Jump to content

Vigenère cipher/Cryptanalysis

From Rosetta Code
Task
Vigenère cipher/Cryptanalysis
You are encouraged to solve this task according to the task description, using any language you may know.

Given some text you suspect has been encrypted with a Vigenère cipher, extract the key and plaintext. There are several methods for doing this. See the Wikipedia entry for more information. Use the following encrypted text:

MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK

Letter frequencies for English can be found here.

Specifics for this task:

  • Take only the ciphertext as input. You can assume it's all capitalized and has no punctuation, but it might have whitespace.
  • Assume the plaintext is written in English.
  • Find and output the key.
  • Use that key to decrypt and output the original plaintext. Maintaining the whitespace from the ciphertext is optional.
  • The algorithm doesn't have to be perfect (which may not be possible) but it should work when given enough ciphertext. The example above is fairly long, and should be plenty for any algorithm.

11l

Translation of: Python
-V ascii_uppercase = Array(‘A’..‘Z’)

F vigenere_decrypt(target_freqs, input)
   V nchars = :ascii_uppercase.len
   V ordA = ‘A’.code
   V sorted_targets = sorted(target_freqs)

   F frequency(input)
      V result = :ascii_uppercase.map(c -> (c, 0.0))
      L(c) input
         result[c - @ordA][1]++
      R result

   F correlation(input)
      V result = 0.0
      V freq = sorted(@frequency(input), key' a -> a[1])

      L(f) freq
         result += f[1] * @sorted_targets[L.index]
      R result

   V cleaned = input.uppercase().filter(c -> c.is_uppercase()).map(c -> c.code)
   V best_len = 0
   V best_corr = -100.0

   L(i) 2 .< cleaned.len I/ 20
      V pieces = [[Int]()] * i
      L(c) cleaned
         pieces[L.index % i].append(c)
      V corr = -0.5 * i + sum(pieces.map(p -> @correlation(p)))

      I corr > best_corr
         best_len = i
         best_corr = corr

   I best_len == 0
      R (‘Text is too short to analyze’, ‘’)

   V pieces = [[Int]()] * best_len
   L(c) cleaned
      pieces[L.index % best_len].append(c)

   V freqs = pieces.map(p -> @frequency(p))

   V key = ‘’
   L(fr_) freqs
      V fr = sorted(fr_, key' a -> a[1], reverse' 1B)
      V m = 0
      V max_corr = 0.0
      L(j) 0 .< nchars
         V corr = 0.0
         V c = ordA + j
         L(frc) fr
            V d = (frc[0].code - c + nchars) % nchars
            corr += frc[1] * target_freqs[d]

         I corr > max_corr
            m = j
            max_corr = corr

      key ‘’= Char(code' m + ordA)

   V r = (enumerate(cleaned).map((i, c) -> Char(code' (c - @key[i % @best_len].code + @nchars) % @nchars + @ordA)))
   R (key, r.join(‘’))

V encoded = ‘
    MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
    VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
    ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
    FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
    ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
    ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
    JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
    LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
    MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
    QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
    RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
    TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
    SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
    ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
    BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
    BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
    FWAML ZZRXJ EKAHV FASMU LVVUT TGK’

V english_frequences = [
   0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
   0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
   0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
   0.00978, 0.02360, 0.00150, 0.01974, 0.00074]

V (key, decoded) = vigenere_decrypt(english_frequences, encoded)
print(‘Key: ’key)
print("\nText: "decoded)
Output:
Key: THECHESHIRECAT

Text: THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVE...

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program vigneredecrypt64.s   */

/* REMARK 1 :  to avoid float use, The calculations of the evaluations
   are made in integer numbers */
/* REMARK 2 : occurences characters counter  are limited to a byte size */
/* REMARK 3 : program inspired to C rosetta program */

/*******************************************/
/* Constantes                              */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc" 

.equ LENALPHA,  26
.equ BUFFERSIZE, 2000
.equ KEYSIZE,  50
.equ OCCURSMAXI, 255
/*******************************************/
/*   Macros                              */
/*******************************************/
//.include "../../ficmacros64.inc"            // for developer debugging


/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessDebutPgm:   .asciz "Program 64 bits start. \n"
szCarriageReturn: .asciz "\n"
szMessFinOK:      .asciz "Program normal end. \n"
szMessError:      .asciz "\nError  Buffer too small!!!\n"
szMessPossible:   .asciz "Possible key :"
szMessDecrip:     .asciz "\nDecrypted :\n" 
szMessCharinv:    .asciz "Error. Character invalid!."
szMessErrOcc:     .asciz "Maxi occurennces characters!."
szMessBest:       .asciz " <-------Best key"
szString1:        .ascii "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH"
                  .ascii "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD"
                  .ascii "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS"
                  .ascii "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG"
                  .ascii "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ"
                  .ascii "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS"
                  .ascii "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT"
                  .ascii "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST"
                  .ascii "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH"
                  .ascii "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV"
                  .ascii "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW"
                  .ascii "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO"
                  .ascii "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR"
                  .ascii "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX"
                  .ascii "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB"
                  .ascii "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA"
                  .asciz "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
.equ LGSTRING1,  . - szString1 
.align 4
tabFreq:          .quad 8167, 1492, 2782, 4253, 12702, 2228, 2015
                  .quad 6094, 6966, 153, 772, 4025, 2406, 6749
                  .quad 7507, 1929, 95, 5987, 6327, 9056, 2758
                  .quad  978, 2360, 150, 1974, 74
.equ NBFREQ,        . - tabFreq                       

/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss 
sBuffex1:                .skip LGSTRING1
sBuffex2:                .skip BUFFERSIZE
sKey:                    .skip KEYSIZE
sBestKey:                .skip KEYSIZE
/*******************************************/
/*  code section */
/*******************************************/
.text
.global main 
main: 
    ldr x0,qAdrszMessDebutPgm
    bl affichageMess
 
    ldr x0,qAdrszString1          // string address
    ldr x1,qAdrsBuffex1           // buffer
    bl convertText                // string char conversion
    mov x5,x0                     // result length
    ldr x0,qAdrsBuffex1           // buffer

    mov x4,#1                     //.quaderval
    mov x6,#-1                    // evaluation high value
1:
    ldr x0,qAdrsBuffex1           // converted buffer
    mov x1,x5                     // length
    mov x2,x4                     //.quaderval
    ldr x3,qAdrsBuffex2           // key 
    bl searchKey
    mov x7,x0                     // save return result
    ldr x0,qAdrszMessPossible
    bl affichageMess
    ldr x0,qAdrsBuffex2           // display decrypted buffer 
    bl affichageMess 
    cmp x7,x6                     // best evaluation ?
    bhi 3f
    mov x6,x7                     // yes -> save new value
    ldr x0,qAdrszMessBest         // message display
    bl affichageMess
    mov x8,#0
    ldr x9,qAdrsBuffex2 
    ldr x10,qAdrsBestKey
2:                                 // copy best key loop          
    ldrb w12,[x9,x8]
    strb w12,[x10,x8]
    cmp x12,#0
    beq 3f
    add x8,x8,#1
    b 2b
    
3:      
    ldr x0,qAdrszCarriageReturn
    bl affichageMess 
    add x4,x4,#1
    cmp x4,#30                    //.quaderval maxi ?
    blt 1b                        // and loop 
                                  // decrypt with best key
    ldr x0,qAdrszString1
    ldr x1,qAdrsBestKey
    ldr x2,qAdrsBuffex2
    bl decrypt
    ldr x0,qAdrszMessDecrip
    bl affichageMess
    ldr x0,qAdrsBuffex2           // display decrypted buffer 
    bl affichageMess 
    ldr x0,qAdrszCarriageReturn
    bl affichageMess 
    
    ldr x0,qAdrszMessFinOK
    bl affichageMess
    b 100f
99:
    ldr x0,qAdrszMessError        // error
    bl affichageMess
    mov x0, #1    
100:                              // standard end of the program
    mov x0, #0                    // return code
    mov x8,EXIT 
    svc 0                         // perform system call
qAdrszMessDecrip:         .quad szMessDecrip
qAdrszMessPossible:       .quad szMessPossible
qAdrszMessBest:           .quad szMessBest
qAdrszString1:            .quad szString1
qAdrsBuffex1:             .quad sBuffex1
qAdrsBuffex2:             .quad sBuffex2
qAdrszMessDebutPgm:       .quad szMessDebutPgm
qAdrszMessFinOK:          .quad szMessFinOK
qAdrszCarriageReturn:     .quad szCarriageReturn
qAdrszMessError:          .quad szMessError
qAdrsBestKey:             .quad sBestKey
/******************************************************************/
/*     convert text in position and supp char non alpha                     */ 
/******************************************************************/
/* x0 contains the address of the string1 */
/* x1 contains key address of buffer
/* x0 return buffer lenght  */
convertText:
    stp x3,lr,[sp,-16]!          // save  registers 
    stp x4,x5,[sp,-16]!          // save  registers 
    stp x6,x7,[sp,-16]!          // save  registers 
    mov x3,#0                 // counter byte string 1
    mov x5,#0                 // counter byte buffer
1:
    ldrb  w2,[x0,x3]          // load char
    cmp x2,#0                 // final zero ?
    beq 10f
    cmp x2,#65                // < A ?
    cinc x3,x3,lt
    blt 1b
    cmp x2,#90                // > Z
    cinc x3,x3,gt             // no minuscul
    bgt 1b
    sub x2,x2,#'A'            // compute rank
    cmp x2,#26
    ble 2f
    ldr x0,qAdrszMessCharinv
    bl affichageMess
    mov x0,#-1
    b 100f
 2:
    strb w2,[x1,x5]          //
    add x5,x5,#1
    add x3,x3,#1
    b 1b
10:
    strb w2,[x1,x5]          // final zero
    mov x0,x5

100:
    ldp x6,x7,[sp],16        // restaur  registers 
    ldp x4,x5,[sp],16        // restaur  registers 
    ldp x3,lr,[sp],16            // restaur  registers
    ret 
 qAdrszMessCharinv:      .quad szMessCharinv
/******************************************************************/
/*     decrypt strings                                           */ 
/******************************************************************/
/* x0 contains the address of the converted string1 */
/* x1 contains converted string1 length  */
/* x2 contains.quaderval             */
/* x3 contains address result buffer */
searchKey:
    stp x2,lr,[sp,-16]!          // save  registers 
    stp x3,x4,[sp,-16]!          // save  registers
    stp x5,x6,[sp,-16]!          // save  registers
    stp x7,x8,[sp,-16]!          // save  registers
    stp x9,x10,[sp,-16]!         // save  registers
    stp x11,x12,[sp,-16]!        // save  registers
    sub sp,sp,#80            // area reserve on stack ( 26 * 2)
    mov x7,sp                // save stack address occurences counter 
    add x9,x7,#32            // best occurences counter
    mov x4,#0
    mov x5,#0 
1:                           // init area best occurences counter
    strb w5,[x9,x4]
    add x4,x4,#1
    cmp x4,#LENALPHA
    ble 1b   
    
    mov x6,#0                // j
2:
    mov x4,#0
    mov x5,#0
3:                           // init area  occurences counter
    strb w5,[x7,x4]
    add x4,x4,#1
    cmp x4,#LENALPHA
    ble 3b 
    
    mov x4,x6                // indice
4:
   ldrb w5,[x0,x4]           // load byte
   ldrb w8,[x7,x5]           // load one occurence counter
   add x8,x8,#1              // compute occurence char in.quadervall
   cmp x8,#255               // byte maxi ?
   ble 41f
   ldr x0,qAdrszMessErrOcc
   bl affichageMess
   mov x0,#-1
   b 100f
41:
   strb w8,[x7,x5]           // store new occurence
   add x4,x4,x2              // add.quaderval
   cmp x4,x1                 // compare length string
   blt 4b
   
   mov x8,x0                 // save register
   mov x9,x1                 // save register
   mov x0,x7                 // occurences area address on stack
   ldr x1,qAdrtabFreq        // frequence area
   bl recherche
   mov x5,x0                 // best rotation for this.quaderval
   mov x0,x8
   mov x1,x9
   add x8,x5,#'A'            // key letter
   strb w8,[x3,x6]           // store in key result
   add x9,x7,#32             // 
   mov x4,#0
5:
   add x10,x4,x5             // add rotation to indice
   sub x11,x10,#LENALPHA
   cmp x10,#LENALPHA
   csel x10,x11,x10,ge
   ldrb w10,[x7,x10]         // load result
   ldrb w11,[x9,x4]
   add x11,x11,x10           // add to general counter
   strb w11,[x9,x4]          // store
   add x4,x4,#1
   cmp x4,#LENALPHA
   blt 5b                    // and loop
   
   
   add x6,x6,#1              // increment indice
   cmp x6,x2                 //.quaderval ?
   blt 2b                    // and loop 
   mov x11,#0                // sum
   mov x4,#0                 // indice
6:                           // loop compute sum
   ldrb w5,[x9,x4]
   add x11,x11,x5
   add x4,x4,#1
   cmp x4,#LENALPHA
   blt 6b
   
   mov x4,#0
   ldr x8,qAdrtabFreq
   mov x0,#0                 // return evaluation value
7:
   ldrb w5,[x9,x4]           // load occurence
   ldr x6,iMulti             // factor to avoid float use
   mul x5,x6,x5
   udiv x5,x5,x11            // divide by sum
   ldr x1,[x8,x4,lsl #3]     // load frequence
   sub x5,x5,x1
   mov x10,x5
   mul x10,x5,x10            // square
   udiv  x10,x10,x1          // divide by freq
   add x0,x0,x10             // add to final result   
   add x4,x4,#1
   cmp x4,#LENALPHA
   blt 7b
   mov x4,#0                 // key final zero
   strb w4,[x3,x2]
   
   add sp,sp,#80             // free areas on stack
100:
    ldp x11,x12,[sp],16      // restaur  registers
    ldp x9,x10,[sp],16       // restaur  registers
    ldp x7,x8,[sp],16        // restaur  registers
    ldp x5,x6,[sp],16        // restaur  registers
    ldp x3,x4,[sp],16        // restaur  registers
    ldp x2,lr,[sp],16        // restaur  registers
    ret 
 qAdrtabFreq:        .quad tabFreq 
 qAdrszMessErrOcc:   .quad szMessErrOcc
/******************************************************************/
/*      search best offset                                         */ 
/******************************************************************/
/* x0 contains address array counter occurences */
/* x1 contains address array frequence  */
/* x0 return result             */
recherche:
    stp x2,lr,[sp,-16]!          // save  registers 
    stp x3,x4,[sp,-16]!          // save  registers
    stp x5,x6,[sp,-16]!          // save  registers
    stp x7,x8,[sp,-16]!          // save  registers
    stp x9,x10,[sp,-16]!         // save  registers
    stp x11,x12,[sp,-16]!        // save  registers
    mov x12,#-1          // high value rotation
    mov x3,#0
    mov x4,#0
    mov x8,#0            // sum
1:                       // loop compute sum
    ldrb w2,[x0,x4]
    add x8,x8,x2
    add x4,x4,#1
    cmp x4,#LENALPHA
    blt 1b
    mov x6,#0            // rotate
2:
    mov x5,#0
    mov x4,#0            // indice
3:
    add x7,x4,x6
    sub x9,x7,#LENALPHA
    cmp x7,#LENALPHA
    csel x7,x9,x7,ge
   // subge x7,#LENALPHA
    
    ldrb w9,[x0,x7]
    ldr x10,iMulti        // factor to avoid float use
    mul x9,x10,x9
    udiv x9,x9,x8         // divide by sum
    ldr x10,[x1,x4,lsl #3] // load frequency
    sub x9,x9,x10
    mov x11,x9
    mul x9,x11,x9          // square
    
    udiv x9,x9,x10         // frequency divide
    add x5,x5,x9           // add to final result
    add x4,x4,#1
    cmp x4,#LENALPHA
    blt 3b  
    cmp x5,x12             // best evalation ?
    bhs 4f
    mov x12,x5
    mov x3,x6              // save best rotate
4:
    add x6,x6,#1
    cmp x6,#LENALPHA
    blt 2b
    mov x0,x3              // return result
    
    
100:
    ldp x11,x12,[sp],16            // restaur  registers
    ldp x9,x10,[sp],16            // restaur  registers
    ldp x7,x8,[sp],16            // restaur  registers
    ldp x5,x6,[sp],16            // restaur  registers
    ldp x3,x4,[sp],16            // restaur  registers
    ldp x2,lr,[sp],16            // restaur  registers
    ret 
iMulti:        .quad 100000
/******************************************************************/
/*     decrypt strings                                           */ 
/******************************************************************/
/* x0 contains the address of the encrypted string1 */
/* x1 contains the  key   */
/* x2 contains the address of the decrypted buffer */
decrypt:
    stp x3,lr,[sp,-16]!       // save  registers 
    stp x4,x5,[sp,-16]!       // save  registers 
    stp x6,x7,[sp,-16]!       // save  registers 
    stp x8,x9,[sp,-16]!       // save  registers 
    mov x3,#0                 // counter byte string 1
    mov x5,#0                 // counter byte buffer

1:
    mov x4,#0                 // counter byte key
2:
    ldrb w6,[x1,x4]           // load byte key 
    cmp w6,#0                 // end key
    beq 1b
    sub x6,x6,#'A'
    add x4,x4,#1
3:
    ldrb w7,[x0,x3]           // load byte string 1
    cmp x7,#0                 // zero final ?
    bne 4f
    strb w7,[x2,x5]
    mov x0,x5
    b 100f
4:
    cmp x7,#65                // < A ?
    cinc x3,x3,lt
    blt 3b
    cmp x7,#90                // > Z
    cinc x3,x3,gt             // no minuscul
    bgt 3b
    sub x7,x7,x6              // add key
    add x8,x7,26
    cmp x7,#65                // < A
    csel x7,x8,x7,lt
    strb w7,[x2,x5]
    add x5,x5,#1
    add x3,x3,#1              // other byte of string
    b 2b                      // other byte of key


100:
    ldp x8,x9,[sp],16        // restaur  registers 
    ldp x6,x7,[sp],16        // restaur  registers 
    ldp x4,x5,[sp],16        // restaur  registers 
    ldp x3,lr,[sp],16            // restaur  registers
    ret 
/***************************************************/
/*      ROUTINES INCLUDE                 */
/***************************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeARM64.inc"
Output:
Program 64 bits start.
Possible key :E <-------Best key
Possible key :EC <-------Best key
Possible key :TEE
Possible key :THEC <-------Best key
Possible key :EEEPU
Possible key :TCECEC
Possible key :THECSAS <-------Best key
Possible key :TJQGAHET
Possible key :VEIZSEGNT
Possible key :ECEGAWQTDS
Possible key :TNLUSRXPTAJ
Possible key :XLECTHQGTHEC
Possible key :LJJTDGFNOTENR
Possible key :THECHESHIRECAT <-------Best key
Possible key :JNTOOEEXFTGQTNH
Possible key :TJTSAEETEXHPXHNE
Possible key :AZRAXUHEJLREEXIEE
Possible key :VNIZQPALEPTSXSEXUC
Possible key :FUCAITCSLVTEZDUDEHS
Possible key :EQXGAHWTTQECEWUGXHPI
Possible key :HVRCSAFTHEBDLSTAERSES
Possible key :TVIJTCIGKAQPELECRXPTNC
Possible key :KKEQXGPWTCQEELIEHXUWASV
Possible key :ELAIXHQTTIEDXJETTNTGAEPC
Possible key :OTJUUEGERDNQTUQEAGWUTIEOA
Possible key :IGITEGECAGAVUNLJAHASAVTETW
Possible key :TEEFSXHXAPXSNMEXSEVNHDSHWBD
Possible key :THECHESCIRECATTHECHESHIRECAT <-------Best key
Possible key :IPSVPRZGTSHNJCAESXUEHEBEPEXAC

Decrypted :
THISWASYHEPOEMTHATALICEREADJABBERWOHKYTWASBRILLIGANDTHESLITHYTOAESDIDGYREANDGIMBLEINTHEWABEFLLMIMSYWERETHEBOROGOVESANDTMEMOMERATHSOUTGRABEBEWARETHEOABBERWOCKMYSONTHEJAWSTHATBIYETHECLAWSTHATCATCHBEWARETHEOUBJUBBIRDANDSHUNTHEFRUMIOUSGANDERSNATCHHETOOKHISVORPALSBORDINHANDLONGTIMETHEMANXOMEKOEHESOUGHTSORESTEDHEBYTHETURTUMTREEANDSTOODAWHILEINTHOULHTANDASINUFFISHTHOUGHTHESTOTDTHEJABBERWOCKWITHEYESOFFLARECAMEWHIFFLINGTHROUGHTHETULLEYWOODANDBURBLEDASITCAMEONEYWOONETWOANDTHROUGHANDTHROUGMTHEVORPALBLADEWENTSNICKERSNFCKHELEFTITDEADANDWITHITSHEAIHEWENTGALUMPHINGBACKANDHASTYHOUSLAINTHEJABBERWOCKCOMETORYARMSMYBEAMISHBOYOFRABJOUSDFYCALLOOHCALLAYHECHORTLEDINHNSJOYTWASBRILLIGANDTHESLITHYYOVESDIDGYREANDGIMBLEINTHEWAGEALLMIMSYWERETHEBOROGOVESANITHEMOMERATHSOUTGRABEITSEEMSAERYPRETTYSHESAIDWHENSHEHADFNNISHEDITBUTITSRATHERHARDTOUSDERSTAND
Program normal end.

Ada

The program is not fully auto, but makes a small number of suggestions for the right key and plaintext.

with Ada.Text_IO;

procedure Vignere_Cryptanalysis is

   subtype Letter is Character range 'A' .. 'Z';

   function "+"(X, Y: Letter) return Letter is
   begin
      return Character'Val( ( (Character'Pos(X)-Character'Pos('A'))
                                + (Character'Pos(Y)-Character'Pos('A')) ) mod 26
                          + Character'Pos('A'));
   end;

   function "-"(X, Y: Letter) return Letter is
   begin
      return Character'Val( ( (Character'Pos(X)-Character'Pos('A'))
                                - (Character'Pos(Y)-Character'Pos('A')) ) mod 26
                          + Character'Pos('A'));
   end;

   type Frequency_Array is array (Letter) of Float;

   English: Frequency_Array :=
     ( 0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
       0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
       0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
       0.00978, 0.02360, 0.00150, 0.01974, 0.00074 );

   function Get_Frequency(S: String) return Frequency_Array is
      Result: Frequency_Array := (others => 0.0);
      Offset: Float := 1.0/Float(S'Length);
   begin
      for I in S'Range loop
         if S(I) in Letter then
            Result(S(I)) := Result(S(I)) + Offset;
         end if;
      end loop;
      return Result;
   end Get_Frequency;

   function Remove_Whitespace(S: String) return String is
   begin
      if S="" then
         return "";
      elsif S(S'First) in Letter then
         return S(S'First) & Remove_Whitespace(S(S'First+1 .. S'Last));
      else
         return Remove_Whitespace(S(S'First+1 .. S'Last));
      end if;
   end Remove_Whitespace;

   function Distance(A, B: Frequency_Array;
                     Offset: Character := 'A') return Float is
      Result: Float := 0.0;
      Diff: Float;
   begin
      for C in A'Range loop
         Diff := A(C+Offset) - B(C);
         Result := Result + (Diff * Diff);
      end loop;
      return Result;
   end Distance;

   function Find_Key(Cryptogram: String; Key_Length: Positive) return String is

      function Find_Caesar_Key(S: String) return Letter is
         Frequency: Frequency_Array := Get_Frequency(S);
         Candidate: Letter := 'A'; -- a fake candidate
         Candidate_Dist : Float := Distance(Frequency, English, 'A');
         New_Dist: Float;

      begin

         for L in Letter range 'B' .. 'Z' loop
            New_Dist := Distance(Frequency, English, L);
            if New_Dist <= Candidate_Dist then
               Candidate_Dist := New_Dist;
               Candidate      := L;
            end if;
         end loop;
         return Candidate;
      end Find_Caesar_Key;

      function Get_Slide(S: String; Step: Positive) return String is
      begin
         if S'Length= 0 then
            return "";
         else
            return S(S'First) & Get_Slide(S(S'First+Step .. S'Last), Step);
         end if;
      end Get_Slide;

      Key: String(1 .. Key_Length);

      S: String renames Cryptogram;

   begin
      for I in Key'Range loop
         Key(I) := Find_Caesar_Key(Get_Slide(S(S'First+I-1 .. S'Last),
                                             Key_Length));
      end loop;
      return Key;
   end Find_Key;

   function Key_Char(Key: String; Index: Positive) return Letter is
   begin
      if Index > Key'Last then
         return Key_Char(Key, Index-Key'Last);
      else
         return Key(Index);
      end if;
   end Key_Char;

   Ciphertext: String := Remove_Whitespace(
     "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" &
     "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" &
     "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" &
     "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" &
     "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" &
     "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" &
     "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" &
     "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" &
     "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" &
     "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" &
     "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" &
     "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" &
     "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" &
     "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" &
     "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" &
     "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" &
     "FWAML ZZRXJ EKAHV FASMU LVVUT TGK");

   Best_Plain: String := Ciphertext;
   Best_Dist:  Float := Distance(English, Get_Frequency(Best_Plain));
   Best_Key:   String := Ciphertext;
   Best_Key_L: Natural := 0;

begin -- Vignere_Cryptanalysis
   for I in 1 .. Ciphertext'Length/10 loop
      declare
         Key: String(1 .. I) := Find_Key(Ciphertext, I);
         Plaintext: String(Ciphertext'Range);
      begin
         for I in Ciphertext'Range loop
            Plaintext(I) := Ciphertext(I) - Key_Char(Key, I);
         end loop;
         if Distance(English, Get_Frequency(Plaintext)) < Best_Dist then
            Best_Plain := Plaintext;
            Best_Dist  := Distance(English, Get_Frequency(Plaintext));
            Best_Key(1 .. I) := Key;
            Best_Key_L := I;
            if Best_dist < 0.01 then
               declare
                  use Ada.Text_IO;
               begin
                  Put_Line("Key       =" & Best_Key(1 .. Best_Key_L));
                  Put_Line("Distance = " & Float'Image(Best_Dist));
                  New_Line;
                  Put_Line("Plaintext =");
                  Put_Line(Best_Plain);
                  New_Line; New_Line;
               end;
            end if;
         end if;
      end;
   end loop;
end Vignere_Cryptanalysis;

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
/* ARM assembly Raspberry PI  */
/*  program vigneredecrypt.s   */
/* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* REMARK 2 :  to avoid float use, The calculations of the evaluations
   are made in integer numbers */
/* REMARK 3 : occurences characters counter  are limited to a byte size */
/* REMARK 4 : program inspired to C rosetta program */
/*******************************************/
/* Constantes                              */
/*******************************************/
.include "../constantes.inc"

.equ LENALPHA,  26
.equ BUFFERSIZE, 2000
.equ KEYSIZE,  50
.equ OCCURSMAXI, 255
/*******************************************/
/*   Macros                              */
/*******************************************/
//.include "../../ficmacros32.inc"            @ for developer debugging


/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessDebutPgm:   .asciz "Program 32 bits start. \n"
szCarriageReturn: .asciz "\n"
szMessFinOK:      .asciz "Program normal end. \n"
szMessError:      .asciz "\nError  Buffer too small!!!\n"
szMessPossible:   .asciz "Possible key :"
szMessDecrip:     .asciz "\nDecrypted :\n" 
szMessCharinv:    .asciz "Error. Character invalid!."
szMessErrOcc:     .asciz "Maxi occurennces characters!."
szMessBest:       .asciz " <-------Best key"
szString1:        .ascii "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH"
                  .ascii "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD"
                  .ascii "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS"
                  .ascii "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG"
                  .ascii "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ"
                  .ascii "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS"
                  .ascii "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT"
                  .ascii "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST"
                  .ascii "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH"
                  .ascii "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV"
                  .ascii "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW"
                  .ascii "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO"
                  .ascii "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR"
                  .ascii "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX"
                  .ascii "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB"
                  .ascii "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA"
                  .asciz "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
.equ LGSTRING1,  . - szString1 
.align 4
tabFreq:          .int 8167, 1492, 2782, 4253, 12702, 2228, 2015
                  .int 6094, 6966, 153, 772, 4025, 2406, 6749
                  .int 7507, 1929, 95, 5987, 6327, 9056, 2758
                  .int  978, 2360, 150, 1974, 74
.equ NBFREQ,        . - tabFreq                       

/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss 
sBuffer1:                .skip LGSTRING1
sBuffer2:                .skip BUFFERSIZE
sKey:                    .skip KEYSIZE
sBestKey:                .skip KEYSIZE
/*******************************************/
/*  code section */
/*******************************************/
.text
.global main 
main: 
    ldr r0,iAdrszMessDebutPgm
    bl affichageMess
 
    ldr r0,iAdrszString1          @ string address
    ldr r1,iAdrsBuffer1           @ buffer
    bl convertText                @ string char conversion
    mov r5,r0                     @ result length
    ldr r0,iAdrsBuffer1           @ buffer

    mov r4,#1                     @ interval
    mov r6,#-1                    @ evaluation high value
1:
    ldr r0,iAdrsBuffer1           @ converted buffer
    mov r1,r5                     @ length
    mov r2,r4                     @ interval
    ldr r3,iAdrsBuffer2           @ key 
    bl searchKey
    mov r7,r0                     @ save return result
    
    ldr r0,iAdrszMessPossible
    bl affichageMess
    ldr r0,iAdrsBuffer2           @ display decrypted buffer 
    bl affichageMess 
    cmp r7,r6                     @ best evaluation ?
    bhi 3f
    mov r6,r7                     @ yes -> save new value
    ldr r0,iAdrszMessBest         @ message display
    bl affichageMess
    mov r8,#0
    ldr r9,iAdrsBuffer2 
    ldr r10,iAdrsBestKey
2:                                 @ copy best key loop          
    ldrb r12,[r9,r8]
    strb r12,[r10,r8]
    cmp r12,#0
    beq 3f
    add r8,r8,#1
    b 2b
    
3:      
    ldr r0,iAdrszCarriageReturn
    bl affichageMess 
    add r4,r4,#1
    cmp r4,#30                    @ interval maxi ?
    blt 1b                        @ and loop 
                                  @ decrypt with best key
    ldr r0,iAdrszString1
    ldr r1,iAdrsBestKey
    ldr r2,iAdrsBuffer2
    bl decrypt
    ldr r0,iAdrszMessDecrip
    bl affichageMess
    ldr r0,iAdrsBuffer2           @ display decrypted buffer 
    bl affichageMess 
    ldr r0,iAdrszCarriageReturn
    bl affichageMess 
    
    ldr r0,iAdrszMessFinOK
    bl affichageMess
    b 100f
99:
    ldr r0,iAdrszMessError        @ error
    bl affichageMess
    mov r0, #1    
100:                              @ standard end of the program
    mov r0, #0                    @ return code
    mov r7, #EXIT                 @ request to exit program
    svc 0                         @ perform system call
iAdrszMessDecrip:         .int szMessDecrip
iAdrszMessPossible:       .int szMessPossible
iAdrszMessBest:           .int szMessBest
iAdrszString1:            .int szString1
iAdrsBuffer1:             .int sBuffer1
iAdrsBuffer2:             .int sBuffer2
iAdrszMessDebutPgm:       .int szMessDebutPgm
iAdrszMessFinOK:          .int szMessFinOK
iAdrszCarriageReturn:     .int szCarriageReturn
iAdrszMessError:          .int szMessError
iAdrsBestKey:             .int sBestKey
/******************************************************************/
/*     convert text in position and supp char non alpha                     */ 
/******************************************************************/
/* r0 contains the address of the string1 */
/* r1 contains key address of buffer
/* r0 return buffer lenght  */
convertText:
    push {r3-r7,lr}           @ save  registers  
    mov r3,#0                 @ counter byte string 1
    mov r5,#0                 @ counter byte buffer
1:
    ldrb  r2,[r0,r3]          @ load char
    cmp r2,#0                 @ final zero ?
    beq 10f
    cmp r2,#65                @ < A ?
    addlt r3,#1
    blt 1b
    cmp r2,#90                @ > Z
    addgt r3,#1               @ no minuscul
    bgt 1b
    sub r2,r2,#'A'            @ compute rank
    cmp r2,#26
    ble 2f
    ldr r0,iAdrszMessCharinv
    bl affichageMess
    mov r0,#-1
    b 100f
 2:
    strb r2,[r1,r5]          @
    add r5,r5,#1
    add r3,r3,#1
    b 1b
10:
    strb r2,[r1,r5]          @ final zero
    mov r0,r5

100:
    pop {r3-r7,lr}            @ restaur registers
    bx lr                     @ return
 iAdrszMessCharinv:      .int szMessCharinv
/******************************************************************/
/*     decrypt strings                                           */ 
/******************************************************************/
/* r0 contains the address of the converted string1 */
/* r1 contains converted string1 length  */
/* r2 contains interval             */
/* r3 contains address result buffer */
searchKey:
    push {r2-r11,lr}         @ save  registers 
    sub sp,sp,#64            @ area reserve on stack ( 26 * 2)
    mov r7,sp                @ save stack address occurences counter 
    add r9,r7,#28            @ best occurences counter
    mov r4,#0
    mov r5,#0 
1:                           @ init area best occurences counter
    strb r5,[r9,r4]
    add r4,r4,#1
    cmp r4,#LENALPHA
    ble 1b   
    
    mov r6,#0                @ j
2:
    mov r4,#0
    mov r5,#0
3:                           @ init area  occurences counter
    strb r5,[r7,r4]
    add r4,r4,#1
    cmp r4,#LENALPHA
    ble 3b 
    
    mov r4,r6                @ indice
4:
   ldrb r5,[r0,r4]           @ load byte
   ldrb r8,[r7,r5]           @ load one occurence counter
   add r8,r8,#1              @ compute occurence char in intervall
   cmp r8,#255               @ byte maxi ?
   ble 41f
   ldr r0,iAdrszMessErrOcc
   bl affichageMess
   mov r0,#-1
   b 100f
41:
   strb r8,[r7,r5]           @ store new occurence
   add r4,r4,r2              @ add interval
   cmp r4,r1                 @ compare length string
   blt 4b
   
   mov r8,r0                 @ save register
   mov r9,r1                 @ save register
   mov r0,r7                 @ occurences area address on stack
   ldr r1,iAdrtabFreq        @ frequence area
   bl recherche
   mov r5,r0                 @ best rotation for this interval
   mov r0,r8
   mov r1,r9
   add r8,r5,#'A'            @ key letter
   strb r8,[r3,r6]           @ store in key result
   add r9,r7,#28             @ 
   mov r4,#0
5:
   add r10,r4,r5             @ add rotation to indice
   cmp r10,#LENALPHA
   subge r10,r10,#LENALPHA 
   ldrb r10,[r7,r10]         @ load result
   ldrb r11,[r9,r4]
   add r11,r11,r10           @ add to general counter
   strb r11,[r9,r4]          @ store
   add r4,r4,#1
   cmp r4,#LENALPHA
   blt 5b                    @ and loop
   
   
   add r6,r6,#1              @ increment indice
   cmp r6,r2                 @ interval ?
   blt 2b                    @ and loop 
   mov r11,#0                @ sum
   mov r4,#0                 @ indice
6:                           @ loop compute sum
   ldrb r5,[r9,r4]
   add r11,r5
   add r4,r4,#1
   cmp r4,#LENALPHA
   blt 6b
   
   mov r4,#0
   ldr r8,iAdrtabFreq
   mov r0,#0                 @ return evaluation value
7:
   ldrb r5,[r9,r4]           @ load occurence
   ldr r6,iMulti             @ factor to avoid float use
   mul r5,r6,r5
   udiv r5,r5,r11            @ divide by sum
   ldr r1,[r8,r4,lsl #2]     @ load frequence
   sub r5,r5,r1
   mov r10,r5
   mul r10,r5,r10            @ square
   udiv  r10,r10,r1          @ divide by freq
   add r0,r0,r10             @ add to final result   
   add r4,r4,#1
   cmp r4,#LENALPHA
   blt 7b
   mov r4,#0                 @ key final zero
   strb r4,[r3,r2]
   
   add sp,sp,#64             @ free areas on stack
100:
    pop {r2-r11,pc}          @ restaur registers
 iAdrtabFreq:        .int tabFreq 
 iAdrszMessErrOcc:   .int szMessErrOcc
/******************************************************************/
/*      search best offset                                         */ 
/******************************************************************/
/* r0 contains address array counter occurences */
/* r1 contains address array frequence  */
/* r0 return result             */
recherche:
    push {r2-r12,lr}     @ save  registers 
    mov r12,#-1          @ high value rotation
    mov r3,#0
    mov r4,#0
    mov r8,#0            @ sum
1:                       @ loop compute sum
    ldrb r2,[r0,r4]
    add r8,r8,r2
    add r4,r4,#1
    cmp r4,#LENALPHA
    blt 1b
    mov r6,#0            @ rotate
2:
    mov r5,#0
    mov r4,#0            @ indice
3:
    add r7,r4,r6
    cmp r7,#LENALPHA
    subge r7,#LENALPHA
    ldrb r9,[r0,r7]
    ldr r10,iMulti        @ factor to avoid float use
    mul r9,r10,r9
    udiv r9,r9,r8         @ divide by sum
    ldr r10,[r1,r4,lsl #2] @ load frequency
    sub r9,r9,r10
    mov r11,r9
    mul r9,r11,r9          @ square
    
    udiv r9,r9,r10         @ frequency divide
    add r5,r5,r9           @ add to final result
    add r4,r4,#1
    cmp r4,#LENALPHA
    blt 3b  
    cmp r5,r12             @ best evalation ?
    movlo r12,r5
    movlo r3,r6            @ save best rotate
    add r6,r6,#1
    cmp r6,#LENALPHA
    blt 2b
    mov r0,r3              @ return result
    
    
100:
    pop {r2-r12,pc}        @ restaur registers and return
iMulti:        .int 100000
/******************************************************************/
/*     decrypt strings  (see vignere program)                     */ 
/******************************************************************/
/* r0 contains the address of the encrypted string1 */
/* r1 contains the  key   */
/* r2 contains the address of the decrypted buffer */
decrypt:
    push {r3-r7,lr}           @ save  registers 
    mov r3,#0                 @ counter byte string 1
    mov r5,#0                 @ counter byte buffer

1:
    mov r4,#0                 @ counter byte key
2:
    ldrb r6,[r1,r4]           @ load byte key 
    cmp r6,#0                 @ end key
    beq 1b
    sub r6,r6,#'A'
    add r4,r4,#1
3:
    ldrb r7,[r0,r3]           @ load byte string 1
    cmp r7,#0                 @ zero final ?
    streqb r7,[r2,r5]
    moveq r0,r5
    beq 100f
    cmp r7,#65                @ < A ?
    addlt r3,#1
    blt 3b
    cmp r7,#90                @ > Z
    addgt r3,#1               @ no minuscul
    bgt 3b
    sub r7,r6                 @ add key
    cmp r7,#65                @ < A
    addlt r7,#26              @ 
    strb r7,[r2,r5]
    add r5,r5,#1
    add r3,r3,#1              @ other byte of string
    b 2b                      @ other byte of key


100:
    pop {r3-r7,lr}           @ restaur registers
    bx lr                    @ return
/***************************************************/
/*      ROUTINES INCLUDE                 */
/***************************************************/
.include "../affichage.inc"
Output:
Program 32 bits start.
Possible key :E <-------Best key
Possible key :EC <-------Best key
Possible key :TEE
Possible key :THEC <-------Best key
Possible key :EEEPU
Possible key :TCECEC
Possible key :THECSAS <-------Best key
Possible key :TJQGAHET
Possible key :VEIZSEGNT
Possible key :ECEGAWQTDS
Possible key :TNLUSRXPTAJ
Possible key :XLECTHQGTHEC
Possible key :LJJTDGFNOTENR
Possible key :THECHESHIRECAT <-------Best key
Possible key :JNTOOEEXFTGQTNH
Possible key :TJTSAEETEXHPXHNE
Possible key :AZRAXUHEJLREEXIEE
Possible key :VNIZQPALEPTSXSEXUC
Possible key :FUCAITCSLVTEZDUDEHS
Possible key :EQXGAHWTTQECEWUGXHPI
Possible key :HVRCSAFTHEBDLSTAERSES
Possible key :TVIJTCIGKAQPELECRXPTNC
Possible key :KKEQXGPWTCQEELIEHXUWASV
Possible key :ELAIXHQTTIEDXJETTNTGAEPC
Possible key :OTJUUEGERDNQTUQEAGWUTIEOA
Possible key :IGITEGECAGAVUNLJAHASAVTETW
Possible key :TEEFSXHXAPXSNMEXSEVNHDSHWBD
Possible key :THECHESCIRECATTHECHESHIRECAT <-------Best key
Possible key :IPSVPRZGTSHNJCAESXUEHEBEPEXAC

Decrypted :
THISWASYHEPOEMTHATALICEREADJABBERWOHKYTWASBRILLIGANDTHESLITHYTOAESDIDGYREANDGIMBLEINTHEWABEFLLMIMSYWERETHEBOROGOVESANDTMEMOMERATHSOUTGRABEBEWARETHEOABBERWOCKMYSONTHEJAWSTHATBIYETHECLAWSTHATCATCHBEWARETHEOUBJUBBIRDANDSHUNTHEFRUMIOUSGANDERSNATCHHETOOKHISVORPALSBORDINHANDLONGTIMETHEMANXOMEKOEHESOUGHTSORESTEDHEBYTHETURTUMTREEANDSTOODAWHILEINTHOULHTANDASINUFFISHTHOUGHTHESTOTDTHEJABBERWOCKWITHEYESOFFLARECAMEWHIFFLINGTHROUGHTHETULLEYWOODANDBURBLEDASITCAMEONEYWOONETWOANDTHROUGHANDTHROUGMTHEVORPALBLADEWENTSNICKERSNFCKHELEFTITDEADANDWITHITSHEAIHEWENTGALUMPHINGBACKANDHASTYHOUSLAINTHEJABBERWOCKCOMETORYARMSMYBEAMISHBOYOFRABJOUSDFYCALLOOHCALLAYHECHORTLEDINHNSJOYTWASBRILLIGANDTHESLITHYYOVESDIDGYREANDGIMBLEINTHEWAGEALLMIMSYWERETHEBOROGOVESANITHEMOMERATHSOUTGRABEITSEEMSAERYPRETTYSHESAIDWHENSHEHADFNNISHEDITBUTITSRATHERHARDTOUSDERSTAND
Program normal end.

C

This finds the right key (I think, I didn't try to decode it after getting the key). The program is not fully auto, but by its output, the result is pretty obvious.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

const char *encoded =
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH"
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD"
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS"
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG"
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ"
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS"
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT"
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST"
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH"
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV"
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW"
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO"
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR"
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX"
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB"
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA"
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK";

const double freq[] = {
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074
};

int best_match(const double *a, const double *b) {
    double sum = 0, fit, d, best_fit = 1e100;
    int i, rotate, best_rotate = 0;
    for (i = 0; i < 26; i++)
        sum += a[i];
    for (rotate = 0; rotate < 26; rotate++) {
        fit = 0;
        for (i = 0; i < 26; i++) {
            d = a[(i + rotate) % 26] / sum - b[i];
            fit += d * d / b[i];
        }

        if (fit < best_fit) {
            best_fit = fit;
            best_rotate = rotate;
        }
    }

    return best_rotate;
}

double freq_every_nth(const int *msg, int len, int interval, char *key) {
    double sum, d, ret;
    double out[26], accu[26] = {0};
    int i, j, rot;

    for (j = 0; j < interval; j++) {
        for (i = 0; i < 26; i++)
            out[i] = 0;
        for (i = j; i < len; i += interval)
            out[msg[i]]++;
        key[j] = rot = best_match(out, freq);
        key[j] += 'A';
        for (i = 0; i < 26; i++)
            accu[i] += out[(i + rot) % 26];
    }

    for (i = 0, sum = 0; i < 26; i++)
        sum += accu[i];

    for (i = 0, ret = 0; i < 26; i++) {
        d = accu[i] / sum - freq[i];
        ret += d * d / freq[i];
    }

    key[interval] = '\0';
    return ret;
}

int main() {
    int txt[strlen(encoded)];
    int len = 0, j;
    char key[100];
    double fit, best_fit = 1e100;

    for (j = 0; encoded[j] != '\0'; j++)
        if (isupper(encoded[j]))
            txt[len++] = encoded[j] - 'A';

    for (j = 1; j < 30; j++) {
        fit = freq_every_nth(txt, len, j, key);
        printf("%f, key length: %2d, %s", fit, j, key);
        if (fit < best_fit) {
            best_fit = fit;
            printf(" <--- best so far");
        }
        printf("\n");
    }

    return 0;
}

C++

Not guaranteed to give a 100% correct answer, but it works here. Requires C++0x.

#include <iostream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <array>
using namespace std;

typedef array<pair<char, double>, 26> FreqArray;

class VigenereAnalyser 
{
private:
  array<double, 26> targets;
  array<double, 26> sortedTargets;
  FreqArray freq;

  // Update the freqs array
  FreqArray& frequency(const string& input) 
  {
    for (char c = 'A'; c <= 'Z'; ++c)
      freq[c - 'A'] = make_pair(c, 0);

    for (size_t i = 0; i < input.size(); ++i)
      freq[input[i] - 'A'].second++;

    return freq;
  }

  double correlation(const string& input) 
  {
    double result = 0.0;
    frequency(input);

    sort(freq.begin(), freq.end(), [](pair<char, double> u, pair<char, double> v)->bool
      { return u.second < v.second; });

    for (size_t i = 0; i < 26; ++i)
      result += freq[i].second * sortedTargets[i];

    return result;
  }

public:
  VigenereAnalyser(const array<double, 26>& targetFreqs) 
  {
    targets = targetFreqs;
    sortedTargets = targets;
    sort(sortedTargets.begin(), sortedTargets.end());
  }

  pair<string, string> analyze(string input) 
  {
    string cleaned;
    for (size_t i = 0; i < input.size(); ++i) 
    {
      if (input[i] >= 'A' && input[i] <= 'Z')
        cleaned += input[i];
      else if (input[i] >= 'a' && input[i] <= 'z')
        cleaned += input[i] + 'A' - 'a';
    }

    size_t bestLength = 0;
    double bestCorr = -100.0;

    // Assume that if there are less than 20 characters
    // per column, the key's too long to guess
    for (size_t i = 2; i < cleaned.size() / 20; ++i) 
    {
      vector<string> pieces(i);
      for (size_t j = 0; j < cleaned.size(); ++j)
        pieces[j % i] += cleaned[j];

      // The correlation increases artificially for smaller
      // pieces/longer keys, so weigh against them a little
      double corr = -0.5*i;
      for (size_t j = 0; j < i; ++j)
        corr += correlation(pieces[j]);

      if (corr > bestCorr) 
      {
        bestLength = i;
        bestCorr = corr;
      }
    }

    if (bestLength == 0)
      return make_pair("Text is too short to analyze", "");

    vector<string> pieces(bestLength);
    for (size_t i = 0; i < cleaned.size(); ++i)
      pieces[i % bestLength] += cleaned[i];

    vector<FreqArray> freqs;
    for (size_t i = 0; i < bestLength; ++i)
      freqs.push_back(frequency(pieces[i]));

    string key = "";
    for (size_t i = 0; i < bestLength; ++i) 
    {
      sort(freqs[i].begin(), freqs[i].end(), [](pair<char, double> u, pair<char, double> v)->bool
        { return u.second > v.second; });

      size_t m = 0;
      double mCorr = 0.0;
      for (size_t j = 0; j < 26; ++j) 
      {
        double corr = 0.0;
        char c = 'A' + j;
        for (size_t k = 0; k < 26; ++k) 
        {
          int d = (freqs[i][k].first - c + 26) % 26;
          corr += freqs[i][k].second * targets[d];
        }

        if (corr > mCorr) 
        {
          m = j;
          mCorr = corr;
        }
      }

      key += m + 'A';
    }

    string result = "";
    for (size_t i = 0; i < cleaned.size(); ++i)
      result += (cleaned[i] - key[i % key.length()] + 26) % 26 + 'A';

    return make_pair(result, key);
  }
};

int main() 
{
  string input =
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH"
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD"
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS"
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG"
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ"
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS"
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT"
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST"
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH"
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV"
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW"
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO"
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR"
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX"
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB"
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA"
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK";

  array<double, 26> english = {
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228,
    0.02015, 0.06094, 0.06966, 0.00153, 0.00772, 0.04025,
    0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987,
    0.06327, 0.09056, 0.02758, 0.00978, 0.02360, 0.00150,
    0.01974, 0.00074};

  VigenereAnalyser va(english);
  pair<string, string> output = va.analyze(input);

  cout << "Key: " << output.second << endl << endl;
  cout << "Text: " << output.first << endl;
}

D

Translation of: C++
import std.stdio, std.algorithm, std.typecons, std.string,
       std.array, std.numeric, std.ascii;

string[2] vigenereDecrypt(in double[] targetFreqs, in string input) {
    enum nAlpha = std.ascii.uppercase.length;

    static double correlation(in string txt, in double[] sTargets)
    pure nothrow /*@safe*/ @nogc {
        uint[nAlpha] charCounts = 0;
        foreach (immutable c; txt)
            charCounts[c - 'A']++;
        return charCounts[].sort().release.dotProduct(sTargets);
    }

    static frequency(in string txt) pure nothrow @safe {
        auto freqs = new Tuple!(char,"c", uint,"d")[nAlpha];
        foreach (immutable i, immutable c; std.ascii.uppercase)
            freqs[i] = tuple(c, 0);
        foreach (immutable c; txt)
            freqs[c - 'A'].d++;
        return freqs;
    }

    static string[2] decode(in string cleaned, in string key)
    pure nothrow @safe {
        assert(!key.empty);
        string decoded;
        foreach (immutable i, immutable c; cleaned)
            decoded ~= (c - key[i % $] + nAlpha) % nAlpha + 'A';
        return [key, decoded];
    }

    static size_t findBestLength(in string cleaned,
                                 in double[] sTargets)
    pure nothrow /*@safe*/ {
        size_t bestLength;
        double bestCorr = -100.0;

        // Assume that if there are less than 20 characters
        // per column, the key's too long to guess
        foreach (immutable i; 2 .. cleaned.length / 20) {
            auto pieces = new Appender!string[i];
            foreach (immutable j, immutable c; cleaned)
                pieces[j % i] ~= c;

            // The correlation seems to increase for smaller
            // pieces/longer keys, so weigh against them a little
            double corr = -0.5 * i;
            foreach (const p; pieces)
                corr += correlation(p.data, sTargets);

            if (corr > bestCorr) {
                bestLength = i;
                bestCorr = corr;
            }
        }

        return bestLength;
    }

    static string findKey(in string cleaned, in size_t bestLength,
                          in double[] targetFreqs) pure nothrow @safe {
        auto pieces = new string[bestLength];
        foreach (immutable i, immutable c; cleaned)
            pieces[i % bestLength] ~= c;

        string key;
        foreach (fr; pieces.map!frequency) {
            fr.sort!q{ a.d > b.d };

            size_t m;
            double maxCorr = 0.0;
            foreach (immutable j, immutable c; uppercase) {
                double corr = 0.0;
                foreach (immutable frc; fr) {
                    immutable di = (frc.c - c + nAlpha) % nAlpha;
                    corr += frc.d * targetFreqs[di];
                }

                if (corr > maxCorr) {
                    m = j;
                    maxCorr = corr;
                }
            }

            key ~= m + 'A';
        }

        return key;
    }

    immutable cleaned = input.toUpper.removechars("^A-Z");

    //immutable sortedTargets = targetFreqs.sorted;
    immutable sortedTargets = targetFreqs.dup.sort().release.idup;

    immutable bestLength = findBestLength(cleaned, sortedTargets);
    if (bestLength == 0)
        throw new Exception("Text is too short to analyze.");

    immutable string key = findKey(cleaned, bestLength, targetFreqs);
    return decode(cleaned, key);
}


void main() {
    immutable encoded = "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG
JSPXY ALUYM NSMYH VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF
WHTCQ KMLRD ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA
LWQIS FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ ILOVV
RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS JLAKI FHXUF
XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT LPRWM JAZPK LQUZA
ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST MTEOE PAPJH SMFNB YVQUZ
AALGA YDNMP AQOWT UHDBV TSMUE UIMVH QGVRW AEFSP EMPVE PKXZY WLKJA
GWALT VYYOB YIXOK IHPDS EVLEV RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY
IMAPX UOISK PVAGN MZHPW TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV
YOVDJ SOLXG TGRVO SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV
GJOKM SIFPR ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO
ZQDLX BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA FWAML
ZZRXJ EKAHV FASMU LVVUT TGK";

    immutable englishFrequences = [0.08167, 0.01492, 0.02782, 0.04253,
        0.12702, 0.02228, 0.02015, 0.06094, 0.06966, 0.00153, 0.00772,
        0.04025, 0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987,
        0.06327, 0.09056, 0.02758, 0.00978, 0.02360, 0.00150, 0.01974,
        0.00074];

    immutable key_dec = vigenereDecrypt(englishFrequences, encoded);
    writefln("Key: %s\n\nText: %s", key_dec[0], key_dec[1]);
}
Output (cut):
Key: THECHESHIRECAT

Text: THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHY...

FreeBASIC

Type FreqPair
    As String * 1 c
    As Double freq
End Type

Function frequency(inputText() As Integer, inputLen As Integer) As FreqPair Ptr
    Dim As FreqPair Ptr result = Callocate(26 * Sizeof(FreqPair))
    Dim As Integer i
    
    For i = 0 To 25
        result[i].c = Chr(65 + i)
        result[i].freq = 0.0
    Next
    
    For i = 0 To inputLen - 1
        result[inputText(i) - 65].freq += 1
    Next
    
    Return result
End Function

Function correlation(inputText() As Integer, inputLen As Integer, sorted_targets() As Double) As Double
    Dim As FreqPair Ptr freq = frequency(inputText(), inputLen)
    Dim As Integer i, j
    Dim As Double result = 0.0
    
    'Sort freq by frequency
    For i = 0 To 24
        For j = i + 1 To 25
            If freq[j].freq > freq[i].freq Then Swap freq[j], freq[i]
        Next
    Next
    
    For i = 0 To 25
        result += freq[i].freq * sorted_targets(i)
    Next
    
    Deallocate(freq)
    Return result
End Function

Sub vigenereDecrypt(targetFreqs() As Double, encoded As String, Byref outKey As String, Byref outText As String)
    Dim As Integer cleaned(Len(encoded))
    Dim As Integer cleanedLen = 0
    Dim As Integer i, j, k
    
    'Clean inputText
    For i = 1 To Len(encoded)
        Dim As String c = Mid(encoded, i, 1)
        If c >= "A" And c <= "Z" Then
            cleaned(cleanedLen) = Asc(c)
            cleanedLen += 1
        End If
    Next
    
    'Sort target frequencies
    Dim As Double sorted_targets(25)
    For i = 0 To 25
        sorted_targets(i) = targetFreqs(i)
    Next
    For i = 0 To 24
        For j = i + 1 To 25
            If sorted_targets(j) > sorted_targets(i) Then Swap sorted_targets(j), sorted_targets(i)
        Next
    Next
    
    'Find best key length
    Dim As Integer bestLen = 0
    Dim As Double bestCorr = -100.0
    
    For keyLen As Integer = 2 To cleanedLen \ 20
        Dim As Integer pieces(cleanedLen)
        Dim As Integer pieceLens(keyLen)
        
        For j = 0 To cleanedLen - 1
            pieces(j) = cleaned(j)
            pieceLens(j Mod keyLen) += 1
        Next
        
        Dim As Double corr = -0.5 * keyLen
        For i = 0 To keyLen - 1
            Dim As Integer currentPiece(cleanedLen)
            Dim As Integer currentLen = 0
            
            For j = i To cleanedLen - 1 Step keyLen
                currentPiece(currentLen) = pieces(j)
                currentLen += 1
            Next
            
            corr += correlation(currentPiece(), currentLen, sorted_targets())
        Next
        
        If corr > bestCorr Then
            bestLen = keyLen
            bestCorr = corr
        End If
    Next
    
    'Find key
    outKey = ""
    For i = 0 To bestLen - 1
        Dim As Integer piece(cleanedLen)
        Dim As Integer pieceLen = 0
        
        For j = i To cleanedLen - 1 Step bestLen
            piece(pieceLen) = cleaned(j)
            pieceLen += 1
        Next
        
        Dim As Double maxCorr = 0.0
        Dim As Integer bestShift = 0
        
        For shift As Integer = 0 To 25
            Dim As Double corr = 0.0
            For j = 0 To pieceLen - 1
                k = (piece(j) - 65 - shift + 26) Mod 26
                corr += targetFreqs(k)
            Next
            If corr > maxCorr Then
                maxCorr = corr
                bestShift = shift
            End If
        Next
        
        outKey += Chr(bestShift + 65)
    Next
    
    'Decrypt
    outText = ""
    For i = 0 To cleanedLen - 1
        k = Asc(Mid(outKey, (i Mod bestLen) + 1, 1)) - 65
        outText &= Chr(((cleaned(i) - 65 - k + 26) Mod 26) + 65)
    Next
End Sub

'Main program
Dim As Double english_freqs(25) = { _
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015, _
0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749, _
0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758, _
0.00978, 0.02360, 0.00150, 0.01974, 0.00074 }

Dim As String encoded = _
"MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" & _
"VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" & _
"ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" & _
"FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" & _
"ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" & _
"ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" & _
"JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" & _
"LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" & _
"MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" & _
"QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" & _
"RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" & _
"TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" & _
"SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" & _
"ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" & _
"BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" & _
"BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" & _
"FWAML ZZRXJ EKAHV FASMU LVVUT TGK"

Dim As String key, decoded
vigenereDecrypt(english_freqs(), encoded, key, decoded)

Print "Key: "; key
Print !"\nDecoded text: "; decoded

Sleep

Go

Translation of: Kotlin
package main

import (
    "fmt"
    "strings"
)

var encoded = 
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"

var freq = [26]float64{
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074,
}

func sum(a []float64) (sum float64) {
    for _, f := range a {
        sum += f
    }
    return
}

func bestMatch(a []float64) int {
    sum := sum(a)
    bestFit, bestRotate := 1e100, 0
    for rotate := 0; rotate < 26; rotate++ {
        fit := 0.0
        for i := 0; i < 26; i++ {
            d := a[(i+rotate)%26]/sum - freq[i]
            fit += d * d / freq[i]
        }
        if fit < bestFit {
            bestFit, bestRotate = fit, rotate
        }
    }
    return bestRotate
}

func freqEveryNth(msg []int, key []byte) float64 {
    l := len(msg)
    interval := len(key)
    out := make([]float64, 26)
    accu := make([]float64, 26)
    for j := 0; j < interval; j++ {
        for k := 0; k < 26; k++ {
            out[k] = 0.0
        }
        for i := j; i < l; i += interval {
            out[msg[i]]++
        }
        rot := bestMatch(out)
        key[j] = byte(rot + 65)
        for i := 0; i < 26; i++ {
            accu[i] += out[(i+rot)%26]
        }
    }
    sum := sum(accu)
    ret := 0.0
    for i := 0; i < 26; i++ {
        d := accu[i]/sum - freq[i]
        ret += d * d / freq[i]
    }
    return ret
}

func decrypt(text, key string) string {
    var sb strings.Builder
    ki := 0
    for _, c := range text {
        if c < 'A' || c > 'Z' {
            continue
        }
        ci := (c - rune(key[ki]) + 26) % 26
        sb.WriteRune(ci + 65)
        ki = (ki + 1) % len(key)
    }
    return sb.String()
}

func main() {
    enc := strings.Replace(encoded, " ", "", -1)
    txt := make([]int, len(enc))
    for i := 0; i < len(txt); i++ {
        txt[i] = int(enc[i] - 'A')
    }
    bestFit, bestKey := 1e100, ""
    fmt.Println("  Fit     Length   Key")
    for j := 1; j <= 26; j++ {
        key := make([]byte, j)
        fit := freqEveryNth(txt, key)
        sKey := string(key)
        fmt.Printf("%f    %2d     %s", fit, j, sKey)
        if fit < bestFit {
            bestFit, bestKey = fit, sKey
            fmt.Print(" <--- best so far")
        }
        fmt.Println()
    }
    fmt.Println("\nBest key :", bestKey)
    fmt.Printf("\nDecrypted text:\n%s\n", decrypt(enc, bestKey))
}
Output:

Note: carriage returns inserted into decrypted text after every 80 characters to make it more readable.

  Fit     Length   Key
2.984348     1     E <--- best so far
2.483684     2     EC <--- best so far
2.642487     3     TEE
1.976651     4     THEC <--- best so far
2.356881     5     EEEPU
2.203129     6     TCECEC
1.051163     7     THECSAS <--- best so far
1.645763     8     TJQGAHET
2.001380     9     VEIZSEGNT
1.824476    10     ECEGAWQTDS
1.623083    11     TNLUSRXPTAJ
1.253527    12     XLECTHQGTHEC
1.399037    13     LJJTDGFNOTENR
0.152370    14     THECHESHIRECAT <--- best so far
1.533951    15     JNTOOEEXFTGQTNH
1.068182    16     TJTSAEETEXHPXHNE
1.034093    17     AZRAXUHEJLREEXIEE
1.443345    18     VNIZQPALEPTSXSEXUC
1.090977    19     FUCAITCSLVTEZDUDEHS
0.979868    20     EQXGAHWTTQECEWUGXHPI
0.789410    21     HVRCSAFTHEBDLSTAERSES
0.881380    22     TVIJTCIGKAQPELECRXPTNC
0.952456    23     KKEQXGPWTCQEELIEHXUWASV
0.715968    24     ELAIXHQTTIEDXJETTNTGAEPC
0.891258    25     OTJUUEGERDNQTUQEAGWUTIEOA
0.852784    26     IGITEGECAGAVUNLJAHASAVTETW

Best key : THECHESHIRECAT

Decrypted text:
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMB
LEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYS
ONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNA
TCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMT
REEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAM
ECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHR
OUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACK
ANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHE
CHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWER
ETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDIT
BUTITSRATHERHARDTOUNDERSTAND

Haskell

{-# LANGUAGE TupleSections #-}
import Data.List(transpose, nub, sort, maximumBy)
import Data.Ord (comparing)
import Data.Char (ord)
import Data.Map (Map, fromListWith, toList, findWithDefault)

average :: Fractional a => [a] -> a
average as = sum as / fromIntegral (length as)

-- Create a map from each entry in list to the number of occurrences of
-- that entry in the list.
countEntries :: Ord a => [a] -> Map a Int
countEntries = fromListWith (+) . fmap (,1)

-- Break a string up into substrings of n chars.
breakup :: Int -> [a] -> [[a]]
breakup _ [] = []
breakup n as = 
    let (h, r) = splitAt n as
    in h:breakup n r

-- Dole out elements of a string over a n element distribution.
distribute :: [a] -> Int -> [[a]]
distribute as n = transpose $ breakup n as

-- The probability that members of a pair of characters taken randomly
-- from a given string are equal.
coincidence :: (Ord a, Fractional b) => [a] -> b
coincidence str = 
    let charCounts = snd <$> toList (countEntries str)
        strln = length str
        d = fromIntegral $ strln * (strln - 1)
        n = fromIntegral $ sum $ fmap (\cc -> cc * (cc-1)) charCounts
    in n / d

-- Use the average probablity of coincidence for all the members of
-- a distribution to rate the distribution - the higher the better.
-- The correlation increases artificially for smaller
-- pieces/longer keys, so weigh against them a little
rate :: (Ord a, Fractional b) => [[a]] -> b
rate d =  average (fmap coincidence d) - fromIntegral (length d) / 3000.0 

-- Multiply elements of lists together and add up the results.
dot :: Num a => [a] -> [a] -> a
dot v0 v1 = sum $ zipWith (*) v0 v1

-- Given two lists of floats, rotate one of them by the number of
-- characters indicated by letter and then 'dot' them together.
rotateAndDot :: Num a => [a] -> [a] -> Char -> a
rotateAndDot v0 v1 letter = dot v0 (drop (ord letter - ord 'A') (cycle v1))  

-- Find decoding offset that results in best match 
-- between actual char frequencies and expected frequencies.
getKeyChar :: RealFrac a => [a] -> String -> Char
getKeyChar expected sample =
    let charCounts = countEntries sample
        countInSample c = findWithDefault 0 c charCounts
        actual = fmap (fromIntegral . countInSample) ['A'..'Z']
    in maximumBy (comparing $ rotateAndDot expected actual) ['A'..'Z']

main = do
    let cr = filter (/=' ') crypt
        -- Assume that if there are less than 20 characters
        -- per column, the key's too long to guess
        distributions = fmap (distribute cr) [1..length cr `div` 20]
        bestDistribution = maximumBy (comparing rate) distributions
        key = fmap (getKeyChar englishFrequencies) bestDistribution
        alphaSum a b = ['A'..'Z'] !! ((ord b - ord a) `mod` 26)
    mapM_ putStrLn ["Key: " ++ key, "Decrypted Text: " ++ zipWith alphaSum (cycle key) cr]

englishFrequencies = 
    [ 0.08167, 0.01492, 0.02782, 0.04253, 
      0.12702, 0.02228, 0.02015, 0.06094, 
      0.06966, 0.00153, 0.00772, 0.04025, 
      0.02406, 0.06749, 0.07507, 0.01929, 
      0.00095, 0.05987, 0.06327, 0.09056, 
      0.02758, 0.00978, 0.02360, 0.00150, 
      0.01974, 0.00074 ] 

crypt = "\
    \MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH\
    \VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD\
    \ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS\
    \FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG\
    \ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ\
    \ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS\
    \JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT\
    \LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST\
    \MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH\
    \QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV\
    \RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW\
    \TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO\
    \SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR\
    \ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX\
    \BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB\
    \BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA\
    \FWAML ZZRXJ EKAHV FASMU LVVUT TGK\
    \"
Output:
Key: THECHESHIRECAT
Decrypted Text: THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND

J

Implementation:

NB. https://en.wikipedia.org/wiki/Kasiski_examination
kasiski=: {{ 
  grams=. ({: #"1~1 < ;@{.)|:(#/.~;"0~.) g=. 3 <\ y
  deltas=. ;grams (2 -~/\ I.@E.)L:0 enc
  {:,{.\:~(#/.~,.~.)1 -.~,+./~ deltas
}}

NB. https://en.wikipedia.org/wiki/Letter_frequency
AZ=: 8 u: 65+i.26
lfreq=: 0.01*do{{)n
 8.2 1.5 2.8 4.3 13 2.2 2 6.1 7 0.15
 0.77 4 2.4 6.7 7.5 1.9 0.095 6 6.3 9.1
 2.8 0.98 2.4 0.15 2 0.074
}}-.LF


caesarkey=: {{
  freqs=. (<:#/.~AZ,y)%#y=. y ([-.-.) AZ
  AZ{~(i. <./)lfreq +/&.:*:@:-"1 (i.26)|."0 1 freqs
}}
vigenerekey=: {{ caesarkey"1|:(-kasiski y) ]\y }}

uncaesar=: {{ 26&|@-&(AZ i.x)&.(AZ&i.) y }}"0 1
unvigenere=: {{ ' '-.~,x uncaesar"0 1&.|:(-#x) ]\y }}

Here, kasiski finds all 3-grams (sequences of three adjacent letters) which appear more than once, finds all of the distances between nearest pairs of these sequences, and then further pairs each of these distances with all other distances, finding the greatest common divisor of those distance pairs. Finally, these LCDs are ordered by how many times they appear and the most frequent LCD is taken as the kasiski result.

uncaesar works by finding the frequency of occurrence of each letter of the alphabet (in alphabetical order), and then each of the 26 rotations of that sequence are compared with a text frequency alphabet (obtained from a wikipedia table). The rotation with the least root-mean-square sum of differences is chosen as the correct location, and its index is reported as a letter of the alphabet (0=A, 1=B, etc.)

(And, the length provided by kasiski is used to break out the sequences to be analyzed by uncaesar...)

Task example:

enc=: {{)n
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
}}-.LF,' '

   vigenerekey enc
THECHESHIRECAT
   _80]\'THECHESHIRECAT' unvigenere enc
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMB
LEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYS
ONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNA
TCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMT
REEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAM
ECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHR
OUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACK
ANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHE
CHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWER
ETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDIT
BUTITSRATHERHARDTOUNDERSTANDWYTWITSJWYAH

As an aside, note that we could go directly from encrypted text to decrypted text, without showing the key. For example, using:

decaesar=: {{
  freqs=. (<:#/.~AZ,y)%#y=. y ([-.-.) AZ
  ndx=. (i. <./)lfreq +/&.:*:@:-"1 (i.26)|."0 1 freqs
  26&|@-&ndx&.(AZ&i.) y
}}
devigenere=: {{ ' '-.~,decaesar"1&.|:(-kasiski y) ]\y }}

That said, it's also worth noting that noise issues mean that if this were to be used in practical contexts the approach should instead be to expose more intermediate results, rather than less, with a special focus on the representations of frequency distributions (here, we're always picking the first alternative, but it's vaguely plausible that a different alternative might actually be useful in some cases).

Java

Translation of: C
public class Vig{
static String encodedMessage =
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA FWAML ZZRXJ EKAHV FASMU LVVUT TGK";
 
final static double freq[] = {
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074
};
 

public static void main(String[] args) {
    int lenghtOfEncodedMessage = encodedMessage.length();
    char[] encoded = new char [lenghtOfEncodedMessage] ;
    char[] key =  new char [lenghtOfEncodedMessage] ;

    encodedMessage.getChars(0, lenghtOfEncodedMessage, encoded, 0);
    int txt[] = new int[lenghtOfEncodedMessage];
    int len = 0, j;

    double fit, best_fit = 1e100;
 
    for (j = 0; j < lenghtOfEncodedMessage; j++)
        if (Character.isUpperCase(encoded[j]))
            txt[len++] = encoded[j] - 'A';
 
    for (j = 1; j < 30; j++) {
        fit = freq_every_nth(txt, len, j, key);
        System.out.printf("%f, key length: %2d ", fit, j);
            System.out.print(key);
        if (fit < best_fit) {
            best_fit = fit;
            System.out.print(" <--- best so far");
        }
        System.out.print("\n");

    }
}


    static String decrypt(String text, final String key) {
        String res = "";
        text = text.toUpperCase();
        for (int i = 0, j = 0; i < text.length(); i++) {
            char c = text.charAt(i);
            if (c < 'A' || c > 'Z') continue;
            res += (char)((c - key.charAt(j) + 26) % 26 + 'A');
            j = ++j % key.length();
        }
        return res;
    }

static int best_match(final double []a, final double []b) {
    double sum = 0, fit, d, best_fit = 1e100;
    int i, rotate, best_rotate = 0;
    for (i = 0; i < 26; i++)
        sum += a[i];
    for (rotate = 0; rotate < 26; rotate++) {
        fit = 0;
        for (i = 0; i < 26; i++) {
            d = a[(i + rotate) % 26] / sum - b[i];
            fit += d * d / b[i];
        }
 
        if (fit < best_fit) {
            best_fit = fit;
            best_rotate = rotate;
        }
    }
 
    return best_rotate;
}
 
static double freq_every_nth(final int []msg, int len, int interval, char[] key) {
    double sum, d, ret;
    double  [] accu = new double [26];
    double  [] out = new double [26];
    int i, j, rot;
 
    for (j = 0; j < interval; j++) {
        for (i = 0; i < 26; i++)
            out[i] = 0;
        for (i = j; i < len; i += interval)
            out[msg[i]]++;
	rot = best_match(out, freq);
	try{
            key[j] = (char)(rot + 'A');
	} catch (Exception e) {
		System.out.print(e.getMessage());
	}
        for (i = 0; i < 26; i++)
            accu[i] += out[(i + rot) % 26];
    }
 
    for (i = 0, sum = 0; i < 26; i++)
        sum += accu[i];
 
    for (i = 0, ret = 0; i < 26; i++) {
        d = accu[i] / sum - freq[i];
        ret += d * d / freq[i];
    }
 
    key[interval] = '\0';
    return ret;
}
 
}

Julia

# ciphertext block {{{1
const ciphertext = filter(isalpha, """
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK
""")
# }}}

# character frequencies {{{1
const letters = Dict{Char, Float32}(
    'E' => 12.702,
    'T' => 9.056,
    'A' => 8.167,
    'O' => 7.507,
    'I' => 6.966,
    'N' => 6.749,
    'S' => 6.327,
    'H' => 6.094,
    'R' => 5.987,
    'D' => 4.253,
    'L' => 4.025,
    'C' => 2.782,
    'U' => 2.758,
    'M' => 2.406,
    'W' => 2.361,
    'F' => 2.228,
    'G' => 2.015,
    'Y' => 1.974,
    'P' => 1.929,
    'B' => 1.492,
    'V' => 0.978,
    'K' => 0.772,
    'J' => 0.153,
    'X' => 0.150,
    'Q' => 0.095,
    'Z' => 0.074)
const digraphs = Dict{AbstractString, Float32}(
    "TH" => 15.2,
    "HE" => 12.8,
    "IN" => 9.4,
    "ER" => 9.4,
    "AN" => 8.2,
    "RE" => 6.8,
    "ND" => 6.3,
    "AT" => 5.9,
    "ON" => 5.7,
    "NT" => 5.6,
    "HA" => 5.6,
    "ES" => 5.6,
    "ST" => 5.5,
    "EN" => 5.5,
    "ED" => 5.3,
    "TO" => 5.2,
    "IT" => 5.0,
    "OU" => 5.0,
    "EA" => 4.7,
    "HI" => 4.6,
    "IS" => 4.6,
    "OR" => 4.3,
    "TI" => 3.4,
    "AS" => 3.3,
    "TE" => 2.7,
    "ET" => 1.9,
    "NG" => 1.8,
    "OF" => 1.6,
    "AL" => 0.9,
    "DE" => 0.9,
    "SE" => 0.8,
    "LE" => 0.8,
    "SA" => 0.6,
    "SI" => 0.5,
    "AR" => 0.4,
    "VE" => 0.4,
    "RA" => 0.4,
    "LD" => 0.2,
    "UR" => 0.2)
const trigraphs = Dict{AbstractString, Float32}(
    "THE" => 18.1,
    "AND" => 7.3,
    "ING" => 7.2,
    "ION" => 4.2,
    "ENT" => 4.2,
    "HER" => 3.6,
    "FOR" => 3.4,
    "THA" => 3.3,
    "NTH" => 3.3,
    "INT" => 3.2,
    "TIO" => 3.1,
    "ERE" => 3.1,
    "TER" => 3.0,
    "EST" => 2.8,
    "ERS" => 2.8,
    "HAT" => 2.6,
    "ATI" => 2.6,
    "ATE" => 2.5,
    "ALL" => 2.5,
    "VER" => 2.4,
    "HIS" => 2.4,
    "HES" => 2.4,
    "ETH" => 2.4,
    "OFT" => 2.2,
    "STH" => 2.1,
    "RES" => 2.1,
    "OTH" => 2.1,
    "ITH" => 2.1,
    "FTH" => 2.1,
    "ONT" => 2.0)
# 1}}}

function decrypt(enc::ASCIIString, key::ASCIIString)
    const enclen = length(enc)
    const keylen = length(key)

    if keylen < enclen
        key = (key^(div(enclen - keylen, keylen) + 2))[1:enclen]
    end

    msg = Array(Char, enclen)

    for i=1:enclen
        msg[i] = Char((Int(enc[i]) - Int(key[i]) + 26) % 26 + 65)
    end

    msg::Array{Char, 1}
end

function cryptanalyze(enc::ASCIIString; maxkeylen::Integer = 20)
    const enclen = length(enc)
    maxkey = ""
    maxdec = ""
    maxscore = 0.0

    for keylen=1:maxkeylen
        key = Array(Char, keylen)
        idx = filter(x -> x % keylen == 0, 1:enclen) - keylen + 1

        for i=1:keylen
            maxsubscore = 0.0

            for j='A':'Z'
                subscore = 0.0

                for k in decrypt(enc[idx], ascii(string(j)))
                    subscore += get(letters, k, 0.0)
                end

                if subscore > maxsubscore
                    maxsubscore = subscore
                    key[i] = j
                end
            end

            idx += 1
        end

        key = join(key)
        const dec = decrypt(enc, key)
        score = 0.0

        for i in dec
            score += get(letters, i, 0.0)
        end

        for i=1:enclen - 2
            const digraph = string(dec[i], dec[i + 1])
            const trigraph = string(dec[i], dec[i + 1], dec[i + 2])

            if haskey(digraphs, digraph)
                score += 2 * get(digraphs, digraph, 0.0)
            end

            if haskey(trigraphs, trigraph)
                score += 3 * get(trigraphs, trigraph, 0.0)
            end
        end

        if score > maxscore
            maxscore = score
            maxkey = key
            maxdec = dec
        end
    end
    
    (maxkey, join(maxdec))::Tuple{ASCIIString, ASCIIString}
end

key, dec = cryptanalyze(ciphertext)
println("key: ", key, "\n\n", dec)

# post-compilation profiling run
gc()
t = @elapsed cryptanalyze(ciphertext)
println("\nelapsed time: ", t, " seconds")
Output:
key: THECHESHIRECAT

THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHY...

elapsed time: 0.042894211 seconds

Kotlin

Translation of: C

This is a reasonably faithful translation of the C entry though I've restricted the key lengths examined to 26 to automatically produce the correct key and hence decrypted text. This is because the C entry examines key lengths up to 29 and a value of 28 gives a slightly better fit even though the key produced (THECHESCIRECATTHECHESHIRECAT) and resulting text don't make as much sense and so would be rejected if one were examining the candidate keys manually.

// version 1.1.3

val encoded = 
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"

val freq = doubleArrayOf(
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074
)

fun bestMatch(a: DoubleArray): Int {
    val sum = a.sum()
    var bestFit = 1e100
    var bestRotate = 0
    for (rotate in 0..25) {
        var fit = 0.0
        for (i in 0..25) {
            val d = a[(i + rotate) % 26] / sum - freq[i]
            fit += d * d / freq[i]
        } 
        if (fit < bestFit) {
            bestFit = fit
            bestRotate = rotate
        }
    }
    return bestRotate
}

fun freqEveryNth(msg: IntArray, key: CharArray): Double {
    val len = msg.size
    val interval = key.size
    val out = DoubleArray(26)
    val accu = DoubleArray(26)
    for (j in 0 until interval) {
        out.fill(0.0)
        for (i in j until len step interval) out[msg[i]]++
        val rot = bestMatch(out)
        key[j] = (rot + 65).toChar()
        for (i in 0..25) accu[i] += out[(i + rot) % 26]
    }
    val sum = accu.sum()
    var ret = 0.0
    for (i in 0..25) {
        val d = accu[i] / sum - freq[i]
        ret += d * d / freq[i]
    }
    return ret
}

fun decrypt(text: String, key: String): String {
    val sb = StringBuilder()
    var ki = 0
    for (c in text) {
        if (c !in 'A'..'Z') continue
        val ci = (c.toInt() - key[ki].toInt() +  26) % 26
        sb.append((ci + 65).toChar())
        ki = (ki + 1) % key.length
    }
    return sb.toString()
}

fun main(args: Array<String>) {
    val enc = encoded.replace(" ", "")
    val txt = IntArray(enc.length) { enc[it] - 'A' }
    var bestFit = 1e100
    var bestKey = ""
    val f = "%f    %2d     %s"
    println("  Fit     Length   Key")
    for (j in 1..26) {
        val key = CharArray(j)
        val fit = freqEveryNth(txt, key)
        val sKey = key.joinToString("")
        print(f.format(fit, j, sKey))
        if (fit < bestFit) {
           bestFit = fit
           bestKey = sKey
           print(" <--- best so far")
        }
        println()
    }
    println()
    println("Best key : $bestKey") 
    println("\nDecrypted text:\n${decrypt(enc, bestKey)}")
}
Output:
  Fit     Length   Key
2.984348     1     E <--- best so far
2.483684     2     EC <--- best so far
2.642487     3     TEE
1.976651     4     THEC <--- best so far
2.356881     5     EEEPU
2.203129     6     TCECEC
1.051163     7     THECSAS <--- best so far
1.645763     8     TJQGAHET
2.001380     9     VEIZSEGNT
1.824476    10     ECEGAWQTDS
1.623083    11     TNLUSRXPTAJ
1.253527    12     XLECTHQGTHEC
1.399037    13     LJJTDGFNOTENR
0.152370    14     THECHESHIRECAT <--- best so far
1.533951    15     JNTOOEEXFTGQTNH
1.068182    16     TJTSAEETEXHPXHNE
1.034093    17     AZRAXUHEJLREEXIEE
1.443345    18     VNIZQPALEPTSXSEXUC
1.090977    19     FUCAITCSLVTEZDUDEHS
0.979868    20     EQXGAHWTTQECEWUGXHPI
0.789410    21     HVRCSAFTHEBDLSTAERSES
0.881380    22     TVIJTCIGKAQPELECRXPTNC
0.952456    23     KKEQXGPWTCQEELIEHXUWASV
0.715968    24     ELAIXHQTTIEDXJETTNTGAEPC
0.891258    25     OTJUUEGERDNQTUQEAGWUTIEOA
0.852784    26     IGITEGECAGAVUNLJAHASAVTETW

Best key : THECHESHIRECAT

Decrypted text:
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND

Nim

Translation of: Julia
Translation of: Phix

This is a translation of Julia algorithm with some ideas from Phix translation.

import sequtils, strutils, sugar, tables, times

const

  CipherText = """MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
                  VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
                  ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
                  FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
                  ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
                  ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
                  JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
                  LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
                  MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
                  QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
                  RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
                  TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
                  SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
                  ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
                  BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
                  BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
                  FWAML ZZRXJ EKAHV FASMU LVVUT TGK""".splitWhitespace.join()

  FreqLetters = {'E': 12.702, 'T': 9.056, 'A': 8.167, 'O': 7.507,
                 'I':  6.966, 'N': 6.749, 'S': 6.327, 'H': 6.094,
                 'R':  5.987, 'D': 4.253, 'L': 4.025, 'C': 2.782,
                 'U':  2.758, 'M': 2.406, 'W': 2.361, 'F': 2.228,
                 'G':  2.015, 'Y': 1.974, 'P': 1.929, 'B': 1.492,
                 'V':  0.978, 'K': 0.772, 'J': 0.153, 'X': 0.150,
                 'Q':  0.095, 'Z': 0.074}.toTable

  FreqDigraphs = {"TH": 15.2, "HE": 12.8, "IN": 9.4, "ER": 9.4,
                  "AN":  8.2, "RE":  6.8, "ND": 6.3, "AT": 5.9,
                  "ON":  5.7, "NT":  5.6, "HA": 5.6, "ES": 5.6,
                  "ST":  5.5, "EN":  5.5, "ED": 5.3, "TO": 5.2,
                  "IT":  5.0, "OU":  5.0, "EA": 4.7, "HI": 4.6,
                  "IS":  4.6, "OR":  4.3, "TI": 3.4, "AS": 3.3,
                  "TE":  2.7, "ET":  1.9, "NG": 1.8, "OF": 1.6,
                  "AL":  0.9, "DE":  0.9, "SE": 0.8, "LE": 0.8,
                  "SA":  0.6, "SI":  0.5, "AR": 0.4, "VE": 0.4,
                  "RA":  0.4, "LD":  0.2, "UR": 0.2}.toTable

  FreqTrigraphs = {"THE": 18.1, "AND": 7.3, "ING": 7.2, "ION": 4.2,
                   "ENT":  4.2, "HER": 3.6, "FOR": 3.4, "THA": 3.3,
                   "NTH":  3.3, "INT": 3.2, "TIO": 3.1, "ERE": 3.1,
                   "TER":  3.0, "EST": 2.8, "ERS": 2.8, "HAT": 2.6,
                   "ATI":  2.6, "ATE": 2.5, "ALL": 2.5, "VER": 2.4,
                   "HIS":  2.4, "HES": 2.4, "ETH": 2.4, "OFT": 2.2,
                   "STH":  2.1, "RES": 2.1, "OTH": 2.1, "ITH": 2.1,
                   "FTH":  2.1, "ONT": 2.0}.toTable

func decrypt(enc, key: string): string =
  let encLen = enc.len
  let keyLen = key.len
  result.setLen(encLen)
  var k = 0
  for i in 0..<encLen:
    result[i] = chr((ord(enc[i]) - ord(key[k]) + 26) mod 26 + ord('A'))
    k = (k + 1) mod keyLen

func cryptanalyze(enc: string; maxKeyLen = 20): tuple[maxKey, maxDec: string] =
  let encLen = enc.len
  var maxScore = 0.0

  for keyLen in 1..maxKeyLen:
    var key = newString(keyLen)
    var idx = collect(newSeq):
                for i in 1..encLen:
                  if i mod keyLen == 0:
                    i - keyLen

    for  i in 0..<keyLen:
      var maxSubscore = 0.0
      for j in 'A'..'Z':
        var subscore = 0.0
        let encidx = idx.mapIt(enc[it]).join()
        for k in decrypt(encidx, $j):
          subscore += FreqLetters[k]
        if subscore > maxSubscore:
          maxSubscore = subscore
          key[i] = j
      for item in idx.mitems: inc item

    let dec = decrypt(enc, key)
    var score = 0.0
    for i in dec:
      score += FreqLetters[i]

    for i in 0..(encLen - 3):
      let digraph = dec[i..(i+1)]
      let trigraph = dec[i..(i+2)]
      score += 2 * FreqDigraphs.getOrDefault(digraph)
      score += 3 * FreqTrigraphs.getOrDefault(trigraph)

    if score > maxScore:
      maxScore = score
      result.maxKey = key
      result.maxDec = dec

let t0 = cpuTime()
let (key, dec) = CipherText.cryptanalyze()
echo "key: ", key, '\n'
echo dec, '\n'
echo "Elapsed time: ", (cpuTime() - t0).formatFloat(ffDecimal, precision = 3), " s"
Output:
key: THECHESHIRECAT

THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND

Elapsed time: 0.041 s

OCaml

Original version by User:Vanyamil.

Uses the Vigenere decrypt function from the Vigenere task solution (not included in the code below).

Works with: OCaml version above 4.05
(* Task : Vigenere cipher/Cryptanalysis *)

(*  
	Given some text you suspect has been encrypted 
	with a Vigenère cipher, extract the key and plaintext.
	Uses correlation factors similar to other solutions.
	(originally tried Friedman test, didn't produce good result)
	
	Coded in a way that allows non-english (by passing frequencies).
*)

(*** Helpers ***)

(* Implementation of Float.round to avoid v4.08 *)
let round (x : float) : float = 
    let rem = mod_float x 1. in
    if rem >= 0.5 
    then ceil x
    else floor x

(* A function that updates array element at a position *)
let array_update (arr : 'a array) (idx : int) (update : 'a -> 'a) : unit =
    let curr = Array.get arr idx in
    Array.set arr idx (update curr)

(*** Actual task at hand ***)

(* the n'th element of array is how often the n'th letter was found *)
let observe_coincidences ?(step : int = 1) ?(offset : int = 0) (text : string) : int array =
    let arr = Array.make 26 0 in
    let a_code = Char.code 'A' in
    String.iteri (fun idx c -> if idx mod step = offset then array_update arr (Char.code c - a_code) succ) text;
    arr

(* Obtain correlation factor for the observed coincidences *)
let correlation_factor ?(sort : bool = true) (coincidences : int array) (freqs : float list) : float =
    let clist = Array.to_list coincidences in
    let clist = (if sort then List.sort compare clist else clist) in
    List.fold_left2 (fun acc c f -> acc +. (float_of_int c *. f)) 0. clist freqs

(* Translation of the test used in other Rosetta Code solutions *)
let shifted_coincidences_test (freqs : float list) (text : string) : int = 
    let sorted_freqs = List.sort compare freqs in
    let bestCorr = -100. in 
    let max_keylen = String.length text / 20 in
    let rec helper idx (cur_len, cur_corr) (best_len, best_corr) = 
        if cur_len = max_keylen then (* Finished testing everything *)
            best_len
        else if idx = cur_len then (* Finished testing this key length *)
            let (best_len, best_corr) = if cur_corr > best_corr then (cur_len, cur_corr) else (best_len, best_corr) in
            helper 0 (cur_len + 1,  ~-.0.5 *. float_of_int (cur_len + 1)) (best_len, best_corr)
        else
            let coincidences = observe_coincidences ~step:cur_len ~offset:idx text in
            let factor = correlation_factor coincidences sorted_freqs in
            helper (succ idx) (cur_len, cur_corr +. factor) (best_len, best_corr)
    in
    helper 0 (2, ~-.1.) (1, ~-.100.)

(* Returns the most likely shift value for this set *)
let break_caesar ?(step : int = 1) ?(offset : int = 0) (text : string) (freqs : float list) : int =
    let c_arr = observe_coincidences ~step ~offset text in
    let rec helper l curShift (maxShift, maxCorr) = 
        if curShift = 26 
        then maxShift
        else
            let corr = correlation_factor ~sort:false c_arr l in
            let l' = List.tl l @ [List.hd l] in
            if corr > maxCorr 
            then helper l' (curShift + 1) (curShift, corr)
            else helper l' (curShift + 1) (maxShift, maxCorr)
    in
    helper freqs 0 (-1, -100.)

let break (keylen : int) (text : string) (freqs : float list) : key = 
    let rec getCaesars idx acc = 
        if idx >= keylen then acc else
        let shift = break_caesar ~step:keylen ~offset:idx text freqs in
        let new_code = if shift = 0 then Char.code 'A' else Char.code 'Z' + 1 - shift in
        getCaesars (succ idx) (acc ^ Char.(new_code |> chr |> escaped))
    in
    getCaesars 0 ""

let cryptanalyze (freqs : float list) (text : string) : key * string = 
    let text = ascii_upper_letters_only text in
    let keylen = shifted_coincidences_test freqs text in
    let key = break keylen text freqs in
    let pt = decrypt key text in
    (key, pt)

(*** Output ***)

let _ =
    let long_text = "\
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH \
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD \
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS \
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG \
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ \
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS \
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT \
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST \
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH \
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV \
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW \
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO \
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR \
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX \
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB \
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA \
FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
    in
    let english_freqs = [
        0.08167; 0.01492; 0.02782; 0.04253; 0.12702; 0.02228; 0.02015;
        0.06094; 0.06966; 0.00153; 0.00772; 0.04025; 0.02406; 0.06749;
        0.07507; 0.01929; 0.00095; 0.05987; 0.06327; 0.09056; 0.02758;
        0.00978; 0.02360; 0.00150; 0.01974; 0.00074
    ] 
    in
    let (key, pt) = cryptanalyze english_freqs long_text in
    Printf.printf "Key:  %s\n\nText: %s" key pt
;;
Output:
Key:  THECHESHIRECAT

Text: THISWASTHEPOEMTHATALICEREADJABBERWOC...

Perl

use strict;
use warnings;
use feature 'say';

# from Wikipedia
my %English_letter_freq = (
     E => 12.70,  L => 4.03,  Y => 1.97,  P => 1.93,  T => 9.06,  A => 8.17,  O => 7.51,  I => 6.97,  N => 6.75,
     S =>  6.33,  H => 6.09,  R => 5.99,  D => 4.25,  C => 2.78,  U => 2.76,  M => 2.41,  W => 2.36,  F => 2.23,
     G =>  2.02,  B => 1.29,  V => 0.98,  K => 0.77,  J => 0.15,  X => 0.15,  Q => 0.10,  Z => 0.07
);
my @alphabet = sort keys %English_letter_freq;
my $max_key_lengths = 5; # number of keylengths to try

sub myguess {
    my ($text) = (@_);
    my ($seqtext, @spacing, @factors, @sortedfactors, $pos, %freq, %Keys);

    # Kasiski examination
    $seqtext = $text;
    while ($seqtext =~ /(...).*\1/) {
        $seqtext = substr($seqtext, 1+index($seqtext, $1));
        push @spacing,  1 + index($seqtext, $1);
    }

    for my $j (@spacing) {
        push @factors, grep { $j % $_ == 0 } 2..$j;
    }
    $freq{$_}++ for @factors;
    @sortedfactors = grep { $_ >= 4 } sort { $freq{$b} <=> $freq{$a} } keys %freq; # discard very short keys

    for my $keylen ( @sortedfactors[0..$max_key_lengths-1] ) {
        my $keyguess = '';
        for (my $i = 0; $i < $keylen; $i++) {
            my($mykey, %chi_values, $bestguess);
            for (my $j = 0; $j < length($text); $j += $keylen) {
                $mykey .= substr($text, ($j+$i) % length($text), 1);
            }

            for my $subkey (@alphabet) {
                my $decrypted = mycrypt($mykey, $subkey);
                my $length    = length($decrypted);
                for my $char (@alphabet) {
                    my $expected = $English_letter_freq{$char} * $length / 100;
                    my $observed;
                    ++$observed while $decrypted =~ /$char/g;
                    $chi_values{$subkey} += ($observed - $expected)**2 / $expected if $observed;
                }
            }

            $Keys{$keylen}{score} = $chi_values{'A'};
            for my $sk (sort keys %chi_values) {
                if ($chi_values{$sk} <= $Keys{$keylen}{score}) {
                    $bestguess = $sk;
                    $Keys{$keylen}{score} = $chi_values{$sk};
                }
            }
            $keyguess .= $bestguess;
        }
        $Keys{$keylen}{key} = $keyguess;
    }
    map { $Keys{$_}{key} } sort { $Keys{$a}{score} <=> $Keys{$b}{score}} keys %Keys;
}

sub mycrypt {
    my ($text, $key) = @_;
    my ($new_text, %values_numbers);

    my $keylen = length($key);
    @values_numbers{@alphabet} = 0..25;
    my %values_letters = reverse %values_numbers;

    for (my $i = 0; $i < length($text); $i++) {
        my $val =  -1 * $values_numbers{substr( $key, $i%$keylen, 1)} # negative shift for decode
                 +      $values_numbers{substr($text, $i,         1)};
        $new_text .= $values_letters{ $val % 26 };
    }
    return $new_text;
}

my $cipher_text = <<~'EOD';
    MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
    VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
    ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
    FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
    ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
    ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
    JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
    LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
    MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
    QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
    RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
    TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
    SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
    ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
    BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
    BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
    FWAML ZZRXJ EKAHV FASMU LVVUT TGK
EOD

my $text = uc($cipher_text) =~ s/[^@{[join '', @alphabet]}]//gr;

for my $key ( myguess($text) ) {
    say "Key        $key\n" .
        "Key length " . length($key) . "\n" .
        "Plaintext  " . substr(mycrypt($text, $key), 0, 80) . "...\n";
}
Output:
Key        THECHESHIRECAT
Key length 14
Plaintext  THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMB...

Key        THECHESCIRECATTHECHESHIRECAT
Key length 28
Plaintext  THISWASYHEPOEMTHATALICEREADJABBERWOHKYTWASBRILLIGANDTHESLITHYTOAESDIDGYREANDGIMB...

Key        TJGGAHET
Key length 8
Plaintext  TFGODXGHWMNKEYIVLMBJACIPPTXWTBBNFRADSITFHCOSMGOTFYPOXCASLGRDFQCJTABEDSNFPTOBYIQZ...

Key        THECSAS
Key length 7
Plaintext  THISLESHIRRYENTHATPPIQFEGKDKABBEGAOQLLVGATBRILAMGOOQVRETLITHNXOJFFFSDHYREACHGWNO...

Key        THEC
Key length 4
Plaintext  THISKXGYWOPOLYIMLODNHCIGPVZAABBEFTCHZITWHEQWTGOKFARSECAJLITHMQCATCDIKSNWPVQFFIQQ...

Phix

Translation of: Julia
--
-- demo\rosetta\Cryptanalysis.exw
--
with javascript_semantics
atom t0 = time()
constant ciphertext = substitute_all("""
MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK""",{" ","\n"},{"",""})

constant letters = new_dict(
   {{'E',12.702},
    {'T',9.056},
    {'A',8.167},
    {'O',7.507},
    {'I',6.966},
    {'N',6.749},
    {'S',6.327},
    {'H',6.094},
    {'R',5.987},
    {'D',4.253},
    {'L',4.025},
    {'C',2.782},
    {'U',2.758},
    {'M',2.406},
    {'W',2.361},
    {'F',2.228},
    {'G',2.015},
    {'Y',1.974},
    {'P',1.929},
    {'B',1.492},
    {'V',0.978},
    {'K',0.772},
    {'J',0.153},
    {'X',0.150},
    {'Q',0.095},
    {'Z',0.074}})
constant digraphs = new_dict(
   {{"TH",15.2},
    {"HE",12.8},
    {"IN",9.4},
    {"ER",9.4},
    {"AN",8.2},
    {"RE",6.8},
    {"ND",6.3},
    {"AT",5.9},
    {"ON",5.7},
    {"NT",5.6},
    {"HA",5.6},
    {"ES",5.6},
    {"ST",5.5},
    {"EN",5.5},
    {"ED",5.3},
    {"TO",5.2},
    {"IT",5.0},
    {"OU",5.0},
    {"EA",4.7},
    {"HI",4.6},
    {"IS",4.6},
    {"OR",4.3},
    {"TI",3.4},
    {"AS",3.3},
    {"TE",2.7},
    {"ET",1.9},
    {"NG",1.8},
    {"OF",1.6},
    {"AL",0.9},
    {"DE",0.9},
    {"SE",0.8},
    {"LE",0.8},
    {"SA",0.6},
    {"SI",0.5},
    {"AR",0.4},
    {"VE",0.4},
    {"RA",0.4},
    {"LD",0.2},
    {"UR",0.2}})
constant trigraphs = new_dict(
   {{"THE",18.1},
    {"AND",7.3},
    {"ING",7.2},
    {"ION",4.2},
    {"ENT",4.2},
    {"HER",3.6},
    {"FOR",3.4},
    {"THA",3.3},
    {"NTH",3.3},
    {"INT",3.2},
    {"TIO",3.1},
    {"ERE",3.1},
    {"TER",3.0},
    {"EST",2.8},
    {"ERS",2.8},
    {"HAT",2.6},
    {"ATI",2.6},
    {"ATE",2.5},
    {"ALL",2.5},
    {"VER",2.4},
    {"HIS",2.4},
    {"HES",2.4},
    {"ETH",2.4},
    {"OFT",2.2},
    {"STH",2.1},
    {"RES",2.1},
    {"OTH",2.1},
    {"ITH",2.1},
    {"FTH",2.1},
    {"ONT",2.0}})
 
function decrypt(string enc, string key)
    integer keylen = length(key), k = 1
    string msg = repeat(' ', length(enc))
    for i=1 to length(enc) do
        msg[i] = mod(enc[i]-key[k]+26,26)+'A'
        k = mod(k,keylen)+1
    end for
    return msg
end function
 
function cryptanalyze(string enc, integer maxkeylen=20)
    integer enclen = length(enc)
    string maxkey = "",
           maxdec = "",
           k1 = " "
    atom maxscore = 0.0
 
    for keylen=1 to maxkeylen do
        string key = repeat(' ',keylen)
        sequence idx = {}
        for i=1 to enclen do
            if mod(i,keylen)=0 then
                idx &= i-keylen+1
            end if
        end for

        for i=1 to keylen do
            atom maxsubscore = 0.0
 
            for j='A' to 'Z' do
                atom subscore = 0.0
 
                k1[1] = j
                string encidx = ""
                for ii=1 to length(idx) do
                    encidx &= enc[idx[ii]]
                end for
                string dec = decrypt(encidx,k1)
                for di=1 to length(dec) do
                    subscore += getd(dec[di],letters)
                end for
 
                if subscore > maxsubscore then
                    maxsubscore = subscore
                    key[i] = j
                end if
            end for
 
            idx = sq_add(idx,1)
        end for
 
        string dec = decrypt(enc, key)
        atom score = 0.0
 
        for i=1 to length(dec) do
            score += getd(dec[i],letters)
        end for
 
        for i=1 to enclen - 2 do
            string digraph = dec[i..i+1]
            string trigraph = dec[i..i + 2]
            score += 2 * getd(digraph,digraphs)
            score += 3 * getd(trigraph,trigraphs)
        end for
 
        if score > maxscore then
            maxscore = score
            maxkey = key
            maxdec = dec
        end if
    end for
 
    return {maxkey,maxdec}
end function
 
function fold(string s, integer w)
    for i=w to length(s) by w do
        s[i..i-1] = "\n"
    end for
    return s
end function

string {key, dec} = cryptanalyze(ciphertext)
printf(1,"key: %s\n\n%s\n\n", {key, fold(dec,80)})
 
printf(1,"elapsed time: %3.2f seconds",{time()-t0})

{} = wait_key()
Output:
key: THECHESHIRECAT

THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIM
BLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKM
YSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDER
SNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUM
TUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESO
FFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGH
ANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPH
INGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOH
CALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEAL
LMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHAD
FINISHEDITBUTITSRATHERHARDTOUNDERSTAND

elapsed time: 0.42 seconds

Python

Translation of: D
from string import uppercase
from operator import itemgetter

def vigenere_decrypt(target_freqs, input):
    nchars = len(uppercase)
    ordA = ord('A')
    sorted_targets = sorted(target_freqs)

    def frequency(input):
        result = [[c, 0.0] for c in uppercase]
        for c in input:
            result[c - ordA][1] += 1
        return result

    def correlation(input):
        result = 0.0
        freq = frequency(input)
        freq.sort(key=itemgetter(1))

        for i, f in enumerate(freq):
            result += f[1] * sorted_targets[i]
        return result

    cleaned = [ord(c) for c in input.upper() if c.isupper()]
    best_len = 0
    best_corr = -100.0

    # Assume that if there are less than 20 characters
    # per column, the key's too long to guess
    for i in xrange(2, len(cleaned) // 20):
        pieces = [[] for _ in xrange(i)]
        for j, c in enumerate(cleaned):
            pieces[j % i].append(c)

        # The correlation seems to increase for smaller
        # pieces/longer keys, so weigh against them a little
        corr = -0.5 * i + sum(correlation(p) for p in pieces)

        if corr > best_corr:
            best_len = i
            best_corr = corr

    if best_len == 0:
        return ("Text is too short to analyze", "")

    pieces = [[] for _ in xrange(best_len)]
    for i, c in enumerate(cleaned):
        pieces[i % best_len].append(c)

    freqs = [frequency(p) for p in pieces]

    key = ""
    for fr in freqs:
        fr.sort(key=itemgetter(1), reverse=True)

        m = 0
        max_corr = 0.0
        for j in xrange(nchars):
            corr = 0.0
            c = ordA + j
            for frc in fr:
                d = (ord(frc[0]) - c + nchars) % nchars
                corr += frc[1] * target_freqs[d]

            if corr > max_corr:
                m = j
                max_corr = corr

        key += chr(m + ordA)

    r = (chr((c - ord(key[i % best_len]) + nchars) % nchars + ordA)
         for i, c in enumerate(cleaned))
    return (key, "".join(r))


def main():
    encoded = """
        MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
        VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
        ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
        FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
        ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
        ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
        JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
        LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
        MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
        QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
        RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
        TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
        SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
        ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
        BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
        BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
        FWAML ZZRXJ EKAHV FASMU LVVUT TGK"""

    english_frequences = [
        0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
        0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
        0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
        0.00978, 0.02360, 0.00150, 0.01974, 0.00074]

    (key, decoded) = vigenere_decrypt(english_frequences, encoded)
    print "Key:", key
    print "\nText:", decoded

main()

Racket

Simple method

This is a simple method that just tries to find a key of any length that minimizes the difference from the expected English character distributions.

#lang at-exp racket

(define max-keylen 30)

(define text
  @~a{MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
      VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
      ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
      FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
      ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
      ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
      JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
      LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
      MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
      QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
      RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
      TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
      SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
      ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
      BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
      BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
      FWAML ZZRXJ EKAHV FASMU LVVUT TGK})

(define first-char (char->integer #\A))
(define chars# (- (char->integer #\Z) first-char -1))

(define freqs ; english letter frequencies from wikipedia
  ((compose1 list->vector (curry map (curryr / 100000.0)))
   '(8167 1492 2782 4253 12702 2228 2015 6094 6966 153 772 4025 2406
     6749 7507 1929 95 5987 6327 9056 2758 978 2360 150 1974 74)))

(define text* (for/vector ([c (regexp-replace* #px"\\s+" text "")])
                (- (char->integer c) first-char)))
(define N (vector-length text*))

(define (col-guesses len)
  (for/list ([ofs len])
    (define text (for/list ([i (in-range ofs N len)]) (vector-ref text* i)))
    (define cN (length text))
    (define cfreqs (make-vector chars# 0))
    (for ([c (in-list text)])
      (vector-set! cfreqs c (add1 (vector-ref cfreqs c))))
    (for ([i chars#]) (vector-set! cfreqs i (/ (vector-ref cfreqs i) cN)))
    (argmin car
      (for/list ([d chars#])
        (cons (for/sum ([i chars#])
                (expt (- (vector-ref freqs i)
                         (vector-ref cfreqs (modulo (+ i d) chars#)))
                      2))
              d)))))

(define best-key
  (cdr (argmin car
         (for/list ([len (range 1 (add1 max-keylen))])
           (define guesses (col-guesses len))
           (cons (/ (apply + (map car guesses)) len) (map cdr guesses))))))

(printf "Best key found: ")
(for ([c best-key]) (display (integer->char (+ c first-char))))
(newline)

(printf "Decoded text:\n")
(define decode-num
  (let ([cur '()])
    (λ(n) (when (null? cur) (set! cur best-key))
          (begin0 (modulo (- n (car cur)) chars#) (set! cur (cdr cur))))))
(for ([c text])
  (define n (- (char->integer c) first-char))
  (if (not (< -1 n chars#)) (display c)
      (display (integer->char (+ first-char (decode-num n))))))
(newline)

Output:

Best key found: THECHESHIRECAT
Decoded text:
THISW ASTHE POEMT HATAL ICERE ADJAB BERWO CKYTW ASBRI LLIGA
...

An attempted more complete implementation

This is an attempt at following the Wikipedia description. However, it performs just as well as the simple version. Most likely because I know almost nothing about cryptography...

#lang at-exp racket

(define max-keylen 30)

(define text
  @~a{MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
      VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
      ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
      FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
      ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
      ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
      JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
      LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
      MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
      QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
      RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
      TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
      SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
      ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
      BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
      BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
      FWAML ZZRXJ EKAHV FASMU LVVUT TGK})

(define first-char (char->integer #\A))
(define chars# (- (char->integer #\Z) first-char -1))

(define freqs ; english letter frequencies from wikipedia
  ((compose1 list->vector (curry map (curryr / 100000.0)))
   '(8167 1492 2782 4253 12702 2228 2015 6094 6966 153 772 4025 2406
     6749 7507 1929 95 5987 6327 9056 2758 978 2360 150 1974 74)))

(define (n*n-1 n) (* n (sub1 n)))

(define text* (for/vector ([c (regexp-replace* #px"\\s+" text "")])
                (- (char->integer c) first-char)))
(define N (vector-length text*))
(define (get-col-length+freqs width offset)
  (define text (for/list ([i (in-range offset N width)]) (vector-ref text* i)))
  (define cN (length text))
  (define freqs (make-vector chars# 0))
  (for ([c (in-list text)]) (vector-set! freqs c (add1 (vector-ref freqs c))))
  (values cN freqs))

(define expected-IC (* chars# (for*/sum ([x freqs]) (* x x))))

;; maps key lengths to average index of coincidence
(define keylen->ICs
  (for/vector ([len (in-range 1 (add1 (* max-keylen 2)))])
    (for/sum ([ofs len])
      (define-values [cN cfreqs] (get-col-length+freqs len ofs))
      (/ (for/sum ([i chars#]) (n*n-1 (vector-ref cfreqs i)))
         (/ (n*n-1 cN) chars#) len 1.0))))

;; given a key length find the key that minimizes errors from alphabet freqs,
;; return (cons average-error key)
(define (guess-key len)
  (define guesses
    (for/list ([ofs len])
      (define-values [cN cfreqs] (get-col-length+freqs len ofs))
      (for ([i chars#]) (vector-set! cfreqs i (/ (vector-ref cfreqs i) cN)))
      (argmin car
        (for/list ([d chars#])
          (cons (for/sum ([i chars#])
                  (expt (- (vector-ref freqs i)
                           (vector-ref cfreqs (modulo (+ i d) chars#)))
                        2))
                d)))))
  (cons (/ (apply + (map car guesses)) len) (map cdr guesses)))

;; look for a key length that minimizes error from expected-IC, with some
;; stupid consideration of multiples of the length (which should also have low
;; errors), for each one guess a key, then find the one that minimizes both (in
;; a way that looks like it works, but undoubtedly is wrong in all kinds of
;; ways) and return the winner key
(define best-key
  ((compose1 cdr (curry argmin car))
   (for/list ([i (* max-keylen 2)])
     ;; get the error from the expected-IC for the length and its multiples,
     ;; with decreasing weights for the multiples
     (define with-multiples
       (for/list ([j (in-range i (* max-keylen 2) (add1 i))] [div N])
         (cons (/ (abs (- (vector-ref keylen->ICs j) expected-IC)) expected-IC)
               (/ (add1 div)))))
     (define total (/ (for/sum ([x with-multiples]) (* (car x) (cdr x)))
                      (for/sum ([x with-multiples]) (cdr x))))
     (define guess (guess-key (add1 i)))
     (define guess*total (* total (car guess) (car guess)))
     ;; (printf "~a~a: ~a ~s\n" (if (< i 9) " " "") (add1 i)
     ;;       (list total (car guess) guess*total) (cdr guess))
     (cons guess*total (cdr guess)))))

(printf "Best key found: ")
(for ([c best-key]) (display (integer->char (+ c first-char))))
(newline)

(printf "Decoded text:\n")
(define decode-num
  (let ([cur '()])
    (λ(n) (when (null? cur) (set! cur best-key))
          (begin0 (modulo (- n (car cur)) chars#) (set! cur (cdr cur))))))
(for ([c text])
  (define n (- (char->integer c) first-char))
  (if (not (< -1 n chars#)) (display c)
      (display (integer->char (+ first-char (decode-num n))))))
(newline)

Raku

(formerly Perl 6)

Translation of: Perl
# from Wikipedia
constant %English-letter-freq = (
     E => 12.70,  L => 4.03,  Y => 1.97,  P => 1.93,  T => 9.06,  A => 8.17,  O => 7.51,  I => 6.97,  N => 6.75,
     S =>  6.33,  H => 6.09,  R => 5.99,  D => 4.25,  C => 2.78,  U => 2.76,  M => 2.41,  W => 2.36,  F => 2.23,
     G =>  2.02,  B => 1.29,  V => 0.98,  K => 0.77,  J => 0.15,  X => 0.15,  Q => 0.10,  Z => 0.07
);
constant @alphabet = %English-letter-freq.keys.sort;
constant max_key_lengths = 5; # number of keylengths to try

sub myguess ($text) {
    my ($seqtext, @spacing, @factors, $pos, %freq, %Keys);

    # Kasiski examination
    $seqtext = $text;
    while ($seqtext ~~ /$<sequence>=[...].*$<sequence>/) {
        $seqtext = substr($seqtext, 1+index($seqtext, $<sequence>));
        push @spacing, 1 + index($seqtext, $<sequence>);
    }
    for @spacing -> $j {
        %freq{$_}++ for grep { $j %% $_ }, 2..$j;
    }

    # discard very short keys, and test only the most likely remaining key lengths
    (%freq.keys.grep(* > 3).sort({%freq{$_}}).tail(max_key_lengths)).race(:1batch).map: -> $keylen {
        my $key-guess = '';
        loop (my $i = 0; $i < $keylen; $i++) {
            my ($mykey, %chi-square, $best-guess);
            loop (my $j = 0; $j < $text.chars; $j += $keylen) {
                $mykey ~= substr($text, ($j+$i) % $text.chars, 1);
            }

            for @alphabet -> $subkey {
                my $decrypted = mycrypt($mykey, $subkey);
                my $length    = $decrypted.chars;
                for @alphabet -> $char {
                    my $expected = %English-letter-freq{$char} * $length / 100;
                    my $observed = $decrypted.comb.grep(* eq $char).elems;
                    %chi-square{$subkey} += ($observed - $expected)² / $expected if $observed;
                }
            }
            %Keys{$keylen}{'score'} = %chi-square{@alphabet[0]};
            for %chi-square.keys.sort -> $sk {
                if (%chi-square{$sk} <= %Keys{$keylen}{'score'}) {
                    $best-guess = $sk;
                    %Keys{$keylen}{'score'} = %chi-square{$sk};
                }
            }
            $key-guess ~= $best-guess;
        }
        %Keys{$keylen}{'key'} = $key-guess;
    }
    %Keys.keys.sort({ %Keys{$_}{'score'} }).map:{ %Keys{$_}{'key'} };
}

sub mycrypt ($text, $key) {
    constant %values-numbers = @alphabet Z=> ^@alphabet;
    constant %values-letters = %values-numbers.invert;

    my ($new-text);
    my $keylen = $key.chars;
    loop (my $i = 0; $i < $text.chars; $i++) {
        my $val =  -1 * %values-numbers{substr( $key, $i%$keylen, 1)} # negative shift for decode
                 +      %values-numbers{substr($text, $i,         1)};
        $new-text ~= %values-letters{ $val % @alphabet };
    }
    return $new-text;
}

my $cipher-text = .uc.trans(@alphabet => '', :c) given q:to/EOD/;
    MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
    VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
    ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
    FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
    ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
    ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
    JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
    LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
    MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
    QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
    RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
    TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
    SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
    ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
    BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
    BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
    FWAML ZZRXJ EKAHV FASMU LVVUT TGK
EOD

for myguess($cipher-text) -> $key {
    say "Key        $key\n" ~
        "Key length {$key.chars}\n" ~
        "Plaintext  {substr(mycrypt($cipher-text, $key), 0, 80)}...\n";
}
Output:
Key        THECHESHIRECAT
Key length 14
Plaintext  THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMB...

Key        THECHESCIRECATTHECHESHIRECAT
Key length 28
Plaintext  THISWASYHEPOEMTHATALICEREADJABBERWOHKYTWASBRILLIGANDTHESLITHYTOAESDIDGYREANDGIMB...

Key        TJGGAHET
Key length 8
Plaintext  TFGODXGHWMNKEYIVLMBJACIPPTXWTBBNFRADSITFHCOSMGOTFYPOXCASLGRDFQCJTABEDSNFPTOBYIQZ...

Key        THECSAS
Key length 7
Plaintext  THISLESHIRRYENTHATPPIQFEGKDKABBEGAOQLLVGATBRILAMGOOQVRETLITHNXOJFFFSDHYREACHGWNO...

Key        THEC
Key length 4
Plaintext  THISKXGYWOPOLYIMLODNHCIGPVZAABBEFTCHZITWHEQWTGOKFARSECAJLITHMQCATCDIKSNWPVQFFIQQ...

Rust

Translation of: Kotlin

Note that the character to/from byte (u8) conversions work here only because the key and cryptogram are composed of ASCII characters only. Indeed, Rust's char type is a Unicode scalar value, how they are represented is well summarized in the Rust book's subchapter on strings.

use std::iter::FromIterator;

const CRYPTOGRAM: &str = "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK";

const FREQUENCIES: [f32; 26] = [
    0.08167, 0.01492, 0.02202, 0.04253, 0.12702, 0.02228, 0.02015, 0.06094, 0.06966, 0.00153,
    0.01292, 0.04025, 0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09356,
    0.02758, 0.00978, 0.02560, 0.00150, 0.01994, 0.00077,
];

fn best_match(a: &[f32]) -> u8 {
    let sum: f32 = a.iter().sum();
    let mut best_fit = std::f32::MAX;
    let mut best_rotate = 0;
    for rotate in 0..=25 {
        let mut fit = 0.;
        for i in 0..=25 {
            let char_freq = FREQUENCIES[i];
            let idx = (i + rotate as usize) % 26 as usize;
            let d = a[idx] / sum - char_freq;
            fit += d * d / char_freq;
        }
        if fit < best_fit {
            best_fit = fit;
            best_rotate = rotate;
        }
    }

    best_rotate
}

fn freq_every_nth(msg: &[u8], key: &mut [char]) -> f32 {
    let len = msg.len();
    let interval = key.len();
    let mut accu = [0.; 26];
    for j in 0..interval {
        let mut out = [0.; 26];
        for i in (j..len).step_by(interval) {
            let idx = msg[i] as usize;
            out[idx] += 1.;
        }
        let rot = best_match(&out);
        key[j] = char::from(rot + b'A');
        for i in 0..=25 {
            let idx: usize = (i + rot as usize) % 26;
            accu[i] += out[idx];
        }
    }
    let sum: f32 = accu.iter().sum();
    let mut ret = 0.;
    for i in 0..=25 {
        let char_freq = FREQUENCIES[i];
        let d = accu[i] / sum - char_freq;
        ret += d * d / char_freq;
    }
    ret
}

fn decrypt(text: &str, key: &str) -> String {
    let key_chars_cycle = key.as_bytes().iter().map(|b| *b as i32).cycle();
    let is_ascii_uppercase = |c: &u8| (b'A'..=b'Z').contains(c);
    text.as_bytes()
        .iter()
        .filter(|c| is_ascii_uppercase(c))
        .map(|b| *b as i32)
        .zip(key_chars_cycle)
        .fold(String::new(), |mut acc, (c, key_char)| {
            let ci: u8 = ((c - key_char + 26) % 26) as u8;
            acc.push(char::from(b'A' + ci));
            acc
        })
}
fn main() {
    let enc = CRYPTOGRAM
        .split_ascii_whitespace()
        .collect::<Vec<_>>()
        .join("");
    let cryptogram: Vec<u8> = enc.as_bytes().iter().map(|b| u8::from(b - b'A')).collect();
    let mut best_fit = std::f32::MAX;
    let mut best_key = String::new();
    for j in 1..=26 {
        let mut key = vec!['\0'; j];
        let fit = freq_every_nth(&cryptogram, &mut key);
        let s_key = String::from_iter(key); // 'from_iter' is imported from std::iter::FromIterator;
        if fit < best_fit {
            best_fit = fit;
            best_key = s_key;
        }
    }

    println!("best key: {}", &best_key);
    println!("\nDecrypted text:\n{}", decrypt(&enc, &best_key));
}
Output:
best key: THECHESHIRECAT

Decrypted text:
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND

Tcl

Translation of: Python
package require Tcl 8.6

oo::class create VigenereAnalyzer {
    variable letterFrequencies sortedTargets
    constructor {{frequencies {
 	0.08167 0.01492 0.02782 0.04253 0.12702 0.02228 0.02015
	0.06094 0.06966 0.00153 0.00772 0.04025 0.02406 0.06749
	0.07507 0.01929 0.00095 0.05987 0.06327 0.09056 0.02758
	0.00978 0.02360 0.00150 0.01974 0.00074
    }}} {
	set letterFrequencies $frequencies
	set sortedTargets [lsort -real $frequencies]
	if {[llength $frequencies] != 26} {
	    error "wrong length of frequency table"
	}
    }

    ### Utility methods
    # Find the value of $idxvar in the range [$from..$to) that maximizes the value
    # in $scorevar (which is computed by evaluating $body) 
    method Best {idxvar from to scorevar body} {
	upvar 1 $idxvar i $scorevar s
	set bestI $from
	for {set i $from} {$i < $to} {incr i} {
	    uplevel 1 $body
	    if {![info exist bestS] || $bestS < $s} {
		set bestI $i
		set bestS $s
	    }
	}
	return $bestI
    }
    # Simple list map
    method Map {var list body} {
	upvar 1 $var v
	set result {}
	foreach v $list {lappend result [uplevel 1 $body]}
	return $result
    }
    # Simple partition of $list into $groups groups; thus, the partition of
    # {a b c d e f} into 3 produces {a d} {b e} {c f}
    method Partition {list groups} {
	set i 0
	foreach val $list {
	    dict lappend result $i $val
	    if {[incr i] >= $groups} {
		set i 0
	    }
	}
	return [dict values $result]
    }

    ### Helper methods
    # Get the actual counts of different types of characters in the given list
    method Frequency cleaned {
	for {set i 0} {$i < 26} {incr i} {
	    dict set tbl $i 0
	}
	foreach ch $cleaned {
	    dict incr tbl [expr {[scan $ch %c] - 65}]
	}
	return $tbl
    }

    # Get the correlation factor of the characters in a given list with the
    # class-specified language frequency corpus
    method Correlation cleaned {
	set result 0.0
	set freq [lsort -integer [dict values [my Frequency $cleaned]]]
	foreach f $freq s $sortedTargets {
	    set result [expr {$result + $f * $s}]
	}
	return $result
    }

    # Compute an estimate for the key length
    method GetKeyLength {cleaned {required 20}} {
	# Assume that we need at least 20 characters per column to guess
	set bestLength [my Best i 2 [expr {[llength $cleaned] / $required}] corr {
	    set corr [expr {-0.5 * $i}]
	    foreach chars [my Partition $cleaned $i] {
		set corr [expr {$corr + [my Correlation $chars]}]
	    }
	}]
	if {$bestLength == 0} {
	    error "text is too short to analyze"
	}
	return $bestLength
    }

    # Compute the key from the given frequency tables and the class-specified
    # language frequency corpus
    method GetKeyFromFreqs freqs {
	foreach f $freqs {
	    set m [my Best i 0 26 corr {
		set corr 0.0
		foreach {ch count} $f {
		    set d [expr {($ch - $i) % 26}]
		    set corr [expr {$corr + $count*[lindex $letterFrequencies $d]}]
		}
	    }]
	    append key [format %c [expr {65 + $m}]]
	}
	return $key
    }

    ##### The main analyzer method #####
    method analyze input {
	# Turn the input into a clean letter sequence
	set cleaned [regexp -all -inline {[A-Z]} [string toupper $input]]
	# Get the (estimated) key length
	set bestLength [my GetKeyLength $cleaned]
	# Get the frequency mapping for the partitioned input text
	set freqs [my Map p [my Partition $cleaned $bestLength] {my Frequency $p}]
	# Get the key itself
	return [my GetKeyFromFreqs $freqs]
    }
}

Demonstration (that assumes that the Tcl solution to Vigenère cipher task is present):

set encoded "
    MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
    VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
    ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
    FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
    ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
    ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
    JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
    LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
    MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
    QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
    RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
    TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
    SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
    ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
    BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
    BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
    FWAML ZZRXJ EKAHV FASMU LVVUT TGK
"
VigenereAnalyzer create englishVigenereAnalyzer
set key [englishVigenereAnalyzer analyze $encoded]
Vigenere create decoder $key
set decoded [decoder decrypt $encoded]
puts "Key: $key"
puts "Text: $decoded"

Vedit macro language

This implementation is fully autonomous as long as the text is long enough and there are not too many non-English words in the original text.

The text to be analysed must be in current edit buffer. A new buffer is opened to display the results.

To automatically find the best key, a dictionary is used to find English words within the decrypted text. I have used unixdict.txt, but if you do not have it available, you can use the Scribe English dictionary that comes with Vedit. However, that is unnecessarily big. A smaller dictionary is faster and may actually give better results. It might be good idea to use dictionary that only contains the most common English words.

This implementation finds the best and 2nd best Caesar key for each key position. It then checks key combinations where max one char is taken from 2nd best Caesar key. If this does not solve some encrypted text, you could increase the number of key combinations to be checked.

// (1) Copy text into tmp buffer and remove non-alpha chars.

Chdir(PATH_ONLY)
BOF
Reg_Copy(10, ALL)                       // copy text to new buffer
Buf_Switch(Buf_Free)
Reg_Ins(10)
BOF
Replace ("|!|A", "", BEGIN+ALL+NOERR)   // remove non-alpha chars
Reg_Copy_Block(10,0,EOB_pos)            // @10 = text to be analysed

#20 = Buf_Num                           // buffer for text being analyzed
#21 = Buf_Free                          // buffer for English frequency list (A-Z)
Buf_Switch(#21)
Ins_Text("8167 1492 2782 4253 12702 2228 2015 6094 6966 153 772 4025 2406 6749 7507 1929 95 5987 6327 9056 2758 978 2360 150 1974 74")
File_Open("unixdict.txt")               // or use "|(MACRO_DIR)\scribe\english.vdf"
#23 = Buf_Num                           // buffer for dictionary
#24 = Buf_Free                          // buffer for key canditates

Buf_Switch(#24)
for (#1=0; #1<5; #1++) {                // Fill table for 5 keys of 50 chars
    Ins_Char('.', COUNT, 50)
    Ins_Newline
}
#22 = Buf_Free                          // buffer for results

#25 = Reg_Size(10)                      // number of letters in the text
#26 = 26                                // number of characters in the alphabet
#61 = min(#25/10, 50)                   // max key length to try

// (2) Check Index of coincidence (or Kp) for each key length

Buf_Switch(#22)                         // buffer for results
Ins_Text("KeyLen Kp   dist ") Ins_Newline
Ins_Text("-----------------") Ins_Newline
#13 = Cur_Pos
#7 = 0                                  // no Caesar encryption
for (#5=1; #5<=#61; #5++) {
    Buf_Switch(#20)                     // text being analyzed
    BOF
    #54 = 0;                            // sum of Kp's
    for (#6=0; #6<#5; #6++) {           // for each slide
        Goto_Pos(#6)
        Call("CHARACTER_FREQUENCIES")
        Call("INDEX_OF_COINCIDENCE")    // #51 = Kp * 10000
        #54 += #51
    }
    #54 /= #5                           // average of Kp's
    Buf_Switch(#22)
    Num_Ins(#5, COUNT, 3)               // write key length
    IT(": ")
    Num_Ins(#54, NOCR)                  // average Kp
    Num_Ins(670-#54)                    // distance to English Kp
}
Buf_Switch(#22)
Sort_Merge("5,12", #13, Cur_Pos, REVERSE)  // sort the results by Kp value
Ins_Newline

// (3) Check the best 4 key lengths to find which one gives the best decrypt result

#38 = 0                                 // max number of correct characters found
#19 = 1                                 // best key length
for (#14 = 0; #14<4; #14++) {           // try 4 best key lengths
    Buf_Switch(#22)                     // results buffer
    Goto_Pos(#13) Line(#14)
    #5 = Num_Eval(SUPPRESS)             // #5 = key length
    Call("FIND_KEYS")                   // find Caesar key for each key character
    #4 = -1                             // try best match key chars only
    Call("BUILD_KEY")
    EOF
    Ins_Text("Key length ")
    Num_Ins(#5, LEFT)
    Reg_Ins(10)                         // encrypted text
    BOL
    Call("DECRYPT_LINE")
    BOL
    Call("FIND_ENGLISH_WORDS")          // #37 = number of English chars
    EOL Ins_Newline
    Ins_Text("Correct chars: ")
    Num_Ins(#37)
    if (#37 > #38) {
        #38 = #37
        #19 = #5
    }
    Update()
}

Ins_Text("Using key length: ") Num_Ins(#19) Ins_Newline
#5 = #19
Call("FIND_KEYS")                       // find Caesar key for each key character

// (4) Decrypt with different key combinations and try to find English words.
//     Try key combinations where max one char is taken from 2nd best Caesar key.

#38 = 0                                 // max number of chars in English words found
#39 = -1                                // best key number found
for (#4 = -1; #4 < #19; #4++)
{
    Call("BUILD_KEY")
    Buf_Switch(#22)                     // results
    Reg_Ins(10)                         // encrypted text
    BOL
    Call("DECRYPT_LINE")
    BOL
    Update()
    Call("FIND_ENGLISH_WORDS")          // #37 := number of correct letters in text
    if (#37 > #38) {
        #38 = #37                       // new highest number of correct chars
        #39 = #4                        // new best key
    }

    EOL IT(" -- ")                      // display results
    Num_Ins(#4, COUNT, 3)               // key number
    Ins_Text(": ")
    for (#6=0; #6<#19; #6++) {          // display key
        #9 = 130 + #6
        Ins_Char(#@9)
    }
    Ins_Text("  correct chars =")
    Num_Ins(#37)
}
Ins_Text("Best key = ")
Num_Ins(#39, LEFT)
#4 = #39
Ins_Newline

// Display results
//
Buf_Switch(#24)                         // table for key canditates
BOF
Reg_Copy_Block(14, Cur_Pos, Cur_Pos+#19)  // best Caesar key chars
Line(1)
Reg_Copy_Block(15, Cur_Pos, Cur_Pos+#19)  // 2nd best Caesar key chars
Call("BUILD_KEY")
Buf_Switch(#22)
Ins_Text("Key 1: ") Reg_Ins(14) Ins_Newline
Ins_Text("Key 2: ") Reg_Ins(15) Ins_Newline
Ins_Text("Key:   ")
for (#6=0; #6 < #19; #6++) {
    #9 = #6+130
    Ins_Char(#@9)
}
Ins_Newline
Ins_Newline

// decrypt the text with selected key
Ins_Text("Decrypted text:") Ins_Newline
Reg_Ins(10)
BOL
Call("DECRYPT_LINE")
BOL Reg_Copy(13,1)
EOL Ins_Newline

// Find English words from the text
Reg_Ins(13)
Call("FIND_ENGLISH_WORDS")
EOL
Ins_Newline
Num_Ins(#37, NOCR) IT(" of ")
Num_Ins(#25, NOCR) IT(" characters are English words. ")
Ins_Newline

Buf_Switch(#20) Buf_Quit(OK)
Buf_Switch(#21) Buf_Quit(OK)
Buf_Switch(#23) Buf_Quit(OK)
Buf_Switch(#24) Buf_Quit(OK)

Statline_Message("Done!")
Return

/////////////////////////////////////////////////////////////////////////////
//
// Caesar decrypt current line and count character frequencies.
//   in: #5 = step size, #7 = encryption key, #26 = num of chars in alphabet
//  out: #65...#90 = frequencies, #60 = number of chars

:CHARACTER_FREQUENCIES:
    Save_Pos
    for (#8 = 'A'; #8<='Z'; #8++) {
        #@8 = 0                         // reset frequency counters
    }
    #60 = 0                             // total number of chars
    while (!At_EOL) {
        if (Cur_Char >= 'A' && Cur_Char <= 'Z') {
            #8 = (Cur_Char-'A'+#26-#7) % #26 + 'A'  // decrypted char
            #@8++
            #60++
        }
        Char(#5)
    }
    Restore_Pos
Return

// Calculate Index of Coincidence (Kp).
//   in: character frequencies in #65...#90, #60 = num of chars
//  out: #51 = IC * 10000
//
:INDEX_OF_COINCIDENCE:
    Num_Push(10,15)
    #10 = 0
    for (#11 = 'A'; #11<='Z'; #11++) {
        #10 += (#@11 * (#@11-1))        // Calculate sigma{ni * (ni-1)}
    }
    #12 = #60 * (#60-1)                 // #12 = N * (N-1)
    #51 = #10 * 10000 / #12             // #51 = Kp * 10000
    Num_Pop(10,15)
Return

// Find best and 2nd best Caesar key for each character position of Vigenère key.
//   in: #5=step size (key length)
//  out: keys in buffer #24
//
:FIND_KEYS:
    for (#6 = 0; #6 < #5; #6++) {               // for each char position in the key
        #30 = -1                                // best key char found so far
        #31 = -1                                // 2nd best key char
        #32 = MAXNUM                            // smallest error found so far
        #33 = MAXNUM                            // 2nd smallest error found so far
        for (#7 = 0; #7 < #26; #7++) {          // for each possible key value
            #35 = 0                             // total frequency error compared to English
            Buf_Switch(#20)                     // text being analyzed
            Goto_Pos(#6)
            Call("CHARACTER_FREQUENCIES")
            Buf_Switch(#21)                     // English frequency table
            BOF
            for (#8 = 'A'; #8<='Z'; #8++) {     // calculate total frequency error
                #34 = Num_Eval(SUPPRESS+ADVANCE)
                #35 += abs((#@8*100000+50000)/#60-#34)
            }

            if (#35 < #32) {                    // found better match?
                #33 = #32
                #32 = #35
                #31 = #30
                #30 = #7
            } else {
                if (#35 < #33) {                // 2nd best match?
                    #33 = #35
                    #31 = #7
                }
            }
        }
        Buf_Switch(#24)                         // table for key canditates
        BOF
        Goto_Col(#6+1)
        Ins_Char(#30+'A', OVERWRITE)            // save the best match
        Line(1)
        Goto_Col(#6+1)
        Ins_Char(#31+'A', OVERWRITE)            // save 2nd best match
    }
    Buf_Switch(#22)                             // results buffer
Return

// Combine actual key from 1st and 2nd best Caesar key characters
// Use 1st key chars and (possibly) one character from 2nd key.
//  #4 = index of the char to be picked from 2nd key, -1 = none.
//  #5 = key length
//
:BUILD_KEY:
    Buf_Switch(#24)                     // table for key canditates
    BOF
    for (#6=0; #6<#5; #6++) {           // copy 1st key
        #8 = 130 + #6
        #@8 = Cur_Char
        Char(1)
    }
    if (#4 >= 0) {
        #8 = 130 + #4                   // pick one char from 2st key
        Line(1)
        Goto_Col(#4+1)
        #@8 = Cur_Char
    }
    Buf_Switch(#22)                     // results buffer
Return

// Decrypt text on current line
//   in: #5 = key length, #130...#189 = key
//
:DECRYPT_LINE:
    Num_Push(6,9)
    #6 = 0
    While (!At_EOL) {
       #9 = #6+130
       #7 = #@9
       #8 = (Cur_Char - #7 + #26) % #26 + 'A'   // decrypted char
       Ins_Char(#8, OVERWRITE)
       #6++
       if (#6 >= #5) {
           #6 = 0
       }
    }
    Num_Pop(6,9)
Return

// Find English words from text on current line
//  out: #37 = number of chars matched
//
:FIND_ENGLISH_WORDS:
    Buf_Switch(#23)                     // dictionary
    BOF
    While (!At_EOF) {
        Reg_Copy_Block(12, Cur_Pos, EOL_Pos)
        if (Reg_Size(12) > 2) {
            Buf_Switch(#22)             // buffer for results
            BOL
            while (Search_Block(@12, Cur_Pos, EOL_Pos, NOERR)) {
                Reg_Ins(12, OVERWRITE)
            }
            Buf_Switch(#23)
        }
        Line(1, ERRBREAK)
    }

    Buf_Switch(#22)
    BOL
    #37 = Search_Block("|V", Cur_Pos, EOL_Pos, ALL+NOERR)
Return

V (Vlang)

Translation of: Go
import strings
const encoded = 
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"
 
const freq = [
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074,
]
 
fn sum(a []f64) f64 {
    mut s := 0.0
    for f in a {
        s += f
    }
    return s
}
 
fn best_match(a []f64) int {
    s := sum(a)
    mut best_fit, mut best_rotate := 1e100, 0
    for rotate in 0..26 {
        mut fit := 0.0
        for i in 0..26 {
            d := a[(i+rotate)%26]/s - freq[i]
            fit += d * d / freq[i]
        }
        if fit < best_fit {
            best_fit, best_rotate = fit, rotate
        }
    }
    return best_rotate
}
 
fn freq_every_nth(msg []int, mut key []u8) f64 {
    l := msg.len
    interval := key.len
    mut out := []f64{len: 26}
    mut accu := []f64{len: 26}
    for j in 0..interval {
        for z in 0..26 {
            out[z] = 0.0
        }
        for i := j; i < l; i += interval {
            out[msg[i]]++
        }
        rot := best_match(out)
        key[j] = u8(rot + 65)
        for i := 0; i < 26; i++ {
            accu[i] += out[(i+rot)%26]
        }
    }
    s := sum(accu)
    mut ret := 0.0
    for i := 0; i < 26; i++ {
        d := accu[i]/s - freq[i]
        ret += d * d / freq[i]
    }
    return ret
}
 
fn decrypt(text string, key string) string {
    mut sb := strings.new_builder(128)
    mut ki := 0
    for c in text {
        if c < 'A'[0] || c > 'Z'[0] {
            continue
        }
        ci := (c - key[ki] + 26) % 26
        sb.write_rune(ci + 65)
        ki = (ki + 1) % key.len
    }
    return sb.str()
}
 
fn main() {
    enc := encoded.replace(" ", "")
    mut txt := []int{len: enc.len}
    for i in 0..txt.len {
        txt[i] = int(enc[i] - 'A'[0])
    }
    mut best_fit, mut best_key := 1e100, ""
    println("  Fit     Length   Key")
    for j := 1; j <= 26; j++ {
        mut key := []u8{len: j}
        fit := freq_every_nth(txt, mut key)
        s_key := key.bytestr()
        print("${fit:.6}    ${j:2}     $s_key")
        if fit < best_fit {
            best_fit, best_key = fit, s_key
            print(" <--- best so far")
        }
        println('')
    }
    println("\nBest key : $best_key")
    println("\nDecrypted text:\n${decrypt(enc, best_key)}")
}
Output:

Note: carriage returns inserted into decrypted text after every 80 characters to make it more readable.

  Fit     Length   Key
2.984348     1     E <--- best so far
2.483684     2     EC <--- best so far
2.642487     3     TEE
1.976651     4     THEC <--- best so far
2.356881     5     EEEPU
2.203129     6     TCECEC
1.051163     7     THECSAS <--- best so far
1.645763     8     TJQGAHET
2.001380     9     VEIZSEGNT
1.824476    10     ECEGAWQTDS
1.623083    11     TNLUSRXPTAJ
1.253527    12     XLECTHQGTHEC
1.399037    13     LJJTDGFNOTENR
0.152370    14     THECHESHIRECAT <--- best so far
1.533951    15     JNTOOEEXFTGQTNH
1.068182    16     TJTSAEETEXHPXHNE
1.034093    17     AZRAXUHEJLREEXIEE
1.443345    18     VNIZQPALEPTSXSEXUC
1.090977    19     FUCAITCSLVTEZDUDEHS
0.979868    20     EQXGAHWTTQECEWUGXHPI
0.789410    21     HVRCSAFTHEBDLSTAERSES
0.881380    22     TVIJTCIGKAQPELECRXPTNC
0.952456    23     KKEQXGPWTCQEELIEHXUWASV
0.715968    24     ELAIXHQTTIEDXJETTNTGAEPC
0.891258    25     OTJUUEGERDNQTUQEAGWUTIEOA
0.852784    26     IGITEGECAGAVUNLJAHASAVTETW

Best key : THECHESHIRECAT

Decrypted text:
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMB
LEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYS
ONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNA
TCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMT
REEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAM
ECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHR
OUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACK
ANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHE
CHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWER
ETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDIT
BUTITSRATHERHARDTOUNDERSTAND

Wren

Translation of: Kotlin
Library: Wren-math
Library: Wren-iterate
Library: Wren-str
Library: Wren-fmt
import "./math" for Nums
import "./iterate" for Stepped
import "./str" for Char, Str
import "./fmt" for Fmt

var encoded = 
    "MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH" +
    "VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD" +
    "ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS" +
    "FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG" +
    "ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ" +
    "ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS" +
    "JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT" +
    "LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST" +
    "MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH" +
    "QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV" +
    "RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW" +
    "TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO" +
    "SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR" +
    "ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX" +
    "BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB" +
    "BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA" +
    "FWAML ZZRXJ EKAHV FASMU LVVUT TGK"

var freq = [
    0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
    0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
    0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
    0.00978, 0.02360, 0.00150, 0.01974, 0.00074
]

var bestMatch = Fn.new { |a|
    var sum = Nums.sum(a)
    var bestFit = 1e100
    var bestRotate = 0
    for (rotate in 0..25) {
        var fit = 0
        for (i in 0..25) {
            var d = a[(i + rotate) % 26] / sum - freq[i]
                fit = fit + d * d / freq[i]
        }
        if (fit < bestFit) {
            bestFit = fit
            bestRotate = rotate
        }
    }
    return bestRotate
}

var freqEveryNth = Fn.new { |msg, key|
    var len = msg.count
    var interval = key.count
    var out = List.filled(26, 0)
    var accu = List.filled(26, 0)
    for (j in 0...interval) {
        for (i in 0..25) out[i] = 0
        for (i in Stepped.new(j...len, interval)) out[msg[i]] = out[msg[i]] + 1
        var rot = bestMatch.call(out)
        key[j] = Char.fromCode(rot + 65)
        for (i in 0..25) accu[i] = accu[i] + out[(i + rot) % 26]
    }
    var sum = Nums.sum(accu)
    var ret = 0
    for (i in 0..25) {
        var d = accu[i] / sum - freq[i]
        ret = ret + d * d / freq[i]
    }
    return ret
}

var decrypt = Fn.new { |text, key|
    var sb = ""
    var ki = 0
    for (c in text) {
        if (Char.isAsciiUpper(c)) {
            var ci = (c.bytes[0] - key[ki].bytes[0] +  26) % 26
            sb = sb + Char.fromCode(ci + 65)
            ki = (ki + 1) % key.count
        }
    }
    return sb
}

var enc = encoded.replace(" ", "")
var txt = List.filled(enc.count, 0)
for (i in 0...txt.count) txt[i] = Char.code(enc[i]) - 65
var bestFit = 1e100
var bestKey = ""
var f = "$f    $2d     $s"
System.print("  Fit     Length   Key")
for (j in 1..26) {
    var key = List.filled(j, "")
    var fit = freqEveryNth.call(txt, key)
    var sKey = key.join("")
    Fmt.write(f, fit, j, sKey)
    if (fit < bestFit) {
       bestFit = fit
       bestKey = sKey
       System.write(" <--- best so far")
    }
    System.print()
}
System.print()
System.print("Best key : %(bestKey)")
System.print("\nDecrypted text:\n%(decrypt.call(enc, bestKey))")
Output:
  Fit     Length   Key
2.984348     1     E <--- best so far
2.483684     2     EC <--- best so far
2.642487     3     TEE
1.976651     4     THEC <--- best so far
2.356881     5     EEEPU
2.203129     6     TCECEC
1.051163     7     THECSAS <--- best so far
1.645763     8     TJQGAHET
2.001380     9     VEIZSEGNT
1.824476    10     ECEGAWQTDS
1.623083    11     TNLUSRXPTAJ
1.253527    12     XLECTHQGTHEC
1.399037    13     LJJTDGFNOTENR
0.152370    14     THECHESHIRECAT <--- best so far
1.533951    15     JNTOOEEXFTGQTNH
1.068182    16     TJTSAEETEXHPXHNE
1.034093    17     AZRAXUHEJLREEXIEE
1.443345    18     VNIZQPALEPTSXSEXUC
1.090977    19     FUCAITCSLVTEZDUDEHS
0.979868    20     EQXGAHWTTQECEWUGXHPI
0.789410    21     HVRCSAFTHEBDLSTAERSES
0.881380    22     TVIJTCIGKAQPELECRXPTNC
0.952456    23     KKEQXGPWTCQEELIEHXUWASV
0.715968    24     ELAIXHQTTIEDXJETTNTGAEPC
0.891258    25     OTJUUEGERDNQTUQEAGWUTIEOA
0.852784    26     IGITEGECAGAVUNLJAHASAVTETW

Best key : THECHESHIRECAT

Decrypted text:
THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND

zkl

Translation of: Python
var[const] uppercase=["A".."Z"].pump(String),
   english_frequences=T( // A..Z
        0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015,
        0.06094, 0.06966, 0.00153, 0.00772, 0.04025, 0.02406, 0.06749,
        0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758,
        0.00978, 0.02360, 0.00150, 0.01974, 0.00074);
 
fcn vigenere_decrypt(target_freqs, input){ // ( (float,...), string)
   nchars,ordA   :=uppercase.len(),"A".toAsc();
   sorted_targets:=target_freqs.sort();
 
   frequency:='wrap(input){  // (n,n,n,n,...), n is ASCII index ("A"==65)
      result:=uppercase.pump(List(),List.fp1(0)); // ( ("A",0),("B",0) ...)
      foreach c in (input){ result[c - ordA][1] += 1 }
      result   // --> mutable list of mutable lists ( ("A",Int)...("Z",Int) )
   };
   correlation:='wrap(input){  // (n,n,n,n,...), n is ASCII index ("A"==65)
      result,freq:=0.0, frequency(input);
      freq.sort(fcn([(_,a)],[(_,b)]){ a<b });  // sort letters by frequency
      foreach i,f in (freq.enumerate()){ result+=sorted_targets[i]*f[1] }
      result	// -->Float
   };
 
   cleaned:=input.toUpper().pump(List,uppercase.holds,Void.Filter,"toAsc");
 
   best_len,best_corr := 0,-100.0;
    # Assume that if there are less than 20 characters
    # per column, the key's too long to guess
   foreach i in ([2..cleaned.len()/20]){
      pieces:=(i).pump(List,List.copy);		// ( (),() ... )
      foreach c in (cleaned){ pieces[__cWalker.idx%i].append(c) }
 
        # The correlation seems to increase for smaller
        # pieces/longer keys, so weigh against them a little
      corr:=-0.5*i + pieces.apply(correlation).sum(0.0);
      if(corr>best_corr) best_len,best_corr=i,corr;
   }
   if(best_len==0) return("Text is too short to analyze", "");
 
   pieces:=best_len.pump(List,List.copy);
   foreach c in (cleaned){ pieces[__cWalker.idx%best_len].append(c) }
 
   key,freqs := "",pieces.apply(frequency);
   foreach fr in (freqs){
      fr.sort(fcn([(_,a)],[(_,b)]){ a>b });  // reverse sort by freq
      m,max_corr := 0,0.0;
      foreach j in (nchars){
         corr,c := 0.0,ordA + j;
	 foreach frc in (fr){
	    d:=(frc[0].toAsc() - c + nchars) % nchars;
 	    corr+=target_freqs[d]*frc[1];
	    if(corr>max_corr) m,max_corr=j,corr;
	 }
      }
      key+=(m + ordA).toChar();
   }
 
   cleaned.enumerate().apply('wrap([(i,c])){
      ( (c - (key[i%best_len]).toAsc() + nchars)%nchars + ordA ).toChar()
   }).concat() : 
   T(key,_);
}
encryptedText:=
#<<<
"MOMUD EKAPV TQEFM OEVHP AJMII CDCTI FGYAG JSPXY ALUYM NSMYH
VUXJE LEPXJ FXGCM JHKDZ RYICU HYPUS PGIGM OIYHF WHTCQ KMLRD
ITLXZ LJFVQ GHOLW CUHLO MDSOE KTALU VYLNZ RFGBX PHVGA LWQIS
FGRPH JOOFW GUBYI LAPLA LCAFA AMKLG CETDW VOELJ IKGJB XPHVG
ALWQC SNWBU BYHCU HKOCE XJEYK BQKVY KIIEH GRLGH XEOLW AWFOJ
ILOVV RHPKD WIHKN ATUHN VRYAQ DIVHX FHRZV QWMWV LGSHN NLVZS
JLAKI FHXUF XJLXM TBLQV RXXHR FZXGV LRAJI EXPRV OSMNP KEPDT
LPRWM JAZPK LQUZA ALGZX GVLKL GJTUI ITDSU REZXJ ERXZS HMPST
MTEOE PAPJH SMFNB YVQUZ AALGA YDNMP AQOWT UHDBV TSMUE UIMVH
QGVRW AEFSP EMPVE PKXZY WLKJA GWALT VYYOB YIXOK IHPDS EVLEV
RVSGB JOGYW FHKBL GLXYA MVKIS KIEHY IMAPX UOISK PVAGN MZHPW
TTZPV XFCCD TUHJH WLAPF YULTB UXJLN SIJVV YOVDJ SOLXG TGRVO
SFRII CTMKO JFCQF KTINQ BWVHG TENLH HOGCS PSFPV GJOKM SIFPR
ZPAAS ATPTZ FTPPD PORRF TAXZP KALQA WMIUD BWNCT LEFKO ZQDLX
BUXJL ASIMR PNMBF ZCYLV WAPVF QRHZV ZGZEF KBYIO OFXYE VOWGB
BXVCB XBAWG LQKCM ICRRX MACUO IKHQU AJEGL OIJHH XPVZW JEWBA
FWAML ZZRXJ EKAHV FASMU LVVUT TGK";
#<<<
key,decoded:=vigenere_decrypt(english_frequences,encryptedText);
println("Key:", key);
println("Decoded text:", decoded);
Output:
Key:THECHESHIRECAT
Decoded text:THISWASTHEPOEMTHATALICEREADJABBERWOCKYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEBEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCHBEWARETHEJUBJUBBIRDANDSHUNTHEFRUMIOUSBANDERSNATCHHETOOKHISVORPALSWORDINHANDLONGTIMETHEMANXOMEFOEHESOUGHTSORESTEDHEBYTHETUMTUMTREEANDSTOODAWHILEINTHOUGHTANDASINUFFISHTHOUGHTHESTOODTHEJABBERWOCKWITHEYESOFFLAMECAMEWHIFFLINGTHROUGHTHETULGEYWOODANDBURBLEDASITCAMEONETWOONETWOANDTHROUGHANDTHROUGHTHEVORPALBLADEWENTSNICKERSNACKHELEFTITDEADANDWITHITSHEADHEWENTGALUMPHINGBACKANDHASTTHOUSLAINTHEJABBERWOCKCOMETOMYARMSMYBEAMISHBOYOFRABJOUSDAYCALLOOHCALLAYHECHORTLEDINHISJOYTWASBRILLIGANDTHESLITHYTOVESDIDGYREANDGIMBLEINTHEWABEALLMIMSYWERETHEBOROGOVESANDTHEMOMERATHSOUTGRABEITSEEMSVERYPRETTYSHESAIDWHENSHEHADFINISHEDITBUTITSRATHERHARDTOUNDERSTAND
Cookies help us deliver our services. By using our services, you agree to our use of cookies.