The ISAAC cipher
ISAAC is a cryptographically secure pseudo-random number generator (CSPRNG) and stream cipher. It was developed by Bob Jenkins from 1993 (http://burtleburtle.net/bob/rand/isaac.html) and placed in the Public Domain. ISAAC is fast - especially when optimised - and portable to most architectures in nearly all programming and scripting languages. It is also simple and succinct, using as it does just two 256-word arrays for its state.
ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are the principal bitwise operations employed. To date - and that's after more than 20 years of existence - ISAAC has not been broken (unless GCHQ or NSA did it, but they wouldn't be telling). ISAAC thus deserves a lot more attention than it has hitherto received and it would be salutary to see it more universally implemented.
- Task
Translate ISAAC's reference C or Pascal code into your language of choice.
The RNG should then be seeded with the string "this is my secret key" and finally the message "a Top Secret secret" should be encrypted on that key. Your program's output cipher-text will be a string of hexadecimal digits.
Optional: Include a decryption check by re-initializing ISAAC and performing the same encryption pass on the cipher-text.
Please use the C or Pascal as a reference guide to these operations.
Two encryption schemes are possible: (1) XOR (Vernam) or (2) Caesar-shift mod 95 (Vigenère). XOR is the simplest; C-shifting offers greater security.
You may choose either scheme, or both, but please specify which you used. Here are the alternative sample outputs for checking purposes:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD : 734270227D36772A783B4F2A5F206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
No official seeding method for ISAAC has been published, but for this task we may as well just inject the bytes of our key into the randrsl array, padding with zeroes before mixing, like so:
// zeroise mm array FOR i:= 0 TO 255 DO mm[i]:=0; // check seed's highest array element m := High(seed); // inject the seed FOR i:= 0 TO 255 DO BEGIN // in case seed[] has less than 256 elements. IF i>m THEN randrsl[i]:=0 ELSE randrsl[i]:=seed[i]; END; // initialize ISAAC with seed RandInit(true);
ISAAC can of course also be initialized with a single 32-bit unsigned integer in the manner of traditional RNGs, and indeed used as such for research and gaming purposes.
But building a strong and simple ISAAC-based stream cipher - replacing the irreparably broken RC4 - is our goal here: ISAAC's intended purpose.
BASIC
FreeBASIC
' version 03-11-2016
' compile with: fbc -s console
Dim Shared As UInteger<32> randrsl(256), randcnt
Static Shared As UInteger<32> mm(256)
Static Shared As UInteger<32> aa, bb ,cc
Sub ISAAC()
Dim As UInteger<32> i, x, y
cc = cc + 1
bb = bb + cc
For i = 0 To 256 -1
x = mm(i)
Select Case (i Mod 4)
Case 0 : aa = aa Xor (aa Shl 13)
Case 1 : aa = aa Xor (aa Shr 6)
Case 2 : aa = aa Xor (aa Shl 2)
Case 3 : aa = aa Xor (aa Shr 16)
End Select
aa = mm((i+128) Mod 256) + aa
y = mm((x Shr 2) Mod 256) + aa + bb : mm(i) = y
bb = mm((y Shr 10) Mod 256) + x : randrsl(i) = bb
Next
randcnt = 0
End Sub
#Macro mix(a, b, c, d, e, f, g, h)
a Xor= b Shl 11 : d += a : b += c
b Xor= c Shr 2 : e += b : c += d
c Xor= d Shl 8 : f += c : d += e
d Xor= e Shr 16 : g += d : e += f
e Xor= f Shl 10 : h += e : f += g
f Xor= g Shr 4 : a += f : g += h
g Xor= h Shl 8 : b += g : h += a
h Xor= a Shr 9 : c += h : a += b
#EndMacro
Sub randinit(flag As Long)
Dim As Long i
Dim As UInteger<32> a = &H9e3779b9 '/* the golden ratio *
Dim As UInteger<32> b = &H9e3779b9
Dim As UInteger<32> c = &H9e3779b9
Dim As UInteger<32> d = &H9e3779b9
Dim As UInteger<32> e = &H9e3779b9
Dim As UInteger<32> f = &H9e3779b9
Dim As UInteger<32> g = &H9e3779b9
Dim As UInteger<32> h = &H9e3779b9
aa = 0 : bb = 0 : cc = 0
For i = 0 To 3
mix(a, b, c, d, e, f, g, h)
Next
For i = 0 To 255 Step 8
If flag = 1 Then
a += randrsl(i ) : b += randrsl(i +1)
c += randrsl(i +2) : d += randrsl(i +3)
e += randrsl(i +4) : f += randrsl(i +5)
g += randrsl(i +6) : h += randrsl(i +7)
mix(a, b, c, d, e, f, g, h)
mm(i ) = a : mm(i +1) = b : mm(i +2) = c : mm(i +3) = d
mm(i +4) = e : mm(i +5) = f : mm(i +6) = g : mm(i +7) = h
End If
Next
If flag = 1 Then
For i = 0 To 255 Step 8
a += mm(i ) : b += mm(i +1)
c += mm(i +2) : d += mm(i +3)
e += mm(i +4) : f += mm(i +5)
g += mm(i +6) : h += mm(i +7)
mix(a, b, c, d, e, f, g, h)
mm(i )= a : mm(i +1) = b : mm(i +2) = c : mm(i +3) = d
mm(i +4)= e : mm(i +5) = f : mm(i +6) = g : mm(i +7) = h
Next
End If
ISAAC()
randcnt = 0
End Sub
' // Get a random 32-bit value 0..MAXINT
Function iRandom() As UInteger<32>
Dim As UInteger<32> r = randrsl(randcnt)
randcnt += 1
If randcnt > 255 Then
ISAAC()
randcnt = 0
End If
Return r
End Function
' // Get a random character in printable ASCII range
Function iRandA() As UByte
Return iRandom() Mod 95 +32
End Function
' // Seed ISAAC with a string
Sub iSeed(seed As String, flag As Long)
Dim As ULong i, m = Len(seed) -1
For i = 0 To 255
mm(i) = 0
Next
For i = 0 To 255
If i > m Then
randrsl(i) = 0
Else
randrsl(i) = seed[i]
End If
Next
randinit(flag)
End Sub
' // maximum length of message
'#define MAXMSG 4096
#Define _MOD_ 95 ' mod is FreeBASIC keyword
#Define _START_ 32 ' start is used as variable name
' // cipher modes for Caesar
Enum ciphermode
mEncipher
mDecipher
mNone
End Enum
' // XOR cipher on random stream. Output: ASCII string
' no maximum lenght for input and output string
Function Vernam(msg As String) As String
Dim As ULong i
Dim As String v
For i = 0 To Len(msg) -1
v += Chr(iRandA() Xor msg[i])
Next
Return v
End Function
' // Caesar-shift a printable character
Function Ceasar(m As ciphermode, ch As UByte, shift As UByte, modulo As UByte, _
start As UByte) As UByte
' FreeBASIC Mod does not handle negative numbers correctly
' also there is litte problem with shift (declared UByte)
' the IIF() statement helps with shift
' to avoid a negative n a 8 times modulo is added
' modulo * 8 get translateted by FreeBASIC to modulo shl 3
Dim As Long n = (ch - start) + IIf(m = mDecipher, -shift, shift) + modulo * 8
n = n Mod modulo
Return start + n
End Function
' // Caesar-shift a string on a pseudo-random stream
Function CeasarStr(m As ciphermode, msg As String, modulo As UByte, _
start As UByte) As String
Dim As Long i
Dim As String v
For i = 0 To Len(msg) -1
v += Chr(Ceasar(m, msg[i], iRandA(), modulo, start))
Next
Return v
End Function
' ------=< MAIN >=------
Dim As Long n, l
Dim As String msg = "a Top Secret secret"
Dim As String key = "this is my secret key"
Dim As String vctx, vptx
Dim As String cctx, cptx
l = Len(msg)
' // Encrypt: Vernam XOR
iSeed(key, 1)
vctx = Vernam(msg)
' // Encrypt: Caesar
cctx = CeasarStr(mEncipher, msg, _mod_, _start_)
' // Decrypt: Vernam XOR
iSeed(key, 1)
vptx = Vernam(vctx)
' // Decrypt: Caesar
cptx = CeasarStr(mDecipher, cctx, _mod_, _start_)
Print "message: "; msg
Print " key: "; key
Print " XOR: ";
' // Output Vernam ciphertext as a string of hex digits
For n = 0 To l -1
Print Hex(vctx[n], 2);
Next
Print
' // Output Vernam decrypted plaintext
Print "XOR dcr: "; vptx
' // Caesar
Print " MOD: ";
' // Output Caesar ciphertext as a string of hex digits
For n= 0 To l -1
Print Hex(cctx[n], 2);
Next
Print
' // Output Caesar decrypted plaintext
Print "MOD dcr: " ; cptx
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
message: a Top Secret secret key: this is my secret key XOR: 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret MOD: 734270227D36772A783B4F2A5F206266236978 MOD dcr: a Top Secret secret
C
At the top is Bob Jenkins' reference code for ISAAC. Below and in main() is the task's complete solution for XOR and MOD.
/* Known to compile and work with tcc in win32 & gcc on Linux (with warnings)
------------------------------------------------------------------------------
readable.c: My random number generator, ISAAC.
(c) Bob Jenkins, March 1996, Public Domain
You may use this code in any way you wish, and it is free. No warrantee.
------------------------------------------------------------------------------
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
#else
#include <stdint.h>
#endif
/* a ub4 is an unsigned 4-byte quantity */
typedef uint32_t ub4;
/* external results */
ub4 randrsl[256], randcnt;
/* internal state */
static ub4 mm[256];
static ub4 aa=0, bb=0, cc=0;
void isaac()
{
register ub4 i,x,y;
cc = cc + 1; /* cc just gets incremented once per 256 results */
bb = bb + cc; /* then combined with bb */
for (i=0; i<256; ++i)
{
x = mm[i];
switch (i%4)
{
case 0: aa = aa^(aa<<13); break;
case 1: aa = aa^(aa>>6); break;
case 2: aa = aa^(aa<<2); break;
case 3: aa = aa^(aa>>16); break;
}
aa = mm[(i+128)%256] + aa;
mm[i] = y = mm[(x>>2)%256] + aa + bb;
randrsl[i] = bb = mm[(y>>10)%256] + x;
}
// not in original readable.c
randcnt = 0;
}
/* if (flag!=0), then use the contents of randrsl[] to initialize mm[]. */
#define mix(a,b,c,d,e,f,g,h) \
{ \
a^=b<<11; d+=a; b+=c; \
b^=c>>2; e+=b; c+=d; \
c^=d<<8; f+=c; d+=e; \
d^=e>>16; g+=d; e+=f; \
e^=f<<10; h+=e; f+=g; \
f^=g>>4; a+=f; g+=h; \
g^=h<<8; b+=g; h+=a; \
h^=a>>9; c+=h; a+=b; \
}
void randinit(int flag)
{
register int i;
ub4 a,b,c,d,e,f,g,h;
aa=bb=cc=0;
a=b=c=d=e=f=g=h=0x9e3779b9; /* the golden ratio */
for (i=0; i<4; ++i) /* scramble it */
{
mix(a,b,c,d,e,f,g,h);
}
for (i=0; i<256; i+=8) /* fill in mm[] with messy stuff */
{
if (flag) /* use all the information in the seed */
{
a+=randrsl[i ]; b+=randrsl[i+1]; c+=randrsl[i+2]; d+=randrsl[i+3];
e+=randrsl[i+4]; f+=randrsl[i+5]; g+=randrsl[i+6]; h+=randrsl[i+7];
}
mix(a,b,c,d,e,f,g,h);
mm[i ]=a; mm[i+1]=b; mm[i+2]=c; mm[i+3]=d;
mm[i+4]=e; mm[i+5]=f; mm[i+6]=g; mm[i+7]=h;
}
if (flag)
{ /* do a second pass to make all of the seed affect all of mm */
for (i=0; i<256; i+=8)
{
a+=mm[i ]; b+=mm[i+1]; c+=mm[i+2]; d+=mm[i+3];
e+=mm[i+4]; f+=mm[i+5]; g+=mm[i+6]; h+=mm[i+7];
mix(a,b,c,d,e,f,g,h);
mm[i ]=a; mm[i+1]=b; mm[i+2]=c; mm[i+3]=d;
mm[i+4]=e; mm[i+5]=f; mm[i+6]=g; mm[i+7]=h;
}
}
isaac(); /* fill in the first set of results */
randcnt=0; /* prepare to use the first set of results */
}
// Get a random 32-bit value 0..MAXINT
ub4 iRandom()
{
ub4 r = randrsl[randcnt];
++randcnt;
if (randcnt >255) {
isaac();
randcnt = 0;
}
return r;
}
// Get a random character in printable ASCII range
char iRandA()
{
return iRandom() % 95 + 32;
}
// Seed ISAAC with a string
void iSeed(char *seed, int flag)
{
register ub4 i,m;
for (i=0; i<256; i++) mm[i]=0;
m = strlen(seed);
for (i=0; i<256; i++)
{
// in case seed has less than 256 elements
if (i>m) randrsl[i]=0; else randrsl[i] = seed[i];
}
// initialize ISAAC with seed
randinit(flag);
}
// maximum length of message
#define MAXMSG 4096
#define MOD 95
#define START 32
// cipher modes for Caesar
enum ciphermode {
mEncipher, mDecipher, mNone
};
// XOR cipher on random stream. Output: ASCII string
char v[MAXMSG];
char* Vernam(char *msg)
{
register ub4 i,l;
l = strlen(msg);
// zeroise v
memset(v,'\0',l+1);
// XOR message
for (i=0; i<l; i++)
v[i] = iRandA() ^ msg[i];
return v;
}
// Caesar-shift a printable character
char Caesar(enum ciphermode m, char ch, char shift, char modulo, char start)
{
register int n;
if (m == mDecipher) shift = -shift;
n = (ch-start) + shift;
n = n % modulo;
if (n<0) n += modulo;
return start+n;
}
// Caesar-shift a string on a pseudo-random stream
char c[MAXMSG];
char* CaesarStr(enum ciphermode m, char *msg, char modulo, char start)
{
register ub4 i,l;
l = strlen(msg);
// zeroise c
memset(c,'\0',l+1);
// Caesar-shift message
for (i=0; i<l; i++)
c[i] = Caesar(m, msg[i], iRandA(), modulo, start);
return c;
}
int main()
{
register ub4 n,l;
// input: message and key
char *msg = "a Top Secret secret";
char *key = "this is my secret key";
// Vernam ciphertext & plaintext
char vctx[MAXMSG], vptx[MAXMSG];
// Caesar ciphertext & plaintext
char cctx[MAXMSG], cptx[MAXMSG];
l = strlen(msg);
// Encrypt: Vernam XOR
iSeed(key,1);
strcpy(vctx, Vernam(msg));
// Encrypt: Caesar
strcpy(cctx, CaesarStr(mEncipher, msg, MOD, START));
// Decrypt: Vernam XOR
iSeed(key,1);
strcpy(vptx, Vernam(vctx));
// Decrypt: Caesar
strcpy(cptx, CaesarStr(mDecipher,cctx, MOD, START));
// Program output
printf("Message: %s\n",msg);
printf("Key : %s\n",key);
printf("XOR : ");
// Output Vernam ciphertext as a string of hex digits
for (n=0; n<l; n++) printf("%02X",vctx[n]);
printf("\n");
// Output Vernam decrypted plaintext
printf("XOR dcr: %s\n",vptx);
// Caesar
printf("MOD : ");
// Output Caesar ciphertext as a string of hex digits
for (n=0; n<l; n++) printf("%02X",cctx[n]);
printf("\n");
// Output Caesar decrypted plaintext
printf("MOD dcr: %s\n",cptx);
return 0;
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret MOD : 734270227D36772A783B4F2A5F206266236978 MOD dcr: a Top Secret secret
C#
XOR with decryption check.
using System;
namespace cipher {
static class Cipher {
// external results
static uint[] randrsl = new uint[256];
static uint randcnt;
// internal state
static uint[] mm = new uint[256];
static uint aa=0, bb=0, cc=0;
static void isaac() {
uint i,x,y;
cc++; // cc just gets incremented once per 256 results
bb+=cc; // then combined with bb
for (i=0; i<=255; i++) {
x = mm[i];
switch (i & 3) {
case 0: aa = aa ^ (aa << 13); break;
case 1: aa = aa ^ (aa >> 6); break;
case 2: aa = aa ^ (aa << 2); break;
case 3: aa = aa ^ (aa >> 16); break;
}
aa = mm[(i+128) & 255] + aa;
y = mm[(x >> 2) & 255] + aa + bb;
mm[i] = y;
bb = mm[(y >> 10) & 255] + x;
randrsl[i]= bb;
}
}
// if (flag==TRUE), then use the contents of randrsl[] to initialize mm[].
static void mix(ref uint a, ref uint b, ref uint c, ref uint d, ref uint e, ref uint f, ref uint g, ref uint h) {
a = a ^ b << 11; d+=a; b+=c;
b = b ^ c >> 2; e+=b; c+=d;
c = c ^ d << 8; f+=c; d+=e;
d = d ^ e >> 16; g+=d; e+=f;
e = e ^ f << 10; h+=e; f+=g;
f = f ^ g >> 4; a+=f; g+=h;
g = g ^ h << 8; b+=g; h+=a;
h = h ^ a >> 9; c+=h; a+=b;
}
static void Init(bool flag) {
short i; uint a,b,c,d,e,f,g,h;
aa=0; bb=0; cc=0;
a=0x9e3779b9; b=a; c=a; d=a;
e=a; f=a; g=a; h=a;
for (i=0; i<=3; i++) // scramble it
mix(ref a,ref b,ref c,ref d,ref e,ref f,ref g,ref h);
i=0;
do { // fill in mm[] with messy stuff
if (flag) { // use all the information in the seed
a+=randrsl[i ]; b+=randrsl[i+1]; c+=randrsl[i+2]; d+=randrsl[i+3];
e+=randrsl[i+4]; f+=randrsl[i+5]; g+=randrsl[i+6]; h+=randrsl[i+7];
} // if flag
mix(ref a,ref b,ref c,ref d,ref e,ref f,ref g,ref h);
mm[i ]=a; mm[i+1]=b; mm[i+2]=c; mm[i+3]=d;
mm[i+4]=e; mm[i+5]=f; mm[i+6]=g; mm[i+7]=h;
i+=8;
}
while (i<255);
if (flag) {
// do a second pass to make all of the seed affect all of mm
i=0;
do {
a+=mm[i ]; b+=mm[i+1]; c+=mm[i+2]; d+=mm[i+3];
e+=mm[i+4]; f+=mm[i+5]; g+=mm[i+6]; h+=mm[i+7];
mix(ref a,ref b,ref c,ref d,ref e,ref f,ref g,ref h);
mm[i ]=a; mm[i+1]=b; mm[i+2]=c; mm[i+3]=d;
mm[i+4]=e; mm[i+5]=f; mm[i+6]=g; mm[i+7]=h;
i+=8;
}
while (i<255);
}
isaac(); // fill in the first set of results
randcnt=0; // prepare to use the first set of results
}
// Seed ISAAC with a string
static void Seed(string seed, bool flag) {
for (int i=0; i<256; i++) mm[i]=0;
for (int i=0; i<256; i++) randrsl[i]=0;
int m = seed.Length;
for (int i=0; i<m; i++) {
randrsl[i] = seed[i];
}
// initialize ISAAC with seed
Init(flag);
}
// Get a random 32-bit value
static uint Random() {
uint result = randrsl[randcnt];
randcnt++;
if (randcnt>255) {
isaac(); randcnt=0;
}
return result;
}
// Get a random character in printable ASCII range
static byte RandA() {
return (byte)(Random() % 95 + 32);
}
// XOR encrypt on random stream. Output: ASCII byte array
static byte[] Vernam(string msg)
{
int n,l;
byte[] v = new byte[msg.Length];
l = msg.Length;
// XOR message
for (n=0; n<l; n++) {
v[n] = (byte) (RandA() ^ (byte)msg[n]);
}
return v;
}
public static void Main() {
string msg = "a Top Secret secret";
string key = "this is my secret key";
byte[] xctx= new byte[msg.Length];
byte[] xptx= new byte[msg.Length];
string xtcx= "*******************";
string xtpx= "*******************";
Seed(key,true);
// XOR encrypt
xctx = Vernam(msg);
xtcx = System.Text.Encoding.ASCII.GetString(xctx);
// XOR decrypt
Seed(key,true);
xptx = Vernam(xtcx);
xtpx = System.Text.Encoding.ASCII.GetString(xptx);
Console.WriteLine("Message: "+msg);
Console.WriteLine("Key : "+key);
Console.Write ("XOR : ");
// output ciphertext as a string of hexadecimal digits
for (int n=0; n<xctx.Length; n++) Console.Write("{0:X2}", xctx[n]);
Console.WriteLine("\nXOR dcr: "+xtpx);
}
}
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret
C++
#include <iomanip>
#include <iostream>
#include <sstream>
using namespace std;
enum CipherMode {ENCRYPT, DECRYPT};
// External results
uint32_t randRsl[256];
uint32_t randCnt;
// Internal state
uint32_t mm[256];
uint32_t aa = 0, bb = 0, cc = 0;
void isaac()
{
++cc; // cc just gets incremented once per 256 results
bb += cc; // then combined with bb
for (uint32_t i = 0; i < 256; ++i)
{
uint32_t x, y;
x = mm[i];
switch (i % 4)
{
case 0:
aa = aa ^ (aa << 13);
break;
case 1:
aa = aa ^ (aa >> 6);
break;
case 2:
aa = aa ^ (aa << 2);
break;
case 3:
aa = aa ^ (aa >> 16);
break;
}
aa = mm[(i + 128) % 256] + aa;
y = mm[(x >> 2) % 256] + aa + bb;
mm[i] = y;
bb = mm[(y >> 10) % 256] + x;
randRsl[i] = bb;
}
randCnt = 0; // Prepare to use the first set of results.
}
void mix(uint32_t a[])
{
a[0] = a[0] ^ a[1] << 11; a[3] += a[0]; a[1] += a[2];
a[1] = a[1] ^ a[2] >> 2; a[4] += a[1]; a[2] += a[3];
a[2] = a[2] ^ a[3] << 8; a[5] += a[2]; a[3] += a[4];
a[3] = a[3] ^ a[4] >> 16; a[6] += a[3]; a[4] += a[5];
a[4] = a[4] ^ a[5] << 10; a[7] += a[4]; a[5] += a[6];
a[5] = a[5] ^ a[6] >> 4; a[0] += a[5]; a[6] += a[7];
a[6] = a[6] ^ a[7] << 8; a[1] += a[6]; a[7] += a[0];
a[7] = a[7] ^ a[0] >> 9; a[2] += a[7]; a[0] += a[1];
}
void randInit(bool flag)
{
uint32_t a[8];
aa = bb = cc = 0;
a[0] = 2654435769UL; // 0x9e3779b9: the golden ratio
for (uint32_t j = 1; j < 8; ++j)
a[j] = a[0];
for (uint32_t i = 0; i < 4; ++i) // Scramble it.
mix(a);
for (uint32_t i = 0; i < 256; i += 8) // Fill in mm[] with messy stuff.
{
if (flag) // Use all the information in the seed.
for (uint32_t j = 0; j < 8; ++j)
a[j] += randRsl[i + j];
mix(a);
for (uint32_t j = 0; j < 8; ++j)
mm[i + j] = a[j];
}
if (flag)
{ // Do a second pass to make all of the seed affect all of mm.
for (uint32_t i = 0; i < 256; i += 8)
{
for (uint32_t j = 0; j < 8; ++j)
a[j] += mm[i + j];
mix(a);
for (uint32_t j = 0; j < 8; ++j)
mm[i + j] = a[j];
}
}
isaac(); // Fill in the first set of results.
randCnt = 0; // Prepare to use the first set of results.
}
// Seed ISAAC with a given string.
// The string can be any size. The first 256 values will be used.
void seedIsaac(string seed, bool flag)
{
uint32_t seedLength = seed.length();
for (uint32_t i = 0; i < 256; i++)
mm[i] = 0;
for (uint32_t i = 0; i < 256; i++)
// In case seed has less than 256 elements
randRsl[i] = i > seedLength ? 0 : seed[i];
// Initialize ISAAC with seed
randInit(flag);
}
// Get a random 32-bit value 0..MAXINT
uint32_t getRandom32Bit()
{
uint32_t result = randRsl[randCnt];
++randCnt;
if (randCnt > 255)
{
isaac();
randCnt = 0;
}
return result;
}
// Get a random character in printable ASCII range
char getRandomChar()
{
return getRandom32Bit() % 95 + 32;
}
// Convert an ASCII string to a hexadecimal string.
string ascii2hex(string source)
{
uint32_t sourceLength = source.length();
stringstream ss;
for (uint32_t i = 0; i < sourceLength; i++)
ss << setfill ('0') << setw(2) << hex << (int) source[i];
return ss.str();
}
// XOR encrypt on random stream.
string vernam(string msg)
{
uint32_t msgLength = msg.length();
string destination = msg;
for (uint32_t i = 0; i < msgLength; i++)
destination[i] = getRandomChar() ^ msg[i];
return destination;
}
// Caesar-shift a character <shift> places: Generalized Vigenere
char caesar(CipherMode m, char ch, char shift, char modulo, char start)
{
int n;
if (m == DECRYPT)
shift = -shift;
n = (ch - start) + shift;
n %= modulo;
if (n < 0)
n += modulo;
return start + n;
}
// Vigenere mod 95 encryption & decryption.
string vigenere(string msg, CipherMode m)
{
uint32_t msgLength = msg.length();
string destination = msg;
// Caesar-shift message
for (uint32_t i = 0; i < msgLength; ++i)
destination[i] = caesar(m, msg[i], getRandomChar(), 95, ' ');
return destination;
}
int main()
{
// TASK globals
string msg = "a Top Secret secret";
string key = "this is my secret key";
string xorCipherText, modCipherText, xorPlainText, modPlainText;
// (1) Seed ISAAC with the key
seedIsaac(key, true);
// (2) Encryption
// (a) XOR (Vernam)
xorCipherText = vernam(msg);
// (b) MOD (Vigenere)
modCipherText = vigenere(msg, ENCRYPT);
// (3) Decryption
seedIsaac(key, true);
// (a) XOR (Vernam)
xorPlainText = vernam(xorCipherText);
// (b) MOD (Vigenere)
modPlainText = vigenere(modCipherText, DECRYPT);
// Program output
cout << "Message: " << msg << endl;
cout << "Key : " << key << endl;
cout << "XOR : " << ascii2hex(xorCipherText) << endl;
cout << "MOD : " << ascii2hex(modCipherText) << endl;
cout << "XOR dcr: " << xorPlainText << endl;
cout << "MOD dcr: " << modPlainText << endl;
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1c0636190b1260233b35125f1e1d0e2f4c5422 MOD : 734270227d36772a783b4f2a5f206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
Common Lisp
(defpackage isaac
(:use cl))
(in-package isaac)
(deftype uint32 () '(unsigned-byte 32))
(deftype arru32 () '(simple-array uint32))
(defstruct state
(randrsl (make-array 256 :element-type 'uint32) :type arru32)
(randcnt 0 :type uint32)
(mm (make-array 256 :element-type 'uint32) :type arru32)
(aa 0 :type uint32)
(bb 0 :type uint32)
(cc 0 :type uint32))
(defparameter *global-state* (make-state))
;; Some helper functions to force 32-bit arithmetic.
;; COERCE32 will be used to ensure the 32-bit results from
;; the given operations.
(declaim (inline lsh32 rsh32 add32 mod32 xor32))
(defmacro coerce32 (thing)
`(ldb (byte 32 0) ,thing))
;; ASH is split into lsh32 and rsh32 to satisfy the compiler and
;; allow inlining.
(declaim (ftype (function (uint32 (unsigned-byte 6)) uint32) lsh32))
(defun lsh32 (integer count)
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
(coerce32 (ash integer count)))
(declaim (ftype (function (uint32 uint32) uint32) rsh32 add32 mod32 xor32))
(defun rsh32 (integer count)
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
(coerce32 (ash integer (- count))))
(defun add32 (x y)
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
(coerce32 (+ x y)))
(defun mod32 (number divisor)
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
(coerce32 (mod number divisor)))
(defun xor32 (x y)
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
(coerce32 (logxor x y)))
(defmacro incf32 (place &optional (delta 1))
`(setf ,place (add32 ,place ,delta)))
(defun isaac (&optional (state *global-state*))
"The ISAAC function."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state))
(with-slots (randrsl randcnt mm aa bb cc) state
(incf32 cc)
(incf32 bb cc)
(dotimes (i 256)
(let ((x (aref mm i)))
(setf aa (add32 (aref mm (mod32 (add32 i 128) 256))
(xor32 aa
(ecase (mod32 i 4)
(0 (lsh32 aa 13))
(1 (rsh32 aa 6))
(2 (lsh32 aa 2))
(3 (rsh32 aa 16))))))
(let ((y (add32 (aref mm (mod32 (rsh32 x 2) 256))
(add32 aa
bb))))
(setf (aref mm i) y)
(setf bb (add32 (aref mm (mod32 (rsh32 y 10) 256))
x))
(setf (aref randrsl i) bb))))
(setf randcnt 0)
(values)))
(defmacro mix (&rest places)
"The magic mixer that spits out code to mix the given places."
(let ((len (length places))
(kernel '#0=(11 -2 8 -16 10 -4 8 -9 . #0#)))
(rplacd (last places) places)
`(progn
,@(loop
for i from 0
for n in kernel
until (= i len)
append
(destructuring-bind (a b c d . rest) places
(declare (ignore rest))
(pop places)
`((setf ,a (xor32 ,a ,(if (> n 0) `(lsh32 ,b ,n) `(rsh32 ,b ,(- n)))))
(incf32 ,d ,a)
(incf32 ,b ,c)))))))
(defun replace-tree (value replacement tree)
"Replace all of the values in the given expression with the replacement."
(if (atom tree)
(if (equal tree value)
replacement
tree)
(cons (replace-tree value replacement (car tree))
(if (null (cdr tree))
nil
(replace-tree value replacement (cdr tree))))))
(defmacro unroller (index-name place-name places &body body)
"A helper for unrolling a section of a loop's index with the given places."
`(progn ,@(loop
for place in places
for i from 0 below (length places) append
`(,@(if (= i 0)
(replace-tree place-name place body)
(replace-tree index-name `(add32 ,index-name ,i)
(replace-tree place-name place body)))))))
(defun randinit (flag &optional (state *global-state*))
"Initialize the given state."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state))
(with-slots (randrsl randcnt mm aa bb cc) state
(let* ((a #x9e3779b9) (b a) (c a) (d a) (e a) (f a) (g a) (h a))
(setf aa 0)
(setf bb 0)
(setf cc 0)
(loop repeat 4 do
(mix a b c d e f g h))
(loop for idx from 0 below 256 by 8 do
(when flag
(unroller idx place (a b c d e f g h)
(incf32 place (aref randrsl idx))))
(mix a b c d e f g h)
(unroller idx place (a b c d e f g h)
(setf (aref mm idx) place)))
(when flag
(loop for idx from 0 below 256 by 8 do
(unroller idx place (a b c d e f g h)
(incf32 place (aref mm idx)))
(mix a b c d e f g h)
(unroller idx place (a b c d e f g h)
(setf (aref mm idx) place)))))
(isaac state)
(setf randcnt 0)
(values)))
(defun i-random (&optional (state *global-state*))
"Get a random integer from the given state."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state))
(with-slots (randrsl randcnt) state
(prog1 (aref randrsl randcnt)
(incf32 randcnt)
(when (> randcnt 255)
(isaac state)
(setf randcnt 0)))))
(defun i-rand-a (&optional (state *global-state*))
"Get a random printable character from the given state."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state))
(add32 (mod32 (i-random state) 95) 32))
(defun i-seed (seed flag &optional (state *global-state*))
"Seed the given state with a string of up to 256 characters."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state)
(type string seed))
(with-slots (randrsl mm) state
(dotimes (i 256)
(setf (aref mm i) 0))
(let ((m (length seed)))
(dotimes (i 256)
(setf (aref randrsl i)
(if (>= i m)
0
(char-code (char seed i))))))
(randinit flag state)
(values)))
(defun vernam (msg &optional (state *global-state*))
"Vernam encode MSG with STATE."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type state state)
(type string msg))
(let* ((l (length msg))
(v (make-string l)))
(dotimes (i l)
(setf (aref v i) (code-char (logxor (i-rand-a state) (char-code (char msg i))))))
v))
;; Cipher modes: encipher, decipher, none
(defconstant +mod+ 95)
(defconstant +start+ 32)
(defun caesar (mode char shift modulo start)
"Caesar encode the given character."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type uint32 char shift modulo start))
(when (eq mode 'decipher)
(setf shift (- shift)))
(let ((n (mod (+ (- char start) shift) modulo)))
(when (< n 0)
(incf n modulo))
(+ start n)))
(defun caesar-str (mode msg modulo start &optional (state *global-state*))
"Caesar encode or decode MSG with STATE."
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
(type string msg)
(type fixnum modulo start)
(type state state))
(let* ((l (length msg))
(c (make-string l)))
(dotimes (i l)
(setf (aref c i) (code-char (caesar mode (char-code (char msg i)) (i-rand-a state) modulo start))))
c))
(defun print-hex (string)
(loop for c across string do (format t "~2,'0x" (char-code c))))
(defun main-test ()
(let ((state (make-state))
(msg "a Top Secret secret")
(key "this is my secret key"))
(i-seed key t state)
(let ((vctx (vernam msg state))
(cctx (caesar-str 'encipher msg +mod+ +start+ state)))
(i-seed key t state)
(let ((vptx (vernam vctx state))
(cptx (caesar-str 'decipher cctx +mod+ +start+ state)))
(format t "Message: ~a~%" msg)
(format t "Key : ~a~%" key)
(format t "XOR : ")
(print-hex vctx)
(terpri)
(format t "XOR dcr: ~a~%" vptx)
(format t "MOD : ")
(print-hex cctx)
(terpri)
(format t "MOD dcr: ~a~%" cptx))))
(values))
- Output:
ISAAC> (main-test) Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret MOD : 734270227D36772A783B4F2A5F206266236978 MOD dcr: a Top Secret secret
D
Improved from the C# version. XOR with decryption check.
import std.algorithm: min;
import std.algorithm: copy;
import std.typetuple: TypeTuple;
import std.typecons: staticIota;
struct ISAAC {
// External results.
private uint[mm.length] randResult;
private uint randCount;
// Internal state.
private uint[256] mm;
private uint aa, bb, cc;
private void isaac() pure nothrow @safe @nogc {
cc++; // cc just gets incremented once per mm.length results.
bb = bb + cc; // Then combined with bb.
foreach (immutable i, ref mmi; mm) {
immutable x = mm[i];
final switch (i % 4) { // Not enforced final switch.
case 0: aa ^= (aa << 13); break;
case 1: aa ^= (aa >> 6); break;
case 2: aa ^= (aa << 2); break;
case 3: aa ^= (aa >> 16); break;
}
aa = mm[(i + 128) % $] + aa;
immutable y = mm[(x >> 2) % $] + aa + bb;
bb = mm[(y >> 10) % $] + x;
randResult[i] = bb;
}
randCount = 0;
}
// If flag is true then use the contents of randResult to initialize mm.
private pure nothrow @safe @nogc static void mix(ref uint[8] a) {
alias shifts = TypeTuple!(11, 2, 8, 16, 10, 4, 8, 9);
/*static*/ foreach (immutable i, immutable sh; shifts) {
static if (i % 2 == 0)
a[i] ^= a[(i + 1) % $] << sh;
else
a[i] ^= a[(i + 1) % $] >> sh;
a[(i + 3) % $] += a[i];
a[(i + 1) % $] += a[(i + 2) % $];
}
}
private void randInit(bool flag)() pure nothrow @safe @nogc {
uint[8] a = 0x9E37_79B9; // The Golden Ratio.
aa = bb = cc = 0;
// Scramble it.
/*static*/ foreach (immutable i; staticIota!(0, 4))
mix(a);
// Fill in mm with messy stuff. Use all the information in the seed.
for (size_t i = 0; i < mm.length; i += 8) {
static if (flag)
a[] += randResult[i .. i + 8];
mix(a);
mm[i .. i + 8] = a[];
}
// Do a second pass to make all of the seed affect all of mm.
static if (flag) {
for (size_t i = 0; i < mm.length; i += 8) {
a[] += mm[i .. i + 8];
mix(a);
mm[i .. i + 8] = a[];
}
}
isaac(); // Fill in the first set of results.
randCount = 0; // Prepare to use the first set of results.
}
/// Seed ISAAC with a string.
/// Uses only the first randResult.length ubytes.
public void iSeed(bool flag)(in ubyte[] seed) pure nothrow @safe @nogc {
mm[] = 0;
randResult[] = 0;
immutable n = min(randResult.length, seed.length);
copy(seed[0 .. n], randResult[0 .. n]);
randInit!flag(); // Initialize ISAAC with seed.
}
/// Get a random uint.
private uint iRandom() pure nothrow @safe @nogc {
immutable result = randResult[randCount];
randCount++;
if (randCount > (randResult.length - 1)) {
isaac();
randCount = 0;
}
return result;
}
/// Get a random character in printable ASCII range.
private ubyte iRandA() pure nothrow @safe @nogc {
return iRandom() % 95 + 32;
}
/// XOR encrypt on random stream.
/// buffer must be as large as message or larger.
public ubyte[] vernam(in ubyte[] message, ubyte[] buffer)
pure nothrow @safe @nogc
in {
assert(buffer.length >= message.length);
} out(result) {
assert(result.length == message.length);
} body {
auto v = buffer[0 .. message.length];
// XOR message.
foreach (immutable i, immutable msgi; message)
v[i] = (iRandA() ^ msgi);
return v;
}
/// XOR encrypt on random stream.
public ubyte[] vernam(in ubyte[] message) pure nothrow @safe {
return vernam(message, new ubyte[message.length]);
}
}
void main() {
import std.stdio, std.string;
immutable message = "a Top Secret secret";
immutable key = "this is my secret key";
writeln("Message : ", message);
writeln("Key : ", key);
ISAAC cipher;
// Encrypt.
// iSeed uses only the first ISAAC.randResult.length ubytes.
cipher.iSeed!true(key.representation);
const encrypted = cipher.vernam(message.representation);
// Output ciphertext as a string of hexadecimal digits.
writefln("Encrypted: %(%02X%)", encrypted);
// Decrypt.
cipher.iSeed!true(key.representation);
const decrypted = cipher.vernam(encrypted);
writeln("Decrypted: ", decrypted.assumeUTF);
}
- Output:
Message : a Top Secret secret Key : this is my secret key Encrypted: 1C0636190B1260233B35125F1E1D0E2F4C5422 Decrypted: a Top Secret secret
Delphi
Translation of Pascal.
{$apptype console}
PROGRAM RosettaIsaac;
USES SysUtils;
// TASK globals
VAR msg : STRING = 'a Top Secret secret';
VAR key : STRING = 'this is my secret key';
VAR xctx: STRING = ''; // XOR ciphertext
VAR mctx: STRING = ''; // MOD ciphertext
// ISAAC globals
// external results
VAR randrsl: ARRAY[0..256] OF CARDINAL;
VAR randcnt: cardinal;
// internal state
VAR mm: ARRAY[0..256] OF CARDINAL;
VAR aa: CARDINAL=0; bb: CARDINAL=0; cc: CARDINAL=0;
PROCEDURE Isaac;
VAR i,x,y: CARDINAL;
BEGIN
cc := cc + 1; // cc just gets incremented once per 256 results
bb := bb + cc; // then combined with bb
FOR i := 0 TO 255 DO BEGIN
x := mm[i];
CASE (i mod 4) OF
0: aa := aa xor (aa shl 13);
1: aa := aa xor (aa shr 6);
2: aa := aa xor (aa shl 2);
3: aa := aa xor (aa shr 16);
END;
aa := mm[(i+128) mod 256] + aa;
y := mm[(x shr 2) mod 256] + aa + bb;
mm[i] := y;
bb := mm[(y shr 10) mod 256] + x;
randrsl[i]:= bb;
END;
// this reset was not in original readable.c!
randcnt:=0; // prepare to use the first set of results
END; {Isaac}
// if (flag==TRUE), then use the contents of randrsl[] to initialize mm[].
PROCEDURE mix(VAR a,b,c,d,e,f,g,h: CARDINAL);
BEGIN
a := a xor b shl 11; d:=d+a; b:=b+c;
b := b xor c shr 2; e:=e+b; c:=c+d;
c := c xor d shl 8; f:=f+c; d:=d+e;
d := d xor e shr 16; g:=g+d; e:=e+f;
e := e xor f shl 10; h:=h+e; f:=f+g;
f := f xor g shr 4; a:=a+f; g:=g+h;
g := g xor h shl 8; b:=b+g; h:=h+a;
h := h xor a shr 9; c:=c+h; a:=a+b;
END; {mix}
PROCEDURE iRandInit(flag: BOOLEAN);
VAR i,a,b,c,d,e,f,g,h: CARDINAL;
BEGIN
aa:=0; bb:=0; cc:=0;
a:=$9e3779b9; // the golden ratio
b:=a; c:=a; d:=a; e:=a; f:=a; g:=a; h:=a;
FOR i := 0 TO 3 DO // scramble it
mix(a,b,c,d,e,f,g,h);
i:=0;
REPEAT // fill in mm[] with messy stuff
IF flag THEN BEGIN // use all the information in the seed
a:=a+randrsl[i ]; b:=b+randrsl[i+1]; c:=c+randrsl[i+2]; d:=d+randrsl[i+3];
e:=e+randrsl[i+4]; f:=f+randrsl[i+5]; g:=g+randrsl[i+6]; h:=h+randrsl[i+7];
END;
mix(a,b,c,d,e,f,g,h);
mm[i ]:=a; mm[i+1]:=b; mm[i+2]:=c; mm[i+3]:=d;
mm[i+4]:=e; mm[i+5]:=f; mm[i+6]:=g; mm[i+7]:=h;
i:=i+8;
UNTIL i>255;
IF (flag) THEN BEGIN
// do a second pass to make all of the seed affect all of mm
i:=0;
REPEAT
a:=a+mm[i ]; b:=b+mm[i+1]; c:=c+mm[i+2]; d:=d+mm[i+3];
e:=e+mm[i+4]; f:=f+mm[i+5]; g:=g+mm[i+6]; h:=h+mm[i+7];
mix(a,b,c,d,e,f,g,h);
mm[i ]:=a; mm[i+1]:=b; mm[i+2]:=c; mm[i+3]:=d;
mm[i+4]:=e; mm[i+5]:=f; mm[i+6]:=g; mm[i+7]:=h;
i:=i+8;
UNTIL i>255;
END;
isaac(); // fill in the first set of results
randcnt:=0; // prepare to use the first set of results
END; {randinit}
{ Seed ISAAC with a given string.
The string can be any size. The first 256 values will be used.}
PROCEDURE iSeed(seed: STRING; flag: BOOLEAN);
VAR i,m: CARDINAL;
BEGIN
FOR i:= 0 TO 255 DO mm[i]:=0;
m := Length(seed)-1;
FOR i:= 0 TO 255 DO BEGIN
// in case seed has less than 256 elements
IF i>m THEN randrsl[i]:=0
// Pascal strings are 1-based
ELSE randrsl[i]:=ord(seed[i+1]);
END;
// initialize ISAAC with seed
iRandInit(flag);
END; {iSeed}
{ Get a random 32-bit value 0..MAXINT }
FUNCTION iRandom : Cardinal;
BEGIN
result := randrsl[randcnt];
inc(randcnt);
IF (randcnt >255) THEN BEGIN
Isaac();
randcnt := 0;
END;
END; {iRandom}
{ Get a random character in printable ASCII range }
FUNCTION iRandA: BYTE;
BEGIN
result := iRandom mod 95 + 32;
END;
{ convert an ASCII string to a hexadecimal string }
FUNCTION ascii2hex(s: STRING): STRING;
VAR i,l: CARDINAL;
BEGIN
result := '';
l := Length(s);
FOR i := 1 TO l DO
result := result + IntToHex(ord(s[i]),2);
END;
{ XOR encrypt on random stream. Output: string of hex chars }
FUNCTION Vernam(msg: STRING): STRING;
VAR i: CARDINAL;
BEGIN
result := '';
FOR i := 1 to length(msg) DO
result := result + chr(iRandA xor ord(msg[i]));
result := ascii2hex(result);
END;
{ Get position of the letter in chosen alphabet }
FUNCTION letternum(letter, start: CHAR): byte;
BEGIN
result := (ord(letter)-ord(start));
END;
{ Caesar-shift a character <shift> places: Generalized Vigenere }
FUNCTION Caesar(ch: CHAR; shift, modulo: INTEGER; start: CHAR): CHAR;
VAR n: INTEGER;
BEGIN
n := letternum(ch,start) + shift;
n := n MOD modulo;
result := chr(ord(start)+n);
END;
{ Vigenere mod 95 encryption. Output: string of hex chars }
FUNCTION Vigenere(msg: STRING): STRING;
VAR i: CARDINAL;
BEGIN
result := '';
FOR i := 1 to length(msg) DO
result := result + Caesar(msg[i],iRandA,95,' ');
result := ascii2hex(result);
END;
BEGIN
// 1) seed ISAAC with the key
iSeed(key,true);
// 2) Vernam XOR encryption
xctx := Vernam(msg);
// 3) MOD encryption
mctx := Vigenere(msg);
// program output
Writeln('Message: ',msg);
Writeln('Key : ',key);
Writeln('XOR : ',xctx);
Writeln('MOD : ',mctx);
END.
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD : 734270227D36772A783B4F2A5F206266236978
ECMAScript
randrsl = new Uint32Array(256);
randcnt = 0;
mm = new Uint32Array(256);
aa = 0;
bb = 0;
cc = 0;
function isaac() {
cc++;
bb += cc;
for(var i = 0; i < 256; i++) {
var x = mm[i];
var sw = i & 3;
if(sw == 0) aa = aa ^ (aa << 13);
else if(sw == 1) aa = aa ^ (aa >>> 6);
else if(sw == 2) aa = aa ^ (aa << 2);
else if(sw == 3) aa = aa ^ (aa >>> 16);
aa = mm[(i+128) & 255] + aa;
mm[i] = mm[(x >>> 2) & 255] + aa + bb;
bb = mm[(mm[i] >>> 10) & 255] + x;
randrsl[i] = bb;
}
}
function isaac_mix(x) {
x[0] = x[0] ^ x[1] << 11; x[3]+=x[0]; x[1]+=x[2];
x[1] = x[1] ^ x[2] >>> 2; x[4]+=x[1]; x[2]+=x[3];
x[2] = x[2] ^ x[3] << 8; x[5]+=x[2]; x[3]+=x[4];
x[3] = x[3] ^ x[4] >>> 16; x[6]+=x[3]; x[4]+=x[5];
x[4] = x[4] ^ x[5] << 10; x[7]+=x[4]; x[5]+=x[6];
x[5] = x[5] ^ x[6] >>> 4; x[0]+=x[5]; x[6]+=x[7];
x[6] = x[6] ^ x[7] << 8; x[1]+=x[6]; x[7]+=x[0];
x[7] = x[7] ^ x[0] >>> 9; x[2]+=x[7]; x[0]+=x[1];
}
function isaac_init(flag) {
var x = Uint32Array([2654435769, 2654435769, 2654435769, 2654435769,
2654435769, 2654435769, 2654435769, 2654435769]);
aa=0, bb=0, cc=0;
isaac_mix(x); isaac_mix(x); isaac_mix(x); isaac_mix(x);
var i = 0;
while(i < 255) {
if(flag) for(var j = 0; j < 8; j++) x[j] += randrsl[i+j];
isaac_mix(x);
for(var j = 0; j < 8; j++) mm[i+j] = x[j];
i += 8;
}
if(flag) {
var i = 0;
while(i < 255) {
for(var j = 0; j < 8; j++) x[j] += mm[i+j];
isaac_mix(x);
for(var j = 0; j < 8; j++) mm[i+j] = x[j];
i += 8;
}
}
isaac();
randcnt = 0;
}
function isaac_seed(string, flag) {
mm = new Uint32Array(256);
randrsl = new Uint32Array(256);
var m = string.length;
for(var i = 0; i < m; i++) randrsl[i] = string.charCodeAt(i);
isaac_init(flag);
}
function isaac_random() {
var out = randrsl[randcnt++];
if(randcnt > 255) {
isaac();
randcnt = 0;
}
return out
}
function vernam(msg) {
var out = "";
for(var i = 0; i < msg.length; i++) {
var ra = isaac_random() % 95 + 32;
out += String.fromCharCode(ra ^ msg.charCodeAt(i));
}
return out;
}
function printable_hex(s) {
out = "";
for(var i = 0; i < s.length; i++)
out += (s.charCodeAt(i) / 16 > 1 ? '' : '0') + s.charCodeAt(i).toString(16);
return out;
}
function run_isaac(key, msg)
{
isaac_seed(key, true);
// XOR encrypt
var xctx = vernam(msg);
// XOR decrypt
isaac_seed(key, true);
var xptx = vernam(xctx);
return [xctx, xptx]
}
var key = 'this is my secret key'
var msg = 'a Top Secret secret'
console.log('key: '+key)
console.log('msg: '+msg)
var z = run_isaac(key, msg)
xctx = z[0];
xptx = z[1];
console.log('xor: '+printable_hex(xctx))
console.log('decrypted: '+xptx)
- Output:
key: this is my secret key msg: a Top Secret secret xor: 1c0636190b1260233b35125f1e1d0e2f4c5422 decrypted: a Top Secret secret
Forth
Tested for VFX Forth and GForth 64bit in Linux
The code was based on and debugged v python
\ ******* Words for 32 bit fetching and storing *******
\ * Implement words for 32 bit fields (assuming 64 bit Forth) *
\ *************************************************************
: halves 4 * ; \ half a cell.
\ VFX Forth
\ : h@ L@ ; : h! L! ; : h+! L+! ;
\ GFORTH
: h@ UL@ ; : h! L! ; : h+! DUP h@ ROT + SWAP h! ;
\ a 32 bit Forth
\ : h@ @ ; : h! ! ; : h+! +! ;
: half-array \ n <'name'> -- ; DOES> n -- a ;
\ Use: 8 half-array test - creates an array of 8 32 bit elements.
\ Does> 4 test - returns the address of the 4th element of test.
CREATE HERE SWAP halves DUP ALLOT ERASE
DOES> SWAP halves + ;
\ ***** Words to implement an isaac rng *****
8 half-array ]init-state
: init+! \ ix-tgt ix-src -- ;
]init-state h@ SWAP ]init-state h+! ;
: init-right-xor! \ ix-tgt ix-src shift-bits -- ;
SWAP ]init-state h@ SWAP RSHIFT SWAP ]init-state TUCK h@ XOR SWAP h! ;
: init-left-xor! \ ix-tgt ix-src shift-bits -- ;
SWAP ]init-state h@ SWAP LSHIFT SWAP ]init-state TUCK h@ XOR SWAP h! ;
: mix
0 1 11 init-left-xor! 3 0 init+! 1 2 init+!
1 2 2 init-right-xor! 4 1 init+! 2 3 init+!
2 3 8 init-left-xor! 5 2 init+! 3 4 init+!
3 4 16 init-right-xor! 6 3 init+! 4 5 init+!
4 5 10 init-left-xor! 7 4 init+! 5 6 init+!
5 6 4 init-right-xor! 0 5 init+! 6 7 init+!
6 7 8 init-left-xor! 1 6 init+! 7 0 init+!
7 0 9 init-right-xor! 2 7 init+! 0 1 init+! ;
\ State variables and arrays
VARIABLE aa VARIABLE bb VARIABLE cc VARIABLE rand-count
256 half-array ]mm
256 half-array ]result
\ Jump table of xts used in isaac-iteration
: shift-xor0 aa DUP h@ DUP 13 LSHIFT XOR SWAP h! ; \ -- ;
: shift-xor1 aa DUP h@ DUP 6 RSHIFT XOR SWAP h! ; \ -- ;
: shift-xor2 aa DUP h@ DUP 2 LSHIFT XOR SWAP h! ; \ -- ;
: shift-xor3 aa DUP h@ DUP 16 RSHIFT XOR SWAP h! ; \ -- ;
HERE
' shift-xor0 , ' shift-xor1 , ' shift-xor2 , ' shift-xor3 ,
CONSTANT shift-xor-xts
: ]execute-shift-xorn \ ix -- ; Executes the xt in shift-xor-xts
CELLS shift-xor-xts + @ EXECUTE ;
: isaac-iteration \ -- ;
1 cc h+! cc h@ bb h+!
256 0 DO \ Python code
I ]mm h@ \ x = mm[i] Store mm[i] on the stack
I 3 AND ]execute-shift-xorn
\ Executes shift-xor0 .. 3 from shift-xor-xts above.
aa DUP h@ I 128 XOR ]mm h@ + SWAP h! \ aa = (mm[i^128] + aa)
DUP 2 RSHIFT 0xFF AND ]mm h@ aa h@ + bb h@ + \ mm[(x>>2) & 0xFF] + aa + bb)
DUP I ]mm h! \ y = mm[i] = ; Store in ]mm leave y on the stack
10 RSHIFT 0xFF AND ]mm h@ + \ mm[(y>>10) & 0xFF] + x)
DUP bb h! I ]result h! \ result[i] = self.bb = ; store in bb and result[i]
LOOP
0 rand-count ! ;
256 half-array ]seed
: zero-fill \ a ct -- ;
halves ERASE ;
: seed-mt 0 ]seed 256 zero-fill ;
: string>seed \ a ct -- ;
seed-mt 256 MIN ]seed 0 ]seed ?DO COUNT I h! 4 +LOOP DROP ;
: mm-mt 0 ]mm 256 zero-fill ;
: init-vars 0 aa ! 0 bb ! 0 cc ! 256 rand-count ! ;
: res-mt 0 ]result 256 zero-fill ;
: base-init-state
8 ]init-state 0 ]init-state DO 0x9e3779b9 i h! 4 +LOOP
mix mix mix mix ;
: init>mm-ix \ ix -- ;
0 ]init-state SWAP ]mm 8 halves MOVE ;
: init>mm \ -- ;
256 0 DO mix I init>mm-ix 8 +LOOP
0 aa h! 0 bb h! 0 cc h! ;
: default-seed \ -- ;
base-init-state init>mm ;
: seed>init-state>mm
256 0 DO
8 0 DO I J + ]seed h@ I ]init-state h+! LOOP
mix
0 ]init-state I ]mm 8 halves MOVE
8 +LOOP ;
: init-mm-mix
256 0 DO
8 0 DO I J + ]mm h@ I ]init-state h+! LOOP
mix
I init>mm-ix
8 +LOOP ;
: string-seed \ str ct -- ;
string>seed base-init-state seed>init-state>mm
init-mm-mix init-vars res-mt ;
: random-next \ -- h ; 32 bit result
rand-count @ 255 > IF isaac-iteration 0 rand-count ! THEN
rand-count @ DUP ]result h@ SWAP 1+ rand-count ! ;
: rand-char \ -- ch ;
random-next 95 MOD 32 + ;
\ Encode, Decode and display.
\ Working buffers
1024 CONSTANT buff-size
CREATE buff-in buff-size ALLOT
CREATE xor-out buff-size ALLOT
CREATE caesar-out buff-size ALLOT
: buff-count \ adr -- addr+cell count ; \ Prepares buff for TYPE
DUP CELL + SWAP @ ;
: buff. buff-count TYPE ; \ addr -- ;
: byte>hexstr \ b -- str ct ; \ Generates a 2 character hex string.
BASE @ SWAP HEX 0 <# # # #> ROT BASE ! ;
: buff-hex. \ addr --- ;
buff-count BOUNDS ?DO I C@ byte>hexstr TYPE LOOP ;
: buff-empty 0 SWAP ! ; \ addr -- ; \ Empty the buffer. Sets length to zero.
: char-append \ ch adr -- ; \ Append ch to the buffer
tuck buff-count + C! 1 SWAP +! ;
: buff-copy \ src dest -- ; \ Copy buffer to buffer
OVER @ CELL + MOVE ;
: buff-fill \ str ct buff -- ; \ Fill buffer with the contents of str ct
2DUP ! CELL + SWAP MOVE ;
\ ***** XOR encode/decode *****
: xor-byte \ b -- b' ;
rand-char XOR ;
: xor-code \ str ct -- ;
xor-out buff-empty
BOUNDS ?DO I C@ xor-byte xor-out char-append LOOP ;
: init-rng" [CHAR] " WORD COUNT string-seed ;
: xor-code-with" \ str ct <key"> -- ; str ct points to the text to encode
\ Use: s" Message" encode-xor-key" This is the key."
\ Prints the encoded bytes in hex to the terminal.
init-rng" xor-code ;
\ ***** Caesar encode/decode *****
DEFER op \ ' + for encode, ' - for decode in caesar-code-ch
: encode ['] + IS op ; \ Add the offset while encoding.
: decode ['] - IS op ; \ Substract it to decode
: caesar-code-ch \ c -- c' ;
rand-char op 32 - 95 MOD
BEGIN DUP 0< WHILE 95 + REPEAT 32 + ;
: caesar \ str ct -- ;
\ The direction of caesar-code is modified by the encode / decode words
\ eg. encode s" Message" caesar
\ decode s" DntP8hg" caesar
caesar-out buff-empty
BOUNDS ?DO I C@ caesar-code-ch caesar-out char-append LOOP ;
: caesar-with" \ str ct <key" -- ;
\ The direction of caesar-code is modified by the encode / decode words
\ eg. encode s" Message" caesar-with" Key"
\ decode s" DntP8hg" caesar-with" Key"
init-rng" caesar ;
\ ***** Demonstrate the encode/decode working *****
: message s" a Top Secret secret" ;
: out>in \ buff-out -- buff-in' count ;
buff-in buff-copy buff-in buff-count ;
: xor>in xor-out out>in ; \ -- buff-in' ct ;
: caesar>in caesar-out out>in ; \ -- buff-in' ct ;
: examples
CR ." Raw message : " message TYPE
CR ." First encode."
s" this is my secret key" string-seed \ Set key
message xor-code
CR ." XOR encoded as hex : " xor-out buff-hex.
message encode caesar
CR ." Caesar encoded as hex: " caesar-out buff-hex.
CR ." Now decode "
s" this is my secret key" string-seed \ Set key
xor>in xor-code
CR ." XOR decoded : " xor-out buff.
caesar>in decode caesar
CR ." Caesar decoded : " caesar-out buff. ;
- Output:
message xor-code-with" this is my secret key" ok CR ." XOR encoded as hex : " xor-out buff-hex. XOR encoded as hex : 1C0636190B1260233B35125F1E1D0E2F4C5422 ok ok message encode caesar ok CR ." Caesar encoded as hex: " caesar-out buff-hex. Caesar encoded as hex: 734270227D36772A783B4F2A5F206266236978 ok ok ok xor>in xor-code-with" this is my secret key" ok CR ." XOR decoded : " xor-out buff. XOR decoded : a Top Secret secret ok ok caesar>in decode caesar ok CR ." Caesar decoded : " caesar-out buff. Caesar decoded : a Top Secret secret ok ok examples Raw message : a Top Secret secret First encode. XOR encoded as hex : 1C0636190B1260233B35125F1E1D0E2F4C5422 Caesar encoded as hex: 734270227D36772A783B4F2A5F206266236978 Now decode XOR decoded : a Top Secret secret Caesar decoded : a Top Secret secret ok
Go
XOR version
package main
import "fmt"
const (
msg = "a Top Secret secret"
key = "this is my secret key"
)
func main() {
var z state
z.seed(key)
fmt.Println("Message: ", msg)
fmt.Println("Key : ", key)
fmt.Println("XOR : ", z.vernam(msg))
}
type state struct {
aa, bb, cc uint32
mm [256]uint32
randrsl [256]uint32
randcnt int
}
func (z *state) isaac() {
z.cc++
z.bb += z.cc
for i, x := range z.mm {
switch i % 4 {
case 0:
z.aa = z.aa ^ z.aa<<13
case 1:
z.aa = z.aa ^ z.aa>>6
case 2:
z.aa = z.aa ^ z.aa<<2
case 3:
z.aa = z.aa ^ z.aa>>16
}
z.aa += z.mm[(i+128)%256]
y := z.mm[x>>2%256] + z.aa + z.bb
z.mm[i] = y
z.bb = z.mm[y>>10%256] + x
z.randrsl[i] = z.bb
}
}
func (z *state) randInit() {
const gold = uint32(0x9e3779b9)
a := [8]uint32{gold, gold, gold, gold, gold, gold, gold, gold}
mix1 := func(i int, v uint32) {
a[i] ^= v
a[(i+3)%8] += a[i]
a[(i+1)%8] += a[(i+2)%8]
}
mix := func() {
mix1(0, a[1]<<11)
mix1(1, a[2]>>2)
mix1(2, a[3]<<8)
mix1(3, a[4]>>16)
mix1(4, a[5]<<10)
mix1(5, a[6]>>4)
mix1(6, a[7]<<8)
mix1(7, a[0]>>9)
}
for i := 0; i < 4; i++ {
mix()
}
for i := 0; i < 256; i += 8 {
for j, rj := range z.randrsl[i : i+8] {
a[j] += rj
}
mix()
for j, aj := range a {
z.mm[i+j] = aj
}
}
for i := 0; i < 256; i += 8 {
for j, mj := range z.mm[i : i+8] {
a[j] += mj
}
mix()
for j, aj := range a {
z.mm[i+j] = aj
}
}
z.isaac()
}
func (z *state) seed(seed string) {
for i, r := range seed {
if i == 256 {
break
}
z.randrsl[i] = uint32(r)
}
z.randInit()
}
func (z *state) random() (r uint32) {
r = z.randrsl[z.randcnt]
z.randcnt++
if z.randcnt == 256 {
z.isaac()
z.randcnt = 0
}
return
}
func (z *state) randA() byte {
return byte(z.random()%95 + 32)
}
func (z *state) vernam(msg string) string {
b := []byte(msg)
for i := range b {
b[i] ^= z.randA()
}
return fmt.Sprintf("%X", b)
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422
Haskell
import Data.Array (Array, (!), (//), array, elems)
import Data.Word (Word, Word32)
import Data.Bits (shift, xor)
import Data.Char (toUpper)
import Data.List (unfoldr)
import Numeric (showHex)
type IArray = Array Word32 Word32
data IsaacState = IState
{ randrsl :: IArray
, randcnt :: Word32
, mm :: IArray
, aa :: Word32
, bb :: Word32
, cc :: Word32
}
instance Show IsaacState where
show (IState _ cnt _ a b c) =
show cnt ++ " " ++ show a ++ " " ++ show b ++ " " ++ show c
toHex :: Char -> String
toHex c = showHex (fromEnum c) ""
hexify :: String -> String
hexify = map toUpper . concatMap toHex
toNum :: Char -> Word32
toNum = fromIntegral . fromEnum
toChar :: Word32 -> Char
toChar = toEnum . fromIntegral
golden :: Word32
golden = 0x9e3779b9
-- Mix up an ordering of words.
mix :: [Word32] -> [Word32]
mix set = foldl aux set [11, -2, 8, -16, 10, -4, 8, -9]
where
aux [a, b, c, d, e, f, g, h] x = [b + c, c, d + a_, e, f, g, h, a_]
where
a_ = a `xor` (b `shift` x)
-- Generate the next 256 words.
isaac :: IsaacState -> IsaacState
isaac (IState rsl _ m a b c) = IState rsl_ 0 m_ a_ b_ c_
where
c_ = c + 1
(rsl_, m_, a_, b_) =
foldl aux (rsl, m, a, b) $ zip [0 .. 255] $ cycle [13, -6, 2, -16]
aux (rsl, m, a, b) (i, s) = (rsl_, m_, a_, b_)
where
x = m ! i
a_ = (a `xor` (a `shift` s)) + m ! ((i + 128) `mod` 256)
y = a_ + b + m ! ((x `shift` (-2)) `mod` 256)
m_ = m // [(i, y)]
b_ = x + m_ ! ((y `shift` (-10)) `mod` 256)
rsl_ = rsl // [(i, b_)]
-- Given a seed value in randrsl, initialize/mixup the state.
randinit :: IsaacState -> Bool -> IsaacState
randinit state flag = isaac (IState randrsl_ 0 m 0 0 0)
where
firstSet = iterate mix (replicate 8 golden) !! 4
iter _ _ [] = []
iter flag set rsl =
let (rslH, rslT) = splitAt 8 rsl
set_ =
mix $
if flag
then zipWith (+) set rslH
else set
in set_ ++ iter flag set_ rslT
randrsl_ = randrsl state
firstPass = iter flag firstSet $ elems randrsl_
set_ = drop (256 - 8) firstPass
secondPass =
if flag
then iter True set_ firstPass
else firstPass
m = array (0, 255) $ zip [0 ..] secondPass
-- Given a string seed, optionaly use it to generate a new state.
seed :: String -> Bool -> IsaacState
seed key flag =
let m = array (0, 255) $ zip [0 .. 255] $ repeat 0
rsl = m // zip [0 ..] (map toNum key)
state = IState rsl 0 m 0 0 0
in randinit state flag
-- Produce a random word and the next state from the given state.
random :: IsaacState -> (Word32, IsaacState)
random state@(IState rsl cnt m a b c) =
let r = rsl ! cnt
state_ =
if cnt + 1 > 255
then isaac $ IState rsl 0 m a b c
else IState rsl (cnt + 1) m a b c
in (r, state_)
-- Produce a stream of random words from the given state.
randoms :: IsaacState -> [Word32]
randoms = unfoldr $ Just . random
-- Produce a random printable/typable character in the ascii range
-- and the next state from the given state.
randA :: IsaacState -> (Char, IsaacState)
randA state =
let (r, state_) = random state
in (toEnum $ fromIntegral $ (r `mod` 95) + 32, state_)
-- Produce a stream of printable characters from the given state.
randAs :: IsaacState -> String
randAs = unfoldr $ Just . randA
-- Vernam encode/decode a string with the given state.
vernam :: IsaacState -> String -> String
vernam state msg = map toChar $ zipWith xor msg_ randAs_
where
msg_ = map toNum msg
randAs_ = map toNum $ randAs state
main :: IO ()
main = do
let msg = "a Top Secret secret"
key = "this is my secret key"
st = seed key True
ver = vernam st msg
unver = vernam st ver
putStrLn $ "Message: " ++ msg
putStrLn $ "Key : " ++ key
putStrLn $ "XOR : " ++ hexify ver
putStrLn $ "XOR dcr: " ++ unver
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret
Haxe
Used a signed type rather then unsigned as unsigned 32bit type is not part of the default library. The effect of all operations with the exception of compare and mod are identical anyways. It is possible in Haxe to create your own 32bit unsigned type, but that is outside this exercise.
package src ;
import haxe.Int32;
import haxe.macro.Expr;
import haxe.ds.Vector;
typedef Ub4 = Int32;
enum Ciphermode {
mEncipher;
mDecipher;
mNone;
}
class Isaac
{
public var randrsl = new Vector<Ub4>(256);
public var randcnt:Ub4;
var mm = new Vector<Ub4>(256);
var aa:Ub4 = 0;
var bb:Ub4 = 0;
var cc:Ub4 = 0;
public function isaac():Void {
var x, y;
cc++;
bb += cc;
for (i in 0...256) {
x = mm[i];
aa ^= switch (i % 4) {//Haxe unification
case 0: aa << 13;
case 1: aa >>> 6;
case 2: aa << 2;
case 3: aa >>> 16;
default: 0;//never happens
}
aa = mm[(i + 128) % 256] + aa;
mm[i] = y = mm[(x >>> 2) % 256] + aa + bb;
randrsl[i] = bb = mm[(y >>> 10) % 256] + x;
}
}
macro static function mix(a:ExprOf<Ub4>, b:ExprOf<Ub4>, c:ExprOf<Ub4>, d:ExprOf<Ub4>,
e:ExprOf<Ub4>, f:ExprOf<Ub4>, g:ExprOf<Ub4>, h:ExprOf<Ub4>) {
return macro {
$a ^= $b << 11; $d += $a; $b += $c;
$b ^= $c >>> 2; $e += $b; $c += $d;
$c ^= $d << 8; $f += $c; $d += $e;
$d ^= $e >>> 16; $g += $d; $e += $f;
$e ^= $f << 10; $h += $e; $f += $g;
$f ^= $g >>> 4; $a += $f; $g += $h;
$g ^= $h << 8; $b += $g; $h += $a;
$h ^= $a >>> 9; $c += $h; $a += $b;
};
}
public function randinit(flag:Bool):Void {
var a, b, c, d, e, f, g, h, i;
aa = bb = cc = (0:Ub4);
a = b = c = d = e = f = g = h = (0x9e3779b9:Ub4); /* the golden ratio */
for (i in 0...4) mix(a, b, c, d, e, f, g, h); /* scramble it */
i = 0;
while (i < 256) { /* fill in mm[] with messy stuff */
if (flag) { /* use all the information in the seed */
a += randrsl[i]; b += randrsl[i + 1];
c += randrsl[i + 2]; d += randrsl[i + 3];
e += randrsl[i + 4]; f += randrsl[i + 5];
g += randrsl[i + 6]; h += randrsl[i + 7];
}
mix(a, b, c, d, e, f, g, h);
mm[i] = a; mm[i + 1] = b; mm[i + 2] = c; mm[i + 3] = d;
mm[i + 4] = e; mm[i + 5] = f; mm[i + 6] = g; mm[i + 7] = h;
i += 8;
}
if (flag) { /* do a second pass to make all of the seed affect all of mm */
i = 0;
while (i<256) {
a += mm[i]; b += mm[i + 1]; c += mm[i + 2]; d += mm[i + 3];
e += mm[i + 4]; f += mm[i + 5]; g += mm[i + 6]; h += mm[i + 7];
mix(a, b, c, d, e, f, g, h);
mm[i] = a; mm[i + 1] = b; mm[i + 2] = c; mm[i + 3] = d;
mm[i + 4] = e; mm[i + 5] = f; mm[i + 6] = g; mm[i + 7] = h;
i += 8;
}
}
isaac();
randcnt = 0;
}
public function iRandom():Ub4 {
var r = randrsl[randcnt];
++randcnt;
if (randcnt > 255) {
isaac();
randcnt = 0;
}
return r;
}
public function iRandA():Int32 {
return cast(cast(iRandom(),UInt) % 95 + 32,Int32);
}
public function iSeed(seed:String, flag:Bool):Void {
var m=seed.length-1;
for (i in 0...256) mm[i] = 0;
for (i in 0...256) if (i > m) randrsl[i] = 0; else randrsl[i] = seed.charCodeAt(i);
randinit(flag);
}
inline static var modC = 95;
inline static var startC = 32;
public function vernam (msg:String):String {
var v="";
for (i in 0...msg.length) v += String.fromCharCode(iRandA() ^ msg.charCodeAt(i));
return v;
}
public function caesar(m:Ciphermode, ch:Int32, shift:Int32,
modulo:Int32, start:Int32):String {
var n:Int32;
if (m == mDecipher) n = ch - start - cast(shift,Int32);
else n = ch - start + cast(shift,Int32);
n %= modulo;
if (n < 0) n += modulo;
return String.fromCharCode(start + cast(n,Ub4));
}
public function caesarStr(m:Ciphermode, msg:String, modulo:Int32, start:Int32):String {
var c = "";
for (i in 0...msg.length)
c += caesar(m,msg.charCodeAt(i),iRandA(),modulo,start);
return c;
}
static public function main():Void {
var msg = "a Top Secret secret";
var key = "this is my secret key";
var cIsaac = new Isaac();
var vctx, vptx, cctx, cptx;
cIsaac.iSeed(key, true);
vctx = cIsaac.vernam(msg);
cctx = cIsaac.caesarStr(mEncipher, msg, modC, startC);
cIsaac.iSeed(key, true);
vptx = cIsaac.vernam(vctx);
cptx = cIsaac.caesarStr(mDecipher, cctx, modC, startC);
Sys.println("Message: " + msg);
Sys.println("Key : " + key);
var hex = "";
for (i in 0...vctx.length) hex += StringTools.hex(vctx.charCodeAt(i), 2);
Sys.println("XOR : " + hex);
Sys.println("XOR dcr: " + vptx);
hex = "";
for (i in 0...cctx.length) hex += StringTools.hex(cctx.charCodeAt(i), 2);
Sys.println("MOD : " + hex);
Sys.println("MOD dcr: " + cptx);
}
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret MOD : 734270227D36772A783B4F2A5F206266236978 MOD dcr: a Top Secret secret
J
In this draft, only the XOR implementation (vernam) is implemented:
NB. bitwise logic on 32 bit unsigned values
ub4=: (#.33{.1)&|
xor=: ub4@(2b10110 b.)
shl=: ub4@(33 b.~)
add=: ub4@+
isaac=: {{
cc=: cc add 1
bb=: bb add cc
for_i.i.256 do.
aa=. aa xor aa shl 13 _6 2 _16{~4|i
X=. i{mm
aa=. aa add mm{~ 256| i+128
y=. aa add bb add mm{~ 256| X shl _2
randrsl=: randrsl i}~ bb=. X add mm{~ 256| y shl _10
end.
randcnt=: 0
}}
mix=: {{
b=: b add c [ d=: d add a=: a xor b shl 11
c=: c add d [ e=: e add b=: b xor c shl _2
d=: d add e [ f=: f add c=: c xor d shl 8
e=: e add f [ g=: g add d=: d xor e shl _16
f=: f add g [ h=: h add e=: e xor f shl 10
g=: g add h [ a=: a add f=: f xor g shl _4
h=: h add a [ b=: b add g=: g xor h shl 8
a=: a add b [ c=: c add h=: h xor a shl _9
}}
randinit=: {{
aa=: bb=: cc=: 0
a=: b=: c=: d=: e=: f=: g=: h=: 16b9e3779b9
mix^:4''
if. y do.
for_i. _8]\i.256 do.
mix 'a b c d e f g h'=: (a,b,c,d,e,f,g,h) add i{randrsl
mm=: mm i}~ a,b,c,d,e,f,g,h
end.
for_i. _8]\i.256 do.
mix 'a b c d e f g h'=: (a,b,c,d,e,f,g,h) add i{mm
mm=: mm i}~ a,b,c,d,e,f,g,h
end.
else.
for_i. _8]\i.256 do.
mix ''
mm=: mm i}~ a,b,c,d,e,f,g,h
end.
end.
isaac''
}}
iRandom=: {{
r=. randcnt { randrsl
if. 255 < randcnt=: randcnt+1 do. isaac'' end.
r
}}
iRandA=: {{ 7 u: 32+95|iRandom^:(1+i.y)'' }}
iSeed=: {{ NB. y: seed, x: flag
0 iSeed y
:
mm=: 256#0
randrsl=: 256{.3 u: y
randinit x
}}
vernam=: {{ y xor&.(3&u:) iRandA #y }}
Task example:
,hfd 3 u:E=: vernam 'a Top Secret secret' [ 1 iSeed 'this is my secret key'
1c0636190b1260233b35125f1e1d0e2f4c5422
vernam E [ 1 iSeed 'this is my secret key'
a Top Secret secret
Java
Java doesn't have unsigned data types, so it's important to use the logical right shift operator (>>>) instead of the arithmetic right shift operator (>>) on every right shift to maintain original semantics. Luckily, addition yields the same bits regardless of signedness, so most operations aren't affected.
This implementation extends the java.util.Random class, so it inherits methods that generate booleans, floats, doubles and longs, and can also generate numbers with Gaussian and uniform distribution. It can also be plugged in to standard library methods that receive a Random instance as a source of randomness. The toHexString() and main() methods are for demo purposes only and can be removed without changing main functionality.
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
import java.util.Random;
public class IsaacRandom extends Random {
private static final long serialVersionUID = 1L;
private final int[] randResult = new int[256]; // output of last generation
private int valuesUsed; // the number of values already used up from randResult
// internal generator state
private final int[] mm = new int[256];
private int aa, bb, cc;
public IsaacRandom() {
super(0);
init(null);
}
public IsaacRandom(int[] seed) {
super(0);
setSeed(seed);
}
public IsaacRandom(String seed) {
super(0);
setSeed(seed);
}
private void generateMoreResults() {
cc++;
bb += cc;
for (int i=0; i<256; i++) {
int x = mm[i];
switch (i&3) {
case 0:
aa = aa^(aa<<13);
break;
case 1:
aa = aa^(aa>>>6);
break;
case 2:
aa = aa^(aa<<2);
break;
case 3:
aa = aa^(aa>>>16);
break;
}
aa = mm[i^128] + aa;
int y = mm[i] = mm[(x>>>2) & 0xFF] + aa + bb;
randResult[i] = bb = mm[(y>>>10) & 0xFF] + x;
}
valuesUsed = 0;
}
private static void mix(int[] s) {
s[0]^=s[1]<<11; s[3]+=s[0]; s[1]+=s[2];
s[1]^=s[2]>>>2; s[4]+=s[1]; s[2]+=s[3];
s[2]^=s[3]<<8; s[5]+=s[2]; s[3]+=s[4];
s[3]^=s[4]>>>16; s[6]+=s[3]; s[4]+=s[5];
s[4]^=s[5]<<10; s[7]+=s[4]; s[5]+=s[6];
s[5]^=s[6]>>>4; s[0]+=s[5]; s[6]+=s[7];
s[6]^=s[7]<<8; s[1]+=s[6]; s[7]+=s[0];
s[7]^=s[0]>>>9; s[2]+=s[7]; s[0]+=s[1];
}
private void init(int[] seed) {
if (seed != null && seed.length != 256) {
seed = Arrays.copyOf(seed, 256);
}
aa = bb = cc = 0;
int[] initState = new int[8];
Arrays.fill(initState, 0x9e3779b9); // the golden ratio
for (int i=0; i<4; i++) {
mix(initState);
}
for (int i=0; i<256; i+=8) {
if (seed != null) {
for (int j=0; j<8; j++) {
initState[j] += seed[i+j];
}
}
mix(initState);
for (int j=0; j<8; j++) {
mm[i+j] = initState[j];
}
}
if (seed != null) {
for (int i=0; i<256; i+=8) {
for (int j=0; j<8; j++) {
initState[j] += mm[i+j];
}
mix(initState);
for (int j=0; j<8; j++) {
mm[i+j] = initState[j];
}
}
}
valuesUsed = 256; // Make sure generateMoreResults() will be called by the next next() call.
}
@Override
protected int next(int bits) {
if (valuesUsed == 256) {
generateMoreResults();
assert(valuesUsed == 0);
}
int value = randResult[valuesUsed];
valuesUsed++;
return value >>> (32-bits);
}
@Override
public synchronized void setSeed(long seed) {
super.setSeed(0);
if (mm == null) {
// We're being called from the superclass constructor. We don't have our
// state arrays instantiated yet, and we're going to do proper initialization
// later in our own constructor anyway, so just ignore this call.
return;
}
int[] arraySeed = new int[256];
arraySeed[0] = (int) (seed & 0xFFFFFFFF);
arraySeed[1] = (int) (seed >>> 32);
init(arraySeed);
}
public synchronized void setSeed(int[] seed) {
super.setSeed(0);
init(seed);
}
public synchronized void setSeed(String seed) {
super.setSeed(0);
char[] charSeed = seed.toCharArray();
int[] intSeed = new int[charSeed.length];
for (int i=0; i<charSeed.length; i++) {
intSeed[i] = charSeed[i];
}
init(intSeed);
}
public int randomChar() {
long unsignedNext = nextInt() & 0xFFFFFFFFL; // The only way to force unsigned modulo behavior in Java is to convert to a long and mask off the copies of the sign bit.
return (int) (unsignedNext % 95 + 32); // nextInt(95) + 32 would yield a more equal distribution, but then we would be incompatible with the original C code
}
public enum CipherMode { ENCIPHER, DECIPHER, NONE };
public byte[] vernamCipher(byte[] input) {
byte[] result = new byte[input.length];
for (int i=0; i<input.length; i++) {
result[i] = (byte) (randomChar() ^ input[i]);
}
return result;
}
private static byte caesarShift(CipherMode mode, byte ch, int shift, byte modulo, byte start) {
if (mode == CipherMode.DECIPHER) {
shift = -shift;
}
int n = (ch-start) + shift;
n %= modulo;
if (n<0) {
n += modulo;
}
return (byte) (start + n);
}
public byte[] caesarCipher(CipherMode mode, byte[] input, byte modulo, byte start) {
byte[] result = new byte[input.length];
for (int i=0; i<input.length; i++) {
result[i] = caesarShift(mode, input[i], randomChar(), modulo, start);
}
return result;
}
private static String toHexString(byte[] input) {
// NOTE: This method prefers simplicity over performance.
StringBuilder sb = new StringBuilder(input.length*2);
for (byte b : input) {
sb.append(String.format("%02X", b));
}
return sb.toString();
}
public static void main(String[] args) {
final byte MOD = 95;
final byte START = 32;
String secret = "a Top Secret secret";
String key = "this is my secret key";
IsaacRandom random = new IsaacRandom(key);
byte[] vernamResult;
byte[] caesarResult;
String vernamDecrypted;
String caesarDecrypted;
try {
vernamResult = random.vernamCipher(secret.getBytes("ASCII"));
caesarResult = random.caesarCipher(CipherMode.ENCIPHER, secret.getBytes("ASCII"), MOD, START);
random.setSeed(key);
vernamDecrypted = new String(random.vernamCipher(vernamResult), "ASCII");
caesarDecrypted = new String(random.caesarCipher(CipherMode.DECIPHER, caesarResult, MOD, START), "ASCII");
} catch (UnsupportedEncodingException e) {
throw new InternalError("JVM isn't conforming - ASCII encoding isn't available");
}
System.out.printf("Message: %s\n", secret);
System.out.printf("Key : %s\n", key);
System.out.printf("XOR : %s\n", toHexString(vernamResult));
System.out.printf("XOR dcr: %s\n", vernamDecrypted);
System.out.printf("MOD : %s\n", toHexString(caesarResult));
System.out.printf("MOD dcr: %s\n", caesarDecrypted);
}
}
Julia
"""
Julia translation of code from the following:
------------------------------------------------------------------------------
readable.c: My random number generator, ISAAC.
(c) Bob Jenkins, March 1996, Public Domain
You may use this code in any way you wish, and it is free. No warrantee.
------------------------------------------------------------------------------
"""
# maximum length of message here is set to 4096
const MAXMSG = 4096
# cipher modes for encryption versus decryption modes
@enum CipherMode mEncipher mDecipher mNone
# external results
mutable struct IState
randrsl::Array{UInt32, 1}
randcnt::UInt32
mm::Array{UInt32, 1}
aa::UInt32
bb::UInt32
cc::UInt32
function IState()
this = new()
this.randrsl = zeros(UInt32, 256)
this.randcnt = UInt32(0)
this.mm = zeros(UInt32, 256)
this.aa = this.bb = this.cc = UInt32(0)
this
end
end
"""
isaac
Randomize the pool
"""
function isaac(istate)
istate.cc += 1 # cc gets incremented once per 256 results
istate.bb += istate.cc # then combined with bb
for (j, c) in enumerate(istate.mm) # Julia NB: indexing ahead so use i for c indexing
i = j - 1
xmod4 = i % 4
if(xmod4 == 0)
istate.aa ⊻= istate.aa << 13
elseif(xmod4 == 1)
istate.aa ⊻= istate.aa >> 6
elseif(xmod4 == 2)
istate.aa ⊻= istate.aa << 2
else
istate.aa ⊻= istate.aa >> 16
end
istate.aa += istate.mm[(i + 128) % 256 + 1]
y = istate.mm[(c >> 2) % 256 + 1] + istate.aa + istate.bb
istate.mm[j] = y
istate.bb = istate.mm[(y >> 10) % 256 + 1] + c
istate.randrsl[j] = istate.bb
end
# not in original readable.c
istate.randcnt = 0
end
"""
mix
Mix the bytes in a reversible way.
"""
function mix(arr) # Julia NB: use E for e in c code here
(a,b,c,d,E,f,g,h) = arr
a⊻=b<<11; d+=a; b+=c;
b⊻=c>>2; E+=b; c+=d;
c⊻=d<<8; f+=c; d+=E;
d⊻=E>>16; g+=d; E+=f;
E⊻=f<<10; h+=E; f+=g;
f⊻=g>>4; a+=f; g+=h;
g⊻=h<<8; b+=g; h+=a;
h⊻=a>>9; c+=h; a+=b;
(a,b,c,d,E,f,g,h)
end
"""
randinit
Make a random UInt32 array.
If flag is true, use the contents of randrsl[] to initialize mm[].
"""
function randinit(istate, flag::Bool)
istate.aa = istate.bb = istate.cc = 0
mixer = Array{UInt32,1}(8)
fill!(mixer, 0x9e3779b9) # the golden ratio
for i in 1:4 # scramble it
mixer = mix(mixer)
end
for i in 0:8:255 # fill in mm[] with messy stuff
if(flag) # use all the information in the seed
mixer = [mixer[j] + istate.randrsl[i+j] for j in 1:8]
end
mixer = mix(mixer)
istate.mm[i+1:i+8] .= mixer
end
if(flag) # do a second pass to seed all of mm
for i in 0:8:255
mixer = [mixer[j] + istate.mm[i+j] for j in 1:8]
mixer = mix(mixer)
istate.mm[i+1:i+8] .= mixer
end
end
isaac(istate) # fill in the first set of results
istate.randcnt = 0
end
"""
Get a random 32-bit value 0..MAXINT
"""
function irandom(istate)
retval::UInt32 = istate.randrsl[istate.randcnt+1]
istate.randcnt += 1
if(istate.randcnt > 255)
isaac(istate)
istate.randcnt = 0
end
retval
end
"""
Get a random character in printable ASCII range
"""
iranda(istate) = UInt8(irandom(istate) % 95 + 32)
"""
Do XOR cipher on random stream.
Output: UInt8 array
"""
vernam(istate, msg) = [UInt8(iranda(istate) ⊻ c) for c in msg]
"""
Seed ISAAC with a string
"""
function iseed(istate, seed, flag)
fill!(istate.mm, 0)
fill!(istate.randrsl, 0)
len = min(length(seed), length(istate.randrsl))
istate.randrsl[1:len] .= seed[1:len]
randinit(istate, flag) # initialize ISAAC with seed
end
tohexstring(arr::Array{UInt8,1}) = join([hex(i, 2) for i in arr])
function test(istate, msg, key)
# Vernam ciphertext & plaintext
vctx = zeros(UInt8, MAXMSG)
vptx = zeros(UInt8, MAXMSG)
# Encrypt: Vernam XOR
iseed(istate, Vector{UInt8}(key), true)
vctx = vernam(istate, Vector{UInt8}(msg))
# Decrypt: Vernam XOR
iseed(istate, Vector{UInt8}(key), true)
vptx = vernam(istate, vctx)
# Program output
println("Message: $msg")
println("Key : $key")
println("XOR : $(tohexstring(vctx))")
# Output Vernam decrypted plaintext
println("XOR dcr: $(join(map(c -> Char(c), vptx)))")
0
end
"""
Test the above.
"""
const msg = "a Top Secret secret"
const key = "this is my secret key"
test(IState(), msg, key)
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1c0636190b1260233b35125f1e1d0e2f4c5422 XOR dcr: a Top Secret secret
Kotlin
// version 1.1.3
/* external results */
val randrsl = IntArray(256)
var randcnt = 0
/* internal state */
val mm = IntArray(256)
var aa = 0
var bb = 0
var cc = 0
const val GOLDEN_RATIO = 0x9e3779b9.toInt()
fun isaac() {
cc++ // cc just gets incremented once per 256 results
bb += cc // then combined with bb
for (i in 0..255) {
val x = mm[i]
when (i % 4) {
0 -> aa = aa xor (aa shl 13)
1 -> aa = aa xor (aa ushr 6)
2 -> aa = aa xor (aa shl 2)
3 -> aa = aa xor (aa ushr 16)
}
aa += mm[(i + 128) % 256]
val y = mm[(x ushr 2) % 256] + aa + bb
mm[i] = y
bb = mm[(y ushr 10) % 256] + x
randrsl[i] = bb
}
randcnt = 0
}
/* if (flag == true), then use the contents of randrsl to initialize mm. */
fun mix(n: IntArray) {
n[0] = n[0] xor (n[1] shl 11); n[3] += n[0]; n[1] += n[2]
n[1] = n[1] xor (n[2] ushr 2); n[4] += n[1]; n[2] += n[3]
n[2] = n[2] xor (n[3] shl 8); n[5] += n[2]; n[3] += n[4]
n[3] = n[3] xor (n[4] ushr 16); n[6] += n[3]; n[4] += n[5]
n[4] = n[4] xor (n[5] shl 10); n[7] += n[4]; n[5] += n[6]
n[5] = n[5] xor (n[6] ushr 4); n[0] += n[5]; n[6] += n[7]
n[6] = n[6] xor (n[7] shl 8); n[1] += n[6]; n[7] += n[0]
n[7] = n[7] xor (n[0] ushr 9); n[2] += n[7]; n[0] += n[1]
}
fun randinit(flag: Boolean) {
aa = 0
bb = 0
cc = 0
val n = IntArray(8) { GOLDEN_RATIO }
for (i in 0..3) mix(n) // scramble the array
for (i in 0..255 step 8) { // fill in mm with messy stuff
if (flag) { // use all the information in the seed
for (j in 0..7) n[j] += randrsl[i + j]
}
mix(n)
for (j in 0..7) mm[i + j] = n[j]
}
if (flag) {
/* do a second pass to make all of the seed affect all of mm */
for (i in 0..255 step 8) {
for (j in 0..7) n[j] += mm[i + j]
mix(n)
for (j in 0..7) mm[i + j] = n[j]
}
}
isaac() // fill in the first set of results
randcnt = 0 // prepare to use the first set of results
}
/* As Kotlin doesn't (yet) support unsigned types, we need to use
Long here to get a random value in the range of a UInt */
fun iRandom(): Long {
val r = randrsl[randcnt++]
if (randcnt > 255) {
isaac()
randcnt = 0
}
return r.toLong() and 0xFFFFFFFFL
}
/* Get a random character (as Int) in printable ASCII range */
fun iRandA() = (iRandom() % 95 + 32).toInt()
/* Seed ISAAC with a string */
fun iSeed(seed: String, flag: Boolean) {
for (i in 0..255) mm[i] = 0
val m = seed.length
for (i in 0..255) {
/* in case seed has less than 256 elements */
randrsl[i] = if (i >= m) 0 else seed[i].toInt()
}
/* initialize ISAAC with seed */
randinit(flag)
}
/* XOR cipher on random stream. Output: ASCII string */
fun vernam(msg: String) : String {
val len = msg.length
val v = ByteArray(len)
for (i in 0 until len) {
v[i] = (iRandA() xor msg[i].toInt()).toByte()
}
return v.toString(charset("ASCII"))
}
/* constants for Caesar */
const val MOD = 95
const val START = 32
/* cipher modes for Caesar */
enum class CipherMode {
ENCIPHER, DECIPHER, NONE
}
/* Caesar-shift a printable character */
fun caesar(m: CipherMode, ch: Int, shift: Int, modulo: Int, start: Int): Char {
val sh = if (m == CipherMode.DECIPHER) -shift else shift
var n = (ch - start) + sh
n %= modulo
if (n < 0) n += modulo
return (start + n).toChar()
}
/* Caesar-shift a string on a pseudo-random stream */
fun caesarStr(m: CipherMode, msg: String, modulo: Int, start: Int): String {
val sb = StringBuilder(msg.length)
/* Caesar-shift message */
for (c in msg) {
sb.append(caesar(m, c.toInt(), iRandA(), modulo, start))
}
return sb.toString()
}
fun String.toHexByteString() =
this.map { "%02X".format(it.toInt()) }.joinToString("")
fun main(args: Array<String>) {
val msg = "a Top Secret secret"
val key = "this is my secret key"
// Vernam & Caesar ciphertext
iSeed(key, true)
val vctx = vernam(msg)
val cctx = caesarStr(CipherMode.ENCIPHER, msg, MOD, START)
// Vernam & Caesar plaintext
iSeed(key, true)
val vptx = vernam(vctx)
val cptx = caesarStr(CipherMode.DECIPHER, cctx, MOD, START)
// Program output
println("Message : $msg")
println("Key : $key")
println("XOR : ${vctx.toHexByteString()}")
println("XOR dcr : $vptx")
println("MOD : ${cctx.toHexByteString()}")
println("MOD dcr : $cptx")
}
- Output:
Message : a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr : a Top Secret secret MOD : 734270227D36772A783B4F2A5F206266236978 MOD dcr : a Top Secret secret
Lua
#!/usr/bin/env lua
-- ISAAC - Lua 5.3
-- External Results
local randRsl = {};
local randCnt = 0;
-- Internal State
local mm = {};
local aa,bb,cc = 0,0,0;
-- Cap to maintain 32 bit maths
local cap = 0x100000000;
-- CipherMode
local ENCRYPT = 1;
local DECRYPT = 2;
function isaac()
cc = ( cc + 1 ) % cap; -- cc just gets incremented once per 256 results
bb = ( bb + cc ) % cap; -- then combined with bb
for i = 0,255 do
local x = mm[i];
local y;
local imod = i % 4;
if imod == 0 then aa = aa ~ (aa << 13);
elseif imod == 1 then aa = aa ~ (aa >> 6);
elseif imod == 2 then aa = aa ~ (aa << 2);
elseif imod == 3 then aa = aa ~ (aa >> 16);
end
aa = ( mm[(i+128)%256] + aa ) % cap;
y = ( mm[(x>>2) % 256] + aa + bb ) % cap;
mm[i] = y;
bb = ( mm[(y>>10)%256] + x ) % cap;
randRsl[i] = bb;
end
randCnt = 0; -- Prepare to use the first set of results.
end
function mix(a)
a[0] = ( a[0] ~ ( a[1] << 11 ) ) % cap; a[3] = ( a[3] + a[0] ) % cap; a[1] = ( a[1] + a[2] ) % cap;
a[1] = ( a[1] ~ ( a[2] >> 2 ) ) % cap; a[4] = ( a[4] + a[1] ) % cap; a[2] = ( a[2] + a[3] ) % cap;
a[2] = ( a[2] ~ ( a[3] << 8 ) ) % cap; a[5] = ( a[5] + a[2] ) % cap; a[3] = ( a[3] + a[4] ) % cap;
a[3] = ( a[3] ~ ( a[4] >> 16 ) ) % cap; a[6] = ( a[6] + a[3] ) % cap; a[4] = ( a[4] + a[5] ) % cap;
a[4] = ( a[4] ~ ( a[5] << 10 ) ) % cap; a[7] = ( a[7] + a[4] ) % cap; a[5] = ( a[5] + a[6] ) % cap;
a[5] = ( a[5] ~ ( a[6] >> 4 ) ) % cap; a[0] = ( a[0] + a[5] ) % cap; a[6] = ( a[6] + a[7] ) % cap;
a[6] = ( a[6] ~ ( a[7] << 8 ) ) % cap; a[1] = ( a[1] + a[6] ) % cap; a[7] = ( a[7] + a[0] ) % cap;
a[7] = ( a[7] ~ ( a[0] >> 9 ) ) % cap; a[2] = ( a[2] + a[7] ) % cap; a[0] = ( a[0] + a[1] ) % cap;
end
function randInit(flag)
-- The golden ratio in 32 bit
-- math.floor((((math.sqrt(5)+1)/2)%1)*2^32) == 2654435769 == 0x9e3779b9
local a = { [0] = 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, 0x9e3779b9, };
aa,bb,cc = 0,0,0;
for i = 1,4 do mix(a) end -- Scramble it.
for i = 0,255,8 do -- Fill in mm[] with messy stuff.
if flag then -- Use all the information in the seed.
for j = 0,7 do
a[j] = ( a[j] + randRsl[i+j] ) % cap;
end
end
mix(a);
for j = 0,7 do
mm[i+j] = a[j];
end
end
if flag then
-- Do a second pass to make all of the seed affect all of mm.
for i = 0,255,8 do
for j = 0,7 do
a[j] = ( a[j] + mm[i+j] ) % cap;
end
mix(a);
for j = 0,7 do
mm[i+j] = a[j];
end
end
end
isaac(); -- Fill in the first set of results.
randCnt = 0; -- Prepare to use the first set of results.
end
-- Seed ISAAC with a given string.
-- The string can be any size. The first 256 values will be used.
function seedIsaac(seed,flag)
local seedLength = #seed;
for i = 0,255 do mm[i] = 0; end
for i = 0,255 do randRsl[i] = seed:byte(i+1,i+1) or 0; end
randInit(flag);
end
-- Get a random 32-bit value 0..MAXINT
function getRandom32Bit()
local result = randRsl[randCnt];
randCnt = randCnt + 1;
if randCnt > 255 then
isaac();
randCnt = 0;
end
return result;
end
-- Get a random character in printable ASCII range
function getRandomChar()
return getRandom32Bit() % 95 + 32;
end
-- Convert an ASCII string to a hexadecimal string.
function ascii2hex(source)
local ss = "";
for i = 1,#source do
ss = ss..string.format("%02X",source:byte(i,i));
end
return ss
end
-- XOR encrypt on random stream.
function vernam(msg)
local msgLength = #msg;
local destination = {};
for i = 1, msgLength do
destination[i] = string.char(getRandomChar() ~ msg:byte(i,i));
end
return table.concat(destination);
end
-- Caesar-shift a character <shift> places: Generalized Vigenere
function caesar(m, ch, shift, modulo, start)
local n
local si = 1
if m == DECRYPT then shift = shift*-1 ; end
n = (ch - start) + shift;
if n < 0 then si,n = -1,n*-1 ; end
n = ( n % modulo ) * si;
if n < 0 then n = n + modulo ; end
return start + n;
end
-- Vigenere mod 95 encryption & decryption.
function vigenere(msg,m)
local msgLength = #msg;
local destination = {};
for i = 1,msgLength do
destination[i] = string.char( caesar(m, msg:byte(i,i), getRandomChar(), 95, 32) );
end
return table.concat(destination);
end
function main()
local msg = "a Top Secret secret";
local key = "this is my secret key";
local xorCipherText, modCipherText, xorPlainText, modPlainText;
-- (1) Seed ISAAC with the key
seedIsaac(key, true);
-- (2) Encryption
-- (a) XOR (Vernam)
xorCipherText = vernam(msg);
-- (b) MOD (Vigenere)
modCipherText = vigenere(msg, ENCRYPT);
-- (3) Decryption
seedIsaac(key, true);
-- (a) XOR (Vernam)
xorPlainText = vernam(xorCipherText);
-- (b) MOD (Vigenere)
modPlainText = vigenere(modCipherText, DECRYPT);
-- Program output
print("Message: " .. msg);
print("Key : " .. key);
print("XOR : " .. ascii2hex(xorCipherText));
print("XOR dcr: " .. xorPlainText);
print("MOD : " .. ascii2hex(modCipherText));
print("MOD dcr: " .. modPlainText);
end
main()
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1c0636190b1260233b35125f1e1d0e2f4c5422 MOD : 734270227d36772a783b4f2a5f206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
Modula-2
I changed the identifiers to clearer ones and I changed the variables a
, b
, ..., h
to an array, because they made my blood boil.
MODULE RosettaIsaac;
FROM Strings IMPORT
Length, Assign, Append;
FROM STextIO IMPORT
WriteString, WriteLn;
FROM Conversions IMPORT
CardBaseToStr;
CONST
MaxStrLength = 256;
TYPE
TMode = (iEncrypt, iDecrypt);
TString = ARRAY [0 .. MaxStrLength - 1] OF CHAR;
THexString = ARRAY [0 .. 2 * MaxStrLength - 1] OF CHAR;
TCardIndexedFrom0To7 = ARRAY [0 .. 7] OF CARDINAL;
VAR
(* TASK globals *)
Msg: TString = 'a Top Secret secret';
Key: TString = 'this is my secret key';
XorCipherText: TString = '';
ModCipherText: TString = '';
XorPlainText: TString = '';
ModPlainText: TString = '';
HexText: THexString;
(* ISAAC globals *)
(* external results *)
RandRsl: ARRAY [0 .. 255] OF CARDINAL;
RandCnt: CARDINAL;
(* internal state *)
MM: ARRAY [0 .. 255] OF CARDINAL;
AA: CARDINAL = 0;
BB: CARDINAL = 0;
CC: CARDINAL = 0;
PROCEDURE Isaac;
VAR
I, X, Y: CARDINAL;
BEGIN
CC := CC + 1; (* CC just gets incremented once per 256 results *)
BB := BB + CC; (* then combined with BB *)
FOR I := 0 TO 255 DO
X := MM[I];
CASE (I MOD 4) OF
0: AA := AA BXOR (AA SHL 13); |
1: AA := AA BXOR (AA SHR 6); |
2: AA := AA BXOR (AA SHL 2); |
3: AA := AA BXOR (AA SHR 16);
ELSE
END;
AA := MM[(I + 128) MOD 256] + AA;
Y := MM[(X SHR 2) MOD 256] + AA + BB;
MM[I] := Y;
BB := MM[(Y SHR 10) MOD 256] + X;
RandRsl[I] := BB;
END; (* FOR *)
RandCnt := 0; (* Prepare to use the first set of results. *)
END Isaac;
PROCEDURE Mix(VAR A: TCardIndexedFrom0To7);
BEGIN
A[0] := A[0] BXOR A[1] SHL 11; A[3] := A[3] + A[0]; A[1] := A[1] + A[2];
A[1] := A[1] BXOR A[2] SHR 2; A[4] := A[4] + A[1]; A[2] := A[2] + A[3];
A[2] := A[2] BXOR A[3] SHL 8; A[5] := A[5] + A[2]; A[3] := A[3] + A[4];
A[3] := A[3] BXOR A[4] SHR 16; A[6] := A[6] + A[3]; A[4] := A[4] + A[5];
A[4] := A[4] BXOR A[5] SHL 10; A[7] := A[7] + A[4]; A[5] := A[5] + A[6];
A[5] := A[5] BXOR A[6] SHR 4; A[0] := A[0] + A[5]; A[6] := A[6] + A[7];
A[6] := A[6] BXOR A[7] SHL 8; A[1] := A[1] + A[6]; A[7] := A[7] + A[0];
A[7] := A[7] BXOR A[0] SHR 9; A[2] := A[2] + A[7]; A[0] := A[0] + A[1];
END Mix;
PROCEDURE RandInit(Flag: BOOLEAN);
VAR
I, J: CARDINAL;
A: TCardIndexedFrom0To7;
BEGIN
AA := 0; BB := 0; CC := 0;
A[0] := 2654435769; (* $9e3779b9: the golden ratio *)
FOR J := 1 TO 7 DO
A[J] := A[0];
END;
FOR I := 0 TO 3 DO (* Scramble it *)
Mix(A);
END;
FOR I := 0 TO 255 BY 8 DO (* Fill in MM[] with messy stuff. *)
IF Flag THEN (* Use all the information in the seed. *)
FOR J := 0 TO 7 DO
A[J] := A[J] + RandRsl[I + J];
END;
END;
Mix(A);
FOR J := 0 TO 7 DO
MM[I + J] := A[J];
END;
END; (* FOR I*)
IF Flag THEN
(* Do a second pass to make all of the Seed affect all of MM *)
FOR I := 0 TO 255 BY 8 DO
FOR J := 0 TO 7 DO
A[J] := A[J] + MM[I + J];
END;
Mix(A);
FOR J := 0 TO 7 DO
MM[I + J] := A[J];
END;
END; (* FOR I *)
END;
Isaac(); (* Fill in the first set of results *)
RandCnt := 0; (* Prepare to use the first set of results *)
END RandInit;
(* Seed ISAAC with a given string.
The string can be any size. The first 256 values will be used. *)
PROCEDURE SeedIsaac(Seed: ARRAY OF CHAR; Flag: BOOLEAN);
VAR
I, SeedLength: CARDINAL;
BEGIN
FOR I := 0 TO 255 DO
MM[I] := 0;
END;
SeedLength := Length(Seed);
FOR I := 0 TO 255 DO
(* In case seed has less than 256 elements *)
IF I > SeedLength THEN
RandRsl[I] := 0
ELSE
(* Modula-2 strings are 0-based (at least, in this case). *)
RandRsl[I] := ORD(Seed[I]);
END;
END;
(* Initialize ISAAC with seed. *)
RandInit(Flag);
END SeedIsaac;
(* Get a random 32-bit value 0..MAXINT *)
PROCEDURE GetRandom32Bit(): CARDINAL;
VAR
Result: CARDINAL;
BEGIN
Result := RandRsl[RandCnt];
INC(RandCnt);
IF RandCnt > 255 THEN
Isaac();
RandCnt := 0;
END;
RETURN Result;
END GetRandom32Bit;
(* Get a random character in printable ASCII range. *)
PROCEDURE GetRandomChar(): SHORTCARD;
BEGIN
RETURN GetRandom32Bit() MOD 95 + 32;
END GetRandomChar;
(* Convert an ASCII string to a hexadecimal string. *)
PROCEDURE ASCII2Hex(Source: ARRAY OF CHAR; VAR OUT Destination: ARRAY OF CHAR);
VAR
I: CARDINAL;
NumbHex: ARRAY [0 .. 1] OF CHAR;
BEGIN
Assign('', Destination);
FOR I := 0 TO Length(Source) - 1 DO
CardBaseToStr(ORD(Source[I]), 16, NumbHex);
IF Length(NumbHex) <= 1 THEN
Append('0', Destination);
END;
Append(NumbHex, Destination);
END;
END ASCII2Hex;
(* XOR encrypt on random stream. *)
PROCEDURE Vernam(Msg: ARRAY OF CHAR; VAR OUT Destination: ARRAY OF CHAR);
VAR
I: CARDINAL;
OrdMsgI: SHORTCARD;
BEGIN
Assign(Msg, Destination);
FOR I := 0 TO Length(Msg) - 1 DO
OrdMsgI := ORD(Msg[I]);
Destination[I] := CHR(GetRandomChar() BXOR OrdMsgI);
END;
END Vernam;
(* Get position of the letter in chosen alphabet *)
PROCEDURE LetterNum(Letter, Start: CHAR): SHORTCARD;
BEGIN
RETURN ORD(Letter) - ORD(Start);
END LetterNum;
(* Caesar-shift a character <Shift> places: Generalized Vigenere *)
PROCEDURE Caesar(M: TMode; Ch: CHAR; Shift, Modulo: INTEGER; Start: CHAR): CHAR;
VAR
N, IntOrdStart: INTEGER;
BEGIN
IF M = iDecrypt THEN
Shift := -Shift;
END;
N := LetterNum(Ch, Start);
N := N + Shift;
N := N MOD Modulo;
IF N < 0 THEN
N := N + Modulo;
END;
IntOrdStart := ORD(Start);
RETURN CHR(IntOrdStart + N);
END Caesar;
(* Vigenere mod 95 encryption & decryption. *)
PROCEDURE Vigenere(Msg: ARRAY OF CHAR; M: TMode; VAR OUT Destination: ARRAY OF CHAR);
VAR
I: CARDINAL;
BEGIN
Assign(Msg, Destination);
FOR I := 0 TO Length(Msg) - 1 DO
Destination[I] := Caesar(M, Msg[I], GetRandomChar(), 95, ' ');
END;
END Vigenere;
BEGIN
(* (1) Seed ISAAC with the key *)
SeedIsaac(Key, TRUE);
(* (2) Encryption *)
(* (a) XOR (Vernam) *)
Vernam(Msg, XorCipherText);
(* (b) MOD (Vigenere) *)
Vigenere(Msg, iEncrypt, ModCipherText);
(* (3) Decryption *)
SeedIsaac(Key, TRUE);
(* (a) XOR (Vernam) *)
Vernam(XorCipherText, XorPlainText);
(* (b) MOD (Vigenere) *)
Vigenere(ModCipherText, iDecrypt, ModPlainText);
(* program output *)
WriteString('Message: '); WriteString(Msg); WriteLn;
WriteString('Key : '); WriteString(Key); WriteLn;
ASCII2Hex(XorCipherText, HexText);
WriteString('XOR : '); WriteString(HexText); WriteLn;
ASCII2Hex(ModCipherText, HexText);
WriteString('MOD : '); WriteString(HexText); WriteLn;
WriteString('XOR dcr: '); WriteString(XorPlainText); WriteLn;
WriteString('MOD dcr: '); WriteString(ModPlainText); WriteLn;
END RosettaIsaac.
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD : 734270227D36772A783B4F2A5F206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
Nim
We choose the translate the Pascal version as the it’s easier to translate to Nim from Pascal rather than from C. This is not an exact translation: the more important difference is the use of a global state record rather than a list of global variables. This global state is transmitted to each procedure. This way, it is possible to run several PRNG concurrently.
We also replaced the eight variables "a" to "h" with an array. This allows to simplify the code at several places by using a loop. And we changed the "mod" to "and", even if the compiler will likely optimize the modulo when the second operand is a power of two.
Note that the "mix" procedure could possibly be transformed in a template or be marked as "inline" (in the C version, it is a "define"). But as we are not in a procedure whose performance is critical, expanding the code rather than calling a procedure is not very useful.
import strutils
type
IMode = enum iEncrypt, iDecrypt
State = object
# Internal.
mm: array[256, uint32]
aa, bb, cc: uint32
# External.
randrsl: array[256, uint32]
randcnt: uint32
proc isaac(s: var State) =
inc s.cc # "cc" just gets incremented once per 256 results
s.bb += s.cc # then combined with "bb".
for i in 0u32..255:
let x = s.mm[i]
case range[0..3](i and 3)
of 0: s.aa = s.aa xor s.aa shl 13
of 1: s.aa = s.aa xor s.aa shr 6
of 2: s.aa = s.aa xor s.aa shl 2
of 3: s.aa = s.aa xor s.aa shr 16
s.aa += s.mm[(i + 128) and 255]
let y = s.mm[(x shr 2) and 255] + s.aa + s.bb
s.mm[i] = y
s.bb = s.mm[(y shr 10) and 255] + x
s.randrsl[i] = s.bb
s.randcnt = 0
proc mix(a: var array[8, uint32]) =
a[0] = a[0] xor a[1] shl 11; a[3] += a[0]; a[1] += a[2]
a[1] = a[1] xor a[2] shr 2; a[4] += a[1]; a[2] += a[3]
a[2] = a[2] xor a[3] shl 8; a[5] += a[2]; a[3] += a[4]
a[3] = a[3] xor a[4] shr 16; a[6] += a[3]; a[4] += a[5]
a[4] = a[4] xor a[5] shl 10; a[7] += a[4]; a[5] += a[6]
a[5] = a[5] xor a[6] shr 4; a[0] += a[5]; a[6] += a[7]
a[6] = a[6] xor a[7] shl 8; a[1] += a[6]; a[7] += a[0]
a[7] = a[7] xor a[0] shr 9; a[2] += a[7]; a[0] += a[1]
proc iRandInit(s: var State; flag: bool) =
s.aa = 0; s.bb = 0; s.cc = 0
var a: array[8, uint32]
for item in a.mitems: item = 0x9e3779b9u32 # The golden ratio.
for i in 0..3: # Scramble it.
a.mix()
var i = 0u32
while true: # Fill in "mm" with messy stuff.
if flag:
# Use all the information in the seed.
for n in 0u32..7: a[n] += s.randrsl[n + i]
a.mix()
for n in 0u32..7: s.mm[n + i] = a[n]
inc i, 8
if i > 255: break
if flag:
# Do a second pass to make all of the seed affect all of "mm".
i = 0
while true:
for n in 0u32..7: a[n] += s.mm[n + i]
a.mix()
for n in 0u32..7: s.mm[n + i] = a[n]
inc i, 8
if i > 255: break
s.isaac() # Fill in the first set of results.
s.randcnt = 0 # Prepare to use the first set of results.
proc iSeed(s: var State; seed: string; flag: bool) =
## Seed ISAAC with a given string.
## The string can be any size. The first 256 values will be used.
s.mm.reset()
let m = seed.high
for i in 0..255:
s.randrsl[i] = if i > m: 0 else: ord(seed[i])
# Initialize ISAAC with seed.
s.iRandInit(flag)
proc iRandom(s: var State): uint32 =
## Get a random 32-bit value 0..int32.high.
result = s.randrsl[s.randcnt]
inc s.randcnt
if s.randcnt > 255:
s.isaac()
s.randcnt = 0
proc iRandA(s: var State): byte =
## Get a random character in printable ASCII range.
result = byte(s.iRandom() mod 95 + 32)
proc vernam(s: var State; msg: string): string =
## XOR encrypt on random stream. Output: ASCII string.
result.setLen(msg.len)
for i, c in msg:
result[i] = chr(s.irandA() xor byte(c))
template letterNum(letter, start: char): int =
ord(letter) - ord(start)
proc caesar(m: IMode; ch: char; shift, modulo: int; start: char): char =
let shift = if m == iEncrypt: shift else: -shift
var n = letterNum(ch, start) + shift
n = n mod modulo
if n < 0: inc n, modulo
result = chr(ord(start) + n)
proc vigenere(s: var State; msg: string; m: IMode): string =
## Vigenere MOD 95 encryption & decryption. Output: ASCII string.
result.setLen(msg.len)
for i, c in msg:
result[i] = caesar(m, c, s.iRanda().int, 95, ' ')
let
msg = "a Top Secret secret"
key = "this is my secret key"
var state: State
# 1) seed ISAAC with the key
state.iSeed(key, true)
# 2) Encryption
# a) XOR (Vernam)
let xctx = state.vernam(msg) # XOR ciphertext.
# b) MOD (Vigenere)
let mctx = state.vigenere(msg, iEncrypt) # MOD ciphertext.
# 3) Decryption
state.iSeed(key, true)
# a) XOR (Vernam)
let xptx = state.vernam(xctx) # XOR decryption (plaintext).
# b) MOD (Vigenere)
let mptx = state.vigenere(mctx, iDecrypt) # MOD decryption (plaintext).
# Program output
echo "Message: ", msg
echo " Key: ", key
echo " XOR: ", xctx.tohex
echo " MOD: ", mctx.toHex
echo "XOR dcr: ", xptx
echo "MOD dcr: ", mptx
- Output:
Message: a Top Secret secret Key: this is my secret key XOR: 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD: 734270227D36772A783B4F2A5F206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
Pascal
Free Pascal. A fully functional and complete reference solution of the task.
PROGRAM RosettaIsaac;
USES
StrUtils;
TYPE
iMode = (iEncrypt, iDecrypt);
// TASK globals
VAR
msg : String = 'a Top Secret secret';
key : String = 'this is my secret key';
xctx: String = ''; // XOR ciphertext
mctx: String = ''; // MOD ciphertext
xptx: String = ''; // XOR decryption (plaintext)
mptx: String = ''; // MOD decryption (plaintext)
// ISAAC globals
VAR
// external results
randrsl: ARRAY[0 .. 255] OF Cardinal;
randcnt: Cardinal;
// internal state
mm: ARRAY[0 .. 255] OF Cardinal;
aa: Cardinal = 0;
bb: Cardinal = 0;
cc: Cardinal = 0;
PROCEDURE Isaac;
VAR
i, x, y: Cardinal;
BEGIN
cc := cc + 1; // cc just gets incremented once per 256 results
bb := bb + cc; // then combined with bb
FOR i := 0 TO 255 DO
BEGIN
x := mm[i];
CASE (i MOD 4) OF
0: aa := aa XOR (aa SHL 13);
1: aa := aa XOR (aa SHR 6);
2: aa := aa XOR (aa SHL 2);
3: aa := aa XOR (aa SHR 16);
END;
aa := mm[(i + 128) MOD 256] + aa;
y := mm[(x SHR 2) MOD 256] + aa + bb;
mm[i] := y;
bb := mm[(y SHR 10) MOD 256] + x;
randrsl[i] := bb;
END;
randcnt := 0; // prepare to use the first set of results
END; // Isaac
PROCEDURE Mix(VAR a, b, c, d, e, f, g, h: Cardinal);
BEGIN
a := a XOR b SHL 11; d := d + a; b := b + c;
b := b XOR c SHR 2; e := e + b; c := c + d;
c := c XOR d SHL 8; f := f + c; d := d + e;
d := d XOR e SHR 16; g := g + d; e := e + f;
e := e XOR f SHL 10; h := h + e; f := f + g;
f := f XOR g SHR 4; a := a + f; g := g + h;
g := g XOR h SHL 8; b := b + g; h := h + a;
h := h XOR a SHR 9; c := c + h; a := a + b;
END; // Mix
PROCEDURE iRandInit(flag: Boolean);
VAR
i, a, b, c, d, e, f, g, h: Cardinal;
BEGIN
aa := 0; bb := 0; cc := 0;
a := $9e3779b9; // the golden ratio
b := a; c := a; d := a; e := a; f := a; g := a; h := a;
FOR i := 0 TO 3 DO // scramble it
Mix(a, b, c, d, e, f, g, h);
i := 0;
REPEAT // fill in mm[] with messy stuff
IF flag THEN
BEGIN // use all the information in the seed
a += randrsl[i ]; b += randrsl[i + 1];
c += randrsl[i + 2]; d += randrsl[i + 3];
e += randrsl[i + 4]; f += randrsl[i + 5];
g += randrsl[i + 6]; h += randrsl[i + 7];
END;
Mix(a, b, c, d, e, f, g, h);
mm[i ] := a; mm[i + 1] := b; mm[i + 2] := c; mm[i + 3] := d;
mm[i + 4] := e; mm[i + 5] := f; mm[i + 6] := g; mm[i + 7] := h;
i += 8;
UNTIL i > 255;
IF flag THEN
BEGIN
// do a second pass to make all of the seed affect all of mm
i := 0;
REPEAT
a += mm[i ]; b += mm[i + 1]; c += mm[i + 2]; d += mm[i + 3];
e += mm[i + 4]; f += mm[i + 5]; g += mm[i + 6]; h += mm[i + 7];
Mix(a, b, c, d, e, f, g, h);
mm[i ] := a; mm[i + 1] := b; mm[i + 2] := c; mm[i + 3] := d;
mm[i + 4] := e; mm[i + 5] := f; mm[i + 6] := g; mm[i + 7] := h;
i += 8;
UNTIL i > 255;
END;
Isaac(); // fill in the first set of results
randcnt := 0; // prepare to use the first set of results
END; // iRandInit
// Seed ISAAC with a given string.
// The string can be any size. The first 256 values will be used.
PROCEDURE iSeed(seed: String; flag: Boolean);
VAR
i, m: Cardinal;
BEGIN
FOR i := 0 TO 255 DO
mm[i] := 0;
m := Length(seed) - 1;
FOR i := 0 TO 255 DO
BEGIN
// in case seed has less than 256 elements
IF i > m THEN
randrsl[i] := 0
// Pascal strings are 1-based
ELSE
randrsl[i] := Ord(seed[i + 1]);
END;
// initialize ISAAC with seed
iRandInit(flag);
END; // iSeed
// Get a random 32-bit value 0..MAXINT
FUNCTION iRandom: Cardinal;
BEGIN
iRandom := randrsl[randcnt];
inc(randcnt);
IF (randcnt > 255) THEN
BEGIN
Isaac;
randcnt := 0;
END;
END; // iRandom
// Get a random character in printable ASCII range
FUNCTION iRandA: Byte;
BEGIN
iRandA := iRandom MOD 95 + 32;
END;
// Convert an ASCII string to a hexadecimal string
FUNCTION Ascii2Hex(s: String): String;
VAR
i: Cardinal;
BEGIN
Ascii2Hex := '';
FOR i := 1 TO Length(s) DO
Ascii2Hex += Dec2Numb(Ord(s[i]), 2, 16);
END; // Ascii2Hex
// XOR encrypt on random stream. Output: ASCII string
FUNCTION Vernam(msg: String): String;
VAR
i: Cardinal;
BEGIN
Vernam := '';
FOR i := 1 to Length(msg) DO
Vernam += Chr(iRandA XOR Ord(msg[i]));
END; // Vernam
// Get position of the letter in chosen alphabet
FUNCTION LetterNum(letter, start: Char): Byte;
BEGIN
LetterNum := (Ord(letter) - Ord(start));
END; // LetterNum
// Caesar-shift a character <shift> places: Generalized Vigenere
FUNCTION Caesar(m: iMode; ch: Char; shift, modulo: Integer; start: Char): Char;
VAR
n: Integer;
BEGIN
IF m = iDecrypt THEN
shift := -shift;
n := LetterNum(ch, start) + shift;
n := n MOD modulo;
IF n < 0 THEN
n += modulo;
Caesar := Chr(Ord(start) + n);
END; // Caesar
// Vigenere MOD 95 encryption & decryption. Output: ASCII string
FUNCTION Vigenere(msg: String; m: iMode): String;
VAR
i: Cardinal;
BEGIN
Vigenere := '';
FOR i := 1 to Length(msg) DO
Vigenere += Caesar(m, msg[i], iRandA, 95, ' ');
END; // Vigenere
BEGIN
// 1) seed ISAAC with the key
iSeed(key, true);
// 2) Encryption
// a) XOR (Vernam)
xctx := Vernam(msg);
// b) MOD (Vigenere)
mctx := Vigenere(msg, iEncrypt);
// 3) Decryption
iSeed(key, true);
// a) XOR (Vernam)
xptx := Vernam(xctx);
// b) MOD (Vigenere)
mptx := Vigenere(mctx, iDecrypt);
// program output
Writeln('Message: ', msg);
Writeln('Key : ', key);
Writeln('XOR : ', Ascii2Hex(xctx));
Writeln('MOD : ', Ascii2Hex(mctx));
Writeln('XOR dcr: ', xptx);
Writeln('MOD dcr: ', mptx);
END.
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD : 734270227D36772A783B4F2A5F206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
Perl
Perl has had an ISAAC module for a few years, and it is the recommended way to use ISAAC. This example uses Math::Random::ISAAC which is a pure Perl implementation, but will also allow faster operation if the Math::Random::ISAAC::XS module is installed.
Since ISAAC does not do its own seeding, the Bytes::Random::Secure module is recommended for general use as it includes ISAAC plus a portable way to get good entropy, as well as additional convenience functions.
use warnings;
use strict;
use Math::Random::ISAAC;
my $message = "a Top Secret secret";
my $key = "this is my secret key";
my $enc = xor_isaac($key, $message);
my $dec = xor_isaac($key, join "", pack "H*", $enc);
print "Message: $message\n";
print "Key : $key\n";
print "XOR : $enc\n";
print "XOR dcr: ", join("", pack "H*", $dec), "\n";
sub xor_isaac {
my($key, $msg) = @_;
# Make an ISAAC stream with the desired seed
my $rng = Math::Random::ISAAC->new( map { ord } split "",$key );
# Get ISAAC output in the order the task wants
my @iranda = map { $_ % 95 + 32 } # Alpha-tize as the task desires
reverse # MRI gives state from the end
map { $rng->irand } # Get random inputs...
0..255; # a state chunk at a time
# Encode:
join "", map { sprintf "%02X",$_ } # join hex digits
map { ord($_) ^ shift(@iranda) } # xor it with rand char
split "", $msg; # Take each character
}
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 XOR dcr: a Top Secret secret
Phix
We need the r32() function to convert our common sense maths into the needed unsigned_and_throw_away_any_high_bits maths.
-- -- demo\rosetta\ISAAC_Cipher.exw -- with javascript_semantics sequence randrsl = repeat(0,256) integer randcnt sequence mm atom aa,bb,cc function r32(object a) if sequence(a) then for i=1 to length(a) do a[i] = r32(a[i]) end for return a end if if a<0 then a+=#100000000 end if return remainder(a,#100000000) end function function shl(atom word, integer bits) return r32(word*power(2,bits)) end function function shr(atom v, integer bits) return floor(v/power(2,bits)) end function procedure Isaac() cc += 1; -- cc just gets incremented once per 256 results bb += cc; -- then combined with bb for i=1 to 256 do atom x = mm[i] switch mod(i-1,4) do case 0: aa := xor_bits(aa,shl(aa,13)) case 1: aa := xor_bits(aa,shr(aa, 6)) case 2: aa := xor_bits(aa,shl(aa, 2)) case 3: aa := xor_bits(aa,shr(aa,16)) end switch aa = r32(mm[xor_bits(i-1,#80)+1]+aa) atom y := mm[and_bits(shr(x,2),#FF)+1]+aa+bb mm[i] := y; bb := r32(mm[and_bits(shr(y,10),#FF)+1] + x) randrsl[i]:= bb; end for randcnt = 1 end procedure function mix(sequence a8) atom {a,b,c,d,e,f,g,h} = a8 a = xor_bits(a,shl(b,11)); {d,b} = r32({d+a,b+c}); b = xor_bits(b,shr(c, 2)); {e,c} = r32({e+b,c+d}); c = xor_bits(c,shl(d, 8)); {f,d} = r32({f+c,d+e}); d = xor_bits(d,shr(e,16)); {g,e} = r32({g+d,e+f}); e = xor_bits(e,shl(f,10)); {h,f} = r32({h+e,f+g}); f = xor_bits(f,shr(g, 4)); {a,g} = r32({a+f,g+h}); g = xor_bits(g,shl(h, 8)); {b,h} = r32({b+g,h+a}); h = xor_bits(h,shr(a, 9)); {c,a} = r32({c+h,a+b}); a8 = {a,b,c,d,e,f,g,h} return a8 end function procedure iRandInit() {aa,bb,cc} = {0,0,0} sequence a8 = repeat(#9e3779b9,8) -- the golden ratio for i=1 to 4 do -- scramble it a8 = mix(a8) end for for i=1 to 255 by 8 do a8 = mix(sq_add(a8,randrsl[i..i+7])) mm[i..i+7] = a8 end for for i=1 to 255 by 8 do a8 = mix(r32(sq_add(a8,mm[i..i+7]))) mm[i..i+7] = a8 end for Isaac() -- fill in the first set of results end procedure procedure iSeed(string seed) mm = repeat(0,256) randrsl = repeat(0,256) randrsl[1..min(length(seed),256)] = seed iRandInit() end procedure function randch() atom res = mod(randrsl[randcnt],95)+32 randcnt += 1 if randcnt>256 then Isaac() end if return res end function function Vernam(string msg) string res = "" for i=1 to length(msg) do res &= xor_bits(msg[i],randch()) end for return res end function function Caesar(integer ch, shift) return ' '+mod(ch-' '+shift,95) end function enum ENCRYPT = +1, DECRYPT = -1 function Vigenere(string msg, integer mode) string res = "" for i=1 to length(msg) do res &= Caesar(msg[i],randch()*mode) end for return res end function constant string msg = "a Top Secret secret", key = "this is my secret key" iSeed(key) string xctx := Vernam(msg), mctx := Vigenere(msg,ENCRYPT) iSeed(key) string xptx := Vernam(xctx), mptx := Vigenere(mctx,DECRYPT) function ascii2hex(string s) string res = "" for i=1 to length(s) do res &= sprintf("%02x",s[i]) end for return res end function printf(1,"Message: %s\n",{msg}) printf(1,"Key : %s\n",{key}) printf(1,"XOR : %s\n",{ascii2hex(xctx)}) printf(1,"MOD : %s\n",{ascii2hex(mctx)}) printf(1,"XOR dcr: %s\n",{xptx}) printf(1,"MOD dcr: %s\n",{mptx}) ?"done" {} = wait_key()
- Output:
Message: a Top Secret secret Key : this is my secret key XOR : 1C0636190B1260233B35125F1E1D0E2F4C5422 MOD : 734270227D36772A783B4F2A5F206266236978 XOR dcr: a Top Secret secret MOD dcr: a Top Secret secret
PicoLisp
(de add32 @
(mod32 (pass +)) )
(de mod32 (N)
(& N `(hex "FFFFFFFF")) )
(de isaac()
(let (Y 0 S (-13 6 -2 16 .))
(setq *CC (add32 *CC 1))
(setq *BB (add32 *BB *CC))
(for (I . X) *MM
(set (nth *MM I)
(setq Y
(add32
(get *MM (inc (% (>> 2 X) 256)))
(setq *AA
(add32
(x| *AA (>> (pop 'S) *AA))
(get *MM (inc (% (+ 127 I) 256))) ) )
*BB ) ) )
(set (nth *RR I)
(setq *BB
(add32
(get *MM (inc (% (>> 10 Y) 256)))
X ) ) ) ) ) )
(de mixA()
(let S (-11 2 -8 16 -10 4 -8 9 .)
(for I 8
(set (nth *A I)
(mod32
(x|
(get *A I)
(mod32
(>>
(pop 'S)
(get *A (inc (% I 8))) ) ) ) ) )
(set (nth *A (inc (% (+ 2 I) 8)))
(add32
(get *A (inc (% (+ 2 I) 8)))
(get *A I) ) )
(set (nth *A (inc (% I 8)))
(add32
(get *A (inc (% I 8)))
(get *A (inc (% (inc I) 8))) ) ) ) ) )
(de iseed ()
(do 4
(mixA) )
(for (I 1 (> 256 I) (inc 'I 8))
(for (J I (> (+ 8 I) J) (inc J))
(set (nth *A (inc (% (dec J) 8)))
(add32
(get *A (inc (% (dec J) 8)))
(get *RR J) ) ) )
(mixA)
(for (J I (> (+ 8 I) J) (inc J))
(set (nth *MM J)
(get *A (inc (% (dec J) 8))) ) ) )
(for (I 1 (> 256 I) (inc 'I 8))
(for (J I (> (+ 8 I) J) (inc J))
(set (nth *A (inc (% (dec J) 8)))
(add32
(get *A (inc (% (dec J) 8)))
(get *MM J) ) ) )
(mixA)
(for (J I (> (+ 8 I) J) (inc J))
(set (nth *MM J)
(get *A (inc (% (dec J) 8))) ) ) )
(isaac) )
(let
(*AA 0
*BB 0
*CC 0
*MM (need 256 0)
*RC 0
*RR (need
-256
(mapcar
char
(head 256 (chop "this is my secret key")) ) 0 )
*A (need 8 `(hex "9E3779B9")) )
(iseed)
(println
(pack
(mapcar
'((B) (pad 2 (hex B)))
(make
(for I (mapcar char (chop "a Top Secret secret"))
(link
(x|
I
(+
32
(%
(get
*RR
(if (>= 256 (inc '*RC))
*RC
(isaac)
(one *RC) ) )
95 ) ) ) ) ) ) ) ) ) )
(bye)
Python
Python doesn't have integer overflow (integers are handled as bignums if they don't fit into a machine word), so we need to emulate it manually by masking off the high bits after each addition and left shift.
This implementation extends the Random class of the built-in random module, so it automatically inherits methods for generating several distributions, as well as support for shuffling and sampling collections.
import random
import collections
INT_MASK = 0xFFFFFFFF # we use this to emulate 32-bit overflow semantics by masking off higher bits after operations
class IsaacRandom(random.Random):
"""
Random number generator using the ISAAC algorithm.
"""
def seed(self, seed=None):
"""
Initialize internal state.
The seed, if given, can be a string, an integer, or an iterable that contains
integers only. If no seed is given, a fixed default state is set up; unlike
our superclass, this class will not attempt to randomize the seed from outside sources.
"""
def mix():
init_state[0] ^= ((init_state[1]<<11)&INT_MASK); init_state[3] += init_state[0]; init_state[3] &= INT_MASK; init_state[1] += init_state[2]; init_state[1] &= INT_MASK
init_state[1] ^= (init_state[2]>>2) ; init_state[4] += init_state[1]; init_state[4] &= INT_MASK; init_state[2] += init_state[3]; init_state[2] &= INT_MASK
init_state[2] ^= ((init_state[3]<<8 )&INT_MASK); init_state[5] += init_state[2]; init_state[5] &= INT_MASK; init_state[3] += init_state[4]; init_state[3] &= INT_MASK
init_state[3] ^= (init_state[4]>>16) ; init_state[6] += init_state[3]; init_state[6] &= INT_MASK; init_state[4] += init_state[5]; init_state[4] &= INT_MASK
init_state[4] ^= ((init_state[5]<<10)&INT_MASK); init_state[7] += init_state[4]; init_state[7] &= INT_MASK; init_state[5] += init_state[6]; init_state[5] &= INT_MASK
init_state[5] ^= (init_state[6]>>4 ) ; init_state[0] += init_state[5]; init_state[0] &= INT_MASK; init_state[6] += init_state[7]; init_state[6] &= INT_MASK
init_state[6] ^= ((init_state[7]<<8 )&INT_MASK); init_state[1] += init_state[6]; init_state[1] &= INT_MASK; init_state[7] += init_state[0]; init_state[7] &= INT_MASK
init_state[7] ^= (init_state[0]>>9 ) ; init_state[2] += init_state[7]; init_state[2] &= INT_MASK; init_state[0] += init_state[1]; init_state[0] &= INT_MASK
super().seed(0) # give a chance for the superclass to reset its state - the actual seed given to it doesn't matter
if seed is not None:
if isinstance(seed, str):
seed = [ord(x) for x in seed]
elif isinstance(seed, collections.Iterable):
seed = [x & INT_MASK for x in seed]
elif isinstance(seed, int):
val = abs(seed)
seed = []
while val:
seed.append(val & INT_MASK)
val >>= 32
else:
raise TypeError('Seed must be string, integer or iterable of integer')
# make sure the seed list is exactly 256 elements long
if len(seed)>256:
del seed[256:]
elif len(seed)<256:
seed.extend([0]*(256-len(seed)))
self.aa = self.bb = self.cc = 0
self.mm = []
init_state = [0x9e3779b9]*8
for _ in range(4):
mix()
for i in range(0, 256, 8):
if seed is not None:
for j in range(8):
init_state[j] += seed[i+j]
init_state[j] &= INT_MASK
mix()
self.mm += init_state
if seed is not None:
for i in range(0, 256, 8):
for j in range(8):
init_state[j] += self.mm[i+j]
init_state[j] &= INT_MASK
mix()
for j in range(8):
self.mm[i+j] = init_state[j]
self.rand_count = 256
self.rand_result = [0]*256
def getstate(self):
return super().getstate(), self.aa, self.bb, self.cc, self.mm, self.rand_count, self.rand_result
def setstate(self, state):
super().setstate(state[0])
_, self.aa, self.bb, self.cc, self.mm, self.rand_count, self.rand_result = state
def _generate(self):
# Generate 256 random 32-bit values and save them in an internal field.
# The actual random functions will dish out these values to callers.
self.cc = (self.cc + 1) & INT_MASK
self.bb = (self.bb + self.cc) & INT_MASK
for i in range(256):
x = self.mm[i]
mod = i & 3
if mod==0:
self.aa ^= ((self.aa << 13) & INT_MASK)
elif mod==1:
self.aa ^= (self.aa >> 6)
elif mod==2:
self.aa ^= ((self.aa << 2) & INT_MASK)
else: # mod == 3
self.aa ^= (self.aa >> 16)
self.aa = (self.mm[i^128] + self.aa) & INT_MASK
y = self.mm[i] = (self.mm[(x>>2) & 0xFF] + self.aa + self.bb) & INT_MASK
self.rand_result[i] = self.bb = (self.mm[(y>>10) & 0xFF] + x) & INT_MASK
self.rand_count = 0
def next_int(self):
"""Return a random integer between 0 (inclusive) and 2**32 (exclusive)."""
if self.rand_count == 256:
self._generate()
result = self.rand_result[self.rand_count]
self.rand_count += 1
return result
def getrandbits(self, k):
"""Return a random integer between 0 (inclusive) and 2**k (exclusive)."""
result = 0
ints_needed = (k+31)//32
ints_used = 0
while ints_used < ints_needed:
if self.rand_count == 256:
self._generate()
ints_to_take = min(256-self.rand_count, ints_needed)
for val in self.rand_result[self.rand_count : self.rand_count+ints_to_take]:
result = (result << 32) | val
self.rand_count += ints_to_take
ints_used += ints_to_take
result &= ((1<<k)-1) # mask off extra bits, if any
return result
def random(self):
"""Return a random float between 0 (inclusive) and 1 (exclusive)."""
# A double stores 53 significant bits, so scale a 53-bit integer into the [0..1) range.
return self.getrandbits(53) * (2**-53)
def rand_char(self):
"""Return a random integer from the printable ASCII range [32..126]."""
return self.next_int() % 95 + 32
def vernam(self, msg):
"""
Encrypt/decrypt the given bytes object with the XOR algorithm, using the current generator state.
To decrypt an encrypted string, restore the state of the generator to the state it had
during encryption, then call this method with the encrypted string.
"""
return bytes((self.rand_char() & 0xFF) ^ x for x in msg)
# Constants for selecting Caesar operation modes.
ENCIPHER = 'encipher'
DECIPHER = 'decipher'
@staticmethod
def _caesar(ciphermode, ch, shift, modulo, start):
if ciphermode == IsaacRandom.DECIPHER:
shift = -shift
n = ((ch-start)+shift) % modulo
if n<0:
n += modulo
return start+n
def caesar(self, ciphermode, msg, modulo, start):
"""
Encrypt/decrypt a string using the Caesar algorithm.
For decryption to work, the generator must be in the same state it was during encryption,
and the same modulo and start parameters must be used.
ciphermode must be one of IsaacRandom.ENCIPHER or IsaacRandom.DECIPHER.
"""
return bytes(self._caesar(ciphermode, ch, self.rand_char(), modulo, start) for ch in msg)
if __name__=='__main__':
import binascii
def hexify(b):
return binascii.hexlify(b).decode('ascii').upper()
MOD = 95
START = 32
msg = 'a Top Secret secret'
key = 'this is my secret key'
isaac_random = IsaacRandom(key)
vernam_encoded = isaac_random.vernam(msg.encode('ascii'))
caesar_encoded = isaac_random.caesar(IsaacRandom.ENCIPHER, msg.encode('ascii'), MOD, START)
isaac_random.seed(key)
vernam_decoded = isaac_random.vernam(vernam_encoded).decode('ascii')
caesar_decoded = isaac_random.caesar(IsaacRandom.DECIPHER, caesar_encoded, MOD, START).decode('ascii')
print('Message:', msg)
print('Key :', key)
print('XOR :', hexify(vernam_encoded))
print('XOR dcr:', vernam_decoded)
print('MOD :', hexify(caesar_encoded))
print('MOD dcr:', caesar_decoded)
Racket
- Imperative version:
- Vigenère:
In the Pascal (and reference version) of the Vigenère encryption, the state engine is not reset after having been used for the XOR version. There are two sets of MOD results below... one with the state engine left from after the XOR, and one with a cleanly reseeded state engine.
#lang racket
;; Imperative version: Translation of C
;; Vigenère: Translation of Pascal
(module+ test (require tests/eli-tester))
;; ---------------------------------------------------------------------------------------------------
;; standard.h: Standard definitions and types, Bob Jenkins
(define UB4MAXVAL #xffffffff)
(define-syntax-rule (bit target mask) (bitwise-and target mask))
;; C-like operators
(define-syntax-rule (u4-truncate x) (bit x UB4MAXVAL))
(define-syntax-rule (u4<< a b) (u4-truncate (arithmetic-shift a b)))
(define-syntax-rule (u4>> a b) (u4-truncate (arithmetic-shift a (- b))))
(define-syntax-rule (_++ i) (let ((rv i)) (set! i (u4-truncate (add1 i))) rv))
(define-syntax-rule (u4+= a b) (begin (set! a (u4-truncate (+ a b))) a))
(define-syntax-rule (^= a b) (begin (set! a (u4-truncate (bitwise-xor a b))) a))
;; ---------------------------------------------------------------------------------------------------
;; rand.h: definitions for a random number generator
(define RANDSIZL 8)
(define RANDSIZ (u4<< 1 RANDSIZL))
(define RANDSIZ-1 (sub1 RANDSIZ))
(struct randctx
(cnt
rsl ; RANDSIZ*4 bytes (makes u4's)
mem ; RANDSIZ*4 bytes (makes u4's)
a b c) #:mutable)
(define (new-randctx)
(randctx 0 (make-bytes (* 4 RANDSIZ) 0) (make-bytes (* 4 RANDSIZ) 0) 0 0 0))
(define (bytes->hex-string B (start 0) (end #f) #:join (join "") #:show-bytes? (show-bytes? #f))
(define hexes
(for/list ((b (in-bytes B start end)))
(~a (number->string b 16) #:width 2 #:align 'right #:pad-string "0")))
(string-join
(append hexes (if show-bytes?
(list " \"" (bytes->string/utf-8 B #f start (or end (bytes-length B))) "\"")
null))
join))
(define format-randctx
(match-lambda
[(randctx C (app bytes->hex-string R) (app bytes->hex-string M) a b c)
(format "randctx: cnt:~a~%rsl:~s~%mem:~s~%a:~a b:~a c:~a" C R M a b c)]))
(define be? (system-big-endian?))
(define (bytes->u4 ary idx)
(integer-bytes->integer ary #f be? (* idx 4) (* (add1 idx) 4)))
(define (u4->bytes! ary idx v)
(integer->integer-bytes (bit v UB4MAXVAL) 4 #f be? ary (* idx 4)))
;; ---------------------------------------------------------------------------------------------------
;; rand.c: "By Bob Jenkins. My random number generator, ISAAC. Public Domain."
(define (ind mm x)
(define idx (bitwise-and x (u4<< RANDSIZ-1 2)))
(integer-bytes->integer mm #f be? idx (+ idx 4)))
(define (isaac C)
(define M (randctx-mem C))
(define R (randctx-rsl C))
(define mm 0)
(define r 0)
(define-syntax-rule (rng-step mix)
(begin
(define x (bytes->u4 M m))
(set! a (u4-truncate (+ (bitwise-xor a mix) (bytes->u4 M (_++ m2)))))
(define y (+ (ind M x) a b))
(u4->bytes! M (_++ m) y)
(set! b (u4-truncate (+ (ind M (u4>> y RANDSIZL)) x)))
(u4->bytes! R (_++ r) b)))
(define a (randctx-a C))
(set-randctx-c! C (add1 (randctx-c C)))
(define b (u4-truncate (+ (randctx-b C) (randctx-c C))))
(define m mm)
(define m2 (+ m (/ RANDSIZ 2)))
(define mend m2)
(define-syntax-rule (4-step-loop variant)
(let loop ()
(when (< variant mend)
(rng-step (u4<< a 13)) (rng-step (u4>> a 6))
(rng-step (u4<< a 2)) (rng-step (u4>> a 16))
(loop))))
(4-step-loop m)
(set! m2 mm)
(4-step-loop m2)
(set-randctx-b! C b)
(set-randctx-a! C a))
;; dot infix notation because I'm too lazy to move the operators left!
(define-syntax-rule (mix-line<< A B N D C)
(begin (A . ^= . (B . u4<< . N)) (D . u4+= . A) (B . u4+= . C)))
(define-syntax-rule (mix-line>> A B N D C)
(begin (A . ^= . (B . u4>> . N)) (D . u4+= . A) (B . u4+= . C)))
(define-syntax-rule (mix a b c d e f g h)
(begin (mix-line<< a b 11 d c) (mix-line>> b c 2 e d)
(mix-line<< c d 8 f e) (mix-line>> d e 16 g f)
(mix-line<< e f 10 h g) (mix-line>> f g 4 a h)
(mix-line<< g h 8 b a) (mix-line>> h a 9 c b)))
;; if (flag==TRUE), then use the contents of randrsl[] to initialize mm[].
(define (rand-init C flag?)
(set-randctx-a! C 0)
(set-randctx-b! C 0)
(set-randctx-c! C 0)
;; seed-ctx should set these up (with the seed!):
;; (set-ctx-rsl! C (make-bytes (* 4 RANDSIZ) 0))
;; (set-ctx-mem! C (make-bytes (* 4 RANDSIZ) 0))
(define R (randctx-rsl C))
(define M (randctx-mem C))
(define φ #x9e3779b9) ; the golden ratio
(match-define (list a b c d e f g h) (make-list 8 φ))
(for ((_ 4)) (mix a b c d e f g h)) ; scramble it
(define-syntax-rule (mix-and-assign i M2)
(begin
(mix a b c d e f g h)
(u4->bytes! M2 (+ i 0) a) (u4->bytes! M2 (+ i 1) b)
(u4->bytes! M2 (+ i 2) c) (u4->bytes! M2 (+ i 3) d)
(u4->bytes! M2 (+ i 4) e) (u4->bytes! M2 (+ i 5) f)
(u4->bytes! M2 (+ i 6) g) (u4->bytes! M2 (+ i 7) h)))
(define-syntax-rule (mix-with-mem M1 M2)
(for ((i (in-range 0 RANDSIZ 8)))
(a . u4+= . (bytes->u4 M1 (+ i 0))) (b . u4+= . (bytes->u4 M1 (+ i 1)))
(c . u4+= . (bytes->u4 M1 (+ i 2))) (d . u4+= . (bytes->u4 M1 (+ i 3)))
(e . u4+= . (bytes->u4 M1 (+ i 4))) (f . u4+= . (bytes->u4 M1 (+ i 5)))
(g . u4+= . (bytes->u4 M1 (+ i 6))) (h . u4+= . (bytes->u4 M1 (+ i 7)))
(mix-and-assign