return new Pair(min_len, 0);
        else if (seq[0] == n) return new Pair(pos, 1);
        else if (pos < min_len) return try_perm(0, pos, seq, n, min_len);
        else return new Pair(min_len, 0);
    }

    private static Pair try_perm(int i, int pos, int[] seq, int n, int min_len) {
        if (i > pos) return new Pair(min_len, 0);

        Pair res1 = check_seq(pos + 1, prepend(seq[0] + seq[i], seq), n, min_len);
        Pair res2 = try_perm(i + 1, pos, seq, n, res1.f);

        if (res2.f < res1.f) return res2;
        else if (res2.f == res1.f) return new Pair(res2.f, res1.s + res2.s);
        else throw new RuntimeException("Try_perm exception");
    }

    private static Pair init_try_perm(int x) {
        return try_perm(0, 0, new int[]{1}, x, 12);
    }

    private static void find_brauer(int num) {
        Pair res = init_try_perm(num);
        System.out.println();
        System.out.println("N = " + num);
        System.out.println("Minimum length of chains: L(n)= " + res.f);
        System.out.println("Number of minimum length Brauer chains: " + res.s);
    }

    public static void main(String[] args) {
        int[] nums = new int[]{7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379};
        for (int i : nums) {
            find_brauer(i);
        }
    }
}
Output:
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

Julia

Translation of: Python
checksequence(pos, seq, n, minlen) =
    pos > minlen || seq[1] > n ? (minlen, 0) :
    seq[1] == n ? (pos, 1) :
    pos < minlen ? trypermutation(0, pos, seq, n, minlen) : (minlen, 0)

function trypermutation(i, pos, seq, n, minlen)
    if i > pos
        return minlen, 0
    end
    res1 = checksequence(pos + 1, pushfirst!(deepcopy(seq), seq[1] + seq[i + 1]), n, minlen)
    res2 = trypermutation(i + 1, pos, seq, n, res1[1])
    if res2[1] < res1[1]
        return res2
    elseif res2[1] == res1[1]
        return res2[1], res1[2] + res2[2]
    else
        throw("trypermutation exception: res2 head > res1 head")
    end
end

for num in [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
    (minlen, nchains) = trypermutation(0, 0, [1], num, 12)
    println("N = $num\nMinimum length of chains: L(n) = $minlen")
    println("Number of minimum length Brauer chains: $nchains")
end
Output:
N = 7
Minimum length of chains: L(n) = 4
Number of minimum length Brauer chains: 5
N = 14
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 14
N = 21
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 26
N = 29
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 114
N = 32
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 1
N = 42
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 78
N = 64
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 1
N = 47
Minimum length of chains: L(n) = 8
Number of minimum length Brauer chains: 183
N = 79
Minimum length of chains: L(n) = 9
Number of minimum length Brauer chains: 492
N = 191
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 7172
N = 382
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 4
N = 379
Minimum length of chains: L(n) = 12
Number of minimum length Brauer chains: 6583

Kotlin

As far as the minimal Brauer chains are concerned, I've translated the code in the Scala entry which even on my modest machine is reasonably fast for generating these in isolation - negligible for N <= 79, 10 seconds for N = 191, 25 seconds for N = 382 and about 2.5 minutes for N = 379. However, N = 12509 (which according to tables requires a minimum length of 17) is still well out of reach using this code.

I've then extended the code to count the number of non-Brauer chains of the same minimum length - basically 'brute' force to generate all addition chains and then subtracted the number of Brauer ones - plus examples for both. For N <= 64 this adds little to the execution time but adds about 1 minute for N = 79 and I gave up waiting for N = 191! To deal with these glacial execution times, I've added code which enables you to suppress the non-Brauer generation for N above a specified figure.

// version 1.1.51

var example: List<Int>? = null

fun checkSeq(pos: Int, seq: List<Int>, n: Int, minLen: Int): Pair<Int, Int> =
    if (pos > minLen || seq[0] > n) minLen to 0
    else if (seq[0] == n)           { example = seq; pos to 1 }
    else if (pos < minLen)          tryPerm(0, pos, seq, n, minLen)
    else                            minLen to 0

fun tryPerm(i: Int, pos: Int, seq: List<Int>, n: Int, minLen: Int): Pair<Int, Int> {
    if (i > pos) return minLen to 0
    val res1 = checkSeq(pos + 1, listOf(seq[0] + seq[i]) + seq, n, minLen)
    val res2 = tryPerm(i + 1, pos, seq, n, res1.first)
    return if (res2.first < res1.first)       res2
           else if (res2.first == res1.first) res2.first to (res1.second + res2.second)
           else                               { println("Exception in tryPerm"); 0 to 0 }
}

fun initTryPerm(x: Int, minLen: Int) = tryPerm(0, 0, listOf(1), x, minLen)

fun findBrauer(num: Int, minLen: Int, nbLimit: Int) {
    val (actualMin, brauer) = initTryPerm(num, minLen)
    println("\nN = $num")
    println("Minimum length of chains : L($num) = $actualMin")
    println("Number of minimum length Brauer chains : $brauer")
    if (brauer > 0) println("Brauer example : ${example!!.reversed()}")
    example = null
    if (num <= nbLimit) {
        val nonBrauer = findNonBrauer(num, actualMin + 1, brauer)
        println("Number of minimum length non-Brauer chains : $nonBrauer")
        if (nonBrauer > 0) println("Non-Brauer example : ${example!!}")
        example = null
    }
    else {
        println("Non-Brauer analysis suppressed")
    }
}

fun isAdditionChain(a: IntArray): Boolean {
    for (i in 2 until a.size) {
        if (a[i] > a[i - 1] * 2) return false
        var ok = false
        jloop@ for (j in i - 1 downTo 0) {
            for (k in j downTo 0) {
               if (a[j] + a[k] == a[i]) { ok = true; break@jloop }
            }
        }
        if (!ok) return false
    }
    if (example == null && !isBrauer(a)) example = a.toList()
    return true
}

fun isBrauer(a: IntArray): Boolean {
    for (i in 2 until a.size) {
        var ok = false
        for (j in i - 1 downTo 0) {
            if (a[i - 1] + a[j] == a[i]) { ok = true; break }
        }
        if (!ok) return false
    }
    return true
}

fun findNonBrauer(num: Int, len: Int, brauer: Int): Int {
    val seq = IntArray(len)
    seq[0] = 1
    seq[len - 1] = num
    for (i in 1 until len - 1) seq[i] = seq[i - 1] + 1
    var count = if (isAdditionChain(seq)) 1 else 0

    fun nextChains(index: Int) {
        while (true) {
            if (index < len - 1) nextChains(index + 1)
            if (seq[index] + len - 1 - index >= seq[len - 1]) return
            seq[index]++
            for (i in index + 1 until len - 1) seq[i] = seq[i - 1] + 1
            if (isAdditionChain(seq)) count++
        }
    }

    nextChains(2)
    return count - brauer
}

fun main(args: Array<String>) {
    val nums = listOf(7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379)
    println("Searching for Brauer chains up to a minimum length of 12:")
    for (num in nums) findBrauer(num, 12, 79)
}
Output:
Searching for Brauer chains up to a minimum length of 12:

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : [1, 2, 3, 4, 7]
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : [1, 2, 3, 4, 7, 14]
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : [1, 2, 3, 4, 7, 14, 21]
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1, 2, 4, 5, 8, 13, 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : [1, 2, 3, 4, 7, 11, 18, 29]
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1, 2, 3, 6, 9, 11, 18, 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : [1, 2, 4, 8, 16, 32]
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : [1, 2, 3, 4, 7, 14, 21, 42]
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1, 2, 4, 5, 8, 13, 21, 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : [1, 2, 4, 8, 16, 32, 64]
Number of minimum length non-Brauer chains : 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains : 183
Brauer example : [1, 2, 3, 4, 7, 10, 20, 27, 47]
Number of minimum length non-Brauer chains : 37
Non-Brauer example : [1, 2, 3, 5, 7, 14, 19, 28, 47]

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains : 492
Brauer example : [1, 2, 3, 4, 7, 9, 18, 36, 43, 79]
Number of minimum length non-Brauer chains : 129
Non-Brauer example : [1, 2, 3, 5, 7, 12, 24, 31, 48, 79]

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains : 7172
Brauer example : [1, 2, 3, 4, 7, 8, 15, 22, 44, 88, 103, 191]
Non-Brauer analysis suppressed

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains : 4
Brauer example : [1, 2, 4, 5, 9, 14, 23, 46, 92, 184, 198, 382]
Non-Brauer analysis suppressed

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains : 6583
Brauer example : [1, 2, 3, 4, 7, 10, 17, 27, 44, 88, 176, 203, 379]
Non-Brauer analysis suppressed

Lua

Translation of: D
function index(a,i)
    return a[i + 1]
end

function checkSeq(pos, seq, n, minLen)
    if pos > minLen or index(seq,0) > n then
        return minLen, 0
    elseif index(seq,0) == n then
        return pos, 1
    elseif pos < minLen then
        return tryPerm(0, pos, seq, n, minLen)
    else
        return minLen, 0
    end
end

function tryPerm(i, pos, seq, n, minLen)
    if i > pos then
        return minLen, 0
    end

    local seq2 = {}
    table.insert(seq2, index(seq,0) + index(seq,i))
    for j=1,table.getn(seq) do
        table.insert(seq2, seq[j])
    end
    local res1a, res1b = checkSeq(pos + 1, seq2, n, minLen)
    local res2a, res2b = tryPerm(i + 1, pos, seq, n, res1a)

    if res2a < res1a then
        return res2a, res2b
    elseif res2a == res1a then
        return res2a, res1b + res2b
    else
        error("tryPerm exception")
    end
end

function initTryPerm(x)
    local seq = {}
    table.insert(seq, 1)
    return tryPerm(0, 0, seq, x, 12)
end

function findBrauer(num)
    local resa, resb = initTryPerm(num)
    print()
    print("N = " .. num)
    print("Minimum length of chains: L(n) = " .. resa)
    print("Number of minimum length Brauer chains: " .. resb)
end

function main()
    findBrauer(7)
    findBrauer(14)
    findBrauer(21)
    findBrauer(29)
    findBrauer(32)
    findBrauer(42)
    findBrauer(64)
    findBrauer(47)
    findBrauer(79)
    findBrauer(191)
    findBrauer(382)
    findBrauer(379)
end

main()
Output:
N = 7
Minimum length of chains: L(n) = 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n) = 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n) = 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n) = 12
Number of minimum length Brauer chains: 6583

Nim

Translation of: Go

This is a translation of the second Go version.

import times, strutils

const
  MaxLen = 13
  MaxNonBrauer = 382

func isBrauer(a: seq[int]): bool =
  for i in 2..a.high:
    block loop:
      for j in countdown(i - 1, 0):
        if a[i-1] + a[j] == a[i]:
          break loop
      return false
  result = true

var
  brauerCount, nonBrauerCount: int
  brauerExample, nonBrauerExample: seq[int]


proc additionChains(target, length: int; chosen: seq[int]): int =
  var length = length
  var le = chosen.len
  var last = chosen[^1]

  if last == target:
    if le < length:
      brauerCount = 0
      nonBrauerCount = 0
    if chosen.isBrauer:
      inc brauerCount
      brauerExample = chosen
    else:
      inc nonBrauerCount
      nonBrauerExample = chosen
    return le

  if le == length: return length

  if target > MaxNonBrauer:
    var nextChosen = chosen & 0
    for i in countdown(le - 1, 0):
      let next = last + chosen[i]
      if next <= target and next > chosen[^1] and i < length:
        nextChosen[^1] = next
        length = additionChains(target, length, nextChosen)
  else:
    var ndone = newSeqOfCap[int](le)
    var nextChosen = chosen & 0
    while true:
      for i in countdown(le - 1, 0):
        let next = last + chosen[i]
        if next <= target and next > chosen[^1] and i < length and next notin ndone:
          ndone.add next
          nextChosen[^1] = next
          length = additionChains(target, length, nextChosen)
      dec le
      if le == 0: break
      last = chosen[le-1]
  result = length


const Nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]

let start = now()
echo "Searching for Brauer chains up to a minimum length of ", MaxLen - 1
for num in Nums:
  brauerCount = 0
  nonBrauerCount = 0
  let le = additionChains(num, MaxLen, @[1])
  echo "\nN = ", num
  echo "Minimum length of chains : L($1) = $2".format(num, le - 1)
  echo "Number of minimum length Brauer chains: ", brauerCount
  if brauerCount > 0:
    echo "Brauer example: ", brauerExample.join(", ")
  echo "Number of minimum length non-Brauer chains: ", nonBrauerCount
  if nonBrauerCount > 0:
    echo "Non-Brauer example: ", nonBrauerExample.join(", ")
echo "\nTook ", now() - start
Output:
Searching for Brauer chains up to a minimum length of 12

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains: 5
Brauer example: 1, 2, 3, 4, 7
Number of minimum length non-Brauer chains: 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains: 14
Brauer example: 1, 2, 3, 4, 7, 14
Number of minimum length non-Brauer chains: 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains: 26
Brauer example: 1, 2, 3, 4, 7, 14, 21
Number of minimum length non-Brauer chains: 3
Non-Brauer example: 1, 2, 4, 5, 8, 13, 21

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains: 114
Brauer example: 1, 2, 3, 4, 7, 11, 18, 29
Number of minimum length non-Brauer chains: 18
Non-Brauer example: 1, 2, 3, 6, 9, 11, 18, 29

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains: 1
Brauer example: 1, 2, 4, 8, 16, 32
Number of minimum length non-Brauer chains: 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains: 78
Brauer example: 1, 2, 3, 4, 7, 14, 21, 42
Number of minimum length non-Brauer chains: 6
Non-Brauer example: 1, 2, 4, 5, 8, 13, 21, 42

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains: 1
Brauer example: 1, 2, 4, 8, 16, 32, 64
Number of minimum length non-Brauer chains: 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains: 183
Brauer example: 1, 2, 3, 4, 7, 10, 20, 27, 47
Number of minimum length non-Brauer chains: 37
Non-Brauer example: 1, 2, 3, 5, 7, 14, 19, 28, 47

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains: 492
Brauer example: 1, 2, 3, 4, 7, 9, 18, 36, 43, 79
Number of minimum length non-Brauer chains: 129
Non-Brauer example: 1, 2, 3, 5, 7, 12, 24, 31, 48, 79

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains: 7172
Brauer example: 1, 2, 3, 4, 7, 8, 15, 22, 44, 88, 103, 191
Number of minimum length non-Brauer chains: 2615
Non-Brauer example: 1, 2, 3, 4, 7, 9, 14, 23, 46, 92, 99, 191

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains: 4
Brauer example: 1, 2, 4, 5, 9, 14, 23, 46, 92, 184, 198, 382
Number of minimum length non-Brauer chains: 0

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains: 6583
Brauer example: 1, 2, 3, 4, 7, 10, 17, 27, 44, 88, 176, 203, 379
Number of minimum length non-Brauer chains: 2493
Non-Brauer example: 1, 2, 3, 4, 7, 14, 17, 31, 62, 124, 131, 248, 379

Took 1 minute, 33 seconds, 138 milliseconds, 185 microseconds, and 660 nanoseconds

Perl

Translation of: Raku
use strict;
use feature 'say';

my @Example = ();

sub checkSeq {
   my($pos, $n, $minLen, @seq) = @_;
   if ($pos > $minLen || $seq[0] > $n) {
      return $minLen, 0;
   } elsif ($seq[0] == $n) {
      @Example = @seq;
      return $pos, 1;
   } elsif ($pos < $minLen) {
      return tryPerm(0, $pos, $n, $minLen, @seq);
   } else {
      return $minLen, 0;
   }
}

sub tryPerm {
   my($i, $pos, $n, $minLen, @seq) = @_;
   return $minLen, 0 if $i > $pos;
   my @res1 = checkSeq($pos+1, $n, $minLen, ($seq[0]+$seq[$i],@seq));
   my @res2 = tryPerm($i+1, $pos, $n, $res1[0], @seq);
   if ($res2[0] < $res1[0]) {
      return $res2[0], $res2[1];
   } elsif ($res2[0] == $res1[0]) {
      return $res2[0], $res1[1]+$res2[1];
   } else {
      say "Error in tryPerm";
      return 0, 0;
   }
}

sub initTryPerm {
   my($x, $minLen) = @_;
   return tryPerm(0, 0, $x, $minLen, (1));
}

sub findBrauer {
   my($num, $minLen, $nbLimit) = @_;
   my ($actualMin, $brauer) = initTryPerm($num, $minLen);
   say "\nN = ". $num;
   say "Minimum length of chains : L($num) = $actualMin";
   say "Number of minimum length Brauer chains : ". $brauer;
   say "Brauer example : ". join ' ', reverse @Example if $brauer > 0;
   @Example = ();
   if ($num <= $nbLimit) {
      my $nonBrauer = findNonBrauer($num, $actualMin+1, $brauer);
      say "Number of minimum length non-Brauer chains : ". $nonBrauer;
      say "Non-Brauer example : ". join ' ', @Example if $nonBrauer > 0;
      @Example = ();
   } else {
      say "Non-Brauer analysis suppressed";
   }
}

sub isAdditionChain {
   my(@a) = @_;
   for my $i (2 .. $#a) {
      return 0 if $a[$i] > $a[$i-1]*2;
      my $ok = 0;
      for my $j (reverse 0 .. $i-1) {
          for my $k (reverse 0 .. $j) {
            $ok = 1, last if $a[$j]+$a[$k] == $a[$i];
         }
      }
      return 0 unless $ok;
   }
   @Example = @a if !isBrauer(@a) and !@Example;
   return 1;
}

sub isBrauer {
   my(@a) = @_;
   for my $i (2 .. $#a) {
      my $ok = 0;
      for my $j (reverse 0 .. $i-1) {
         $ok = 1, last if $a[$i-1]+$a[$j] == $a[$i];
      }
      return 0 unless $ok;
   }
   return 1;
}

sub findNonBrauer {
   our($num, $len, $brauer) = @_;
   our @seq = 1 .. $len-1; push @seq, $num;
   our $count = isAdditionChain(@seq) ? 1 : 0;

   sub nextChains {
      my($index) = @_;
      while () {
         nextChains($index+1) if $index < $len-1;
         return if ($seq[$index]+$len-1-$index >= $seq[$len-1]);
         $seq[$index]++;
         for ($index+1 .. $len-2) { $seq[$_] = $seq[$_-1] + 1;}
         $count++ if isAdditionChain(@seq);
      }
   }

   nextChains(2);
   return $count - $brauer;
}

my @nums = (7, 14, 21, 29, 32, 42, 64);  # unlock below for extra credits,
                                         # 47, 79, 191, 382, 379, 379, 12509);
say "Searching for Brauer chains up to a minimum length of 12:";
for (@nums) { findBrauer $_, 12, 79 }
Output:
N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : 1 2 3 4 7
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : 1 2 3 4 7 14
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : 1 2 3 4 7 14 21
Number of minimum length non-Brauer chains : 3
Non-Brauer example : 1 2 4 5 8 13 21

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : 1 2 3 4 7 11 18 29
Number of minimum length non-Brauer chains : 18
Non-Brauer example : 1 2 3 6 9 11 18 29

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : 1 2 4 8 16 32
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : 1 2 3 4 7 14 21 42
Number of minimum length non-Brauer chains : 6
Non-Brauer example : 1 2 4 5 8 13 21 42

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : 1 2 4 8 16 32 64
Number of minimum length non-Brauer chains : 0

Phix

Modification of Addition-chain_exponentiation#Phix, which probably will be faster if you already know l(n) and only want one (Brauer).
Note the internal values of l(n) are [consistently] +1 compared to what the rest of the world says.

with javascript_semantics

constant nums = {7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379}
constant maxlen = 13
constant max_non_brauer = 79
 
function isBrauer(sequence a)
-- translated from Go
    for i=3 to length(a) do
        bool ok = false
        for j=i-1 to 1 by -1 do
            if a[i-1]+a[j] == a[i] then
                ok = true
                exit
            end if
        end for
        if not ok then
            return false
        end if
    end for
    return true
end function
 
integer brauer_count,
        non_brauer_count
sequence brauer_example,
         non_brauer_example
 
atom t1 = time()+1
atom tries = 0
ppOpt({pp_IntCh,false})
 
function addition_chains(integer target, len, sequence chosen={1})
-- nb: target and len must be >=2
    tries += 1
    integer l = length(chosen),
            last = chosen[l]
    if last=target then
        if l<len then
            brauer_count = 0
            non_brauer_count = 0
        end if
        if isBrauer(chosen) then
            brauer_count += 1
            brauer_example = chosen
        else
            non_brauer_count += 1
            non_brauer_example = chosen
        end if
        return l
    end if
    if l=len then
        if platform()!=JS and time()>t1 then
            progress(sprintf("working... %s, %,d permutations",{ppf(chosen[1..l]),tries}))
            t1 = time()+1
        end if
    elsif target>max_non_brauer then
        for i=l to 1 by -1 do
            integer next = last+chosen[i]
            if next<=target and next>chosen[$] and i<=len then
                len = addition_chains(target,len,chosen&next)
            end if
        end for
    else
        sequence ndone = {} -- if chosen was {1,2,4,5}, don't recurse {1,2,4,5,6} twice,
                            -- once because 5+1=6, and again because 4+2=6, or similar.
        while true do
            for i=l to 1 by -1 do
                integer next = last+chosen[i]
                if next<=target and next>chosen[$] and i<=len and not find(next,ndone) then
                    ndone = append(ndone,next)
                    len = addition_chains(target,len,deep_copy(chosen)&next)
                end if
            end for
            l -= 1
            if l=0 then exit end if
            last = chosen[l]
        end while
    end if
    return len
end function
 
printf(1,"Searching for Brauer chains up to a minimum length of %d:\n",{maxlen-1})
for i=1 to length(nums)-iff(platform()=JS?3:0) do
    atom t = time()
    brauer_count = 0
    brauer_example = {}
    non_brauer_count = 0
    integer num = nums[i],
            l = addition_chains(num,maxlen)
    integer bc = brauer_count,
            nbc = non_brauer_count
    string bs = iff(bc?" eg "&ppf(brauer_example)&",":""),
           ns = iff(nbc?" eg "&ppf(non_brauer_example)&",":""),
           e = elapsed_short(time()-t)
    if platform()!=JS then
        progress("") -- (wipe it clean)
    end if
    printf(1,"l(%d) = %d, Brauer:%d,%s Non-Brauer:%d,%s (%s, %d perms)\n",{num,l-1,bc,bs,nbc,ns,e,tries}) 
end for
Output:
Searching for Brauer chains up to a minimum length of 12:
l(7) = 4, Brauer:5, eg {1,2,3,4,7}, Non-Brauer:0, (0s, 18 perms)
l(14) = 5, Brauer:14, eg {1,2,3,4,7,14}, Non-Brauer:0, (0s, 153 perms)
l(21) = 6, Brauer:26, eg {1,2,3,4,7,14,21}, Non-Brauer:3, eg {1,2,4,5,8,13,21}, (0s, 1014 perms)
l(29) = 7, Brauer:114, eg {1,2,3,4,7,11,18,29}, Non-Brauer:18, eg {1,2,3,6,9,11,18,29}, (0s, 7610 perms)
l(32) = 5, Brauer:1, eg {1,2,4,8,16,32}, Non-Brauer:0, (0s, 7780 perms)
l(42) = 7, Brauer:78, eg {1,2,3,4,7,14,21,42}, Non-Brauer:6, eg {1,2,4,5,8,13,21,42}, (0s, 15935 perms)
l(64) = 6, Brauer:1, eg {1,2,4,8,16,32,64}, Non-Brauer:0, (0s, 17018 perms)
l(47) = 8, Brauer:183, eg {1,2,3,4,7,10,20,27,47}, Non-Brauer:37, eg {1,2,3,5,7,14,19,28,47}, (0s, 105418 perms)
l(79) = 9, Brauer:492, eg {1,2,3,4,7,9,18,36,43,79}, Non-Brauer:129, eg {1,2,3,5,7,12,24,31,48,79}, (0s, 998358 perms)
l(191) = 11, Brauer:7172, eg {1,2,3,4,7,8,15,22,44,88,103,191}, Non-Brauer:2615, eg {1,2,3,4,7,9,14,23,46,92,99,191}, (1:41, 174071925 perms)
l(382) = 11, Brauer:4, eg {1,2,4,5,9,14,23,46,92,184,198,382}, Non-Brauer:0, (2:53, 467243477 perms)
l(379) = 12, Brauer:6583, eg {1,2,3,4,7,10,17,27,44,88,176,203,379}, Non-Brauer:2493, eg {1,2,3,4,7,14,17,31,62,124,131,248,379}, (29:45, 3349176887 perms)

For comparison with the Kotlin timings, setting the constant max_non_brauer to 79 yields the following (making it about 20% slower than the Go submission above, on the same box)

Searching for Brauer chains up to a minimum length of 12:
l(7) = 4, Brauer:5, eg {1,2,3,4,7}, Non-Brauer:0, (0s, 18 perms)
l(14) = 5, Brauer:14, eg {1,2,3,4,7,14}, Non-Brauer:0, (0s, 153 perms)
l(21) = 6, Brauer:26, eg {1,2,3,4,7,14,21}, Non-Brauer:3, eg {1,2,4,5,8,13,21}, (0s, 1014 perms)
l(29) = 7, Brauer:114, eg {1,2,3,4,7,11,18,29}, Non-Brauer:18, eg {1,2,3,6,9,11,18,29}, (0s, 7610 perms)
l(32) = 5, Brauer:1, eg {1,2,4,8,16,32}, Non-Brauer:0, (0s, 7780 perms)
l(42) = 7, Brauer:78, eg {1,2,3,4,7,14,21,42}, Non-Brauer:6, eg {1,2,4,5,8,13,21,42}, (0s, 15935 perms)
l(64) = 6, Brauer:1, eg {1,2,4,8,16,32,64}, Non-Brauer:0, (0s, 17018 perms)
l(47) = 8, Brauer:183, eg {1,2,3,4,7,10,20,27,47}, Non-Brauer:37, eg {1,2,3,5,7,14,19,28,47}, (0s, 105418 perms)
l(79) = 9, Brauer:492, eg {1,2,3,4,7,9,18,36,43,79}, Non-Brauer:129, eg {1,2,3,5,7,12,24,31,48,79}, (0s, 998358 perms)
l(191) = 11, Brauer:7172, eg {1,2,3,4,7,8,15,22,44,88,103,191}, Non-Brauer:0, (11s, 43748038 perms)
l(382) = 11, Brauer:4, eg {1,2,4,5,9,14,23,46,92,184,198,382}, Non-Brauer:0, (17s, 103474842 perms)
l(379) = 12, Brauer:6583, eg {1,2,3,4,7,10,17,27,44,88,176,203,379}, Non-Brauer:0, (2:19, 622842429 perms)

Python

Translation of: Java
def prepend(n, seq):
    return [n] + seq

def check_seq(pos, seq, n, min_len):
    if pos > min_len or seq[0] > n:
        return min_len, 0
    if seq[0] == n:
        return pos, 1
    if pos < min_len:
        return try_perm(0, pos, seq, n, min_len)
    return min_len, 0

def try_perm(i, pos, seq, n, min_len):
    if i > pos:
        return min_len, 0

    res1 = check_seq(pos + 1, prepend(seq[0] + seq[i], seq), n, min_len)
    res2 = try_perm(i + 1, pos, seq, n, res1[0])

    if res2[0] < res1[0]:
        return res2
    if res2[0] == res1[0]:
        return res2[0], res1[1] + res2[1]
    raise Exception("try_perm exception")

def init_try_perm(x):
    return try_perm(0, 0, [1], x, 12)

def find_brauer(num):
    res = init_try_perm(num)
    print
    print "N = ", num
    print "Minimum length of chains: L(n) = ", res[0]
    print "Number of minimum length Brauer chains: ", res[1]

# main
nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
for i in nums:
    find_brauer(i)
Output:
N =  7
Minimum length of chains: L(n) =  4
Number of minimum length Brauer chains:  5

N =  14
Minimum length of chains: L(n) =  5
Number of minimum length Brauer chains:  14

N =  21
Minimum length of chains: L(n) =  6
Number of minimum length Brauer chains:  26

N =  29
Minimum length of chains: L(n) =  7
Number of minimum length Brauer chains:  114

N =  32
Minimum length of chains: L(n) =  5
Number of minimum length Brauer chains:  1

N =  42
Minimum length of chains: L(n) =  7
Number of minimum length Brauer chains:  78

N =  64
Minimum length of chains: L(n) =  6
Number of minimum length Brauer chains:  1

N =  47
Minimum length of chains: L(n) =  8
Number of minimum length Brauer chains:  183

N =  79
Minimum length of chains: L(n) =  9
Number of minimum length Brauer chains:  492

N =  191
Minimum length of chains: L(n) =  11
Number of minimum length Brauer chains:  7172

N =  382
Minimum length of chains: L(n) =  11
Number of minimum length Brauer chains:  4

N =  379
Minimum length of chains: L(n) =  12
Number of minimum length Brauer chains:  6583

Faster method

def bauer(n):
    chain = [0]*n
    in_chain = [False]*(n + 1)
    best = None
    best_len = n
    cnt = 0

    def extend_chain(x=1, pos=0):
        nonlocal best, best_len, cnt

        if x<<(best_len - pos) < n:
            return

        chain[pos] = x
        in_chain[x] = True
        pos += 1

        if in_chain[n - x]:  # found solution
            if pos == best_len:
                cnt += 1
            else:
                best = tuple(chain[:pos])
                best_len, cnt = pos, 1
        elif pos < best_len:
            for i in range(pos - 1, -1, -1):
                c = x + chain[i]
                if c < n:
                    extend_chain(c, pos)

        in_chain[x] = False

    extend_chain()
    return best + (n,), cnt

for n in [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]:
    best, cnt = bauer(n)
    print(f'L({n}) = {len(best) - 1}, count of minimum chain: {cnt}\ne.g.: {best}\n')
Output:
L(7) = 4, count of minimum chain: 5
e.g.: (1, 2, 4, 6, 7)

L(14) = 5, count of minimum chain: 14
e.g.: (1, 2, 4, 8, 12, 14)

--- snip ---

L(382) = 11, count of minimum chain: 4
e.g.: (1, 2, 4, 8, 16, 17, 33, 50, 83, 166, 332, 382)

L(379) = 12, count of minimum chain: 6583
e.g.: (1, 2, 4, 8, 16, 32, 64, 96, 104, 105, 210, 315, 379)

Racket

This implementation uses the Rosette language in Racket. It is inefficient as it asks an SMT solver to enumerate every possible solutions. However, it is very straightforward to write, and in fact is quite efficient for computing l(n) and finding one example (solve n = 379 in ~3 seconds).

#lang rosette

(define (basic-constraints xs n)
  (assert (= 1 (first xs)))
  (assert (= n (last xs)))
  (assert (apply < xs))
  (for ([x (in-list (rest xs))] [xi (in-naturals 1)])
    (assert
     (apply || (for*/list ([(y yi) (in-parallel (in-list xs) (in-range xi))]
                           [(z zi) (in-parallel (in-list xs) (in-range xi))])
                 (= x (+ y z)))))))

(define (next-sol xs the-mod)
  (not (apply && (for/list ([x (in-list xs)]) (= x (evaluate x the-mod))))))

(define (try-len r n enumerate?)
  (define xs (build-list (add1 r)
                         (thunk* (define-symbolic* x integer?)
                                 x)))
  (basic-constraints xs n)
  (define sols (let loop ([sols '()])
                 (define the-mod (solve #t))
                 (cond
                   [(unsat? the-mod) sols]
                   [enumerate? (assert (next-sol xs the-mod))
                               (loop (cons (evaluate xs the-mod) sols))]
                   [else (list (evaluate xs the-mod))])))
  (clear-state!)
  (if (empty? sols) #f (cons sols r)))

(define (brauer? xs)
  (for/and ([x (in-list (rest xs))] [xi (in-naturals 1)] [x* (in-list xs)])
    (for/or ([y (in-list xs)] [yi (in-range xi)]) (= x (+ x* y)))))

(define (report-chain chain name)
  (printf "#~a chains: ~a\n" name (length chain))
  (when (not (empty? chain)) (printf "example: ~a\n" (first chain))))

(define (compute n enumerate?)
  (define sols (for/or ([r (in-naturals 1)]) (try-len r n enumerate?)))
  (printf "minimal chain length l(~a) = ~a\n" n (cdr sols))
  (cond
    [enumerate?
     (define-values (brauer-chain non-brauer-chain) (partition brauer? (car sols)))
     (report-chain brauer-chain "brauer")
     (report-chain non-brauer-chain "non-brauer")]
    [else (printf "example: ~a\n" (first (car sols)))]))

(define (compute/time n #:enumerate? enumerate?)
  (match-define-values (_ _ real _) (time-apply compute (list n enumerate?)))
  (printf "total time (ms): ~a\n\n" real))

(for ([x (in-list '(19 7 14 21 29 32 42 64 47 79))])
  (compute/time x #:enumerate? #t))

(for ([x (in-list '(191 382 379 12509))])
  (compute/time x #:enumerate? #f))
Output:
minimal chain length l(19) = 6
#brauer chains: 31
example: (1 2 3 4 8 16 19)
#non-brauer chains: 2
example: (1 2 3 6 7 12 19)
total time (ms): 245

minimal chain length l(7) = 4
#brauer chains: 5
example: (1 2 3 6 7)
#non-brauer chains: 0
total time (ms): 47

minimal chain length l(14) = 5
#brauer chains: 14
example: (1 2 3 5 7 14)
#non-brauer chains: 0
total time (ms): 95

minimal chain length l(21) = 6
#brauer chains: 26
example: (1 2 3 4 7 14 21)
#non-brauer chains: 3
example: (1 2 4 5 8 13 21)
total time (ms): 204

minimal chain length l(29) = 7
#brauer chains: 114
example: (1 2 3 6 7 13 16 29)
#non-brauer chains: 18
example: (1 2 3 6 9 11 18 29)
total time (ms): 1443

minimal chain length l(32) = 5
#brauer chains: 1
example: (1 2 4 8 16 32)
#non-brauer chains: 0
total time (ms): 42

minimal chain length l(42) = 7
#brauer chains: 78
example: (1 2 3 6 9 15 21 42)
#non-brauer chains: 6
example: (1 2 4 5 8 13 21 42)
total time (ms): 808

minimal chain length l(64) = 6
#brauer chains: 1
example: (1 2 4 8 16 32 64)
#non-brauer chains: 0
total time (ms): 52

minimal chain length l(47) = 8
#brauer chains: 183
example: (1 2 3 5 8 11 22 44 47)
#non-brauer chains: 37
example: (1 2 3 5 7 14 19 28 47)
total time (ms): 6011

minimal chain length l(79) = 9
#brauer chains: 492
example: (1 2 4 8 12 13 25 29 54 79)
#non-brauer chains: 129
example: (1 2 4 8 9 12 21 29 58 79)
total time (ms): 38038

minimal chain length l(191) = 11
example: (1 2 4 8 16 24 28 29 53 69 138 191)
total time (ms): 1601

minimal chain length l(382) = 11
example: (1 2 4 5 9 14 23 46 92 184 368 382)
total time (ms): 2313

minimal chain length l(379) = 12
example: (1 2 4 8 12 24 48 72 73 121 129 258 379)
total time (ms): 3176

minimal chain length l(12509) = 17
example: (1 2 3 6 12 13 24 48 96 192 384 768 781 1562 3124 6248 12496 12509)
total time (ms): 237617

Raku

(formerly Perl 6)

Translation of: Kotlin
my @Example = ();

sub check-Sequence($pos, @seq, $n, $minLen --> List)  {
   if ($pos > $minLen or @seq[0] > $n) {
      return $minLen, 0;
   } elsif (@seq[0] == $n) {
      @Example = @seq;
      return $pos, 1;
   } elsif ($pos < $minLen) {
      return try-Permutation 0, $pos, @seq, $n, $minLen;
   } else {
      return $minLen, 0;
   }
}

multi sub try-Permutation($i, $pos, @seq, $n, $minLen --> List) {
   return $minLen, 0 if $i > $pos;
   my @res1 = check-Sequence $pos+1, (@seq[0]+@seq[$i],@seq).flat, $n, $minLen;
   my @res2 = try-Permutation $i+1, $pos, @seq, $n, @res1[0];
   if (@res2[0] < @res1[0]) {
      return @res2[0], @res2[1];
   } elsif (@res2[0] == @res1[0]) {
      return @res2[0], @res1[1]+@res2[1];
   } else {
      note "Error in try-Permutation";
      return 0, 0;
   }
}

multi sub try-Permutation($x, $minLen --> List) {
   return try-Permutation 0, 0, [1], $x, $minLen;
}

sub find-Brauer($num, $minLen, $nbLimit) {
   my ($actualMin, $brauer) = try-Permutation $num, $minLen;
   say "\nN = ", $num;
   say "Minimum length of chains : L($num) = $actualMin";
   say "Number of minimum length Brauer chains : ", $brauer;
   say "Brauer example : ", @Example.reverse if $brauer > 0;
   @Example = ();
   if ($num$nbLimit) {
      my $nonBrauer = find-Non-Brauer $num, $actualMin+1, $brauer;
      say "Number of minimum length non-Brauer chains : ", $nonBrauer;
      say "Non-Brauer example : ", @Example if $nonBrauer > 0;
      @Example = ();
   } else {
      say "Non-Brauer analysis suppressed";
   }
}

sub is-Addition-Chain(@a --> Bool) {
   for 2 .. @a.end -> $i {
      return False if @a[$i] > @a[$i-1]*2 ;
      my $ok = False;
      for $i-10 -> $j {
         for $j0 -> $k {
            { $ok = True; last } if @a[$j]+@a[$k] == @a[$i];
         }
      }
      return False unless $ok;
   }

   @Example = @a unless @Example or is-Brauer @a;
   return True;
}

sub is-Brauer(@a --> Bool) {
   for 2 .. @a.end -> $i {
      my $ok = False;
      for $i-10 -> $j {
         { $ok = True; last } if @a[$i-1]+@a[$j] == @a[$i];
      }
      return False unless $ok;
   }
   return True;
}

sub find-Non-Brauer($num, $len, $brauer --> Int) {
   my @seq   = flat 1 .. $len-1, $num;
   my $count = is-Addition-Chain(@seq) ?? 1 !! 0;

   sub next-Chains($index) {
      loop {
         next-Chains $index+1 if $index < $len-1;
         return if @seq[$index]+$len-1-$index@seq[$len-1];
         @seq[$index]++;
         for $index^..^$len-1 { @seq[$_] = @seq[$_-1] + 1 }
         $count++ if is-Addition-Chain @seq;
      }
   }

   next-Chains 2;
   return $count - $brauer;
}

say "Searching for Brauer chains up to a minimum length of 12:";
find-Brauer $_, 12, 79 for 7, 14, 21, 29, 32, 42, 64 #, 47, 79, 191, 382, 379, 379, 12509 # un-comment for extra-credit
Output:
Searching for Brauer chains up to a minimum length of 12:

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : (1 2 3 4 7)
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : (1 2 3 4 7 14)
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : (1 2 3 4 7 14 21)
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1 2 4 5 8 13 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : (1 2 3 4 7 11 18 29)
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1 2 3 6 9 11 18 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : (1 2 4 8 16 32)
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : (1 2 3 4 7 14 21 42)
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1 2 4 5 8 13 21 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : (1 2 4 8 16 32 64)
Number of minimum length non-Brauer chains : 0

Ruby

Translation of: D
def check_seq(pos, seq, n, min_len)
    if pos > min_len or seq[0] > n then
        return min_len, 0
    elsif seq[0] == n then
        return pos, 1
    elsif pos < min_len then
        return try_perm(0, pos, seq, n, min_len)
    else
        return min_len, 0
    end
end

def try_perm(i, pos, seq, n, min_len)
    if i > pos then
        return min_len, 0
    end

    res11, res12 = check_seq(pos + 1, [seq[0] + seq[i]] + seq, n, min_len)
    res21, res22 = try_perm(i + 1, pos, seq, n, res11)

    if res21 < res11 then
        return res21, res22
    elsif res21 == res11 then
        return res21, res12 + res22
    else
        raise "try_perm exception"
    end
end

def init_try_perm(x)
    return try_perm(0, 0, [1], x, 12)
end

def find_brauer(num)
    actualMin, brauer = init_try_perm(num)
    puts
    print "N = ", num, "\n"
    print "Minimum length of chains: L(n)= ", actualMin, "\n"
    print "Number of minimum length Brauer chains: ", brauer, "\n"
end

def main
    nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
    for i in nums do
        find_brauer(i)
    end
end

main()
Output:
D:\Code\github\ncoe\rosetta\Addition_chains\Ruby>N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

Scala

Following Scala implementation finds number of minimum length Brauer chains and corresponding length.

object chains{

    def check_seq(pos:Int,seq:List[Int],n:Int,min_len:Int):(Int,Int) = {
        if(pos>min_len || seq(0)>n)             (min_len,0)
        else if(seq(0) == n)                    (pos,1)
        else if(pos<min_len)                    try_perm(0,pos,seq,n,min_len)
        else                                    (min_len,0)
    }
    
    def try_perm(i:Int,pos:Int,seq:List[Int],n:Int,min_len:Int):(Int,Int) = {
        if(i>pos)           return (min_len,0)
        val res1 = check_seq(pos+1,seq(0)+seq(i) :: seq,n,min_len)
        val res2 = try_perm(i+1,pos,seq,n,res1._1)
        if(res2._1 < res1._1)                   res2
        else if(res2._1 == res1._1)             (res2._1,res1._2 + res2._2)
        else {
            println("Try_perm exception")
            (0,0)
        }
    }
    val init_try_perm = (x:Int) => try_perm(0,0,List[Int](1),x,10)
    def find_brauer(num:Int): Unit = {
        val res = init_try_perm(num)
        println()
        println("N = %d".format(num))
        println("Minimum length of chains: L(n)= " + res._1 + f"\nNumber of minimum length Brauer chains: " + res._2)
    }
    def main(args:Array[String]) :Unit = {
        val nums = List(7,14,21,29,32,42,64)
        for (i <- nums)     find_brauer(i)
    }
}
N = 7
Minimum length of chains: L(n)= 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n)= 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n)= 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n)= 6
Number of minimum length Brauer chains: 1
N = 47
Minimum length of chains: L(n)= 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n)= 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 191
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n)= 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n)= 12
Number of minimum length Brauer chains: 6583

Visual Basic .NET

Translation of: C#
Module Module1

    Function Prepend(n As Integer, seq As List(Of Integer)) As List(Of Integer)
        Dim result As New List(Of Integer) From {
            n
        }
        result.AddRange(seq)
        Return result
    End Function

    Function CheckSeq(pos As Integer, seq As List(Of Integer), n As Integer, min_len As Integer) As Tuple(Of Integer, Integer)
        If pos > min_len OrElse seq(0) > n Then
            Return Tuple.Create(min_len, 0)
        End If
        If seq(0) = n Then
            Return Tuple.Create(pos, 1)
        End If
        If pos < min_len Then
            Return TryPerm(0, pos, seq, n, min_len)
        End If
        Return Tuple.Create(min_len, 0)
    End Function

    Function TryPerm(i As Integer, pos As Integer, seq As List(Of Integer), n As Integer, min_len As Integer) As Tuple(Of Integer, Integer)
        If i > pos Then
            Return Tuple.Create(min_len, 0)
        End If

        Dim res1 = CheckSeq(pos + 1, Prepend(seq(0) + seq(i), seq), n, min_len)
        Dim res2 = TryPerm(i + 1, pos, seq, n, res1.Item1)

        If res2.Item1 < res1.Item1 Then
            Return res2
        End If
        If res2.Item1 = res1.Item1 Then
            Return Tuple.Create(res2.Item1, res1.Item2 + res2.Item2)
        End If

        Throw New Exception("TryPerm exception")
    End Function

    Function InitTryPerm(x As Integer) As Tuple(Of Integer, Integer)
        Return TryPerm(0, 0, New List(Of Integer) From {1}, x, 12)
    End Function

    Sub FindBrauer(num As Integer)
        Dim res = InitTryPerm(num)
        Console.WriteLine("N = {0}", num)
        Console.WriteLine("Minimum length of chains: L(n) = {0}", res.Item1)
        Console.WriteLine("Number of minimum length Brauer chains: {0}", res.Item2)
        Console.WriteLine()
    End Sub

    Sub Main()
        Dim nums() = {7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379}
        Array.ForEach(nums, Sub(n) FindBrauer(n))
    End Sub

End Module
Output:
N = 7
Minimum length of chains: L(n) = 4
Number of minimum length Brauer chains: 5

N = 14
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 14

N = 21
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 26

N = 29
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 114

N = 32
Minimum length of chains: L(n) = 5
Number of minimum length Brauer chains: 1

N = 42
Minimum length of chains: L(n) = 7
Number of minimum length Brauer chains: 78

N = 64
Minimum length of chains: L(n) = 6
Number of minimum length Brauer chains: 1

N = 47
Minimum length of chains: L(n) = 8
Number of minimum length Brauer chains: 183

N = 79
Minimum length of chains: L(n) = 9
Number of minimum length Brauer chains: 492

N = 191
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 7172

N = 382
Minimum length of chains: L(n) = 11
Number of minimum length Brauer chains: 4

N = 379
Minimum length of chains: L(n) = 12
Number of minimum length Brauer chains: 6583

Wren

Translation of: Go

Based on Version 2 which is itself a translation of the Phix entry.

Non-Brauer analysis limited to N = 191 in order to finish in a reasonable time - about 10.75 minutes on my machine.

var maxLen = 13
var maxNonBrauer = 191

var isBrauer = Fn.new { |a|
    for (i in 2...a.count) {
        var ok = false
        for (j in i-1..0) {
            if (a[i-1] + a[j] == a[i]) {
                ok = true
                break
            }
        }
        if (!ok) return false
    }
    return true
}

var brauerCount = 0
var nonBrauerCount = 0
var brauerExample = ""
var nonBrauerExample = ""

var additionChains // recursive
additionChains = Fn.new { |target, length, chosen|
    var le = chosen.count
    var last = chosen[-1]
    if (last == target) {
        if (le < length) {
            brauerCount = 0
            nonBrauerCount = 0
        }
        if (isBrauer.call(chosen)) {
            brauerCount = brauerCount + 1
            brauerExample = chosen.toString
        } else {
            nonBrauerCount = nonBrauerCount + 1
            nonBrauerExample = chosen.toString
        }
        return le
    }
    if (le == length) return length
    if (target > maxNonBrauer) {
        for (i in le-1..0) {
            var next = last + chosen[i]
            if (next <= target && next > chosen[-1] && i < length) {
                length = additionChains.call(target, length, chosen + [next])
            }
        }
    } else {
        var ndone = []
        while (true) {
            for (i in le-1..0) {
                var next = last + chosen[i]
                if (next <= target && next > chosen[-1] && i < length &&
                    !ndone.contains(next)) {
                    ndone.add(next)
                    length = additionChains.call(target, length, chosen + [next])
                }
            }
            le = le - 1
            if (le == 0) break
            last = chosen[le-1]
        }
    }
    return length
}

var start = System.clock
var nums = [7, 14, 21, 29, 32, 42, 64, 47, 79, 191, 382, 379]
System.print("Searching for Brauer chains up to a minimum length of %(maxLen-1)")
for (num in nums) {
    brauerCount = 0
    nonBrauerCount = 0
    var le = additionChains.call(num, maxLen, [1])
    System.print("\nN = %(num)")
    System.print("Minimum length of chains : L(%(num)) = %(le-1)")
    System.print("Number of minimum length Brauer chains : %(brauerCount)")
    if (brauerCount > 0) {
        System.print("Brauer example : %(brauerExample)")
    }
    if (num <= maxNonBrauer) {
        System.print("Number of minimum length non-Brauer chains : %(nonBrauerCount)")
        if (nonBrauerCount > 0) {
            System.print("Non-Brauer example : %(nonBrauerExample)")
        }
    } else System.print("Non-Brauer analysis suppressed")
}
System.print("\nTook %(System.clock - start) seconds.")
Output:
Searching for Brauer chains up to a minimum length of 12

N = 7
Minimum length of chains : L(7) = 4
Number of minimum length Brauer chains : 5
Brauer example : [1, 2, 3, 4, 7]
Number of minimum length non-Brauer chains : 0

N = 14
Minimum length of chains : L(14) = 5
Number of minimum length Brauer chains : 14
Brauer example : [1, 2, 3, 4, 7, 14]
Number of minimum length non-Brauer chains : 0

N = 21
Minimum length of chains : L(21) = 6
Number of minimum length Brauer chains : 26
Brauer example : [1, 2, 3, 4, 7, 14, 21]
Number of minimum length non-Brauer chains : 3
Non-Brauer example : [1, 2, 4, 5, 8, 13, 21]

N = 29
Minimum length of chains : L(29) = 7
Number of minimum length Brauer chains : 114
Brauer example : [1, 2, 3, 4, 7, 11, 18, 29]
Number of minimum length non-Brauer chains : 18
Non-Brauer example : [1, 2, 3, 6, 9, 11, 18, 29]

N = 32
Minimum length of chains : L(32) = 5
Number of minimum length Brauer chains : 1
Brauer example : [1, 2, 4, 8, 16, 32]
Number of minimum length non-Brauer chains : 0

N = 42
Minimum length of chains : L(42) = 7
Number of minimum length Brauer chains : 78
Brauer example : [1, 2, 3, 4, 7, 14, 21, 42]
Number of minimum length non-Brauer chains : 6
Non-Brauer example : [1, 2, 4, 5, 8, 13, 21, 42]

N = 64
Minimum length of chains : L(64) = 6
Number of minimum length Brauer chains : 1
Brauer example : [1, 2, 4, 8, 16, 32, 64]
Number of minimum length non-Brauer chains : 0

N = 47
Minimum length of chains : L(47) = 8
Number of minimum length Brauer chains : 183
Brauer example : [1, 2, 3, 4, 7, 10, 20, 27, 47]
Number of minimum length non-Brauer chains : 37
Non-Brauer example : [1, 2, 3, 5, 7, 14, 19, 28, 47]

N = 79
Minimum length of chains : L(79) = 9
Number of minimum length Brauer chains : 492
Brauer example : [1, 2, 3, 4, 7, 9, 18, 36, 43, 79]
Number of minimum length non-Brauer chains : 129
Non-Brauer example : [1, 2, 3, 5, 7, 12, 24, 31, 48, 79]

N = 191
Minimum length of chains : L(191) = 11
Number of minimum length Brauer chains : 7172
Brauer example : [1, 2, 3, 4, 7, 8, 15, 22, 44, 88, 103, 191]
Number of minimum length non-Brauer chains : 2615
Non-Brauer example : [1, 2, 3, 4, 7, 9, 14, 23, 46, 92, 99, 191]

N = 382
Minimum length of chains : L(382) = 11
Number of minimum length Brauer chains : 4
Brauer example : [1, 2, 4, 5, 9, 14, 23, 46, 92, 184, 198, 382]
Non-Brauer analysis suppressed

N = 379
Minimum length of chains : L(379) = 12
Number of minimum length Brauer chains : 6583
Brauer example : [1, 2, 3, 4, 7, 10, 17, 27, 44, 88, 176, 203, 379]
Non-Brauer analysis suppressed

Took 645.993693 seconds.

zkl

Translation of: EchoLisp
var exp2=(32).pump(List,(2).pow),   // 2^n, n=0..31
    _minlg, _counts, _chains;      // counters and results
 
fcn register_hit(chain,lg){  // save [upto 2] chains
   idx:=(if(isBrauer(chain,lg)) 0 else 1);
   if(lg<_minlg) _counts,_chains,_minlg=List(0,0), List("",""), lg;
   _counts[idx]+=1;
   _chains[idx]=chain.copy();
}
    // is chain a brauer chain ?
fcn isBrauer(chain,lg){
   foreach i in (lg){
      if(not chain.holds(chain[i+1] - chain[i])) return(False);
    }
    True
}
    // all min chains to target n (brute force)
fcn chains(n,chain,lg){
   top,tops:=chain[lg], List();
   if(lg>_minlg)   {}			   // too long
   else if(n==top) register_hit(chain,lg); // hit 
   else if(n<top)  {}			   // too big
   else if((_minlg<32) and (top*exp2[_minlg - lg]<n)){} // too small
   else{
      foreach i,j in ([lg..0,-1],[lg..i,-1]){
         a:=chain[i] + chain[j];
	 if(a<=top)        continue; // increasing sequence
	 if(tops.holds(a)) continue; // prevent duplicates
	 tops.append(a);
	 chain.append(a);
	 self.fcn(n,chain,lg+1);     // recurse
	 chain.pop();
      }
   }
}
fcn task(n){
   _minlg=(0).MAX;
   chains(n,List(1),0);
   println("L(%2d) = %d; Brauer-chains: %3d; non-brauer: %3d; chains: %s"
         .fmt(n,_minlg,_counts.xplode(),_chains.filter()));
}
T(7,14,21,29,32,42,64,47,79).apply2(task);
Output:
L( 7) = 4; Brauer-chains:   5; non-brauer:   0; chains: L(L(1,2,3,4,7))
L(14) = 5; Brauer-chains:  14; non-brauer:   0; chains: L(L(1,2,3,4,7,14))
L(21) = 6; Brauer-chains:  26; non-brauer:   3; chains: L(L(1,2,3,4,7,14,21),L(1,2,4,5,8,13,21))
L(29) = 7; Brauer-chains: 114; non-brauer:  18; chains: L(L(1,2,3,4,7,11,18,29),L(1,2,3,6,9,11,18,29))
L(32) = 5; Brauer-chains:   1; non-brauer:   0; chains: L(L(1,2,4,8,16,32))
L(42) = 7; Brauer-chains:  78; non-brauer:   6; chains: L(L(1,2,3,4,7,14,21,42),L(1,2,4,5,8,13,21,42))
L(64) = 6; Brauer-chains:   1; non-brauer:   0; chains: L(L(1,2,4,8,16,32,64))
L(47) = 8; Brauer-chains: 183; non-brauer:  37; chains: L(L(1,2,3,4,7,10,20,27,47),L(1,2,3,5,7,14,19,28,47))
L(79) = 9; Brauer-chains: 492; non-brauer: 129; chains: L(L(1,2,3,4,7,9,18,36,43,79),L(1,2,3,5,7,12,24,31,48,79))