Tree from nesting levels
You are encouraged to solve this task according to the task description, using any language you may know.
Given a flat list of integers greater than zero, representing object nesting
levels, e.g. [1, 2, 4]
,
generate a tree formed from nested lists of those nesting level integers where:
- Every int appears, in order, at its depth of nesting.
- If the next level int is greater than the previous then it appears in a sub-list of the list containing the previous item
The generated tree data structure should ideally be in a languages nested list format that can
be used for further calculations rather than something just calculated for printing.
An input of [1, 2, 4]
should produce the equivalent of: [1, [2, [[4]]]]
where 1 is at depth1, 2 is two deep and 4 is nested 4 deep.
[1, 2, 4, 2, 2, 1]
should produce [1, [2, [[4]], 2, 2], 1]
.
All the nesting integers are in the same order but at the correct nesting
levels.
Similarly [3, 1, 3, 1]
should generate [[[3]], 1, [[3]], 1]
- Task
Generate and show here the results for the following inputs:
[]
[1, 2, 4]
[3, 1, 3, 1]
[1, 2, 3, 1]
[3, 2, 1, 3]
[3, 3, 3, 1, 1, 3, 3, 3]
AppleScript
Iterative
on treeFromNestingLevels(input)
set maxLevel to 0
repeat with thisLevel in input
if (thisLevel > maxLevel) then set maxLevel to thisLevel
end repeat
if (maxLevel < 2) then return input
set emptyList to {}
repeat with testLevel from maxLevel to 2 by -1
set output to {}
set subnest to {}
repeat with thisLevel in input
set thisLevel to thisLevel's contents
if ((thisLevel's class is integer) and (thisLevel < testLevel)) then
if (subnest ≠ emptyList) then set subnest to {}
set end of output to thisLevel
else
if (subnest = emptyList) then set end of output to subnest
set end of subnest to thisLevel
end if
end repeat
set input to output
end repeat
return output
end treeFromNestingLevels
-- Task code:
local output, astid, input, part1, errMsg
set output to {}
set astid to AppleScript's text item delimiters
repeat with input in {{}, {1, 2, 4}, {3, 1, 3, 1}, {1, 2, 3, 1}, {3, 2, 1, 3}, {3, 3, 3, 1, 1, 3, 3, 3}}
set input to input's contents
set AppleScript's text item delimiters to ", "
set part1 to "{" & input & "} nests to: {"
-- It's a pain having to parse nested lists to text, so throw a deliberate error and parse the error message instead.
try
|| of treeFromNestingLevels(input)
on error errMsg
set AppleScript's text item delimiters to {"{", "}"}
set end of output to part1 & ((text from text item 2 to text item -2 of errMsg) & "}")
end try
end repeat
set AppleScript's text item delimiters to linefeed
set output to output as text
set AppleScript's text item delimiters to astid
return output
- Output:
"{} nests to: {}
{1, 2, 4} nests to: {1, {2, {{4}}}}
{3, 1, 3, 1} nests to: {{{3}}, 1, {{3}}, 1}
{1, 2, 3, 1} nests to: {1, {2, {3}}, 1}
{3, 2, 1, 3} nests to: {{{3}, 2}, 1, {{3}}}
{3, 3, 3, 1, 1, 3, 3, 3} nests to: {{{3, 3, 3}}, 1, 1, {{3, 3, 3}}}"
Recursive
Same task code and output as above.
on treeFromNestingLevels(input)
script recursion
property emptyList : {}
on recurse(input, currentLevel)
set output to {}
set subnest to {}
repeat with thisLevel in input
set thisLevel to thisLevel's contents
if (thisLevel > currentLevel) then
set end of subnest to thisLevel
else
if (subnest ≠ emptyList) then
set end of output to recurse(subnest, currentLevel + 1)
set subnest to {}
end if
set end of output to thisLevel
end if
end repeat
if (subnest ≠ emptyList) then set end of output to recurse(subnest, currentLevel + 1)
return output
end recurse
end script
return recursion's recurse(input, 1)
end treeFromNestingLevels
Functional
Mapping from the sparse list format to a generic tree structure, and using both:
- a generic forestFromNestLevels function to map from a normalised input list to a generic tree, and
- a standard catamorphism over trees (foldTree) to generate both the nested list format, and the round-trip regeneration of a sparse list from the generic tree.
----------------- FOREST FROM NEST LEVELS ----------------
-- forestFromNestLevels :: [(Int, a)] -> [Tree a]
on forestFromNestLevels(pairs)
script go
on |λ|(xs)
if {} ≠ xs then
set {n, v} to item 1 of xs
script deeper
on |λ|(x)
n < item 1 of x
end |λ|
end script
set {descendants, rs} to ¬
|λ|(rest of xs) of span(deeper)
{Node(v, |λ|(descendants))} & |λ|(rs)
else
{}
end if
end |λ|
end script
|λ|(pairs) of go
end forestFromNestLevels
-- nestedList :: Maybe Int -> Nest -> Nest
on nestedList(maybeLevel, xs)
set subTree to concat(xs)
if maybeLevel ≠ missing value then
if {} ≠ subTree then
{maybeLevel, subTree}
else
{maybeLevel}
end if
else
{subTree}
end if
end nestedList
-- treeFromSparseLevelList :: [Int] -> Tree Maybe Int
on treeFromSparseLevelList(xs)
{missing value, ¬
forestFromNestLevels(rooted(normalized(xs)))}
end treeFromSparseLevelList
-------------------------- TESTS -------------------------
on run
set tests to {¬
{}, ¬
{1, 2, 4}, ¬
{3, 1, 3, 1}, ¬
{1, 2, 3, 1}, ¬
{3, 2, 1, 3}, ¬
{3, 3, 3, 1, 1, 3, 3, 3}}
script translate
on |λ|(ns)
set tree to treeFromSparseLevelList(ns)
set bracketNest to root(foldTree(my nestedList, tree))
set returnTrip to foldTree(my levelList, tree)
map(my showList, {ns, bracketNest, returnTrip})
end |λ|
end script
set testResults to {{"INPUT", "NESTED", "ROUND-TRIP"}} & map(translate, tests)
set {firstColWidth, secondColWidth} to map(widest(testResults), {fst, snd})
script display
on |λ|(triple)
intercalate(" -> ", ¬
{justifyRight(firstColWidth, space, item 1 of triple)} & ¬
{justifyLeft(secondColWidth, space, item 2 of triple)} & ¬
{item 3 of triple})
end |λ|
end script
linefeed & unlines(map(display, testResults))
end run
-- widest :: ((a, a) -> a) -> [String] -> Int
on widest(xs)
script
on |λ|(f)
maximum(map(compose(my |length|, mReturn(f)), xs))
end |λ|
end script
end widest
-------------- FROM TREE BACK TO SPARSE LIST -------------
-- levelListFromNestedList :: Maybe a -> NestedList -> [a]
on levelList(maybeLevel, xs)
if maybeLevel ≠ missing value then
concat(maybeLevel & xs)
else
concat(xs)
end if
end levelList
----- NORMALIZED TO A STRICTER GENERIC DATA STRUCTURE ----
-- normalized :: [Int] -> [(Int, Maybe Int)]
on normalized(xs)
-- Explicit representation of implicit nodes.
if {} ≠ xs then
set x to item 1 of xs
if 1 > x then
normalized(rest of xs)
else
set h to {{x, x}}
if 1 = length of xs then
h
else
if 1 < ((item 2 of xs) - x) then
set ys to h & {{1 + x, missing value}}
else
set ys to h
end if
ys & normalized(rest of xs)
end if
end if
else
{}
end if
end normalized
-- rooted :: [(Int, Maybe Int)] -> [(Int, Maybe Int)]
on rooted(pairs)
-- Path from the virtual root to the first explicit node.
if {} ≠ pairs then
set {n, _} to item 1 of pairs
if 1 ≠ n then
script go
on |λ|(x)
{x, missing value}
end |λ|
end script
map(go, enumFromTo(1, n - 1)) & pairs
else
pairs
end if
else
{}
end if
end rooted
------------------ GENERIC TREE FUNCTIONS ----------------
-- Node :: a -> [Tree a] -> Tree a
on Node(v, xs)
-- {type:"Node", root:v, nest:xs}
{v, xs}
end Node
-- foldTree :: (a -> [b] -> b) -> Tree a -> b
on foldTree(f, tree)
script go
property g : mReturn(f)
on |λ|(tree)
tell g to |λ|(root(tree), map(go, nest(tree)))
end |λ|
end script
|λ|(tree) of go
end foldTree
-- nest :: Tree a -> [a]
on nest(oTree)
item 2 of oTree
-- nest of oTree
end nest
-- root :: Tree a -> a
on root(oTree)
item 1 of oTree
-- root of oTree
end root
---------------------- OTHER GENERIC ---------------------
-- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
on compose(f, g)
script
property mf : mReturn(f)
property mg : mReturn(g)
on |λ|(x)
mf's |λ|(mg's |λ|(x))
end |λ|
end script
end compose
-- concat :: [[a]] -> [a]
on concat(xs)
set lng to length of xs
set acc to {}
repeat with i from 1 to lng
set acc to acc & item i of xs
end repeat
acc
end concat
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- fst :: (a, b) -> a
on fst(tpl)
if class of tpl is record then
|1| of tpl
else
item 1 of tpl
end if
end fst
-- intercalate :: String -> [String] -> String
on intercalate(delim, xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end intercalate
-- justifyLeft :: Int -> Char -> String -> String
on justifyLeft(n, cFiller, strText)
if n > length of strText then
text 1 thru n of (strText & replicate(n, cFiller))
else
strText
end if
end justifyLeft
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight
-- length :: [a] -> Int
on |length|(xs)
set c to class of xs
if list is c or string is c then
length of xs
else
(2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
end if
end |length|
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- maximum :: Ord a => [a] -> a
on maximum(xs)
script
on |λ|(a, b)
if a is missing value or b > a then
b
else
a
end if
end |λ|
end script
foldl(result, missing value, xs)
end maximum
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
-- snd :: (a, b) -> b
on snd(tpl)
if class of tpl is record then
|2| of tpl
else
item 2 of tpl
end if
end snd
-- showList :: [a] -> String
on showList(xs)
"[" & intercalate(", ", map(my show, xs)) & "]"
end showList
on show(v)
if list is class of v then
showList(v)
else
v as text
end if
end show
-- span :: (a -> Bool) -> [a] -> ([a], [a])
on span(f)
-- The longest (possibly empty) prefix of xs
-- that contains only elements satisfying p,
-- tupled with the remainder of xs.
-- span(p, xs) eq (takeWhile(p, xs), dropWhile(p, xs))
script
on |λ|(xs)
set lng to length of xs
set i to 0
tell mReturn(f)
repeat while lng > i and |λ|(item (1 + i) of xs)
set i to 1 + i
end repeat
end tell
splitAt(i, xs)
end |λ|
end script
end span
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
INPUT -> NESTED -> ROUND-TRIP [] -> [] -> [] [1, 2, 4] -> [1, [2, [[4]]]] -> [1, 2, 4] [3, 1, 3, 1] -> [[[3]], 1, [[3]], 1] -> [3, 1, 3, 1] [1, 2, 3, 1] -> [1, [2, [3]], 1] -> [1, 2, 3, 1] [3, 2, 1, 3] -> [[[3], 2], 1, [[3]]] -> [3, 2, 1, 3] [3, 3, 3, 1, 1, 3, 3, 3] -> [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] -> [3, 3, 3, 1, 1, 3, 3, 3]
C++
Uses C++20
#include <any>
#include <iostream>
#include <iterator>
#include <vector>
using namespace std;
// Make a tree that is a vector of either values or other trees
vector<any> MakeTree(input_iterator auto first, input_iterator auto last, int depth = 1)
{
vector<any> tree;
while (first < last && depth <= *first)
{
if(*first == depth)
{
// add a single value
tree.push_back(*first);
++first;
}
else // (depth < *b)
{
// add a subtree
tree.push_back(MakeTree(first, last, depth + 1));
first = find(first + 1, last, depth);
}
}
return tree;
}
// Print an input vector or tree
void PrintTree(input_iterator auto first, input_iterator auto last)
{
cout << "[";
for(auto it = first; it != last; ++it)
{
if(it != first) cout << ", ";
if constexpr (is_integral_v<remove_reference_t<decltype(*first)>>)
{
// for printing the input vector
cout << *it;
}
else
{
// for printing the tree
if(it->type() == typeid(unsigned int))
{
// a single value
cout << any_cast<unsigned int>(*it);
}
else
{
// a subtree
const auto& subTree = any_cast<vector<any>>(*it);
PrintTree(subTree.begin(), subTree.end());
}
}
}
cout << "]";
}
int main(void)
{
auto execises = vector<vector<unsigned int>> {
{},
{1, 2, 4},
{3, 1, 3, 1},
{1, 2, 3, 1},
{3, 2, 1, 3},
{3, 3, 3, 1, 1, 3, 3, 3}
};
for(const auto& e : execises)
{
auto tree = MakeTree(e.begin(), e.end());
PrintTree(e.begin(), e.end());
cout << " Nests to:\n";
PrintTree(tree.begin(), tree.end());
cout << "\n\n";
}
}
- Output:
[] Nests to: [] [1, 2, 4] Nests to: [1, [2, [[4]]]] [3, 1, 3, 1] Nests to: [[[3]], 1, [[3]], 1] [1, 2, 3, 1] Nests to: [1, [2, [3]], 1] [3, 2, 1, 3] Nests to: [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] Nests to: [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
C#
public static class TreeFromNestingLevels
{
public static void Main()
{
List<int[]> tests = [[], [1,2,4], [3,1,3,1], [1,2,3,1], [3,2,1,3], [3,3,3,1,1,3,3,3]];
Console.WriteLine($"{"Input",24} -> {"Nested",-32} -> Round-trip");
foreach (var test in tests) {
var tree = BuildTree(test);
string input = $"[{string.Join(", ", test)}]";
string roundTrip = $"[{string.Join(", ", tree.ToList())}]";
Console.WriteLine($"{input,24} -> {tree,-32} -> {roundTrip}");
}
}
private static Tree BuildTree(int[] levels)
{
Tree root = new(0);
Tree current = root;
foreach (int level in levels) {
while (current.Level > level) current = current.Parent;
current = current.Parent.Add(level);
}
return root;
}
private class Tree
{
public int Level { get; }
public Tree Parent { get; }
private readonly List<Tree> children = [];
public Tree(int level, Tree? parent = null)
{
Level = level;
Parent = parent ?? this;
}
public Tree Add(int level)
{
if (Level == level) return this;
Tree tree = new(Level + 1, this);
children.Add(tree);
return tree.Add(level);
}
public override string ToString() => children.Count == 0
? (Level == 0 ? "[]" : $"{Level}")
: $"[{string.Join(", ", children.Select(c => c.ToString()))}]";
public List<int> ToList()
{
List<int> list = [];
ToList(this, list);
return list;
}
private static void ToList(Tree tree, List<int> list)
{
if (tree.children.Count == 0) {
if (tree.Level > 0) list.Add(tree.Level);
} else {
foreach (Tree child in tree.children) {
ToList(child, list);
}
}
}
}
}
- Output:
Input -> Nested -> Round-trip [] -> [] -> [] [1, 2, 4] -> [1, [2, [[4]]]] -> [1, 2, 4] [3, 1, 3, 1] -> [[[3]], 1, [[3]], 1] -> [3, 1, 3, 1] [1, 2, 3, 1] -> [1, [2, [3]], 1] -> [1, 2, 3, 1] [3, 2, 1, 3] -> [[[3], 2], 1, [[3]]] -> [3, 2, 1, 3] [3, 3, 3, 1, 1, 3, 3, 3] -> [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] -> [3, 3, 3, 1, 1, 3, 3, 3]
Delphi
const TreeData1: array [0..0] of integer = (0);
const TreeData2: array [0..2] of integer = (1, 2, 4);
const TreeData3: array [0..3] of integer = (3, 1, 3, 1);
const TreeData4: array [0..3] of integer = (1, 2, 3, 1);
const TreeData5: array [0..3] of integer = (3, 2, 1, 3);
const TreeData6: array [0..7] of integer = (3, 3, 3, 1, 1, 3, 3, 3);
function GetDataString(Data: array of integer): string;
var I: integer;
begin
Result:='[';
for I:=0 to High(Data) do
begin
if I<>0 then Result:=Result+', ';
Result:=Result+IntToStr(Data[I]);
end;
Result:=Result+']';
end;
function GetNestingLevel(Data: array of integer): string;
var Level,Level2: integer;
var I,J,HLen: integer;
begin
Level:=0;
Result:='';
for I:=0 to High(Data) do
begin
Level2:=Data[I];
if Level2>Level then for J:=Level to Level2-1 do Result:=Result+'['
else if Level2<Level then
begin
for J:=Level-1 downto Level2 do Result:=Result+']';
Result:=Result+', ';
end
else if Level2=0 then
begin
Result:='[]';
break;
end
else Result:=Result+', ';
Result:=Result+IntToStr(Level2);
Level:=Level2;
if (I<High(Data)) and (Level<Data[I+1]) then Result:=Result+', ';
end;
for J:=Level downto 1 do Result:=Result+']';
end;
procedure ShowNestData(Memo: TMemo; Data: array of integer);
begin
Memo.Lines.Add(GetDataString(Data)+' Nests to: ');
Memo.Lines.Add(GetNestingLevel(Data));
Memo.Lines.Add('');
end;
procedure ShowNestingLevels(Memo: TMemo);
var S: string;
begin
ShowNestData(Memo,TreeData1);
ShowNestData(Memo,TreeData2);
ShowNestData(Memo,TreeData3);
ShowNestData(Memo,TreeData4);
ShowNestData(Memo,TreeData5);
ShowNestData(Memo,TreeData6);
end;
- Output:
[0] Nests to: [] [1, 2, 4] Nests to: [1, [2, [[4]]]] [3, 1, 3, 1] Nests to: [[[3]], 1, [[3]], 1] [1, 2, 3, 1] Nests to: [1, [2, [3]], 1] [3, 2, 1, 3] Nests to: [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] Nests to: [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] Elapsed Time: 21.513 ms.
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Test cases
Notice that in Fōrmulæ an array of arrays (of the same cardinality each) is automatically shown as a matrix.
Other test cases
Cases generated with random numbers:
FreeBASIC
Sub ShowTree(List() As Integer)
Dim As Integer I, NestLevel = 0
For I = 0 To Ubound(List)
While List(I) < NestLevel
Print "]";
NestLevel -= 1
Wend
If List(I) = 0 Then
Print
Elseif I <> Lbound(List) Then Print ", ";
End If
While List(I) > NestLevel
Print "[";
NestLevel += 1
Wend
If NestLevel <> 0 Then Print NestLevel;
Next I
End Sub
Dim As Integer list(0 To ...) = {0}
ShowTree(list())
Dim As Integer list0(0 To ...) = {1, 2, 4, 0}
ShowTree(list0())
Dim As Integer list1(0 To ...) = {3, 1, 3, 1, 0}
ShowTree(list1())
Dim As Integer list2(0 To ...) = {1, 2, 3, 1, 0}
ShowTree(list2())
Dim As Integer list3(0 To ...) = {3, 2, 1, 3, 0}
ShowTree(list3())
Dim As Integer list4(0 To ...) = {3, 3, 3, 1, 1, 3, 3, 3, 0}
ShowTree(list4())
Dim As Integer list5(0 To ...) = {1, 2, 4, 2, 2, 1, 0}
ShowTree(list5())
Sleep
- Output:
'Note that [0] displays nothing. [ 1, [ 2, [[ 4]]]] [[[ 3]], 1, [[ 3]], 1] [ 1, [ 2, [ 3]], 1] [[[ 3], 2], 1, [[ 3]]] [[[ 3, 3, 3]], 1, 1, [[ 3, 3, 3]]] [ 1, [ 2, [[ 4]], 2, 2], 1]
Go
Iterative
package main
import "fmt"
type any = interface{}
func toTree(list []int) any {
s := []any{[]any{}}
for _, n := range list {
for n != len(s) {
if n > len(s) {
inner := []any{}
s[len(s)-1] = append(s[len(s)-1].([]any), inner)
s = append(s, inner)
} else {
s = s[0 : len(s)-1]
}
}
s[len(s)-1] = append(s[len(s)-1].([]any), n)
for i := len(s) - 2; i >= 0; i-- {
le := len(s[i].([]any))
s[i].([]any)[le-1] = s[i+1]
}
}
return s[0]
}
func main() {
tests := [][]int{
{},
{1, 2, 4},
{3, 1, 3, 1},
{1, 2, 3, 1},
{3, 2, 1, 3},
{3, 3, 3, 1, 1, 3, 3, 3},
}
for _, test := range tests {
nest := toTree(test)
fmt.Printf("%17s => %v\n", fmt.Sprintf("%v", test), nest)
}
}
- Output:
[] => [] [1 2 4] => [1 [2 [[4]]]] [3 1 3 1] => [[[3]] 1 [[3]] 1] [1 2 3 1] => [1 [2 [3]] 1] [3 2 1 3] => [[[3] 2] 1 [[3]]] [3 3 3 1 1 3 3 3] => [[[3 3 3]] 1 1 [[3 3 3]]]
Recursive
package main
import "fmt"
type any = interface{}
func toTree(list []int, index, depth int) (int, []any) {
var soFar []any
for index < len(list) {
t := list[index]
if t == depth {
soFar = append(soFar, t)
} else if t > depth {
var deeper []any
index, deeper = toTree(list, index, depth+1)
soFar = append(soFar, deeper)
} else {
index = index - 1
break
}
index = index + 1
}
if depth > 1 {
return index, soFar
}
return -1, soFar
}
func main() {
tests := [][]int{
{},
{1, 2, 4},
{3, 1, 3, 1},
{1, 2, 3, 1},
{3, 2, 1, 3},
{3, 3, 3, 1, 1, 3, 3, 3},
}
for _, test := range tests {
_, nest := toTree(test, 0, 1)
fmt.Printf("%17s => %v\n", fmt.Sprintf("%v", test), nest)
}
}
- Output:
Same as iterative version.
Guile
;; helper function that finds the rest that are less than or equal
(define (rest-less-eq x ls)
(cond
((null? ls) #f)
((<= (car ls) x) ls)
(else (rest-less-eq x (cdr ls)))))
;; nest the input as a tree
(define (make-tree input depth)
(cond
((null? input) '())
((eq? input #f ) '())
((= depth (car input))
(cons (car input)(make-tree(cdr input) depth)))
((< depth (car input))
(cons (make-tree input (+ depth 1))
(make-tree (rest-less-eq depth input) depth)))
(#t '())
))
(define examples
'(()
(1 2 4)
(3 1 3 1)
(1 2 3 1)
(3 2 1 3)
(3 3 3 1 1 3 3 3)))
(define (run-examples x)
(if (null? x) '()
(begin
(display (car x))(display " -> ")
(display (make-tree(car x) 1))(display "\n")
(run-examples (cdr x)))))
(run-examples examples)
- Output:
() -> () (1 2 4) -> (1 (2 ((4)))) (3 1 3 1) -> (((3)) 1 ((3)) 1) (1 2 3 1) -> (1 (2 (3)) 1) (3 2 1 3) -> (((3) 2) 1 ((3))) (3 3 3 1 1 3 3 3) -> (((3 3 3)) 1 1 ((3 3 3)))
Haskell
The output notation shown here would be rejected by Haskell because of the inconsistency of the types in each 'list' – sometime integer, sometimes list of integer, sometimes list of list of integer etc.
For the task description's format that can be used for further calculations we can turn to Haskell's Data.Tree types, which give us a Forest (a consistently-typed list of Trees), where a single Tree combines some node value with a Forest of Trees.
The node value will have to be a sum type like `Maybe Int`, where implicit Tree nodes (that have no explicit Int value) have a `Nothing` value.
For display purposes, we can either show the list of Tree records directly, or use the drawForest and drawTree functions defined in the standard Data.Tree module.
We can reverse the translation, from tree back to sparse list, without loss of information, by using a standard fold. See sparseLevelsFromTree below:
{-# LANGUAGE TupleSections #-}
import Data.Bifunctor (bimap)
import Data.Tree (Forest, Tree (..), drawTree, foldTree)
------------- TREE FROM NEST LEVELS (AND BACK) -----------
treeFromSparseLevels :: [Int] -> Tree (Maybe Int)
treeFromSparseLevels =
Node Nothing
. forestFromNestLevels
. rooted
. normalised
sparseLevelsFromTree :: Tree (Maybe Int) -> [Int]
sparseLevelsFromTree = foldTree go
where
go Nothing xs = concat xs
go (Just x) xs = x : concat xs
forestFromNestLevels :: [(Int, a)] -> Forest a
forestFromNestLevels = go
where
go [] = []
go ((n, v) : xs) =
uncurry (:) $
bimap (Node v . go) go (span ((n <) . fst) xs)
--------------------- TEST AND DISPLAY -------------------
main :: IO ()
main =
mapM_
( \xs ->
putStrLn ("From: " <> show xs)
>> let tree = treeFromSparseLevels xs
in putStrLn ((drawTree . fmap show) tree)
>> putStrLn
( "Back to: "
<> show (sparseLevelsFromTree tree)
<> "\n\n"
)
)
[ [],
[1, 2, 4],
[3, 1, 3, 1],
[1, 2, 3, 1],
[3, 2, 1, 3],
[3, 3, 3, 1, 1, 3, 3, 3]
]
----------- MAPPING TO A STRICTER DATA STRUCTURE ---------
-- Path from the virtual root to the first explicit node.
rooted :: [(Int, Maybe Int)] -> [(Int, Maybe Int)]
rooted [] = []
rooted xs = go $ filter ((1 <=) . fst) xs
where
go xs@((1, mb) : _) = xs
go xs@((n, mb) : _) =
fmap (,Nothing) [1 .. pred n] <> xs
-- Representation of implicit nodes.
normalised [] = []
normalised [x] = [(x, Just x)]
normalised (x : y : xs)
| 1 < (y - x) =
(x, Just x) :
(succ x, Nothing) : normalised (y : xs)
| otherwise = (x, Just x) : normalised (y : xs)
- Output:
From: [] Nothing Back to: [] From: [1,2,4] Nothing | `- Just 1 | `- Just 2 | `- Nothing | `- Just 4 Back to: [1,2,4] From: [3,1,3,1] Nothing | +- Nothing | | | `- Nothing | | | `- Just 3 | +- Just 1 | | | `- Nothing | | | `- Just 3 | `- Just 1 Back to: [3,1,3,1] From: [1,2,3,1] Nothing | +- Just 1 | | | `- Just 2 | | | `- Just 3 | `- Just 1 Back to: [1,2,3,1] From: [3,2,1,3] Nothing | +- Nothing | | | +- Nothing | | | | | `- Just 3 | | | `- Just 2 | `- Just 1 | `- Nothing | `- Just 3 Back to: [3,2,1,3] From: [3,3,3,1,1,3,3,3] Nothing | +- Nothing | | | `- Nothing | | | +- Just 3 | | | +- Just 3 | | | `- Just 3 | +- Just 1 | `- Just 1 | `- Nothing | +- Just 3 | +- Just 3 | `- Just 3 Back to: [3,3,3,1,1,3,3,3]
J
Without any use cases for these trees, it's difficult to know if any implementation is correct.
As a side note here, the notation used to describe these trees has some interesting consequences in the context of J:
[[[3]], 1, [[3]], 1
1 1
[[[3]], 1, [[3]], 1]
|syntax error
But, on a related note, there are type issues to consider -- in J's type system, a box (which is what we would use here to represent a tree node) cannot exist in a tuple with an integer. A box can, however, contain an integer. This makes a literal interpretation of the task somewhat... difficult. We might, hypothetically, say that we are working with boxes containing integers and that it's these boxes which must achieve a specific nesting level. (If we fail to make this distinction then we wind up with a constraint which forces some tree nodes to be structured different from what appears to be the task specification. Whether or not this is an important issue is difficult to determine without use cases. So, for now, let's assume that this is an important distinction.)
Anyways, here's an interpretation which might be close enough to the task description:
NB. first we nest each integer to the required depth, independently
NB. then we recursively merge deep boxes
NB. for consistency, if there are no integers, we box that empty list
dtree=: {{
<^:(0=L.) merge <^:]each y
}}
merge=: {{
if.(0=#$y)+.2>L.y do.y return.end. NB. done if no deep boxes left
shallow=. 2 > L."0 y NB. locate shallow boxes
group=. shallow} (+/\ shallow),:-#\y NB. find groups of adjacent deep boxes
merge each group ,each//. y NB. combine them and recursively merge their contents
}}
Task example:
dtree ''
┌┐
││
└┘
dtree 1 2 4
┌─────────────┐
│┌─┬─────────┐│
││1│┌─┬─────┐││
││ ││2│┌───┐│││
││ ││ ││┌─┐││││
││ ││ │││4│││││
││ ││ ││└─┘││││
││ ││ │└───┘│││
││ │└─┴─────┘││
│└─┴─────────┘│
└─────────────┘
dtree 3 1 3 1
┌─────────────────┐
│┌─────┬─┬─────┬─┐│
││┌───┐│1│┌───┐│1││
│││┌─┐││ ││┌─┐││ ││
││││3│││ │││3│││ ││
│││└─┘││ ││└─┘││ ││
││└───┘│ │└───┘│ ││
│└─────┴─┴─────┴─┘│
└─────────────────┘
dtree 1 2 3 1
┌─────────────┐
│┌─┬───────┬─┐│
││1│┌─┬───┐│1││
││ ││2│┌─┐││ ││
││ ││ ││3│││ ││
││ ││ │└─┘││ ││
││ │└─┴───┘│ ││
│└─┴───────┴─┘│
└─────────────┘
dtree 3 2 1 3
┌─────────────────┐
│┌───────┬─┬─────┐│
││┌───┬─┐│1│┌───┐││
│││┌─┐│2││ ││┌─┐│││
││││3││ ││ │││3││││
│││└─┘│ ││ ││└─┘│││
││└───┴─┘│ │└───┘││
│└───────┴─┴─────┘│
└─────────────────┘
dtree 3 3 3 1 1 3 3 3
┌─────────────────────────┐
│┌─────────┬─┬─┬─────────┐│
││┌───────┐│1│1│┌───────┐││
│││┌─┬─┬─┐││ │ ││┌─┬─┬─┐│││
││││3│3│3│││ │ │││3│3│3││││
│││└─┴─┴─┘││ │ ││└─┴─┴─┘│││
││└───────┘│ │ │└───────┘││
│└─────────┴─┴─┴─────────┘│
└─────────────────────────┘
Note that merge does not concern itself with the contents of boxes, only their nesting depth. This means that we could replace the implementation of dtree with some similar mechanism if we wished to use this approach with something else. For example:
t=: ;:'(a b c) d (e f g)'
p=: ;:'()'
d=: +/\-/p=/t
k=: =/p=/t
merge d <@]^:[&.>&(k&#) t
┌───────┬─┬───────┐
│┌─┬─┬─┐│d│┌─┬─┬─┐│
││a│b│c││ ││e│f│g││
│└─┴─┴─┘│ │└─┴─┴─┘│
└───────┴─┴───────┘
Or, generalizing:
pnest=: {{
t=. ;:y NB. tokens
p=. (;:'()')=/t NB. paren token matches
d=: +/\-/p NB. paren token depths
k=: =/p NB. keep non-paren tokens
merge d <@]^:[&.>&(k&#) t NB. exercise task
}}
Example use:
pnest '((a b) c (d e) f) g (h i)'
┌─────────────────┬─┬─────┐
│┌─────┬─┬─────┬─┐│g│┌─┬─┐│
││┌─┬─┐│c│┌─┬─┐│f││ ││h│i││
│││a│b││ ││d│e││ ││ │└─┴─┘│
││└─┴─┘│ │└─┴─┘│ ││ │ │
│└─────┴─┴─────┴─┘│ │ │
└─────────────────┴─┴─────┘
Java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public final class TreeNestingLevels {
public static void main(String[] args) {
List<List<Integer>> lists = List.of(
Arrays.asList(),
Arrays.asList( 1, 2, 4 ),
Arrays.asList( 3, 1, 3, 1 ),
Arrays.asList( 1, 2, 3, 1 ),
Arrays.asList( 3, 2, 1, 3 ),
Arrays.asList( 3, 3, 3, 1, 1, 3, 3, 3 )
);
for ( List<Integer> list : lists ) {
List<Object> tree = createTree(list);
System.out.println(list + " --> " + tree);
}
}
private static List<Object> createTree(List<Integer> list) {
return makeTree(list, 0, 1);
}
private static List<Object> makeTree(List<Integer> list, int index, int depth) {
List<Object> tree = new ArrayList<Object>();
int current;
while ( index < list.size() && depth <= ( current = list.get(index) ) ) {
if ( depth == current ) {
tree.add(current);
index += 1;
} else {
tree.add(makeTree(list, index, depth + 1));
final int position = list.subList(index, list.size()).indexOf(depth);
index += ( position == -1 ) ? list.size() : position;
}
}
return tree;
}
}
- Output:
[] --> [] [1, 2, 4] --> [1, [2, [[4]]]] [3, 1, 3, 1] --> [[[3]], 1, [[3]], 1] [1, 2, 3, 1] --> [1, [2, [3]], 1] [3, 2, 1, 3] --> [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] --> [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
Julia
function makenested(list)
nesting = 0
str = isempty(list) ? "[]" : ""
for n in list
if n > nesting
str *= "["^(n - nesting)
nesting = n
elseif n < nesting
str *= "]"^(nesting - n) * ", "
nesting = n
end
str *= "$n, "
end
str *= "]"^nesting
return eval(Meta.parse(str))
end
for test in [[], [1, 2, 4], [3, 1, 3, 1], [1, 2, 3, 1], [3, 2, 1, 3], [3, 3, 3, 1, 1, 3, 3, 3]]
result = "$test => $(makenested(test))"
println(replace(result, "Any" => ""))
end
- Output:
[] => [] [1, 2, 4] => [1, [2, [[4]]]] [3, 1, 3, 1] => [[[3]], 1, [[3]], 1] [1, 2, 3, 1] => [1, [2, [3]], 1] [3, 2, 1, 3] => [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] => [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
Nim
In a strongly and statically typed language as Nim, there is no way to mix integer values and lists. So, we have defined a variant type Node
able to contain either an integer value or a list of Node objects, depending on the value of a discriminator. The procedure newTree
converts a list of levels into a list of nodes with the appropriate nesting.
import sequtils, strutils
type
Kind = enum kValue, kList
Node = ref object
case kind: Kind
of kValue: value: int
of kList: list: seq[Node]
proc newTree(s: varargs[int]): Node =
## Build a tree from a list of level values.
var level = 1
result = Node(kind: kList)
var stack = @[result]
for n in s:
if n <= 0:
raise newException(ValueError, "expected a positive integer, got " & $n)
let node = Node(kind: kValue, value: n)
if n < level:
# Unstack lists.
stack.setLen(n)
level = n
else:
while n > level:
# Create intermediate lists.
let newList = Node(kind: kList)
stack[^1].list.add newList
stack.add newList
inc level
# Add value.
stack[^1].list.add node
proc `$`(node: Node): string =
## Display a tree using a nested lists representation.
if node.kind == kValue: $node.value
else: '[' & node.list.mapIt($it).join(", ") & ']'
for list in [newSeq[int](), # Empty list (== @[]).
@[1, 2, 4],
@[3, 1, 3, 1],
@[1, 2, 3, 1],
@[3, 2, 1, 3],
@[3, 3, 3, 1, 1, 3, 3, 3]]:
echo ($list).align(25), " → ", newTree(list)
- Output:
@[] → [] @[1, 2, 4] → [1, [2, [[4]]]] @[3, 1, 3, 1] → [[[3]], 1, [[3]], 1] @[1, 2, 3, 1] → [1, [2, [3]], 1] @[3, 2, 1, 3] → [[[3], 2], 1, [[3]]] @[3, 3, 3, 1, 1, 3, 3, 3] → [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
OxygenBasic
uses console
declare DemoTree(string src)
DemoTree "[]"
DemoTree "[1, 2, 4]"
DemoTree "[3, 1, 3, 1]"
DemoTree "[1, 2, 3, 1]"
DemoTree "[3, 2, 1, 3]"
DemoTree "[3, 3, 3, 1, 1, 3, 3, 3]"
pause
end
/*
RESULTS:
========
[]
[]
[1, 2, 4]
[ 1,[ 2,[[ 4]]]]
[3, 1, 3, 1]
[[[ 3]], 1,[[ 3]], 1]
[1, 2, 3, 1]
[ 1,[ 2,[ 3]], 1]
[3, 2, 1, 3]
[[[ 3], 2], 1,[[ 3]]]
[3, 3, 3, 1, 1, 3, 3, 3]
[[[ 3, 3, 3]], 1, 1,[[ 3, 3, 3]]]
*/
sub DemoTree(string src)
========================
string tree=nuls 1000 'TREE OUTPUT
int i=1 'src char iterator
int j=1 'tree char iterator
byte bs at strptr src 'src bytes
byte bt at strptr tree 'tree bytes
int bl=len src 'end of src
int lvl 'current tree level
int olv 'prior tree level
int v 'number value
string vs 'number in string form
do
exit if i>bl
select bs[i]
case 91 '['
i++
case 93 ']'
if i=bl
gosub writex
endif
i++
case 44 ','
i++
gosub writex
case 0 to 32 'white space
i++
'bt[j]=" " : j++
case 48 to 57 '0..9'
gosub ReadDigits
case else
i++
end select
loop
tree=left(tree,j-1)
output src cr
output tree cr cr
exit sub
'SUBROUTINES OF DEMOTREE:
=========================
writex:
=======
olv=lvl
if i>=bl
if v=0 and olv=0
tree="[]" : j=3
ret
endif
endif
if v<olv
gosub WriteRbr
endif
if olv
gosub WriteComma
endif
if v>olv
gosub WriteLbr
endif
gosub WriteDigits '3]]'
if i>=bl
v=0
gosub WriteRbr
endif
ret
ReadDigits:
===========
v=0
while i<=bl
select bs[i]
case 48 to 57 '1..9
v*=10 : v+=bs[i]-48 'digit
case else
exit while
end select
i++
wend
ret
'
WriteDigits:
============
vs=" "+str(v) : mid(tree,j,vs) : j+=len vs
ret
WriteLbr:
=========
while v>lvl
bt[j]=91 : j++ : lvl++
wend
ret
WriteRbr:
=========
while v<lvl
bt[j]=93 : j++ : lvl--
wend
ret
WriteComma:
===========
bt[j]=44 : j++ ','
ret
end sub
Perl
String Eval
#!/usr/bin/perl
use strict;
use warnings;
use Data::Dump qw(dd pp);
my @tests =
(
[]
,[1, 2, 4]
,[3, 1, 3, 1]
,[1, 2, 3, 1]
,[3, 2, 1, 3]
,[3, 3, 3, 1, 1, 3, 3, 3]
);
for my $before ( @tests )
{
dd { before => $before };
local $_ = (pp $before) =~ s/\d+/ '['x($&-1) . $& . ']'x($&-1) /ger;
1 while s/\](,\s*)\[/$1/;
my $after = eval;
dd { after => $after };
}
- Output:
{ before => [] } { after => [] } { before => [1, 2, 4] } { after => [1, [2, [[4]]]] } { before => [3, 1, 3, 1] } { after => [[[3]], 1, [[3]], 1] } { before => [1, 2, 3, 1] } { after => [1, [2, [3]], 1] } { before => [3, 2, 1, 3] } { after => [[[3], 2], 1, [[3]]] } { before => [3, 3, 3, 1, 1, 3, 3, 3] } { after => [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] }
Iterative
use 5.020_000; # Also turns on `strict`
use warnings;
use experimental qw<signatures>;
use Data::Dump qw<pp>;
sub new_level ( $stack ) {
my $e = [];
push @{ $stack->[-1] }, $e;
push @{ $stack }, $e;
}
sub to_tree_iterative ( @xs ) {
my $nested = [];
my $stack = [$nested];
for my $x (@xs) {
new_level($stack) while $x > @{$stack};
pop @{$stack} while $x < @{$stack};
push @{$stack->[-1]},$x;
}
return $nested;
}
my @tests = ([],[1,2,4],[3,1,3,1],[1,2,3,1],[3,2,1,3],[3,3,3,1,1,3,3,3]);
say sprintf('%15s => ', join(' ', @{$_})), pp(to_tree_iterative(@{$_})) for @tests;
- Output:
=> [] 1 2 4 => [1, [2, [[4]]]] 3 1 3 1 => [[[3]], 1, [[3]], 1] 1 2 3 1 => [1, [2, [3]], 1] 3 2 1 3 => [[[3], 2], 1, [[3]]] 3 3 3 1 1 3 3 3 => [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
Phix
I was thinking along the same lines but admit I had a little peek at the (recursive) python solution..
function test(sequence s, integer level=1, idx=1) sequence res = {}, part while idx<=length(s) do switch compare(s[idx],level) do case +1: {idx,part} = test(s,level+1,idx) res = append(res,part) case 0: res &= s[idx] case -1: idx -= 1 exit end switch idx += 1 end while return iff(level=1?res:{idx,res}) end function constant tests = {{}, {1, 2, 4}, -- {1, 2, 4, 2, 2, 1}, -- (fine too) {3, 1, 3, 1}, {1, 2, 3, 1}, {3, 2, 1, 3}, {3, 3, 3, 1, 1, 3, 3, 3}} for i=1 to length(tests) do sequence ti = tests[i], res = test(ti), rpp = ppf(res,{pp_Nest,3,pp_Indent,4}) printf(1,"%v nests to %v\n or %s\n",{ti,res,rpp}) end for
- Output:
{} nests to {} or {} {1,2,4} nests to {1,{2,{{4}}}} or {1, {2, {{4}}}} {3,1,3,1} nests to {{{3}},1,{{3}},1} or {{{3}}, 1, {{3}}, 1} {1,2,3,1} nests to {1,{2,{3}},1} or {1, {2, {3}}, 1} {3,2,1,3} nests to {{{3},2},1,{{3}}} or {{{3}, 2}, 1, {{3}}} {3,3,3,1,1,3,3,3} nests to {{{3,3,3}},1,1,{{3,3,3}}} or {{{3, 3, 3}}, 1, 1, {{3, 3, 3}}}
iterative
function nest(sequence input) if length(input) then for level=max(input) to 2 by -1 do sequence output = {} bool subnest = false for i=1 to length(input) do object ii = input[i] if integer(ii) and ii<level then subnest = false output &= ii elsif not subnest then output &= {{ii}} subnest = true else output[$] &= {ii} end if end for input = output end for end if return input end function
Same output (using nest instead of test)
Python
Python: Procedural
Python: Recursive
def to_tree(x, index=0, depth=1):
so_far = []
while index < len(x):
this = x[index]
if this == depth:
so_far.append(this)
elif this > depth:
index, deeper = to_tree(x, index, depth + 1)
so_far.append(deeper)
else: # this < depth:
index -=1
break
index += 1
return (index, so_far) if depth > 1 else so_far
if __name__ == "__main__":
from pprint import pformat
def pnest(nest:list, width: int=9) -> str:
text = pformat(nest, width=width).replace('\n', '\n ')
print(f" OR {text}\n")
exercises = [
[],
[1, 2, 4],
[3, 1, 3, 1],
[1, 2, 3, 1],
[3, 2, 1, 3],
[3, 3, 3, 1, 1, 3, 3, 3],
]
for flat in exercises:
nest = to_tree(flat)
print(f"{flat} NESTS TO: {nest}")
pnest(nest)
- Output:
[] NESTS TO: [] OR [] [1, 2, 4] NESTS TO: [1, [2, [[4]]]] OR [1, [2, [[4]]]] [3, 1, 3, 1] NESTS TO: [[[3]], 1, [[3]], 1] OR [[[3]], 1, [[3]], 1] [1, 2, 3, 1] NESTS TO: [1, [2, [3]], 1] OR [1, [2, [3]], 1] [3, 2, 1, 3] NESTS TO: [[[3], 2], 1, [[3]]] OR [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] NESTS TO: [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] OR [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
Python: Iterative
def to_tree(x: list) -> list:
nested = []
stack = [nested]
for this in x:
while this != len(stack):
if this > len(stack):
innermost = [] # new level
stack[-1].append(innermost) # nest it
stack.append(innermost) # push it
else: # this < stack:
stack.pop(-1)
stack[-1].append(this)
return nested
- Output:
Using the same main block it produces the same output as the recursive case above.
Python: Functional
A translation of the sparse level-lists to a stricter generic data structure gives us access to standard tree-walking functions, allowing for simpler top-level functions, and higher levels of code reuse.
Here, for example, we apply:
- a generic tree-drawing (drawTree) function, and
- a generic catamorphism over trees (foldTree) for:
- the generation of a bracket-nest from an underlying tree, and
- a return-trip regeneration of the sparse level list from the same tree.
Each node in the underlying tree structure is a tuple of a value (None or an integer), and list of child nodes:
Node (None|Int) :: ((None|Int), [Node])
'''Tree from nesting levels'''
from itertools import chain, repeat
from operator import add
# treeFromSparseLevels :: [Int] -> Tree Maybe Int
def treeFromSparseLevels(levelList):
'''A Forest (list of Trees) of (Maybe Int) values,
in which implicit nodes have the value None.
'''
return Node(None)(
forestFromLevels(
rooted(normalized(levelList))
)
)
# forestFromLevels :: [(Int, a)] -> [Tree a]
def forestFromLevels(nvs):
'''A list of generic trees derived from a list of
values paired with integers representing
nesting depths.
'''
def go(xs):
if xs:
level, v = xs[0]
children, rest = span(
lambda x: level < x[0]
)(xs[1:])
return [Node(v)(go(children))] + go(rest)
else:
return []
return go(nvs)
# bracketNest :: Maybe Int -> Nest -> Nest
def bracketNest(maybeLevel):
'''An arbitrary nest of bracketed
lists and sublists.
'''
def go(xs):
subNest = concat(xs)
return [subNest] if None is maybeLevel else (
[maybeLevel, subNest] if subNest else (
[maybeLevel]
)
)
return go
# showTree :: Tree Maybe Int -> String
def showTree(tree):
'''A string representation of
a Maybe Int tree.
'''
return drawTree(
fmapTree(repr)(tree)
)
# sparseLevelsFromTree :: Tree (Maybe Int) -> [Int]
def sparseLevelsFromTree(tree):
'''Sparse representation of the tree
a list of nest level integers.
'''
def go(x):
return lambda xs: concat(xs) if (
None is x
) else [x] + concat(xs)
return foldTree(go)(tree)
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Test the building and display of
normalized forests from level integers.
'''
for xs in [
[],
[1, 2, 4],
[3, 1, 3, 1],
[1, 2, 3, 1],
[3, 2, 1, 3],
[3, 3, 3, 1, 1, 3, 3, 3]
]:
tree = treeFromSparseLevels(xs)
(
print('From: ' + repr(xs)),
print('Through tuple nest:'),
print(repr(tree)),
print('\nTree:'),
print(showTree(tree)),
print('\nto bracket nest:'),
print(
repr(
root(foldTree(bracketNest)(tree))
)
),
print(
'and back to: ' + (
repr(sparseLevelsFromTree(tree))
)
),
print()
)
# ------ TRANSLATION TO A CONSISTENT DATA STRUCTURE ------
# normalized :: [Int] -> [(Int, Maybe Int)]
def normalized(xs):
'''Explicit representation of implicit nodes.
'''
if xs:
x = xs[0]
h = [(x, x)]
return h if 1 == len(xs) else (
h + [(1 + x, None)] if (
1 < (xs[1] - x)
) else h
) + normalized(xs[1:])
else:
return []
# rooted :: [(Int, Maybe Int)] -> [(Int, Maybe Int)]
def rooted(pairs):
'''Path from the virtual root
to the first explicit node.
'''
def go(xs):
n = xs[0][0]
return xs if 1 == n else (
[(x, Nothing()) for x in range(1, n)] + xs
)
return go([
x for x in pairs if 1 <= x[0]
]) if pairs else []
# ---------------- GENERIC TREE FUNCTIONS ----------------
# Node :: a -> [Tree a] -> Tree a
def Node(v):
'''Constructor for a Tree node which connects a
value of some kind to a list of zero or
more child trees.
'''
return lambda xs: (v, xs)
# draw :: Tree a -> [String]
def draw(node):
'''List of the lines of an ASCII
diagram of a tree.
'''
def shift_(h, other, xs):
return list(map(
add,
chain(
[h], (
repeat(other, len(xs) - 1)
)
),
xs
))
def drawSubTrees(xs):
return (
(
['|'] + shift_(
'├─ ', '│ ', draw(xs[0])
) + drawSubTrees(xs[1:])
) if 1 < len(xs) else ['|'] + shift_(
'└─ ', ' ', draw(xs[0])
)
) if xs else []
return (root(node)).splitlines() + (
drawSubTrees(nest(node))
)
# drawForest :: [Tree String] -> String
def drawForest(trees):
'''A simple unicode character representation of
a list of trees.
'''
return '\n'.join(map(drawTree, trees))
# drawTree :: Tree a -> String
def drawTree(tree):
'''ASCII diagram of a tree.'''
return '\n'.join(draw(tree))
# fmapTree :: (a -> b) -> Tree a -> Tree b
def fmapTree(f):
'''A new tree holding the results of
an application of f to each root in
the existing tree.
'''
def go(x):
return Node(
f(root(x))
)([go(v) for v in nest(x)])
return go
# foldTree :: (a -> [b] -> b) -> Tree a -> b
def foldTree(f):
'''The catamorphism on trees. A summary
value defined by a depth-first fold.
'''
def go(node):
return f(root(node))([
go(x) for x in nest(node)
])
return go
# nest :: Tree a -> [Tree a]
def nest(t):
'''Accessor function for children of tree node.'''
return t[1]
# root :: Tree a -> a
def root(t):
'''Accessor function for data of tree node.'''
return t[0]
# -------------------- GENERIC OTHER ---------------------
# Nothing :: () -> Maybe a
def Nothing():
'''Constructor for an empty Maybe (option type) value.
Empty wrapper returned where a computation is not possible.
'''
return None
# concat :: [[a]] -> [a]
# concat :: [String] -> String
def concat(xs):
'''The concatenation of all the elements
in a list or iterable.
'''
def f(ys):
zs = list(chain(*ys))
return ''.join(zs) if isinstance(ys[0], str) else zs
return (
f(xs) if isinstance(xs, list) else (
chain.from_iterable(xs)
)
) if xs else []
# span :: (a -> Bool) -> [a] -> ([a], [a])
def span(p):
'''The longest (possibly empty) prefix of xs
that contains only elements satisfying p,
tupled with the remainder of xs.
span p xs is equivalent to
(takeWhile p xs, dropWhile p xs).
'''
def match(ab):
b = ab[1]
return not b or not p(b[0])
def f(ab):
a, b = ab
return a + [b[0]], b[1:]
def go(xs):
return until(match)(f)(([], xs))
return go
# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
'''The result of repeatedly applying f until p holds.
The initial seed value is x.
'''
def go(f):
def g(x):
v = x
while not p(v):
v = f(v)
return v
return g
return go
# MAIN ---
if __name__ == '__main__':
main()
- Output:
From: [] Through tuple nest: (None, []) Tree: None to bracket nest: [] and back to: [] From: [1, 2, 4] Through tuple nest: (None, [(1, [(2, [(None, [(4, [])])])])]) Tree: None | └─ 1 | └─ 2 | └─ None | └─ 4 to bracket nest: [1, [2, [[4]]]] and back to: [1, 2, 4] From: [3, 1, 3, 1] Through tuple nest: (None, [(None, [(None, [(3, [])])]), (1, [(None, [(3, [])])]), (1, [])]) Tree: None | ├─ None │ | │ └─ None │ | │ └─ 3 | ├─ 1 │ | │ └─ None │ | │ └─ 3 | └─ 1 to bracket nest: [[[3]], 1, [[3]], 1] and back to: [3, 1, 3, 1] From: [1, 2, 3, 1] Through tuple nest: (None, [(1, [(2, [(3, [])])]), (1, [])]) Tree: None | ├─ 1 │ | │ └─ 2 │ | │ └─ 3 | └─ 1 to bracket nest: [1, [2, [3]], 1] and back to: [1, 2, 3, 1] From: [3, 2, 1, 3] Through tuple nest: (None, [(None, [(None, [(3, [])]), (2, [])]), (1, [(None, [(3, [])])])]) Tree: None | ├─ None │ | │ ├─ None │ │ | │ │ └─ 3 │ | │ └─ 2 | └─ 1 | └─ None | └─ 3 to bracket nest: [[[3], 2], 1, [[3]]] and back to: [3, 2, 1, 3] From: [3, 3, 3, 1, 1, 3, 3, 3] Through tuple nest: (None, [(None, [(None, [(3, []), (3, []), (3, [])])]), (1, []), (1, [(None, [(3, []), (3, []), (3, [])])])]) Tree: None | ├─ None │ | │ └─ None │ | │ ├─ 3 │ | │ ├─ 3 │ | │ └─ 3 | ├─ 1 | └─ 1 | └─ None | ├─ 3 | ├─ 3 | └─ 3 to bracket nest: [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] and back to: [3, 3, 3, 1, 1, 3, 3, 3]
Quackery
[ stack ] is prev ( --> s )
[ temp take
swap join
temp put ] is add$ ( x --> )
[ dup [] = if done
0 prev put
$ "' " temp put
witheach
[ dup prev take -
over prev put
dup 0 > iff
[ times
[ $ "[ " add$ ] ]
else
[ abs times
[ $ "] " add$ ] ]
number$ space join add$ ]
prev take times
[ $ "] " add$ ]
temp take quackery ] is nesttree ( [ --> [ )
' [ [ ]
[ 1 2 4 ]
[ 3 1 3 1 ]
[ 1 2 3 1 ]
[ 3 2 1 3 ]
[ 3 3 3 1 1 3 3 3 ] ]
witheach
[ dup echo say " --> "
nesttree echo cr cr ]
- Output:
[ ] --> [ ] [ 1 2 4 ] --> [ 1 [ 2 [ [ 4 ] ] ] ] [ 3 1 3 1 ] --> [ [ [ 3 ] ] 1 [ [ 3 ] ] 1 ] [ 1 2 3 1 ] --> [ 1 [ 2 [ 3 ] ] 1 ] [ 3 2 1 3 ] --> [ [ [ 3 ] 2 ] 1 [ [ 3 ] ] ] [ 3 3 3 1 1 3 3 3 ] --> [ [ [ 3 3 3 ] ] 1 1 [ [ 3 3 3 ] ] ]
Raku
Iterative
sub new_level ( @stack --> Nil ) {
my $e = [];
push @stack.tail, $e;
push @stack, $e;
}
sub to_tree_iterative ( @xs --> List ) {
my $nested = [];
my @stack = $nested;
for @xs -> Int $x {
new_level(@stack) while $x > @stack;
pop @stack while $x < @stack;
push @stack.tail, $x;
}
return $nested;
}
my @tests = (), (1, 2, 4), (3, 1, 3, 1), (1, 2, 3, 1), (3, 2, 1, 3), (3, 3, 3, 1, 1, 3, 3, 3);
say .Str.fmt( '%15s => ' ), .&to_tree_iterative for @tests;
- Output:
=> [] 1 2 4 => [1 [2 [[4]]]] 3 1 3 1 => [[[3]] 1 [[3]] 1] 1 2 3 1 => [1 [2 [3]] 1] 3 2 1 3 => [[[3] 2] 1 [[3]]] 3 3 3 1 1 3 3 3 => [[[3 3 3]] 1 1 [[3 3 3]]]
Recursive
sub to_tree_recursive ( @list, $index is copy, $depth ) {
my @so_far = gather while $index <= @list.end {
my $t = @list[$index];
given $t <=> $depth {
when Order::Same {
take $t;
}
when Order::More {
( $index, my $n1 ) = to_tree_recursive( @list, $index, $depth+1 );
take $n1;
}
when Order::Less {
$index--;
last;
}
}
$index++;
}
my $i = ($depth > 1) ?? $index !! -1;
return $i, @so_far;
}
my @tests = (), (1, 2, 4), (3, 1, 3, 1), (1, 2, 3, 1), (3, 2, 1, 3), (3, 3, 3, 1, 1, 3, 3, 3);
say .Str.fmt( '%15s => ' ), to_tree_recursive( $_, 0, 1 ).[1] for @tests;
- Output:
=> [] 1 2 4 => [1 [2 [[4]]]] 3 1 3 1 => [[[3]] 1 [[3]] 1] 1 2 3 1 => [1 [2 [3]] 1] 3 2 1 3 => [[[3] 2] 1 [[3]]] 3 3 3 1 1 3 3 3 => [[[3 3 3]] 1 1 [[3 3 3]]]
String Eval
use MONKEY-SEE-NO-EVAL;
sub to_tree_string_eval ( @xs --> Array ) {
my @gap = [ |@xs, 0 ] Z- [ 0, |@xs ];
my @open = @gap.map( '[' x * );
my @close = @gap.map( ']' x -* );
my @wrapped = [Z~] @open, @xs, @close.skip;
return EVAL @wrapped.join(',').subst(:g, ']]', '],]') || '[]';
}
my @tests = (), (1, 2, 4), (3, 1, 3, 1), (1, 2, 3, 1), (3, 2, 1, 3), (3, 3, 3, 1, 1, 3, 3, 3);
say .Str.fmt( '%15s => ' ), .&to_tree_string_eval for @tests;
- Output:
=> [] 1 2 4 => [1 [2 [[4]]]] 3 1 3 1 => [[[3]] 1 [[3]] 1] 1 2 3 1 => [1 [2 [3]] 1] 3 2 1 3 => [[[3] 2] 1 [[3]]] 3 3 3 1 1 3 3 3 => [[[3 3 3]] 1 1 [[3 3 3]]]
Wren
Iterative
import "./seq" for Stack
import "./fmt" for Fmt
var toTree = Fn.new { |list|
var nested = []
var s = Stack.new()
s.push(nested)
for (n in list) {
while (n != s.count) {
if (n > s.count) {
var inner = []
s.peek().add(inner)
s.push(inner)
} else {
s.pop()
}
}
s.peek().add(n)
}
return nested
}
var tests = [
[],
[1, 2, 4],
[3, 1, 3, 1],
[1, 2, 3, 1],
[3, 2, 1, 3],
[3, 3, 3, 1, 1, 3, 3, 3]
]
for (test in tests) {
var nest = toTree.call(test)
Fmt.print("$24n => $n", test, nest)
}
- Output:
[] => [] [1, 2, 4] => [1, [2, [[4]]]] [3, 1, 3, 1] => [[[3]], 1, [[3]], 1] [1, 2, 3, 1] => [1, [2, [3]], 1] [3, 2, 1, 3] => [[[3], 2], 1, [[3]]] [3, 3, 3, 1, 1, 3, 3, 3] => [[[3, 3, 3]], 1, 1, [[3, 3, 3]]]
Recursive
import "./fmt" for Fmt
var toTree // recursive
toTree = Fn.new { |list, index, depth|
var soFar = []
while (index < list.count) {
var t = list[index]
if (t == depth) {
soFar.add(t)
} else if (t > depth) {
var n = toTree.call(list, index, depth+1)
index = n[0]
soFar.add(n[1])
} else {
index = index - 1
break
}
index = index + 1
}
if (depth > 1) return [index, soFar]
return [-1, soFar]
}
var tests = [
[],
[1, 2, 4],
[3, 1, 3, 1],
[1, 2, 3, 1],
[3, 2, 1, 3],
[3, 3, 3, 1, 1, 3, 3, 3]
]
for (test in tests) {
var n = toTree.call(test, 0, 1)
Fmt.print("$24n => $n", test, n[1])
}
- Output:
Same as iterative version.
XPL0
A sentinel 0 is used to terminate the input arrays because XPL0 does not have built-in lists. Note that [0] displays nothing.
proc ShowTree(List);
int List, NestLevel, I;
[NestLevel:= 0;
for I:= 0 to -1>>1 do
[while List(I) < NestLevel do
[ChOut(0, ^]); NestLevel:= NestLevel-1];
if List(I) = 0 then [CrLf(0); return];
if I # 0 then Text(0, ", ");
while List(I) > NestLevel do
[ChOut(0, ^[); NestLevel:= NestLevel+1];
IntOut(0, NestLevel);
];
];
[ShowTree([0]);
ShowTree([1, 2, 4, 0]);
ShowTree([3, 1, 3, 1, 0]);
ShowTree([1, 2, 3, 1, 0]);
ShowTree([3, 2, 1, 3, 0]);
ShowTree([3, 3, 3, 1, 1, 3, 3, 3, 0]);
ShowTree([1, 2, 4, 2, 2, 1, 0]);
]
- Output:
[1, [2, [[4]]]] [[[3]], 1, [[3]], 1] [1, [2, [3]], 1] [[[3], 2], 1, [[3]]] [[[3, 3, 3]], 1, 1, [[3, 3, 3]]] [1, [2, [[4]], 2, 2], 1]