JortSort

From Rosetta Code
Task
JortSort
You are encouraged to solve this task according to the task description, using any language you may know.
Note: jortSort is considered a work of satire. It achieves its result in an intentionally roundabout way. You are encouraged to write your solutions in the spirit of the original rather than trying to give the most concise or idiomatic solution.

jortSort is a sorting toolset that makes the user do the work and guarantees efficiency because you don't have to sort ever again. It was originally presented by Jenn "Moneydollars" Schiffer at the prestigious JSConf.

jortSort is a function that takes a single array of comparable objects as its argument. It then sorts the array in ascending order and compares the sorted array to the originally provided array. If the arrays match (i.e. the original array was already sorted), the function returns true. If the arrays do not match (i.e. the original array was not sorted), the function returns false.

Ada[edit]

with Ada.Text_IO, Ada.Containers.Generic_Array_Sort;
 
procedure Jortsort is
 
function Jort_Sort(List: String) return Boolean is
procedure Sort is new Ada.Containers.Generic_Array_Sort
(Positive, Character, Array_Type => String);
Second_List: String := List;
begin
Sort(Second_List);
return Second_List = List;
end Jort_Sort;
 
use Ada.Text_IO;
begin
Put_Line("""abbigail"" sorted: " & Boolean'Image(Jort_Sort("abbigail")));
Put_Line("""abbey"" sorted: " & Boolean'Image(Jort_Sort("abbey")));
end Jortsort;
Output:
"abbigail" sorted: FALSE
"abbey" sorted: TRUE

AutoHotkey[edit]

JortSort(Array){
sorted:=[]
for index, val in Array
sorted[val]:=1
for key, val in sorted
if (key<>Array[A_Index])
return 0
return 1
}
Examples:
Array1 := ["a", "d", "b" , "c"]
Array2 := ["a", "b", "c" , "d"]
MsgBox % JortSort(Array1) "`n" JortSort(Array2)
return
Outputs:
0
1

C[edit]

Works with: GCC

This program tells if an array of integers numbers passed as input is sorted or not and gives the user some unpolite answers so, as asked by the specifications, "you don't have to sort ever again". As others did in this page, this example doesn't follow the request to sort the input array and then compare the sorted version to the original one to check if it was already sorted. It only checks if the input is sorted and behaves accordingly. I've tested this code only with gcc but should work with any C compiler.

 
#include <stdio.h>
#include <stdlib.h>
 
 
 
int number_of_digits(int x){
int NumberOfDigits;
for(NumberOfDigits=0;x!=0;NumberOfDigits++){
x=x/10;
}
return NumberOfDigits;
}
 
int* convert_array(char array[], int NumberOfElements) //converts integer arguments from char to int
{
int *convertedArray=malloc(NumberOfElements*sizeof(int));
int originalElement, convertedElement;
 
for(convertedElement=0, originalElement=0; convertedElement<NumberOfElements; convertedElement++)
{
convertedArray[convertedElement]=atoi(&array[originalElement]);
originalElement+=number_of_digits(convertedArray[convertedElement])+1; //computes where is the beginning of the next element
 
}
return convertedArray;
}
 
 
 
int isSorted(int array[], int numberOfElements){
int sorted=1;
for(int counter=0;counter<numberOfElements;counter++){
if(counter!=0 && array[counter-1]>array[counter]) sorted--;
 
}
return sorted;
}
int main(int argc, char* argv[])
{
int* convertedArray;
 
 
convertedArray=convert_array(*(argv+1), argc-1);
 
 
 
if(isSorted(convertedArray, argc-1)==1) printf("Did you forgot to turn on your brain?! This array is already sorted!\n");
else if(argc-1<=10) printf("Am I really supposed to sort this? Sort it by yourself!\n");
else printf("Am I really supposed to sort this? Bhahahaha!\n");
free(convertedArray);
return 0;
 
 
 
}
 

C++[edit]

 
#include <algorithm>
#include <string>
#include <iostream>
#include <iterator>
 
class jortSort {
public:
template<class T>
bool jort_sort( T* o, size_t s ) {
T* n = copy_array( o, s );
sort_array( n, s );
bool r = false;
 
if( n ) {
r = check( o, n, s );
delete [] n;
}
return r;
}
 
private:
template<class T>
T* copy_array( T* o, size_t s ) {
T* z = new T[s];
memcpy( z, o, s * sizeof( T ) );
//std::copy( o, o + s, z );
return z;
}
template<class T>
void sort_array( T* n, size_t s ) {
std::sort( n, n + s );
}
template<class T>
bool check( T* n, T* o, size_t s ) {
for( size_t x = 0; x < s; x++ )
if( n[x] != o[x] ) return false;
return true;
}
};
 
jortSort js;
 
template<class T>
void displayTest( T* o, size_t s ) {
std::copy( o, o + s, std::ostream_iterator<T>( std::cout, " " ) );
std::cout << ": -> The array is " << ( js.jort_sort( o, s ) ? "sorted!" : "not sorted!" ) << "\n\n";
}
 
int main( int argc, char* argv[] ) {
const size_t s = 5;
std::string oStr[] = { "5", "A", "D", "R", "S" };
displayTest( oStr, s );
std::swap( oStr[0], oStr[1] );
displayTest( oStr, s );
 
int oInt[] = { 1, 2, 3, 4, 5 };
displayTest( oInt, s );
std::swap( oInt[0], oInt[1] );
displayTest( oInt, s );
 
return 0;
}
 
Output:
5 A D R S : -> The array is sorted!
A 5 D R S : -> The array is not sorted!

1 2 3 4 5 : -> The array is sorted!
2 1 3 4 5 : -> The array is not sorted!

C#[edit]

Translation of: JavaScript
using System;
 
class Program
{
public static bool JortSort<T>(T[] array) where T : IComparable, IEquatable<T>
{
// sort the array
T[] originalArray = (T[]) array.Clone();
Array.Sort(array);
 
// compare to see if it was originally sorted
for (var i = 0; i < originalArray.Length; i++)
{
if (!Equals(originalArray[i], array[i]))
{
return false;
}
}
 
return true;
}
}

Clojure[edit]

(defn jort-sort [x] (= x (sort x)))

Common Lisp[edit]

 
(defun jort-sort (x) (equalp x (sort x #'< )))
 

D[edit]

 
module jortsort;
 
import std.algorithm : sort, SwapStrategy;
 
bool jortSort(T)(T[] array) {
auto originalArray = array.dup;
sort!("a < b", SwapStrategy.stable)(array);
return originalArray == array;
}
 
unittest {
assert(jortSort([1, 2, 3]));
assert(!jortSort([1, 6, 3]));
assert(jortSort(["apple", "banana", "orange"]));
assert(!jortSort(["two", "one", "three"]));
}
 

Elixir[edit]

iex(1)> jortsort = fn list -> list == Enum.sort(list) end
#Function<6.90072148/1 in :erl_eval.expr/5>
iex(2)> jortsort.([1,2,3,4])
true
iex(3)> jortsort.([1,2,5,4])
false

FreeBASIC[edit]

' FB 1.05.0 Win64
 
' Although it's possible to create generic sorting routines using macros in FreeBASIC
' here we will just use Integer arrays.
 
Sub quicksort(a() As Integer, first As Integer, last As Integer)
Dim As Integer length = last - first + 1
If length < 2 Then Return
Dim pivot As Integer = a(first + length\ 2)
Dim lft As Integer = first
Dim rgt As Integer = last
While lft <= rgt
While a(lft) < pivot
lft +=1
Wend
While a(rgt) > pivot
rgt -= 1
Wend
If lft <= rgt Then
Swap a(lft), a(rgt)
lft += 1
rgt -= 1
End If
Wend
quicksort(a(), first, rgt)
quicksort(a(), lft, last)
End Sub
 
Function jortSort(a() As Integer) As Boolean
' copy the array
Dim lb As Integer = LBound(a)
Dim ub As Integer = UBound(a)
Dim b(lb To ub) As Integer
' this could be done more quickly using memcpy
' but we just copy element by element here
For i As Integer = lb To ub
b(i) = a(i)
Next
' sort "b"
quickSort(b(), lb, ub)
' now compare with "a" to see if it's already sorted
For i As Integer = lb To ub
If a(i) <> b(i) Then Return False
Next
Return True
End Function
 
Sub printResults(a() As Integer)
For i As Integer = LBound(a) To UBound(a)
Print a(i); " ";
Next
Print " => "; IIf(jortSort(a()), "sorted", "not sorted")
End Sub
 
Dim a(4) As Integer = {1, 2, 3, 4, 5}
printResults(a())
Print
Dim b(4) As Integer = {2, 1, 3, 4, 5}
PrintResults(b())
Print
Print "Press any key to quit"
Sleep
Output:
 1  2  3  4  5  => sorted

 2  1  3  4  5  => not sorted

Go[edit]

 
package main
 
import (
"log"
"sort"
)
 
func main() {
log.Println(jortSort([]int{1, 2, 1, 11, 213, 2, 4})) //false
log.Println(jortSort([]int{0, 1, 0, 0, 0, 0})) //false
log.Println(jortSort([]int{1, 2, 4, 11, 22, 22})) //true
log.Println(jortSort([]int{0, 0, 0, 1, 2, 2})) //true
}
 
func jortSort(a []int) bool {
c := make([]int, len(a))
copy(c, a)
sort.Ints(a)
for k, v := range c {
if v == a[k] {
continue
} else {
return false
}
}
return true
}
 
 

Haskell[edit]

For lists:

import Data.List (sort)
 
jortSort :: (Ord a) => [a] -> Bool
jortSort list = list == sort list

J[edit]

Ironically, in J, implementing in the spirit of the original happens to also be the most concise and idiomatic way of expressing this algorithm:

Solution

   jortSort=: -: /:~

More in line with the spirit of the task would be:

   jortSort=: assert@(-: /:~)

Of course, ideally, assert would be replaced with something more assertive. Perhaps deleting all storage? But even better would be to send email to your boss and leadership explaining (at great length) exactly why they are all idiots. Do enough of this and you will never have to sort again...

Example Usage

   jortSort 1 2 4 3
0
jortSort 'sux'
1
jortSort&> 1 2 4 3;14 6 8;1 3 8 19;'ac';'sux';'CVGH';'PQRST'
0 0 1 1 1 0 1

Java[edit]

Optimized version of JortSort. Even less funny. Doesn't bother with sorting, but simply returns true. Very fast. Use only when you're absolutely sure that the input is already sorted. You may have to use an unoptimized version of JortSort to ascertain this.

public class JortSort {
public static void main(String[] args) {
System.out.println(jortSort(new int[]{1, 2, 3}));
}
 
static boolean jortSort(int[] arr) {
return true;
}
}
true

JavaScript[edit]

The original JavaScript implementation courtesy of the author, Jenn "Moneydollars" Schiffer.

var jortSort = function( array ) {
 
// sort the array
var originalArray = array.slice(0);
array.sort( function(a,b){return a - b} );
 
// compare to see if it was originally sorted
for (var i = 0; i < originalArray.length; ++i) {
if (originalArray[i] !== array[i]) return false;
}
 
return true;
};

jq[edit]

def jortsort: . == sort;

Example:

[1, "snort", "sort", [1,2], {"1":2}] | jortsort
Output:
true

K[edit]

jortsort:{x~x@<x}

Example:

jortsort 1 2 3
1

Kotlin[edit]

// version 1.0.6
 
fun <T> jortSort(a: Array<T>): Boolean {
val b = a.copyOf()
b.sort()
for (i in 0 until a.size)
if (a[i] != b[i]) return false
return true
}
 
fun <T> printResults(a: Array<T>) {
println(a.joinToString(" ") + " => " + if (jortSort(a)) "sorted" else "not sorted")
}
 
fun main(args: Array<String>) {
val a = arrayOf(1, 2, 3, 4, 5)
printResults(a)
val b = arrayOf(2, 1, 3, 4, 5)
printResults(b)
println()
val c = arrayOf('A', 'B', 'C', 'D', 'E')
printResults(c)
val d = arrayOf('C', 'D', 'A', 'E', 'B')
printResults(d)
}
 
 
Output:
1 2 3 4 5 => sorted
2 1 3 4 5 => not sorted

A B C D E => sorted
C D A E B => not sorted

Lua[edit]

function copy (t)
local new = {}
for k, v in pairs(t) do new[k] = v end
return new
end
 
function jortSort (array)
local originalArray = copy(array)
table.sort(array)
for i = 1, #originalArray do
if originalArray[i] ~= array[i] then return false end
end
return true
end

Mathematica[edit]

jortSort[list_] := list == Sort[list];
Print[jortSort[Range[100]]];
Print[jortSort[RandomSample[Range[100]]]];
Output:
True
False

Objeck[edit]

function : JortSort(elems : CompareVector) ~ Bool {
sorted := CompareVector->New(elems);
sorted->Sort();
 
each(i : sorted) {
if(sorted->Get(i)->Compare(elems->Get(i)) <> 0) {
return false;
};
};
 
return true;
}

OCaml[edit]

For lists:

let jortSortList lst =
lst = List.sort compare lst

For arrays:

let jortSortArray ary =
let originalArray = Array.copy ary in
Array.sort compare ary;
originalArray = ary

Oforth[edit]

: jortSort  dup sort == ;
Output:
[ [ 1, 2, 4, 3], [1.3, 2, 3.1 ], [ 14, 6, 8], [ 'a', 'c'], [ "abc", "def" ], "abcde", "abdce" ] map(#jortSort) println
[0, 1, 0, 1, 1, 1, 0]

ooRexx[edit]

Translation of: REXX
jortSort: Parse Arg list
/*---------------------------------------------------------------------
* Determine if list is sorted
* << is used to avoid numeric comparison
* 3 4e-1 is sorted
*--------------------------------------------------------------------*/

Do i=2 To words(list)
If word(list,i)<<word(list,i-1) Then
Leave
End
Return (i=words(list)+1)|(list='')
 

PARI/GP[edit]

jortSort(v)=vecsort(v)==v

Perl[edit]

sub jortsort {
my @s=sort @_; # Default standard string comparison
for (0..$#s) {
return 0 unless $_[$_] eq $s[$_];
}
1;
}

The task wants us to sort, but we could implement this by just using cmp on the input array elements, which would be faster (especially with unsorted input).

Perl 6[edit]

sub jort-sort { @_ eqv @_.sort }

Actually, there's a better internal sort that seems to work best for lists that are already completely sorted, but tends to fails for any other list. The name of this sort, [!after], is completely opaque, so we're pretty much forced to hide it inside a subroutine to prevent widespread panic.

sub jort-sort-more-better-sorta { [!after] @_ }

However, since Perl 6 has a really good inliner, there's really little point anyway in using the [!after] reduction operator directly, and jort-sort-more-better-sorta is really much more self-documenting, so please don't use the reduction operator if you can. For example:

Output:
$ perl6
> [!after] <a b c>  # DON'T do it this way
True
> [!after] 1,3,2    # DON'T do it this way either
False

Please do your part to uphold and/or downhold our community standards.

Phix[edit]

type JortSort(sequence s)
return s=sort(s)
end type

Then any variable or constant delared as type JortSort raises an error if used incorrectly, eg

JortSort ok = {1,2,3}
JortSort bad = {5,4,6}
Output:
C:\Program Files (x86)\Phix\test.exw:2
type check failure, bad is {5,4,6}

Amusingly the compiler itself uses a variant of jortsort, in that pttree.e declares a whole bunch of ternary tree node constants for all the language keywords and builtins such as

global constant T_while         = 336   tt_stringF("while",T_while)

and if you change that to 338 and try to recompile the compiler, you'll immediately get:

while should be 336(not 338)

It does that because at the lowest level a cmp imm is at least twice as fast as a cmp [mem], and the only other way it could know these constants at compile-time would be to build a 5000-node ternary tree, though I will concede that any sane person would have written a program to write an include file rather than hacking these things by hand.

PicoLisp[edit]

 
(de jortSort (L) (= L (sort L)))
(jortSort (1 2 3))
 
Output:

T

PowerShell[edit]

 
function jortsort($a) { -not (Compare-Object $a ($a | sort) -SyncWindow 0)}
jortsort @(1,2,3)
jortsort @(2,3,1)
 

Output:

True
False

PureBasic[edit]

Macro isSort(liste)
If OpenConsole()
Print("[ ") : ForEach liste : Print(liste+Space(1)) : Next : Print("] = ")
If jortSort(liste) : PrintN("True") : Else : PrintN("False") : EndIf
EndIf
EndMacro
 
Procedure.b jortSort(List jortS.s())
NewList cpy.s() : CopyList(jortS(),cpy()) : SortList(cpy(),#PB_Sort_Ascending)
ForEach jortS()
SelectElement(cpy(),ListIndex(jortS()))
If Not jortS()=cpy() : ProcedureReturn #False : EndIf
Next
ProcedureReturn #True
EndProcedure
 
NewList l1.s()
For i=1 To 10 : AddElement(l1()) : l1()=Chr(Random(90,65)) : Next
isSort(l1()) : SortList(l1(),#PB_Sort_Ascending) : isSort(l1())
Input()
Output:
[ A Z Q G B N E B G Y ] = False
[ A B B E G G N Q Y Z ] = True

Python[edit]

>>> def jortSort(myarray):
return list(myarray) == sorted(myarray)
>>> for data in [(1,2,4,3), (14,6,8), ['a', 'c'], ['s', 'u', 'x'], 'CVGH', 'PQRST']:
print('jortSort(%r) is %s' % (data, jortSort(data)))
jortSort((1, 2, 4, 3)) is False
jortSort((14, 6, 8)) is False
jortSort(['a', 'c']) is True
jortSort(['s', 'u', 'x']) is True
jortSort('CVGH') is False
jortSort('PQRST') is True
>>>
Translation of: JavaScript
def jortSort(array):
 
# sort the array
originalArray = list(array)
array.sort()
 
# compare to see if it was originally sorted
for i in range(len(originalArray)):
if originalArray[i] != array[i]:
return False
 
return True

Racket[edit]

#lang racket/base
(define (jort-sort l [<? <])
(equal? l (sort l <?)))

Racket's sort function is efficient in that it starts by checking the input, so the above could be made more efficient with a pointer equality test:

#lang racket/base
(define (jort-sort l [<? <])
(eq? l (sort l <?)))

And an explicit implementation that checks the order (note that Racket's sort expects a “smaller-than” comparator):

#lang racket/base
(define (jort-sort l [<? <])
(or (null? l)
(for/and ([x (in-list l)] [y (in-list (cdr l))])
(not (&lt;? y x))))) ; same as (&lt;= x y) but using only &lt;?

REXX[edit]

REXX has no built-in sort, so an   exchange sort   is included here.

The array elements (items) may be any form of number that REXX supports, and/or they can be alphabetic characters.

using sort[edit]

/*REXX program  verifies  that  an array  is sorted  using  a   jortSort   algorithm.   */
parse arg $ /*obtain the list of numbers from C.L. */
if $='' then $=1 2 4 3 /*Not specified? Then use the default.*/
say 'array items=' space($) /*display the list to the terminal. */
if jortSort($) then say 'The array is sorted.'
else say "The array isn't sorted."
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eSort: procedure expose @.; h=@.0 /*exchange sort.*/
do while h>1; h=h%2
do i=1 for @.0-h; j=i; k=h+i
do while @.k<@.j; t=@.j; @.j=@.k; @.k=t
if h>=j then leave; j=j-h; k=k-h
end /*while @.k<@.j*/
end /*i*/
end /*while h>1*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
jortSort: parse arg x; @.0=words(x) /*assign # items in list. */
do j=1 for @.0; !.j=word(x,j); @.j=!.j /*save a copy of original.*/
end /*j*/
call eSort /*sort with exchange sort.*/
do k=1 for @.0
if !.k\==@.k then return 0 /*the array isn't sorted. */
end /*k*/
return 1 /*the array is sorted. */

output   when using the default input:   1   2   4  3

array items= 1 2 4 3
The array is not sorted.

output   when using the input:     0   -0   +0   0.0e-9   1   01   001   +1   1.0   1e8

array items= 0 -0 +0 0.0e-9 1 01 001 +1 1.0 1e8
The array is sorted.

output   when using the input:   cat dog eye fox gnu hog pig wombat something

array items= cat dog eye fox gnu hog pig wombat something
The array is not sorted.

using comparisons[edit]

In the   http://jort.technology/   webpage, the   jortSort   is defined as:
jortSort checks if your inputs are sorted.

Nothing is mentioned how it does this, and it certainly doesn't say that it sorts the input to verify if it's in order.

/*REXX program  verifies  that  an array  is sorted  using  a   jortSort   algorithm.   */
parse arg $ /*obtain the list of numbers from C.L. */
if $='' then $=1 2 4 3 /*Not specified? Then use the default.*/
say 'array items=' space($) /*display the list to the terminal. */
if jortSort($) then say 'The array is sorted.'
else say "The array isn't sorted."
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
jortSort: parse arg x
p=word(x,1)
do j=2 to words(x); _=word(x,j)
if _<p then return 0 /*array isn't sorted.*/
p=_
end /*j*/
return 1 /*array is sorted.*/

output   is the same as the 1st REXX version.

Ring[edit]

 
aList = [4,2,3,1]
see jortSort(aList) + nl
 
func jortSort array
originalArray = array
array = sort(array)
for i= 1 to len(originalArray)
if originalArray[i] != array[i] return false ok
next
return true
 

Ruby[edit]

def jort_sort(array)
array == array.sort
end
Translation of: JavaScript
def jort_sort(array)
# sort the array
original_array = array.dup
array.sort!
 
# compare to see if it was originally sorted
original_array.length.times do |i|
return false if original_array[i] != array[i]
end
 
true
end

Rust[edit]

Translation of: JavaScript
use std::cmp::{Ord, Eq};
 
fn jort_sort<T: Ord + Eq + Clone>(array: Vec<T>) -> bool {
// sort the array
let mut sorted_array = array.to_vec();
sorted_array.sort();
 
// compare to see if it was originally sorted
for i in 0..array.len() {
if array[i] != sorted_array[i] {
return false;
}
}
 
return true;
}

Scala[edit]

 
def jortSort[K:Ordering]( a:Array[K] ) = a.sorted.deep == a.deep
 

Sidef[edit]

func jort_sort(array) { array == array.sort };

SSEM[edit]

This program expects to find a zero-terminated array of positive integers in sequential storage addresses beginning at address 27. If the array is correctly sorted into ascending order, the machine will halt with all accumulator bits clear; if not, it will halt with all accumulator bits set.

Like one or two of the other solutions, the SSEM implementation does not first sort the array and then test the sorted version for equality with the original (something that would probably require more storage space than we have at our disposal): it simply reads through the array in order, checking that each element is not less than the previous one. This difference should be considered an implementation detail.

There are a couple of limitations that make the program less useful than it would otherwise be. Firstly, it is essentially a single-shot application: if you want to test a second array, you will need to manually reset storage address 0 to 16411 and storage address 26 to 0. Secondly, the SSEM's modest storage capacity means that the largest array you can sort (or not sort) using this program consists of (the terminating zero, and) four integers. Subject to those provisos, however, the program should be found to meet the specification satisfactorily.

11011000000000100000000000000000   0. -27 to c
00000000000000110000000000000000 1. Test
11101000000000000000000000000000 2. 23 to CI
10011000000001100000000000000000 3. c to 25
10011000000000100000000000000000 4. -25 to c
01011000000000010000000000000000 5. Sub. 26
00000000000000110000000000000000 6. Test
10101000000001000000000000000000 7. Add 21 to CI
00011000000000000000000000000000 8. 24 to CI
10011000000000100000000000000000 9. -25 to c
01011000000001100000000000000000 10. c to 26
00000000000000100000000000000000 11. -0 to c
10101000000000010000000000000000 12. Sub. 21
00000000000001100000000000000000 13. c to 0
00000000000000100000000000000000 14. -0 to c
00000000000001100000000000000000 15. c to 0
01101000000000000000000000000000 16. 22 to CI
11111000000000100000000000000000 17. -31 to c
00000000000001110000000000000000 18. Stop
10101000000000100000000000000000 19. -21 to c
00000000000001110000000000000000 20. Stop
10000000000000000000000000000000 21. 1
11111111111111111111111111111111 22. -1
00001000000000000000000000000000 23. 16
01001000000000000000000000000000 24. 18

Swift[edit]

func jortSort<T:Comparable>(array: [T]) -> Bool {
return array == sorted(array)
}
Translation of: JavaScript
func jortSort<T:Comparable>(inout array: [T]) -> Bool {
 
// sort the array
let originalArray = array
array.sort({$0 < $1})
 
// compare to see if it was originally sorted
for var i = 0; i < originalArray.count; ++i {
if originalArray[i] != array[i] { return false }
}
 
return true
}

Tcl[edit]

 
proc jortsort {args} {
set list [lindex $args end]
set list [list {*}$list] ;# ensure canonical list form
set options [lrange $args 0 end-1]
expr {[lsort {*}$options $list] eq $list}
}
 

This supports all of the options known to the native lsort command, making it quite natural to use. The commented line ensures it will do the right thing for any list, even if it has funny formatting because it's embedded in source:

% jortsort -decreasing -integer {  222 33  1 }
0
% jortsort -ascii {
    "1"
    {222}
    33
}
1

VBScript[edit]

Function JortSort(s)
JortSort = True
arrPreSort = Split(s,",")
Set arrSorted = CreateObject("System.Collections.ArrayList")
'Populate the resorted arraylist.
For i = 0 To UBound(arrPreSort)
arrSorted.Add(arrPreSort(i))
Next
arrSorted.Sort()
'Compare the elements of both arrays.
For j = 0 To UBound(arrPreSort)
If arrPreSort(j) <> arrSorted(j) Then
JortSort = False
Exit For
End If
Next
End Function
 
WScript.StdOut.Write JortSort("1,2,3,4,5")
WScript.StdOut.WriteLine
WScript.StdOut.Write JortSort("1,2,3,5,4")
WScript.StdOut.WriteLine
WScript.StdOut.Write JortSort("a,b,c")
WScript.StdOut.WriteLine
WScript.StdOut.Write JortSort("a,c,b")
Output:
True
False
True
False

zkl[edit]

Two "solutions", a linear one and one that actually sorts.

fcn jort(list){ False!=list.reduce(fcn(a,b){ (a>b) and return(Void.Stop,False); b }) }
fcn jort(list){ list==list.copy().sort() }
Output:
zkl: jort(T(1,2,4,3))
False
zkl: jort(T(14,6,8))
False
zkl: jort(T("a","c"))
True
zkl: jort(T("s","u","x"))
True
zkl: jort("CVGH")
False
zkl: jort("PQRST")
True
zkl: var a=List(11,2,3); jort(a)
False
zkl: a
L(11,2,3)
zkl: jort(List)
True
zkl: jort(List(1))
True