Jump to content

Unbias a random generator

From Rosetta Code
Revision as of 16:30, 26 January 2021 by PureFox (talk | contribs) (Added Wren)
Task
Unbias a random generator
You are encouraged to solve this task according to the task description, using any language you may know.

Given a weighted one bit generator of random numbers where the probability of a one occuring,

, is not the same as

, the probability of a zero occuring, the probability of the occurrence of a one followed by a zero is

×

. This is the same as the probability of a zero followed by a one:

×

.


Task details
  • Use your language's random number generator to create a function/method/subroutine/... randN that returns a one or a zero, but with one occurring, on average, 1 out of N times, where N is an integer from the range 3 to 6 inclusive.
  • Create a function unbiased that uses only randN as its source of randomness to become an unbiased generator of random ones and zeroes.
  • For N over its range, generate and show counts of the outputs of randN and unbiased(randN).


The actual unbiasing should be done by generating two numbers at a time from randN and only returning a 1 or 0 if they are different. As long as you always return the first number or always return the second number, the probabilities discussed above should take over the biased probability of randN.

This task is an implementation of Von Neumann debiasing, first described in a 1951 paper.

Ada

<lang Ada>with Ada.Text_IO; with Ada.Numerics.Discrete_Random;

procedure Bias_Unbias is

  Modulus: constant Integer := 60; -- lcm of {3,4,5,6}
  type M is mod Modulus;
  package Rand is new Ada.Numerics.Discrete_Random(M);
  Gen: Rand.Generator;
  subtype Bit is Integer range 0 .. 1;
  function Biased_Bit(Bias_Base: Integer) return Bit is
  begin
     if (Integer(Rand.Random(Gen))* Bias_Base) / Modulus > 0 then
        return 0;
     else
        return 1;
     end if;
  end Biased_Bit;
  function Unbiased_Bit(Bias_Base: Integer) return Bit is
     A, B: Bit := 0;
  begin
     while A = B loop
        A := Biased_Bit(Bias_Base);
        B := Biased_Bit(Bias_Base);
     end loop;
     return A;
  end Unbiased_Bit;
  package FIO is new Ada.Text_IO.Float_IO(Float);
  Counter_B, Counter_U: Natural;
  Number_Of_Samples: constant Natural := 10_000;

begin

  Rand.Reset(Gen);
  Ada.Text_IO.Put_Line(" I  Biased% UnBiased%");
  for I in 3 .. 6 loop
     Counter_B := 0;
     Counter_U := 0;
     for J in 1 .. Number_Of_Samples loop
        Counter_B := Counter_B + Biased_Bit(I);
        Counter_U := Counter_U + Unbiased_Bit(I);
     end loop;
     Ada.Text_IO.Put(Integer'Image(I));
     FIO.Put(100.0 * Float(Counter_B) / Float(Number_Of_Samples), 5, 2, 0);
     FIO.Put(100.0 * Float(Counter_U) / Float(Number_Of_Samples), 5, 2, 0);
     Ada.Text_IO.New_Line;
  end loop;

end Bias_Unbias;</lang>

Output:

 I  Biased% UnBiased%
 3   32.87   49.80
 4   24.49   50.22
 5   19.73   50.05
 6   16.75   50.19

Aime

Translation of: C

<lang aime>integer biased(integer bias) {

   1 ^ min(drand(bias - 1), 1);

}

integer unbiased(integer bias) {

   integer a;
   while ((a = biased(bias)) == biased(bias)) {
   }
   a;

}

integer main(void) {

   integer b, n, cb, cu, i;
   n = 10000;
   b = 3;
   while (b <= 6) {
       i = cb = cu = 0;
       while ((i += 1) <= n) {
           cb += biased(b);
           cu += unbiased(b);
       }
       o_form("bias ~: /d2p2/%% vs /d2p2/%%\n", b, 100r * cb / n,
              100r * cu / n);
       b += 1;
   }
   0;

}</lang>

Output:

bias 3: 33.51% vs 50.27%
bias 4: 24.97% vs 49.99%
bias 5: 19.93% vs 49.92%
bias 6: 16.32% vs 49.36%

AutoHotkey

This example does not show the output mentioned in the task description on this page (or a page linked to from here). Please ensure that it meets all task requirements and remove this message.
Note that phrases in task descriptions such as "print and display" and "print and show" for example, indicate that (reasonable length) output be a part of a language's solution.


<lang AutoHotkey>Biased(){

  Random, q, 0, 4
  return q=4

} Unbiased(){

  Loop
     If ((a := Biased()) != biased())
         return a

} Loop 1000

  t .= biased(), t2 .= unbiased()

StringReplace, junk, t2, 1, , UseErrorLevel MsgBox % "Unbiased probability of a 1 occurring: " Errorlevel/1000 StringReplace, junk, t, 1, , UseErrorLevel MsgBox % "biased probability of a 1 occurring: " Errorlevel/1000</lang>

BBC BASIC

<lang bbcbasic> FOR N% = 3 TO 6

       biased% = 0
       unbiased% = 0
       FOR I% = 1 TO 10000
         IF FNrandN(N%) biased% += 1
         IF FNunbiased(N%) unbiased% += 1
       NEXT
       PRINT "N = ";N% " : biased = "; biased%/100 "%, unbiased = "; unbiased%/100 "%"
     NEXT
     END
     
     DEF FNunbiased(N%)
     LOCAL A%,B%
     REPEAT
       A% = FNrandN(N%)
       B% = FNrandN(N%)
     UNTIL A%<>B%
     = A%
     
     DEF FNrandN(N%) = -(RND(N%) = 1)</lang>

Output:

N = 3 : biased = 33.57%, unbiased = 49.94%
N = 4 : biased = 25.34%, unbiased = 50.76%
N = 5 : biased = 20.06%, unbiased = 50.04%
N = 6 : biased = 16.25%, unbiased = 50.13%

C

<lang C>#include <stdio.h>

  1. include <stdlib.h>

int biased(int bias) { /* balance out the bins, being pedantic */ int r, rand_max = RAND_MAX - (RAND_MAX % bias); while ((r = rand()) > rand_max); return r < rand_max / bias; }

int unbiased(int bias) { int a; while ((a = biased(bias)) == biased(bias)); return a; }

int main() { int b, n = 10000, cb, cu, i; for (b = 3; b <= 6; b++) { for (i = cb = cu = 0; i < n; i++) { cb += biased(b); cu += unbiased(b); } printf("bias %d: %5.3f%% vs %5.3f%%\n", b, 100. * cb / n, 100. * cu / n); }

return 0; }</lang> output

bias 3: 33.090% vs 49.710%
bias 4: 25.130% vs 49.430%
bias 5: 19.760% vs 49.650%
bias 6: 16.740% vs 50.030%

C++

Translation of: C#

<lang cpp>#include <iostream>

  1. include <random>

std::default_random_engine generator; bool biased(int n) {

   std::uniform_int_distribution<int> distribution(1, n);
   return distribution(generator) == 1;

}

bool unbiased(int n) {

   bool flip1, flip2;
   /* Flip twice, and check if the values are the same.
    * If so, flip again. Otherwise, return the value of the first flip. */
   do {
       flip1 = biased(n);
       flip2 = biased(n);
   } while (flip1 == flip2);
   return flip1;

}

int main() {

   for (size_t n = 3; n <= 6; n++) {
       int biasedZero = 0;
       int biasedOne = 0;
       int unbiasedZero = 0;
       int unbiasedOne = 0;
       for (size_t i = 0; i < 100000; i++) {
           if (biased(n)) {
               biasedOne++;
           } else {
               biasedZero++;
           }
           if (unbiased(n)) {
               unbiasedOne++;
           } else {
               unbiasedZero++;
           }
       }
       std::cout << "(N = " << n << ")\n";
       std::cout << "Biased:\n";
       std::cout << "   0 = " << biasedZero << "; " << biasedZero / 1000.0 << "%\n";
       std::cout << "   1 = " << biasedOne << "; " << biasedOne / 1000.0 << "%\n";
       std::cout << "Unbiased:\n";
       std::cout << "   0 = " << unbiasedZero << "; " << unbiasedZero / 1000.0 << "%\n";
       std::cout << "   1 = " << unbiasedOne << "; " << unbiasedOne / 1000.0 << "%\n";
       std::cout << '\n';
   }
   return 0;

}</lang>

Output:
(N = 3)
Biased:
   0 = 66614; 66.614%
   1 = 33386; 33.386%
Unbiased:
   0 = 49965; 49.965%
   1 = 50035; 50.035%

(N = 4)
Biased:
   0 = 75032; 75.032%
   1 = 24968; 24.968%
Unbiased:
   0 = 50030; 50.03%
   1 = 49970; 49.97%

(N = 5)
Biased:
   0 = 80178; 80.178%
   1 = 19822; 19.822%
Unbiased:
   0 = 49878; 49.878%
   1 = 50122; 50.122%

(N = 6)
Biased:
   0 = 83494; 83.494%
   1 = 16506; 16.506%
Unbiased:
   0 = 50085; 50.085%
   1 = 49915; 49.915%

C#

<lang csharp>using System;

namespace Unbias {

   internal class Program
   {
       private static void Main(string[] args)
       {
           // Demonstrate.
           for (int n = 3; n <= 6; n++)
           {
               int biasedZero = 0, biasedOne = 0, unbiasedZero = 0, unbiasedOne = 0;
               for (int i = 0; i < 100000; i++)
               {
                   if (randN(n))
                       biasedOne++;
                   else
                       biasedZero++;
                   if (Unbiased(n))
                       unbiasedOne++;
                   else
                       unbiasedZero++;
               }
               Console.WriteLine("(N = {0}):".PadRight(17) + "# of 0\t# of 1\t% of 0\t% of 1", n);
               Console.WriteLine("Biased:".PadRight(15) + "{0}\t{1}\t{2}\t{3}",
                                 biasedZero, biasedOne,
                                 biasedZero/1000, biasedOne/1000);
               Console.WriteLine("Unbiased:".PadRight(15) + "{0}\t{1}\t{2}\t{3}",
                                 unbiasedZero, unbiasedOne,
                                 unbiasedZero/1000, unbiasedOne/1000);
           }
       }
       private static bool Unbiased(int n)
       {
           bool flip1, flip2;
           /* Flip twice, and check if the values are the same.
            * If so, flip again. Otherwise, return the value of the first flip. */
           do
           {
               flip1 = randN(n);
               flip2 = randN(n);
           } while (flip1 == flip2);
           return flip1;
       }
       private static readonly Random random = new Random();
       private static bool randN(int n)
       {
           // Has an 1/n chance of returning 1. Otherwise it returns 0.
           return random.Next(0, n) == 0;
       }
   }

}</lang>

Sample Output

(N = 3):       # of 0   # of 1  % of 0  % of 1
Biased:        66867    33133   66      33
Unbiased:      49843    50157   49      50
(N = 4):       # of 0   # of 1  % of 0  % of 1
Biased:        74942    25058   74      25
Unbiased:      50192    49808   50      49
(N = 5):       # of 0   # of 1  % of 0  % of 1
Biased:        80203    19797   80      19
Unbiased:      49928    50072   49      50
(N = 6):       # of 0   # of 1  % of 0  % of 1
Biased:        83205    16795   83      16
Unbiased:      49744    50256   49      50

Clojure

<lang Clojure>(defn biased [n]

 (if (< (rand 2) (/ n)) 0 1))

(defn unbiased [n]

 (loop [a 0 b 0]
   (if (= a b)
     (recur (biased n) (biased n))
     a)))

(for [n (range 3 7)]

 [n
  (double (/ (apply + (take 50000 (repeatedly #(biased n)))) 50000))
  (double (/ (apply + (take 50000 (repeatedly #(unbiased n)))) 50000))])

([3 0.83292 0.50422]

[4 0.87684 0.5023]
[5 0.90122 0.49728]
[6 0.91526 0.5])</lang>

CoffeeScript

<lang coffeescript> biased_rand_function = (n) ->

 # return a function that returns 0/1  with
 # 1 appearing only 1/Nth of the time
 cap = 1/n
 ->
   if Math.random() < cap 
     1
   else
     0
   

unbiased_function = (f) ->

 ->
   while true
     [n1, n2] = [f(), f()]
     return n1 if n1 + n2 == 1

stats = (label, f) ->

 cnt = 0
 sample_size = 10000000
 for i in [1...sample_size]
   cnt += 1 if f() == 1
 console.log "ratio of 1s: #{cnt / sample_size} [#{label}]"
 

for n in [3..6]

 console.log "\n---------- n = #{n}"
 f_biased = biased_rand_function(n)
 f_unbiased = unbiased_function f_biased
 stats "biased", f_biased
 stats "unbiased", f_unbiased

</lang> output

> coffee unbiased.coffee 

---------- n = 3
ratio of 1s: 0.3333343 [biased]
ratio of 1s: 0.4999514 [unbiased]

---------- n = 4
ratio of 1s: 0.2499751 [biased]
ratio of 1s: 0.4998067 [unbiased]

---------- n = 5
ratio of 1s: 0.199729 [biased]
ratio of 1s: 0.5003183 [unbiased]

---------- n = 6
ratio of 1s: 0.1664843 [biased]
ratio of 1s: 0.4997813 [unbiased]

Common Lisp

<lang lisp>(defun biased (n) (if (zerop (random n)) 0 1))

(defun unbiased (n)

   (loop with x do
     (if (/= (setf x (biased n)) (biased n))

(return x))))

(loop for n from 3 to 6 do

     (let ((u (loop repeat 10000 collect (unbiased n)))

(b (loop repeat 10000 collect (biased n)))) (format t "~a: unbiased ~d biased ~d~%" n (count 0 u) (count 0 b))))</lang> output

3: unbiased 4992 biased 3361
4: unbiased 4988 biased 2472
5: unbiased 5019 biased 1987
6: unbiased 4913 biased 1658

D

<lang d>import std.stdio, std.random, std.algorithm, std.range, std.functional;

enum biased = (in int n) /*nothrow*/ => uniform01 < (1.0 / n);

int unbiased(in int bias) /*nothrow*/ {

   int a;
   while ((a = bias.biased) == bias.biased) {}
   return a;

}

void main() {

   enum M = 500_000;
   foreach (immutable n; 3 .. 7)
       writefln("%d: %2.3f%%  %2.3f%%", n,
                M.iota.map!(_=> n.biased).sum * 100.0 / M,
                M.iota.map!(_=> n.unbiased).sum * 100.0 / M);

}</lang>

Output:
3: 33.441%  49.964%
4: 24.953%  49.910%
5: 19.958%  49.987%
6: 16.660%  49.890%

Elena

Translation of: C#

ELENA 4.x : <lang elena>import extensions;

extension op : IntNumber {

   bool randN()
       = randomGenerator.nextInt(self) == 0;

   get bool Unbiased()
   {
       bool flip1 := self.randN();
       bool flip2 := self.randN();

       while (flip1 == flip2)
       {
           flip1 := self.randN();
           flip2 := self.randN()
       };

       ^ flip1
   }

}

public program() {

   for(int n := 3, n <= 6, n += 1)
   {
       int biasedZero := 0;
       int biasedOne := 0;
       int unbiasedZero := 0;
       int unbiasedOne := 0;

       for(int i := 0, i < 100000, i += 1)
       {
           if(n.randN()) { biasedOne += 1 } else { biasedZero += 1 };
           if(n.Unbiased) { unbiasedOne += 1 } else { unbiasedZero += 1 }
       };

       console
           .printLineFormatted("(N = {0}):".padRight(17) + "# of 0"$9"# of 1"$9"% of 0"$9"% of 1", n)
           .printLineFormatted("Biased:".padRight(15) + "{0}"$9"{1}"$9"{2}"$9"{3}", 
                                   biasedZero, biasedOne, biasedZero / 1000, biasedOne / 1000)
           .printLineFormatted("Unbiased:".padRight(15) + "{0}"$9"{1}"$9"{2}"$9"{3}", 
                                   unbiasedZero, unbiasedOne, unbiasedZero / 1000, unbiasedOne / 1000)
   }

}</lang>

Output:
(N = 3):       # of 0	# of 1	% of 0	% of 1
Biased:        66793	33207	66	33
Unbiased:      49965	50035	49	50
(N = 4):       # of 0	# of 1	% of 0	% of 1
Biased:        75233	24767	75	24
Unbiased:      50106	49894	50	49
(N = 5):       # of 0	# of 1	% of 0	% of 1
Biased:        80209	19791	80	19
Unbiased:      50080	49920	50	49
(N = 6):       # of 0	# of 1	% of 0	% of 1
Biased:        83349	16651	83	16
Unbiased:      49699	50301	49	50

Elixir

<lang elixir>defmodule Random do

 def randN(n) do
   if :rand.uniform(n) == 1, do: 1, else: 0
 end 
 def unbiased(n) do
   {x, y} = {randN(n), randN(n)}
   if x != y, do: x, else: unbiased(n)
 end 

end

IO.puts "N biased unbiased" m = 10000 for n <- 3..6 do

 xs = for _ <- 1..m, do: Random.randN(n)
 ys = for _ <- 1..m, do: Random.unbiased(n)
 IO.puts "#{n}  #{Enum.sum(xs) / m}  #{Enum.sum(ys) / m}"

end</lang>

Output:
N  biased  unbiased
3  0.3356  0.5043
4  0.2523  0.4996
5  0.2027  0.5041
6  0.1647  0.4912

ERRE

<lang ERRE>PROGRAM UNBIAS

FUNCTION RANDN(N)

  RANDN=INT(1+N*RND(1))=1

END FUNCTION

PROCEDURE UNBIASED(N->RIS)

     LOCAL A,B
     REPEAT
       A=RANDN(N)
       B=RANDN(N)
     UNTIL A<>B
     RIS=A

END PROCEDURE

BEGIN

 PRINT(CHR$(12);) ! CLS
 RANDOMIZE(TIMER)
 FOR N=3 TO 6 DO
       BIASED=0
       UNBIASED=0
       FOR I=1 TO 10000 DO
         IF RANDN(N) THEN biased+=1
         UNBIASED(N->RIS)
         IF RIS THEN unbiased+=+1
       END FOR
       PRINT("N =";N;" : biased =";biased/100;", unbiased =";unbiased/100)
 END FOR

END PROGRAM </lang>

Output:
N = 3  : biased = 32.66 , unbiased = 49.14
N = 4  : biased = 25.49 , unbiased = 49.92
N = 5  : biased = 20.53 , unbiased = 50
N = 6  : biased = 17.43 , unbiased = 50.43

Euphoria

<lang euphoria>function randN(integer N)

   return rand(N) = 1

end function

function unbiased(integer N)

   integer a
   while 1 do
       a = randN(N)
       if a != randN(N) then
           return a
       end if
   end while

end function

constant n = 10000 integer cb, cu for b = 3 to 6 do

   cb = 0
   cu = 0
   for i = 1 to n do
       cb += randN(b)
       cu += unbiased(b)
   end for
   printf(1, "%d: %5.2f%%  %5.2f%%\n", {b, 100 * cb / n, 100 * cu / n})

end for</lang>

Output:

3: 33.68%  49.94%
4: 24.93%  50.48%
5: 20.32%  49.97%
6: 16.98%  50.05%

F#

<lang fsharp>open System

let random = Random()

let randN = random.Next >> (=)0 >> Convert.ToInt32

let rec unbiased n =

   let a = randN n
   if a <> randN n then a else unbiased n

[<EntryPoint>] let main argv =

   let n = if argv.Length > 0 then UInt32.Parse(argv.[0]) |> int else 100000
   for b = 3 to 6 do
       let cb = ref 0
       let cu = ref 0
       for i = 1 to n do
           cb := !cb + randN b
           cu := !cu + unbiased b
       printfn "%d: %5.2f%%  %5.2f%%"
           b (100. * float !cb / float n) (100. * float !cu / float n)
   0</lang>
Output:
3: 33.26%  49.97%
4: 25.02%  50.22%
5: 19.98%  50.00%
6: 16.64%  49.69%

Factor

<lang factor>USING: formatting kernel math math.ranges random sequences ; IN: rosetta-code.unbias

randN ( n -- m ) random zero? 1 0 ? ;
unbiased ( n -- m )
   dup [ randN ] dup bi 2dup = not
   [ drop nip ] [ 2drop unbiased ] if ;
test-generator ( quot -- x )
   [ 1,000,000 dup ] dip replicate sum 100 * swap / ; inline
main ( -- )
   3 6 [a,b] [
       dup [ randN ] [ unbiased ] bi-curry
       [ test-generator ] bi@ "%d: %.2f%%  %.2f%%\n" printf
   ] each ;

MAIN: main</lang>

Output:
3: 33.25%  50.03%
4: 24.98%  50.02%
5: 20.03%  50.04%
6: 16.66%  49.99%

Fortran

Works with: Fortran version 90 and later

<lang fortran>program Bias_Unbias

 implicit none
 integer, parameter :: samples = 1000000
 integer :: i, j
 integer :: c1, c2, rand

 do i = 3, 6
   c1 = 0
   c2 = 0
   do j = 1, samples
     rand = bias(i)
     if (rand == 1) c1 = c1 + 1
     rand = unbias(i)
     if (rand == 1) c2 = c2 + 1
   end do
   write(*, "(i2,a,f8.3,a,f8.3,a)") i, ":", real(c1) * 100.0 / real(samples), &
                                    "%", real(c2) * 100.0 / real(samples), "%"
 end do

contains

function bias(n)

 integer :: bias
 integer, intent(in) :: n
 real :: r
 call random_number(r)
 if (r > 1 / real(n)) then
   bias = 0
 else
   bias = 1
 end if

end function

function unbias(n)

 integer :: unbias
 integer, intent(in) :: n
 integer :: a, b
 do
   a = bias(n)
   b = bias(n)
   if (a /= b) exit
 end do
 unbias = a     

end function

end program</lang> Output:

3:  33.337%  49.971%
4:  24.945%  49.944%
5:  19.971%  49.987%
6:  16.688%  50.097%

GAP

<lang gap>RandNGen := function(n) local v, rand; v := [1 .. n - 1]*0; Add(v, 1); rand := function() return Random(v); end; return rand; end;

UnbiasedGen := function(rand) local unbiased; unbiased := function() local a, b; while true do a := rand(); b := rand(); if a <> b then break; fi; od; return a; end; return unbiased; end;

range := [2 .. 6]; v := List(range, RandNGen); w := List(v, UnbiasedGen); apply := gen -> Sum([1 .. 1000000], n -> gen());

  1. Some tests (2 is added as a witness, since in this case RandN is already unbiased)

PrintArray(TransposedMat([range, List(v, apply), List(w, apply)]));

  1. [ [ 2, 499991, 499041 ],
  2. [ 3, 333310, 500044 ],
  3. [ 4, 249851, 500663 ],
  4. [ 5, 200532, 500448 ],
  5. [ 6, 166746, 499859 ] ]</lang>

Go

<lang go>package main

import (

   "fmt"
   "math/rand"

)

const samples = 1e6

func main() {

   fmt.Println("Generator  1 count  0 count  % 1 count")
   for n := 3; n <= 6; n++ {
       // function randN, per task description
       randN := func() int {
           if rand.Intn(n) == 0 {
               return 1
           }
           return 0
       }
       var b [2]int
       for x := 0; x < samples; x++ {
           b[randN()]++
       }
       fmt.Printf("randN(%d)   %7d  %7d    %5.2f%%\n",
           n, b[1], b[0], float64(b[1])*100/samples)
       // function unbiased, per task description
       unbiased := func() (b int) {
           for b = randN(); b == randN(); b = randN() {
           }
           return
       }
       var u [2]int
       for x := 0; x < samples; x++ {
           u[unbiased()]++
       }
       fmt.Printf("unbiased   %7d  %7d    %5.2f%%\n",
           u[1], u[0], float64(u[1])*100/samples)
   }

}</lang> Output:

Generator  1 count  0 count  % 1 count
randN(3)    332711   667289    33.27%
unbiased    499649   500351    49.96%
randN(4)    249742   750258    24.97%
unbiased    499434   500566    49.94%
randN(5)    200318   799682    20.03%
unbiased    499100   500900    49.91%
randN(6)    166900   833100    16.69%
unbiased    499973   500027    50.00%

Haskell

The first task: <lang haskell>import Control.Monad.Random import Control.Monad import Text.Printf

randN :: MonadRandom m => Int -> m Int randN n = fromList [(0, fromIntegral n-1), (1, 1)]</lang>

Examples of use:

λ> replicateM 20 (randN 2)
[0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,0,0]
λ> replicateM 20 (randN 5)
[0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0]

The second task. Returns the unbiased generator for any given random generator. <lang Haskell>unbiased :: (MonadRandom m, Eq x) => m x -> m x unbiased g = do x <- g

               y <- g
               if x /= y then return y else unbiased g</lang>

Examples of use:

λ> replicateM 20 (unbiased (randN 5))
[0,0,1,0,1,1,1,0,0,0,1,1,1,0,1,1,0,0,1,0]
λ> replicateM 20 (unbiased (fromList [(True,10),(False,1)]))
[True,True,False,True,True,True,False,True,False,True,True,False,False,True,False,True,True,False,False,True]

The third task: <lang Haskell>main = forM_ [3..6] showCounts

 where
   showCounts b = do
     r1 <- counts (randN b)
     r2 <- counts (unbiased (randN b))
     printf "n = %d  biased: %d%%  unbiased: %d%%\n" b r1 r2
       
   counts g = (`div` 100) . length . filter (== 1) <$> replicateM 10000 g</lang>

Output:

n = 3  biased: 33%  unbiased: 49%
n = 4  biased: 24%  unbiased: 50%
n = 5  biased: 19%  unbiased: 50%
n = 6  biased: 16%  unbiased: 49%

Icon and Unicon

This solution works in both languages. Both randN and unbiased are generators in the Icon/Unicon sense. <lang unicon>procedure main(A)

   iters := \A[1] | 10000
   write("ratios of 0 to 1 from ",iters," trials:")
   every n := 3 to 6 do {
       results_randN := table(0)
       results_unbiased := table(0)
       every 1 to iters do {
           results_randN[randN(n)] +:= 1
           results_unbiased[unbiased(n)] +:= 1
           }
       showResults(n, "randN", results_randN)
       showResults(n, "unbiased", results_unbiased)
       }

end

procedure showResults(n, s, t)

   write(n," ",left(s,9),":",t[0],"/",t[1]," = ",t[0]/real(t[1]))

end

procedure unbiased(n)

   repeat {
       n1 := randN(n)
       n2 := randN(n)
       if n1 ~= n2 then suspend n1
       }

end

procedure randN(n)

   repeat suspend if 1 = ?n then 1 else 0

end</lang> and a sample run:

->ubrn 100000
ratios of 0 to 1 from 100000 trials:
3 randN    :66804/33196 = 2.012411133871551
3 unbiased :49812/50188 = 0.9925081692834941
4 randN    :75017/24983 = 3.002721850858584
4 unbiased :50000/50000 = 1.0
5 randN    :79990/20010 = 3.997501249375312
5 unbiased :50073/49927 = 1.002924269433373
6 randN    :83305/16695 = 4.989817310572027
6 unbiased :49911/50089 = 0.9964463255405378
->

J

<lang j>randN=: 0 = ? unbiased=: i.@# { ::$: 2 | 0 3 -.~ _2 #.\ 4&* randN@# ]</lang>

Example use:

<lang j> randN 10#6 1 0 0 0 1 0 0 0 0 0

  unbiased 10#6

1 0 0 1 0 0 1 0 1 1</lang>

Some example counts (these are counts of the number of 1s which appear in a test involving 100 random numbers):

<lang j> +/randN 100#3 30

  +/randN 100#4

20

  +/randN 100#5

18

  +/randN 100#6

18

  +/unbiased 100#3

49

  +/unbiased 100#4

46

  +/unbiased 100#5

49

  +/unbiased 100#6

47</lang>

Note that these results are random. For example, a re-run of +/randN 100#5 gave 25 as its result, and a re-run of +/unbiased 100#5 gave 52 as its result.

Java

<lang java>public class Bias {

   public static boolean biased(int n) {
       return Math.random() < 1.0 / n;
   }
   public static boolean unbiased(int n) {
       boolean a, b;
       do {
           a = biased(n);
           b = biased(n);
       } while (a == b);
       return a;
   }
   public static void main(String[] args) {
       final int M = 50000;
       for (int n = 3; n < 7; n++) {
           int c1 = 0, c2 = 0;
           for (int i = 0; i < M; i++) {
               c1 += biased(n) ? 1 : 0;
               c2 += unbiased(n) ? 1 : 0;
           }
           System.out.format("%d: %2.2f%%  %2.2f%%\n",
                             n, 100.0*c1/M, 100.0*c2/M);
       }
   }

}</lang> Output:

3: 33,11%  50,23%
4: 24.97%  49.78%
5: 20.05%  50.00%
6: 17.00%  49.88%

Julia

<lang julia>using Printf

randN(N) = () -> rand(1:N) == 1 ? 1 : 0 function unbiased(biased::Function)

   this, that = biased(), biased()
   while this == that this, that = biased(), biased() end
   return this

end

@printf "%2s | %10s | %5s | %5s | %8s" "N" "bias./unb." "1s" "0s" "pct ratio" const nrep = 10000 for N in 3:6

   biased = randN(N)
   v = collect(biased() for __ in 1:nrep)
   v1, v0 = count(v .== 1), count(v .== 0)
   @printf("%2i | %10s | %5i | %5i | %5.2f%%\n", N, "biased", v1, v0, 100 * v1 / nrep)
   v = collect(unbiased(biased) for __ in 1:nrep)
   v1, v0 = count(v .== 1), count(v .== 0)
   @printf("%2i | %10s | %5i | %5i | %5.2f%%\n", N, "unbiased", v1, v0, 100 * v1 / nrep)

end</lang>

Output:
 N | bias./unb. |    1s |    0s | pct ratio
 3 |     biased |  3286 |  6714 | 32.86%
 3 |   unbiased |  4986 |  5014 | 49.86%
 4 |     biased |  2473 |  7527 | 24.73%
 4 |   unbiased |  4986 |  5014 | 49.86%
 5 |     biased |  1992 |  8008 | 19.92%
 5 |   unbiased |  5121 |  4879 | 51.21%
 6 |     biased |  1663 |  8337 | 16.63%
 6 |   unbiased |  5040 |  4960 | 50.40%

Kotlin

Translation of: Java

<lang scala>// version 1.1.2

fun biased(n: Int) = Math.random() < 1.0 / n

fun unbiased(n: Int): Boolean {

   var a: Boolean
   var b: Boolean
   do {
       a = biased(n)  
       b = biased(n)
   }
   while (a == b)
   return a

}

fun main(args: Array<String>) {

   val m = 50_000
   val f = "%d: %2.2f%%  %2.2f%%"
   for (n in 3..6) {
       var c1 = 0
       var c2 = 0 
       for (i in 0 until m) {
           if (biased(n)) c1++
           if (unbiased(n)) c2++
       }
       println(f.format(n, 100.0 * c1 / m, 100.0 * c2 / m))
   }

}</lang>

Sample output:

3: 33.19%  50.19%
4: 25.29%  49.85%
5: 19.91%  50.07%
6: 16.71%  50.14%

Lua

<lang lua> local function randN(n)

 return function()
   if math.random() < 1/n then return 1 else return 0 end
 end

end

local function unbiased(n)

 local biased = randN (n)
 return function()
   local a, b = biased(), biased()
   while a==b do
     a, b = biased(), biased()
   end
   return a
 end

end

local function demonstrate (samples)

 for n = 3, 6 do
   biased = randN(n)
   unbias = unbiased(n)
   local bcounts = {[0]=0,[1]=0}
   local ucounts = {[0]=0,[1]=0}
   for i=1, samples do
     local bnum = biased()
     local unum = unbias()
     bcounts[bnum] = bcounts[bnum]+1
     ucounts[unum] = ucounts[unum]+1
   end
   print(string.format("N = %d",n),
     "# 0", "# 1",
     "% 0", "% 1")
   print("biased", bcounts[0], bcounts[1],
     bcounts[0] / samples * 100,
     bcounts[1] / samples * 100)
   print("unbias", ucounts[0], ucounts[1],
     ucounts[0] / samples * 100,
     ucounts[1] / samples * 100)
 end

end

demonstrate(100000) </lang>

Output:

N = 3	# 0	# 1	% 0	% 1
biased	66832	33168	66.832	33.168
unbias	50207	49793	50.207	49.793
N = 4	# 0	# 1	% 0	% 1
biased	75098	24902	75.098	24.902
unbias	49872	50128	49.872	50.128
N = 5	# 0	# 1	% 0	% 1
biased	80142	19858	80.142	19.858
unbias	50049	49951	50.049	49.951
N = 6	# 0	# 1	% 0	% 1
biased	83407	16593	83.407	16.593
unbias	49820	50180	49.82	50.18

Mathematica

<lang Mathematica>rand[bias_, n_] := 1 - Unitize@RandomInteger[bias - 1, n]

unbiased[bias_, n_] :=

DeleteCases[rand[bias, {n, 2}], {a_, a_}]All, 1</lang>
count = 1000000;
TableForm[
 Table[{n, Total[rand[n, count]]/count // N, 
   Total[#]/Length[#] &@unbiased[n, count] // N}, {n, 3, 6}], 
 TableHeadings -> {None, {n, "biased", "unbiased"}}]

n	biased	unbiased
3	0.33312	0.500074
4	0.24932	0.499883
5	0.1998 	0.498421
6	0.16620	0.49805

NetRexx

Translation of: Java

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols binary

runSample(arg) return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method biased(n = int) public static returns boolean

 return Math.random() < 1.0 / n

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method unbiased(n = int) public static returns boolean

 a = boolean
 b = boolean
 loop until a \= b
   a = biased(n)
   b = biased(n)
   end
 return a

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static

 parse arg Mx .
 if Mx.length <= 0 then Mx = 50000
 M = int Mx
 loop n = int 3 to 6
   c1 = int 0
   c2 = int 0
   loop for M
     if biased(n)   then c1 = c1 + 1
     if unbiased(n) then c2 = c2 + 1
     end
     say Rexx(n).right(3)':' Rexx(100.0 * c1 / M).format(6, 2)'%' Rexx(100.0 * c2 / M).format(6, 2)'%'
   end n
 return

</lang> Output:

  3:     32.78%     49.98%
  4:     24.72%     50.31%
  5:     19.95%     50.34%
  6:     17.20%     50.20%

Nim

Translation of: Python

<lang nim>import math, strutils randomize()

template newSeqWith(len: int, init: expr): expr =

 var result {.gensym.} = newSeq[type(init)](len)
 for i in 0..<len:
   result[i] = init

proc randN(n): (proc: range[0..1]) =

 proc: range[0..1] = ord(random(n) == 0)

proc unbiased(biased): range[0..1] =

 result = biased()
 var that = biased()
 while result == that:
   result = biased()
   that = biased()

for n in 3..6:

 var biased = randN(n)
 var v = newSeqWith(1_000_000, biased())
 var cnt0, cnt1 = 0
 for x in v:
   if x == 0: inc cnt0
   else:      inc cnt1
 echo "Biased(",n,")  = count1=",cnt1,", count0=",cnt0,", percent=",
      formatFloat(100 * float(cnt1)/float(cnt1+cnt0), ffDecimal, 3)
 v = newSeqWith(1_000_000, unbiased(biased))
 cnt0 = 0
 cnt1 = 0
 for x in v:
   if x == 0: inc cnt0
   else:      inc cnt1
 echo "  Unbiased = count1=",cnt1,", count0=",cnt0,", percent=",
      formatFloat(100 * float(cnt1)/float(cnt1+cnt0), ffDecimal, 3)</lang>

Output:

Biased(3)  = count1=332805, count0=667195, percent=33.281
  Unbiased = count1=500157, count0=499843, percent=50.016
Biased(4)  = count1=249575, count0=750425, percent=24.957
  Unbiased = count1=500072, count0=499928, percent=50.007
Biased(5)  = count1=199537, count0=800463, percent=19.954
  Unbiased = count1=499396, count0=500604, percent=49.940
Biased(6)  = count1=166728, count0=833272, percent=16.673
  Unbiased = count1=499712, count0=500288, percent=49.971

OCaml

<lang ocaml>let randN n =

 if Random.int n = 0 then 1 else 0

let rec unbiased n =

 let a = randN n in
 if a <> randN n then a else unbiased n

let () =

 Random.self_init();
 let n = 50_000 in
 for b = 3 to 6 do
   let cb = ref 0 in
   let cu = ref 0 in
   for i = 1 to n do
     cb := !cb + (randN b);
     cu := !cu + (unbiased b);
   done;
   Printf.printf "%d: %5.2f%%  %5.2f%%\n"
     b (100.0 *. float !cb /. float n) (100.0 *. float !cu /. float n)
 done</lang>

Output:

3: 33.07%  49.90%
4: 25.11%  49.85%
5: 19.82%  50.09%
6: 16.51%  50.51%

PARI/GP

GP's random number generation is high-quality, using Brent's XORGEN. Thus this program is slow: the required 400,000 unbiased numbers generated through this bias/unbias scheme take nearly a second. This requires about two million calls to random, which in turn generate a total of about three million calls to the underlying random number generator through the rejection strategy. The overall efficiency of the scheme is 0.8% for 32-bit and 0.4% for 64-bit... <lang parigp>randN(N)=!random(N); unbiased(N)={

 my(a,b);
 while(1,
   a=randN(N);
   b=randN(N);
   if(a!=b, return(a))
 )

}; for(n=3,6,print(n"\t"sum(k=1,1e5,unbiased(n))"\t"sum(k=1,1e5,randN(n))))</lang>

Output:

3	49997	33540
4	49988	24714
5	50143	20057
6	49913	16770

Perl

<lang perl>sub randn {

       my $n = shift;
       return int(rand($n) / ($n - 1));

}

for my $n (3 .. 6) {

       print "Bias $n: ";
       my (@raw, @fixed);
       for (1 .. 10000) {
               my $x = randn($n);
               $raw[$x]++;
               $fixed[$x]++    if randn($n) != $x
       }
       print "@raw, ";
       printf("%3g+-%.3g%%\tfixed: ", $raw[0]/100,

100 * sqrt($raw[0] * $raw[1]) / ($raw[0] + $raw[1])**1.5);

       print "@fixed, ";
       printf("%3g+-%.3g%%\n", 100*$fixed[0]/($fixed[0] + $fixed[1]),

100 * sqrt($fixed[0] * $fixed[1]) / ($fixed[0] + $fixed[1])**1.5);

}</lang> Output:

Bias 3: 6684 3316, 66.84+-0.471%        fixed: 2188 2228, 49.5471+-0.752%
Bias 4: 7537 2463, 75.37+-0.431%        fixed: 1924 1845, 51.048+-0.814%
Bias 5: 7993 2007, 79.93+-0.401%        fixed: 1564 1597, 49.478+-0.889%
Bias 6: 8309 1691, 83.09+-0.375%        fixed: 1403 1410, 49.8756+-0.943%

Phix

Copy of Euphoria <lang Phix>function randN(integer N)

   return rand(N) = 1

end function

function unbiased(integer N) integer a

   while 1 do
       a = randN(N)
       if a!=randN(N) then
           return a
       end if
   end while

end function

constant n = 10000 integer cb, cu for b=3 to 6 do

   cb = 0
   cu = 0
   for i=1 to n do
       cb += randN(b)
       cu += unbiased(b)
   end for
   printf(1, "%d: %5.2f%%  %5.2f%%\n", {b, 100 * cb / n, 100 * cu / n})

end for</lang>

Output:
3: 32.83%  50.34%
4: 24.78%  50.01%
5: 20.21%  49.71%
6: 16.68%  49.67%

PicoLisp

<lang PicoLisp>(de randN (N)

  (if (= 1 (rand 1 N)) 1 0) )

(de unbiased (N)

  (use (A B)
     (while
        (=
           (setq A (randN N))
           (setq B (randN N)) ) )
     A ) )</lang>

Test: <lang PicoLisp>(for N (range 3 6)

  (tab (2 1 7 2 7 2)
     N ":"
     (format
        (let S 0 (do 10000 (inc 'S (randN N))))
        2 )
     "%"
     (format
        (let S 0 (do 10000 (inc 'S (unbiased N))))
        2 )
     "%" ) )</lang>

Output:

 3:  33.21 %  50.48 %
 4:  25.06 %  49.79 %
 5:  20.04 %  49.75 %
 6:  16.32 %  49.02 %

PL/I

<lang PL/I> test: procedure options (main); /* 20 Nov. 2012 */

randN: procedure(N) returns (bit (1));

  declare N fixed (1);
  declare random builtin;
  declare r fixed (2) external initial (-1);
  if r >= 0 then do; r = r-1; return ('0'b); end;
  r = random()*2*N;
  return ('1'b);

end randN;

random: procedure returns (bit(1));

  declare (r1, r2) bit (1);
  do until (r1 ^= r2);
     r1 = randN(N); r2 = randN(N);
  end;
  return (r1);

end random;

  declare (biasedrn, unbiasedrn) (100) bit (1);
  declare N fixed (1);
  put ('N     Biased  Unbiased (tally of 100 random numbers)');
  do N = 3 to 6;
     biasedrn = randN(N); unbiasedrn = random;
     put skip edit (N, sum(biasedrn), sum(unbiasedrn)) (F(1), 2 F(10));
  end;

end test; </lang> Results:

N     Biased  Unbiased (tally of 100 random numbers) 
3        24        42
4        18        47
5        16        41
6        11        53

PowerShell

Works with: PowerShell version 2

<lang PowerShell> function randN ( [int]$N )

   {
   [int]( ( Get-Random -Maximum $N ) -eq 0 )
   }

function unbiased ( [int]$N )

   {
   do  {
       $X = randN $N
       $Y = randN $N
       }
   While ( $X -eq $Y )

   return $X
   }

</lang> Note: The [pscustomobject] type accelerator, used to simplify making the test output look pretty, requires version 3.0 or higher. <lang PowerShell> $Tests = 1000 ForEach ( $N in 3..6 )

   {
   $Biased   = 0
   $Unbiased = 0

   ForEach ( $Test in 1..$Tests )
       {
       $Biased   += randN $N
       $Unbiased += unbiased $N
       }
   [pscustomobject]@{ N = $N
                      "Biased Ones out of $Test" = $Biased
                      "Unbiased Ones out of $Test" = $Unbiased }
   }

</lang>

Output:
N Biased Ones out of 1000 Unbiased Ones out of 1000
- ----------------------- -------------------------
3                     322                       503
4                     273                       518
5                     217                       515
6                     173                       486

PureBasic

<lang PureBasic>Procedure biased(n)

 If Random(n) <> 1
   ProcedureReturn 0
 EndIf 
 ProcedureReturn 1

EndProcedure

Procedure unbiased(n)

 Protected a, b
 Repeat
   a = biased(n)
   b = biased(n)
 Until a <> b
 ProcedureReturn a

EndProcedure

  1. count = 100000

Define n, m, output.s For n = 3 To 6

 Dim b_count(1)
 Dim u_count(1)
 For m = 1 To #count
   x = biased(n)
   b_count(x) + 1
   x = unbiased(n)
   u_count(x) + 1
 Next
 output + "N = " + Str(n) + #LF$
 output + "  biased =>" + #tab$ + "#0=" + Str(b_count(0)) + #tab$ + "#1=" +Str(b_count(1))
 output + #tab$ + " ratio=" + StrF(b_count(1) / #count * 100, 2) + "%" + #LF$
 output + "  unbiased =>" + #tab$ + "#0=" + Str(u_count(0)) + #tab$ + "#1=" + Str(u_count(1))
 output + #tab$ + " ratio=" + StrF(u_count(1) / #count * 100, 2) + "%" + #LF$

Next MessageRequester("Biased and Unbiased random number results", output)</lang> Sample output:

---------------------------
Biased and Unbiased random number results
---------------------------
N = 3
  biased =>	#0=74856	#1=25144	 ratio=25.14%
  unbiased =>	#0=50066	#1=49934	 ratio=49.93%
N = 4
  biased =>	#0=80003	#1=19997	 ratio=20.00%
  unbiased =>	#0=49819	#1=50181	 ratio=50.18%
N = 5
  biased =>	#0=83256	#1=16744	 ratio=16.74%
  unbiased =>	#0=50268	#1=49732	 ratio=49.73%
N = 6
  biased =>	#0=85853	#1=14147	 ratio=14.15%
  unbiased =>	#0=49967	#1=50033	 ratio=50.03%

Python

<lang python>from __future__ import print_function import random

def randN(N):

   " 1,0 random generator factory with 1 appearing 1/N'th of the time"
   return lambda: random.randrange(N) == 0

def unbiased(biased):

   'uses a biased() generator of 1 or 0, to create an unbiased one'
   this, that = biased(), biased()
   while this == that: # Loop until 10 or 01
       this, that = biased(), biased()
   return this         # return the first

if __name__ == '__main__':

   from collections import namedtuple
   Stats = namedtuple('Stats', 'count1 count0 percent')
   for N in range(3, 7):
       biased = randN(N)
       v = [biased() for x in range(1000000)]
       v1, v0 = v.count(1), v.count(0)
       print ( "Biased(%i)  = %r" % (N, Stats(v1, v0, 100. * v1/(v1 + v0))) )
       v = [unbiased(biased) for x in range(1000000)]
       v1, v0 = v.count(1), v.count(0)
       print ( "  Unbiased = %r" % (Stats(v1, v0, 100. * v1/(v1 + v0)), ) )</lang>

Sample output

Biased(3)  = Stats(count1=331800, count0=668200, percent=33.18)
  Unbiased = Stats(count1=499740, count0=500260, percent=49.973999999999997)
Biased(4)  = Stats(count1=249770, count0=750230, percent=24.977)
  Unbiased = Stats(count1=499707, count0=500293, percent=49.970700000000001)
Biased(5)  = Stats(count1=199764, count0=800236, percent=19.976400000000002)
  Unbiased = Stats(count1=499456, count0=500544, percent=49.945599999999999)
Biased(6)  = Stats(count1=167561, count0=832439, percent=16.7561)
  Unbiased = Stats(count1=499963, count0=500037, percent=49.996299999999998)

R

<lang rsplus>randN = function(N) sample.int(N, 1) == 1

unbiased = function(f)

  {while ((x <- f()) == f()) {}
   x}

samples = 10000 print(t(round(d = 2, sapply(3:6, function(N) c(

   N = N,
   biased = mean(replicate(samples, randN(N))),
   unbiased = mean(replicate(samples, unbiased(function() randN(N)))))))))</lang>

Sample output:

     N biased unbiased
[1,] 3   0.32     0.50
[2,] 4   0.24     0.50
[3,] 5   0.21     0.49
[4,] 6   0.16     0.51

Racket

<lang racket>

  1. lang racket
Using boolean #t/#f instead of 1/0

(define ((randN n)) (zero? (random n))) (define ((unbiased biased))

 (let loop () (let ([r (biased)]) (if (eq? r (biased)) (loop) r))))
Counts

(define N 1000000) (for ([n (in-range 3 7)])

 (define (try% R) (round (/ (for/sum ([i N]) (if (R) 1 0)) N 1/100)))
 (define biased (randN n))
 (printf "Count: ~a => Biased: ~a%; Unbiased: ~a%.\n"
         n (try% biased) (try% (unbiased biased))))

</lang>

Output:
Count: 3 => Biased: 33%; Unbiased: 50%.
Count: 4 => Biased: 25%; Unbiased: 50%.
Count: 5 => Biased: 20%; Unbiased: 50%.
Count: 6 => Biased: 17%; Unbiased: 50%.

Raku

(formerly Perl 6)

Translation of: Perl
Works with: Rakudo version 2020.08.1

<lang perl6>sub randN ( $n where 3..6 ) {

   return ( $n.rand / ($n - 1) ).Int;

}

sub unbiased ( $n where 3..6 ) {

   my $n1;
   repeat { $n1 = randN($n) } until $n1 != randN($n);
   return $n1;

}

my $iterations = 1000; for 3 .. 6 -> $n {

   my ( @raw, @fixed );
   for ^$iterations {
       @raw[      randN($n) ]++;
       @fixed[ unbiased($n) ]++;
   }
   printf "N=%d   randN: %s, %4.1f%%   unbiased: %s, %4.1f%%\n",
       $n, map { .raku, .[1] * 100 / $iterations }, @raw, @fixed;

}</lang>

Output:

N=3   randN: [676, 324], 32.4%   unbiased: [517, 483], 48.3%
N=4   randN: [734, 266], 26.6%   unbiased: [489, 511], 51.1%
N=5   randN: [792, 208], 20.8%   unbiased: [494, 506], 50.6%
N=6   randN: [834, 166], 16.6%   unbiased: [514, 486], 48.6%

REXX

<lang rexx>/*REXX program generates unbiased random numbers and displays the results to terminal.*/ parse arg # R seed . /*obtain optional arguments from the CL*/ if #== | #=="," then #=1000 /*#: the number of SAMPLES to be used.*/ if R== | R=="," then R=6 /*R: the high number for the range. */ if datatype(seed, 'W') then call random ,,seed /*Specified? Then use for RANDOM seed.*/ dash='─'; @b="biased"; @ub='un'@b /*literals for the SAY column headers. */ say left(,5) ctr("N",5) ctr(@b) ctr(@b'%') ctr(@ub) ctr(@ub"%") ctr('samples') dash=

      do N=3  to R;      b=0;                u=0
        do j=1  for #;   b=b + randN(N);     u=u + unbiased()
        end   /*j*/
      say  left(, 5)     ctr(N, 5)     ctr(b)    pct(b)    ctr(u)    pct(u)    ctr(#)
      end     /*N*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ ctr: return center( arg(1), word(arg(2) 12, 1), left(dash, 1)) /*show hdr│numbers.*/ pct: return ctr( format(arg(1) / # * 100, , 2)'%' ) /*2 decimal digits.*/ randN: parse arg z; return random(1, z)==z /*ret 1 if rand==Z.*/ unbiased: do until x\==randN(N); x=randN(N); end; return x /* " unbiased RAND*/</lang>

output   when using the default inputs:
      ──N── ───biased─── ──biased%─── ──unbiased── ─unbiased%── ──samples───
        3       348         34.80%        541         54.10%        1000
        4       259         25.90%        479         47.90%        1000
        5       188         18.80%        475         47.50%        1000
        6       178         17.80%        488         48.80%        1000
output   when using the input of:   10000
      ──N── ───biased─── ──biased%─── ──unbiased── ─unbiased%── ──samples───
        3       3435        34.35%        4995        49.95%       10000
        4       2535        25.35%        4957        49.57%       10000
        5       2019        20.19%        4958        49.58%       10000
        6       1644        16.44%        4982        49.82%       10000
output   when using the input of:   100000   30
      ──N── ───biased─── ──biased%─── ──unbiased── ─unbiased%── ──samples───
        3      33301        33.30%       50066        50.07%       100000
        4      25359        25.36%       49401        49.40%       100000
        5      20026        20.03%       49966        49.97%       100000
        6      16579        16.58%       49956        49.96%       100000
        7      14294        14.29%       50008        50.01%       100000
        8      12402        12.40%       50479        50.48%       100000
        9      11138        11.14%       50099        50.10%       100000
       10       9973        9.97%        49988        49.99%       100000
       11       9062        9.06%        50009        50.01%       100000
       12       8270        8.27%        49929        49.93%       100000
       13       7704        7.70%        49876        49.88%       100000
       14       7223        7.22%        50414        50.41%       100000
       15       6725        6.73%        50043        50.04%       100000
       16       6348        6.35%        50252        50.25%       100000
       17       5900        5.90%        49977        49.98%       100000
       18       5583        5.58%        49991        49.99%       100000
       19       5139        5.14%        49958        49.96%       100000
       20       4913        4.91%        50198        50.20%       100000
       21       4714        4.71%        49892        49.89%       100000
       22       4517        4.52%        49760        49.76%       100000
       23       4226        4.23%        50021        50.02%       100000
       24       4174        4.17%        50141        50.14%       100000
       25       4005        4.01%        49816        49.82%       100000
       26       3890        3.89%        49819        49.82%       100000
       27       3705        3.71%        50036        50.04%       100000
       28       3567        3.57%        49665        49.67%       100000
       29       3481        3.48%        50094        50.09%       100000
       30       3355        3.36%        49831        49.83%       100000

Ring

<lang ring> for n = 3 to 6

   biased = 0
   unb = 0
   for i = 1 to 10000
       biased += randN(n)
       unb += unbiased(n) 
   next
   see "N = " + n + " : biased = " + biased/100  + "%, unbiased = " + unb/100 + "%" + nl

next

func unbiased nr

    while 1 
          a = randN(nr)
          if a != randN(nr) return a ok
    end

func randN m

    m = (random(m) = 1)
    return m

</lang> Output:

N = 3 : biased = 25.38%, unbiased = 50.12%
N = 4 : biased = 20.34%, unbiased = 49.17%
N = 5 : biased = 16.65%, unbiased = 48.86%
N = 6 : biased = 13.31%, unbiased = 49.96%

Ruby

<lang ruby>def rand_n(bias)

 rand(bias) == 0 ? 1 : 0

end

def unbiased(bias)

 a, b = rand_n(bias), rand_n(bias) until a != b #loop until a and b are 0,1 or 1,0
 a

end

runs = 1_000_000 keys = %i(bias biased unbiased) #use [:bias,:biased,:unbiased] in Ruby < 2.0 puts keys.join("\t")

(3..6).each do |bias|

 counter = Hash.new(0) # counter will respond with 0 when key is not known
 runs.times do
   counter[:biased] += 1 if rand_n(bias) == 1 #the first time, counter has no key for :biased, so it will respond 0
   counter[:unbiased] += 1 if unbiased(bias) == 1
 end
 counter[:bias] = bias
 puts counter.values_at(*keys).join("\t")

end</lang>

Output:
bias	biased	unbiased
3	333043	500161
4	249133	499393
5	199767	500354
6	166163	499809

Rust

<lang Rust>#![feature(inclusive_range_syntax)]

extern crate rand;

use rand::Rng;

fn rand_n<R: Rng>(rng: &mut R, n: u32) -> usize {

   rng.gen_weighted_bool(n) as usize // maps `false` to 0 and `true` to 1

}

fn unbiased<R: Rng>(rng: &mut R, n: u32) -> usize {

   let mut bit = rand_n(rng, n);
   while bit == rand_n(rng, n) {
       bit = rand_n(rng, n);
   }
   bit

}

fn main() {

   const SAMPLES: usize = 100_000;
   let mut rng = rand::weak_rng();
   println!(" Bias    rand_n  unbiased");
   for n in 3..=6 {
       let mut count_biased = 0;
       let mut count_unbiased = 0;
       for _ in 0..SAMPLES {
           count_biased += rand_n(&mut rng, n);
           count_unbiased += unbiased(&mut rng, n);
       }
       let b_percentage = 100.0 * count_biased as f64 / SAMPLES as f64;
       let ub_percentage = 100.0 * count_unbiased as f64 / SAMPLES as f64;
       println!(
           "bias {}:  {:0.2}%   {:0.2}%",
           n, b_percentage, ub_percentage
       );
   }

}</lang>

Output:
 Bias    rand_n  unbiased
bias 3:  33.32%   49.80%
bias 4:  25.22%   50.16%
bias 5:  19.91%   50.00%
bias 6:  16.66%   49.95%

Scala

<lang scala>def biased( n:Int ) = scala.util.Random.nextFloat < 1.0 / n

def unbiased( n:Int ) = { def loop : Boolean = { val a = biased(n); if( a != biased(n) ) a else loop }; loop }

for( i <- (3 until 7) ) println {

 val m = 50000
 var c1,c2 = 0
 
 (0 until m) foreach { j => if( biased(i) ) c1 += 1; if( unbiased(i) ) c2 += 1 }
 
 "%d: %2.2f%%  %2.2f%%".format(i, 100.0*c1/m, 100.0*c2/m)

}</lang>

Output:
3: 33.09%  49.79%
4: 24.92%  49.92%
5: 19.75%  49.92%
6: 16.67%  50.23%

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";

const func integer: randN (in integer: n) is

 return ord(rand(1, n) = 1);

const func integer: unbiased (in integer: n) is func

 result
   var integer: unbiased is 0;
 begin
   repeat
     unbiased := randN(n);
   until unbiased <> randN(n);
 end func;

const proc: main is func

 local
   const integer: tests is 50000;
   var integer: n is 0;
   var integer: sumBiased is 0;
   var integer: sumUnbiased is 0;
   var integer: count is 0;
 begin
   for n range 3 to 6 do
     sumBiased := 0;
     sumUnbiased := 0;
     for count range 1 to tests do
       sumBiased +:= randN(n);
       sumUnbiased +:= unbiased(n);
     end for;
     writeln(n <& ": " <& flt(100 * sumBiased) / flt(tests) digits 3 lpad 6 <&
                  "  " <& flt(100 * sumUnbiased) / flt(tests) digits 3 lpad 6);
   end for;
 end func;</lang>

Output:

3: 33.004  50.024
4: 25.158  50.278
5: 20.186  49.978
6: 16.570  49.936

Sidef

Translation of: Raku

<lang ruby>func randN (n) {

   n.rand / (n-1) -> int

}

func unbiased(n) {

   var n1 = nil
   do { n1 = randN(n) } while (n1 == randN(n))
   return n1

}

var iterations = 1000

for n in (3..6) {

   var raw = []
   var fixed = []
   iterations.times {
         raw[    randN(n) ] := 0 ++
       fixed[ unbiased(n) ] := 0 ++
   }
   printf("N=%d   randN: %s, %4.1f%%   unbiased: %s, %4.1f%%\n",
       n, [raw, fixed].map {|a| (a.dump, a[1] * 100 / iterations) }...)

}</lang>

Output:
N=3   randN: [661, 339], 33.9%   unbiased: [497, 503], 50.3%
N=4   randN: [765, 235], 23.5%   unbiased: [493, 507], 50.7%
N=5   randN: [812, 188], 18.8%   unbiased: [509, 491], 49.1%
N=6   randN: [820, 180], 18.0%   unbiased: [510, 490], 49.0%

Tcl

<lang tcl># 1,0 random generator factory with 1 appearing 1/N'th of the time proc randN n {expr {rand()*$n < 1}}

  1. uses a biased generator of 1 or 0, to create an unbiased one

proc unbiased {biased} {

   while 1 {

if {[set a [eval $biased]] != [eval $biased]} {return $a}

   }

}

for {set n 3} {$n <= 6} {incr n} {

   set biased [list randN $n]
   for {set i 0;array set c {0 0 1 0}} {$i < 1000000} {incr i} {

incr c([eval $biased])

   }
   puts [format "  biased %d => #0=%d #1=%d ratio=%.2f%%" $n $c(0) $c(1) \

[expr {100.*$c(1)/$i}]]

   for {set i 0;array set c {0 0 1 0}} {$i < 1000000} {incr i} {

incr c([unbiased $biased])

   }
   puts [format "unbiased %d => #0=%d #1=%d ratio=%.2f%%" $n $c(0) $c(1) \

[expr {100.*$c(1)/$i}]] }</lang> Sample output:

  biased 3 => #0=667076 #1=332924 ratio=33.29%
unbiased 3 => #0=500263 #1=499737 ratio=49.97%
  biased 4 => #0=750470 #1=249530 ratio=24.95%
unbiased 4 => #0=500644 #1=499356 ratio=49.94%
  biased 5 => #0=800243 #1=199757 ratio=19.98%
unbiased 5 => #0=500878 #1=499122 ratio=49.91%
  biased 6 => #0=833623 #1=166377 ratio=16.64%
unbiased 6 => #0=500518 #1=499482 ratio=49.95%

Visual Basic .NET

Translation of: C#

<lang vbnet>Module Module1

   Dim random As New Random()
   Function RandN(n As Integer) As Boolean
       Return random.Next(0, n) = 0
   End Function
   Function Unbiased(n As Integer) As Boolean
       Dim flip1 As Boolean
       Dim flip2 As Boolean
       Do
           flip1 = RandN(n)
           flip2 = RandN(n)
       Loop While flip1 = flip2
       Return flip1
   End Function
   Sub Main()
       For n = 3 To 6
           Dim biasedZero = 0
           Dim biasedOne = 0
           Dim unbiasedZero = 0
           Dim unbiasedOne = 0
           For i = 1 To 100000
               If RandN(n) Then
                   biasedOne += 1
               Else
                   biasedZero += 1
               End If
               If Unbiased(n) Then
                   unbiasedOne += 1
               Else
                   unbiasedZero += 1
               End If
           Next
           Console.WriteLine("(N = {0}):".PadRight(17) + "# of 0" + vbTab + "# of 1" + vbTab + "% of 0" + vbTab + "% of 1", n)
           Console.WriteLine("(Biased: {0}):".PadRight(15) + "{0}" + vbTab + "{1}" + vbTab + "{2}" + vbTab + "{3}", biasedZero, biasedOne, biasedZero / 1000, biasedOne / 1000)
           Console.WriteLine("(UnBiased: {0}):".PadRight(15) + "{0}" + vbTab + "{1}" + vbTab + "{2}" + vbTab + "{3}", unbiasedZero, unbiasedOne, unbiasedZero / 1000, unbiasedOne / 1000)
       Next
   End Sub

End Module</lang>

Output:
(N = 3):       # of 0   # of 1  % of 0  % of 1
(Biased: 66844): 66844  33156   66.844  33.156
(UnBiased: 50081):50081 49919   50.081  49.919
(N = 4):       # of 0   # of 1  % of 0  % of 1
(Biased: 74827): 74827  25173   74.827  25.173
(UnBiased: 50095):50095 49905   50.095  49.905
(N = 5):       # of 0   # of 1  % of 0  % of 1
(Biased: 79878): 79878  20122   79.878  20.122
(UnBiased: 50544):50544 49456   50.544  49.456
(N = 6):       # of 0   # of 1  % of 0  % of 1
(Biased: 83449): 83449  16551   83.449  16.551
(UnBiased: 49907):49907 50093   49.907  50.093

Wren

Translation of: Kotlin
Library: Wren-fmt

<lang ecmascript>import "random" for Random import "/fmt" for Fmt

var rand = Random.new()

var biased = Fn.new { |n| rand.float() < 1 / n }

var unbiased = Fn.new { |n|

   while (true) {
       var a = biased.call(n)
       var b = biased.call(n)
       if (a != b) return a
   }

}

var m = 50000 var f = "$d: $2.2f\% $2.2f\%" for (n in 3..6) {

   var c1 = 0
   var c2 = 0
   for (i in 0...m) {
       if (biased.call(n)) c1 = c1 + 1
       if (unbiased.call(n)) c2 = c2 + 1
   }
   Fmt.print(f, n, 100 * c1 / m, 100 * c2 / m)

}</lang>

Output:

Sample output:

3: 33.36%  49.91%
4: 24.80%  49.89%
5: 20.07%  49.95%
6: 16.64%  50.17%

zkl

<lang zkl>fcn randN(N){ (not (0).random(N)).toInt() } fcn unbiased(randN){ while((a:=randN())==randN()){} a }</lang> <lang zkl>const Z=0d100_000; foreach N in ([3..6]){

  "%d: biased: %3.2f%%, unbiased: %3.2f%%".fmt(N,
      (0).reduce(Z,'wrap(s,_){ s+randN(N) },0.0)/Z*100,
      (0).reduce(Z,'wrap(s,_){ s+unbiased(randN.fp(N)) },0.0)/Z*100)
  .println();

}</lang>

Output:
3: biased: 33.46%, unbiased: 49.80%
4: biased: 24.95%, unbiased: 50.01%
5: biased: 19.89%, unbiased: 50.18%
6: biased: 16.75%, unbiased: 50.22%
Cookies help us deliver our services. By using our services, you agree to our use of cookies.