N-queens problem

From Rosetta Code
Revision as of 20:06, 5 September 2010 by Moritz (talk | contribs) (→‎{{header|Perl 6}}: added section)
N-queens problem is a programming puzzle. It lays out a problem which Rosetta Code users are encouraged to solve, using languages and techniques they know. Multiple approaches are not discouraged, so long as the puzzle guidelines are followed. For other Puzzles, see Category:Puzzles.

Solve the eight queens puzzle. You can extend the problem to solve the puzzle with a board of side NxN.

Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Queens is

  Board : array (1..8, 1..8) of Boolean := (others => (others => False));
  function Test (Row, Column : Integer) return Boolean is
  begin
     for J in 1..Column - 1 loop
        if (  Board (Row, J)
           or else
              (Row > J and then Board (Row - J, Column - J))
           or else
              (Row + J <= 8 and then Board (Row + J, Column - J))
           )  then
           return False;
        end if;
     end loop;
     return True;
  end Test;
  function Fill (Column : Integer) return Boolean is
  begin
     for Row in Board'Range (1) loop
        if Test (Row, Column) then
           Board (Row, Column) := True;
           if Column = 8 or else Fill (Column + 1) then
              return True;
           end if;
           Board (Row, Column) := False;
        end if;
     end loop;
     return False;
  end Fill;

begin

  if not Fill (1) then
     raise Program_Error;
  end if;
  for I in Board'Range (1) loop
     Put (Integer'Image (9 - I));
     for J in Board'Range (2) loop
        if Board (I, J) then
           Put ("|Q");
        elsif (I + J) mod 2 = 1 then
           Put ("|/");
        else
           Put ("| ");
        end if;
     end loop;
     Put_Line ("|");
  end loop;
  Put_Line ("   A B C D E F G H");

end Queens;</lang> Sample output:

 8|Q|/| |/| |/| |/|
 7|/| |/| |/| |Q| |
 6| |/| |/|Q|/| |/|
 5|/| |/| |/| |/|Q|
 4| |Q| |/| |/| |/|
 3|/| |/|Q|/| |/| |
 2| |/| |/| |Q| |/|
 1|/| |Q| |/| |/| |
   A B C D E F G H

ALGOL 68

Translation of: C
Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386

<lang Algol68>INT ofs = 1, # Algol68 normally uses array offset of 1 #

   dim = 8; # dim X dim chess board #

[ofs:dim+ofs-1]INT b;

PROC unsafe = (INT y)BOOL:(

 INT i, t, x;
 x := b[y];
 FOR i TO y - LWB b DO
   t := b[y - i];
   IF t = x THEN break true
   ELIF t = x - i THEN break true
   ELIF t = x + i THEN break true
   FI
 OD;
 FALSE EXIT

break true:

 TRUE

);

INT s := 0;

PROC print board = VOID:(

 INT x, y;
 print((new line, "Solution # ", s+:=1, new line));
 FOR y FROM LWB b TO UPB b DO 
   FOR x FROM LWB b TO UPB b DO
     print("|"+(b[y]=x|"Q"|: ODD(x+y)|"/"|" "))
   OD;
   print(("|", new line))
 OD

);

main: (

 INT y := LWB b;
 b[LWB b] := LWB b - 1;
 FOR i WHILE y >= LWB b DO
   WHILE
     b[y]+:=1;
 # BREAK # IF b[y] <= UPB b THEN unsafe(y) ELSE FALSE FI 
   DO SKIP OD;
   IF b[y] <= UPB b  THEN
     IF y < UPB b THEN
       b[y+:=1] := LWB b - 1
     ELSE
       print board
     FI
   ELSE
     y-:=1
   FI
 OD

)</lang>

AutoHotkey

Output to formatted Message box

Translation of: C

<lang AutoHotkey>;

Post
http://www.autohotkey.com/forum/viewtopic.php?p=353059#353059
Timestamp
05/may/2010

MsgBox % funcNQP(5) MsgBox % funcNQP(8)

Return

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** USED VARIABLES **
Global
All variables named Array[???]
Function funcNPQ
nQueens , OutText , qIndex
Function Unsafe
nIndex , Idx , Tmp , Aux
Function PutBoard
Output , QueensN , Stc , xxx , yyy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

funcNQP(nQueens) {

 Global
 Array[0] := -1
 Local OutText , qIndex := 0
 While ( qIndex >= 0 )
 {
   Array[%qIndex%]++
   While ( (Array[%qIndex%] < nQueens) && Unsafe(qIndex) )
     Array[%qIndex%]++
   If ( Array[%qIndex%] < nQueens )
   {
     If ( qIndex < nQueens-1 )
       qIndex++  ,  Array[%qIndex%] := -1
     Else
       PutBoard(OutText,nQueens)
   }
   Else
     qIndex--
 }
 Return OutText

}

------------------------------------------

Unsafe(nIndex) {

 Global
 Local Idx := 1  ,  Tmp := 0  ,  Aux := Array[%nIndex%]
 While ( Idx <= nIndex )
 {
   Tmp := "Array[" nIndex - Idx "]"
   Tmp := % %Tmp%
   If ( ( Tmp = Aux ) || ( Tmp = Aux-Idx ) || ( Tmp = Aux+Idx ) )
     Return 1
   Idx++
 }
 Return 0

}

------------------------------------------

PutBoard(ByRef Output,QueensN) {

 Global
 Static Stc = 0
 Local xxx := 0 , yyy := 0
 Output .= "`n`nSolution #" (++Stc) "`n"
 While ( yyy < QueensN )
 {
   xxx := 0
   While ( xxx < QueensN )
     Output .= ( "|" ( ( Array[%yyy%] = xxx ) ? "Q" : "_" ) )  ,  xxx++
   Output .= "|`n"  ,  yyy++
 }

}</lang>

Includes a solution browser GUI

This implementation supports N = 4..12 queens, and will find ALL solutions for each of the different sizes. The screenshot shows the first solution of 10 possible solutions for N = 5 queens. <lang AutoHotkey>N := 5 Number: ; main entrance for different # of queens

   SI := 1
   Progress b2 w250 zh0 fs9, Calculating all solutions for %N% Queens ...
   Gosub GuiCreate
   Result := SubStr(Queens(N),2)
   Progress Off
   Gui Show,,%N%-Queens
   StringSplit o, Result, `n

Fill: ; show solutions

   GuiControl,,SI, %SI% / %o0%
   Loop Parse, o%SI%, `,
   {
       C := A_Index
       Loop %N%
           GuiControl,,%C%_%A_Index% ; clear fields
       GuiControl,,%C%_%A_LoopField%, r
   }

Return ;-----------------------------------------------------------------------

Queens(N) {  ; Size of the board

   Local c, O                              ; global array r
   r1 := 1, c := 2, r2 := 3, O := ""       ; init: r%c% = row of Queen in column c
   Right:                                  ; move to next column
       If (c = N) {                        ; found solution
           Loop %N%                        ; save row indices of Queens
               O .= (A_Index = 1 ? "`n" : ",") r%A_Index%
           GOTO % --c ? "Down" : "OUT"     ; for ALL solutions
       }
       c++, r%c% := 1                      ; next column, top row
       GoTo % BAD(c) ? "Down" : "Right"
   Down:                                   ; move down to next row
       If (r%c% = N)
           GoTo % --c ? "Down" : "OUT"
       r%c%++                              ; row down
       GoTo % BAD(c) ? "Down" : "Right"
   OUT:
       Return O

} ;----------------------------------------------------------------------------

BAD(c) { ; Check placed Queens against Queen in row r%c%, column c

   Loop % c-1
       If (r%A_Index% = r%c% || ABS(r%A_Index%-r%c%) = c-A_Index)
           Return 1

} ;----------------------------------------------------------------------------

GuiCreate: ; Draw chess board

   Gui Margin, 20, 15
   Gui Font, s16, Marlett
   Loop %N% {
       C := A_Index
       Loop %N% { ; fields
           R := A_Index, X := 40*C-17, Y := 40*R-22
           Gui Add, Progress, x%X% y%Y% w41 h41 Cdddddd, % 100*(R+C & 1) ;% shade fields
           Gui Add, Text, x%X% y%Y% w41 h41 BackGroundTrans Border Center 0x200 v%C%_%R%
       }
   }
   Gui Add, Button, x%x% w43 h25 gBF, 4 ; forth (default)
   Gui Add, Button,xm yp w43 h25 gBF, 3 ; back
   Gui Font, bold, Comic Sans MS
   Gui Add, Text,% "x62 yp hp Center 0x200 vSI w" 40*N-80
   Menu FileMenu, Add, E&xit, GuiClose
   Loop 9
       Menu CalcMenu, Add, % "Calculate " A_Index+3 " Queens", Calculate ;%
   Menu HelpMenu, Add, &About, AboutBox
   Menu MainMenu, Add, &File, :FileMenu
   Menu MainMenu, Add, &Calculate, :CalcMenu
   Menu MainMenu, Add, &Help, :HelpMenu
   Gui Menu, Mainmenu

Return ; ----------------------------------------------------------------------

AboutBox: ; message box with AboutText

   Gui 1: +OwnDialogs
   MsgBox, 64, About N-Queens, Many thanks ...

Return

Calculate: ; menu handler for calculations

   N := A_ThisMenuItemPos + 3
   Gui Destroy
   GoTo Number ; -------------------------------------------------------------

BF:

  SI := mod(SI+o0-2*(A_GuiControl=3), o0) + 1 ; left button text is "3"
  GoTo Fill ; ----------------------------------------------------------------

GuiClose: ExitApp</lang>

BCPL

<lang BCPL>// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.

GET "libhdr.h"

GLOBAL { count:ug; all }

LET try(ld, row, rd) BE TEST row=all

                       THEN count := count + 1
                       ELSE { LET poss = all & ~(ld | row | rd)
                              WHILE poss DO
                              { LET p = poss & -poss
                                poss := poss - p
                                try(ld+p << 1, row+p, rd+p >> 1)
                              }
                            }

LET start() = VALOF { all := 1

 FOR i = 1 TO 16 DO
 { count := 0
   try(0, 0, 0)
   writef("Number of solutions to %i2-queens is %i7*n", i, count)
   all := 2*all + 1
 }
 RESULTIS 0

} </lang> The following is a re-implementation of the algorithm given above but using the MC package that allows machine independent runtime generation of native machine code (currently only available for i386 machines). It runs about 25 times faster that the version given above.

<lang BCPL> GET "libhdr.h" GET "mc.h"

MANIFEST {

lo=1; hi=16
dlevel=#b0000
// Register mnemonics
ld    = mc_a
row   = mc_b
rd    = mc_c
poss  = mc_d
p     = mc_e
count = mc_f

}

LET start() = VALOF { // Load the dynamic code generation package

 LET mcseg = globin(loadseg("mci386"))
 LET mcb = 0
 UNLESS mcseg DO
 { writef("Trouble with MC package: mci386*n")
   GOTO fin
 }
 // Create an MC instance for hi functions with a data space
 // of 10 words and code space of 40000
 mcb := mcInit(hi, 10, 40000)
 UNLESS mcb DO
 { writef("Unable to create an mci386 instance*n")
   GOTO fin
 } 
 mc := 0          // Currently no selected MC instance
 mcSelect(mcb)
 mcK(mc_debug, dlevel) // Set the debugging level
 FOR n = lo TO hi DO
 { mcComment("*n*n// Code for a %nx%n board*n", n, n)
   gencode(n) // Compile the code for an nxn board
 }
 mcF(mc_end) // End of code generation
 writef("Code generation complete*n")
 FOR n = lo TO hi DO
 { LET k = mcCall(n)
   writef("Number of solutions to %i2-queens is %i9*n", n, k)
 }

fin:

 IF mc    DO mcClose()
 IF mcseg DO unloadseg(mcseg)  
 writef("*n*nEnd of run*n")

}

AND gencode(n) BE { LET all = (1<<n) - 1

 mcKKK(mc_entry, n, 3, 0)
 mcRK(mc_mv, ld,    0)
 mcRK(mc_mv, row,   0)
 mcRK(mc_mv, rd,    0)
 mcRK(mc_mv, count, 0)
 cmpltry(1, n, all)        // Compile the outermost call of try
 mcRR(mc_mv, mc_a, count)  // return count
 mcF(mc_rtn)
 mcF(mc_endfn)

}

AND cmpltry(i, n, all) BE { LET L = mcNextlab()

 mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)
 mcRR(mc_mv,  poss, ld)         // LET poss = (~(ld | row | rd)) & all
 mcRR(mc_or,  poss, row)
 mcRR(mc_or,  poss, rd)
 mcR (mc_not, poss)
 mcRK(mc_and, poss, all)
 mcRK(mc_cmp, poss, 0)          // IF poss DO
 TEST n-i<=2
 THEN mcJS(mc_jeq, L)           // (use a short jump if near the last row)
 ELSE mcJL(mc_jeq, L)
 TEST i=n
 THEN { // We can place a queen in the final row.
        mcR(mc_inc,  count)     //   count := count+1
      }
 ELSE { // We can place queen(s) in a non final row.
        LET M = mcNextlab()
        mcL (mc_lab,  M)        // { Start of REPEATWHILE loop
        mcRR(mc_mv,   p, poss)  //   LET p = poss & -poss
        mcR (mc_neg,  p)
        mcRR(mc_and,  p, poss)  //   // p is a valid queens position
        mcRR(mc_sub,  poss, p)  //   poss := poss - p


        mcR (mc_push, ld)       //   Save current state
        mcR (mc_push, row)
        mcR (mc_push, rd)
        mcR (mc_push, poss)
                                //   Call try((ld+p)<<1, row+p, (rd+p)>>1)
        mcRR(mc_add,  ld,  p)
        mcRK(mc_lsh,  ld,  1)   //   ld  := (ld+p)<<1
        mcRR(mc_add,  row, p)   //   row := row+p
        mcRR(mc_add,  rd,  p)
        mcRK(mc_rsh,  rd,  1)   //   rd  := (rd+p)>>1
        cmpltry(i+1, n, all)    //   Compile code for row i+1
        mcR (mc_pop,  poss)     //   Restore the state
        mcR (mc_pop,  rd)
        mcR (mc_pop,  row)
        mcR (mc_pop,  ld)
        mcRK(mc_cmp,  poss, 0)
        mcJL(mc_jne, M)         // } REPEATWHILE poss
      }
      mcL(mc_lab, L)
      mcComment("// End   of code from try(%n, %n, %n)*n*n",
                i, n, all)

} </lang>

C

There is a solution on wikipedia.

Clojure

This produces all solutions by essentially a backtracking algorithm. The heart is the extends? function, which takes a partial solution for the first k<size columns and sees if the solution can be extended by adding a queen at row n of column k+1. The extend function takes a list of all partial solutions for k columns and produces a list of all partial solutions for k+1 columns. The final list solutions is calculated by starting with the list of 0-column solutions (obviously this is the list [ [] ], and iterates extend for size times. <lang clojure>(def size 8)

(defn extends? [v n]

 (let [k (count v)]
   (not-any? true?
     (for [i (range k) :let [vi (v i)]]
       (or
         (= vi n)  ;check for shared row
         (= (- k i) (Math/abs (- n vi)))))))) ;check for shared diagonal

(defn extend [vs]

 (for [v vs
       n (range 1 (inc size)) :when (extends? v n)]
   (conj v n)))


(def solutions

 (nth (iterate extend [[]]) size))

(doseq [s solutions]

 (println s))

(println (count solutions) "solutions")</lang>

Curry

Three different ways of attacking the same problem. All copied from A Catalog of Design Patterns in FLP <lang curry> -- 8-queens implementation with the Constrained Constructor pattern -- Sergio Antoy -- Fri Jul 13 07:05:32 PDT 2001

-- Place 8 queens on a chessboard so that no queen can capture -- (and be captured by) any other queen.

-- Non-deterministic choice operator

infixl 0 ! X ! _ = X _ ! Y = Y

-- A solution is represented by a list of integers. -- The i-th integer in the list is the column of the board -- in which the queen in the i-th row is placed. -- Rows and columns are numbered from 1 to 8. -- For example, [4,2,7,3,6,8,5,1] is a solution where the -- the queen in row 1 is in column 4, etc. -- Any solution must be a permutation of [1,2,...,8].

-- The state of a queen is its position, row and column, on the board. -- Operation column is a particularly simple instance -- of a Constrained Constructor pattern. -- When it is invoked, it produces only valid states.

column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8

-- A path of the puzzle is a sequence of successive placements of -- queens on the board. It is not explicitly defined as a type. -- A path is a potential solution in the making.

-- Constrained Constructor on a path -- Any path must be valid, i.e., any column must be in the range 1..8 -- and different from any other column in the path. -- Furthermore, the path must be safe for the queens. -- No queen in a path may capture any other queen in the path. -- Operation makePath add column n to path c or fails.

makePath c n | valid c && safe c 1 = n:c

   where valid c | n =:= column = uniq c
            where uniq [] = True
                  uniq (c:cs) = n /= c && uniq cs
         safe [] _ = True
         safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
            where abs x = if x < 0 then -x else x

-- extend the path argument till all the queens are on the board -- see the Incremental Solution pattern

extend p = if (length p == 8)

            then p
            else extend (makePath p x)
     where x free

-- solve the puzzle

main = extend [] </lang>

Another approach from the same source.

<lang curry> -- N-queens puzzle implemented with "Distinct Choices" pattern -- Sergio Antoy -- Tue Sep 4 13:16:20 PDT 2001 -- updated: Mon Sep 23 15:22:15 PDT 2002

import Integer

queens x | y =:= permute x & void (capture y) = y where y free

capture y = let l1,l2,l3,y1,y2 free in

 l1 ++ [y1] ++ l2 ++ [y2] ++ l3 =:= y & abs (y1-y2) =:= length l2 + 1

-- negation as failure (implemented by encapsulated search): void c = (findall \_->c) =:= []

-- How does this permutation algorithm work? -- Only the elements [0,1,...,n-1] can be permuted. -- The reason is that each element is used as an index in a list. -- A list, called store, of free variables of length n is created. -- Then, the n iterations described below are executed. -- At the i-th iteration, an element, say s, -- of the initial list is non-deterministically selected. -- This element is used as index in the store. -- The s-th variable of the store is unified with i. -- At the end of the iterations, the elements of the store -- are a permutation of [0,1,...,n-1], i.e., the elements -- are unique since two iterations cannot select the same index.

permute n = result n

  where result n = if n==0 then [] else pick n store : result (n-1)
        pick i store | store !! k =:= i = k where k = range n
        range n | n > 0 = range (n-1) ! (n-1)
        store = free

-- end </lang>

Yet another approach, also from the same source.

<lang curry> -- 8-queens implementation with both the Constrained Constructor -- and the Fused Generate and Test patterns. -- Sergio Antoy -- Fri Jul 13 07:05:32 PDT 2001

-- Place 8 queens on a chessboard so that no queen can capture -- (and be captured by) any other queen.

-- Non-deterministic choice operator

infixl 0 ! X ! _ = X _ ! Y = Y

-- A solution is represented by a list of integers. -- The i-th integer in the list is the column of the board -- in which the queen in the i-th row is placed. -- Rows and columns are numbered from 1 to 8. -- For example, [4,2,7,3,6,8,5,1] is a solution where the -- the queen in row 1 is in column 4, etc. -- Any solution must be a permutation of [1,2,...,8].

-- The state of a queen is its position, row and column, on the board. -- Operation column is a particularly simple instance -- of a Constrained Constructor pattern. -- When it is invoked, it produces only valid states.

column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8

-- A path of the puzzle is a sequence of successive placements of -- queens on the board. It is not explicitly defined as a type. -- A path is a potential solution in the making.

-- Constrained Constructor on a path -- Any path must be valid, i.e., any column must be in the range 1..8 -- and different from any other column in the path. -- Furthermore, the path must be safe for the queens. -- No queen in a path may capture any other queen in the path. -- Operation makePath add column n to path c or fails.

makePath c n | valid c && safe c 1 = n:c

   where valid c | n =:= column = uniq c
            where uniq [] = True
                  uniq (c:cs) = n /= c && uniq cs
         safe [] _ = True
         safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
            where abs x = if x < 0 then -x else x

-- extend the path argument till all the queens are on the board -- see the Incremental Solution pattern

extend p = if (length p == 8)

            then p
            else extend (makePath p x)
     where x free

-- solve the puzzle

main = extend [] </lang>

D

From the C solution. <lang d>import std.stdio: write, writeln, writefln;

enum int SIDE = 8; int[SIDE] b;

bool unsafe(int y) {

   int x = b[y];
   foreach (i; 1 .. y+1) {
       int t = b[y - i];
       if ((t == x) || (t == x - i) || (t == x + i))
           return true;
   }
   return false;

}

void show_board() {

   static int s = 0;
   writefln("\nSolution #%d", ++s);
   foreach (y; 0 .. SIDE) {
       foreach (x; 0 .. SIDE)
           write(b[y] == x ? "|Q" : "|_");
       writeln("|");
   }

}

void main() {

   int y = 0;
   b[0] = -1;
   while (y >= 0) {
       do {
           b[y]++;
       } while (b[y] < SIDE && unsafe(y));
       if (b[y] < SIDE) {
           if (y < (SIDE - 1)) {
               b[++y] = -1;
           } else {
               show_board();
           }
       } else {
           y--;
       }
   }

}</lang>

Forth

<lang forth>variable solutions variable nodes

bits ( n -- mask ) 1 swap lshift 1- ;
lowBit ( mask -- bit ) dup negate and ;
lowBit- ( mask -- bits ) dup 1- and ;
next3 ( dl dr f files -- dl dr f dl' dr' f' )
 invert >r
 2 pick r@ and 2* 1+
 2 pick r@ and 2/
 2 pick r> and ;
try ( dl dr f -- )
 dup if
   1 nodes +!
   dup 2over and and
   begin ?dup while
     dup >r lowBit next3 recurse r> lowBit-
   repeat
 else 1 solutions +! then
 drop 2drop ;
queens ( n -- )
 0 solutions ! 0 nodes !
 -1 -1 rot bits try
 solutions @ . ." solutions, " nodes @ . ." nodes" ;

8 queens \ 92 solutions, 1965 nodes</lang>

Haskell

<lang haskell>import Control.Monad

-- given n, "queens n" solves the n-queens problem, returning a list of all the -- safe arrangements. each solution is a list of the columns where the queens are -- located for each row queens :: Int -> Int queens n = foldM oneMoreQueen [] [1..n] -- foldM folds in the list monad, which is convenient for "nondeterminstically" -- finding "all possible solutions" of something. the initial value [] corresponds -- to the only safe arrangement of queens in 0 rows

 where -- given a safe arrangement y of queens in the first i rows,
       -- "add_queen y _" returns a list of all the safe arrangements of queens
       -- in the first (i+1) rows
       oneMoreQueen y _ = [ x : y | x <- [1..n], safe x y 1]

-- "safe x y n" tests whether a queen at column x would be safe from previous -- queens in y where the first element of y is n rows away from x, the second -- element is (n+1) rows away from x, etc. safe x [] n = True safe x (c:y) n = and [ x /= c , x /= c + n , x /= c - n , safe x y (n+1)] -- we only need to check for queens in the same column, and the same diagonals; -- queens in the same row are not possible by the fact that we only pick one -- queen per row


-- prints what the board looks like for a solution; with an extra newline printSolution y = do mapM_ (\x -> putStrLn [if z == x then 'Q' else '.' | z <- [1..n]]) y

                    putStrLn ""
 where n = length y

-- prints all the solutions for 6 queens main = mapM_ printSolution $ queens 6</lang>

If you just want one solution, simply take the head of the result of queens n; since Haskell is lazy, it will only do as much work as needed to find one solution and stop.

Heron

<lang heron>module NQueens {

   inherits {
       Heron.Windows.Console;
   }
   fields {
       n : Int = 4;
       sols : List = new List();
   }
   methods {
       PosToString(row : Int, col : Int) : String {
           return "row " + row.ToString() + ", col " + col.ToString();
       }
       AddQueen(b : Board, row : Int, col : Int)
       {
           if (!b.TryAddQueen(row, col))
               return;            
           if (row < n - 1)
               foreach (i in 0..n-1)
                  AddQueen(new Board(b), row + 1, i);
           else
               sols.Add(b);
       }        
       Main() {
           foreach (i in 0..n-1)
               AddQueen(new Board(), 0, i);
           foreach (b in sols) {
               b.Output();
               WriteLine("");
           }
           WriteLine("Found " + sols.Count().ToString() + " solutions");
       }
   }

}

class Board {

   fields {
       rows = new List();
   }
   methods {
       Constructor() {
           foreach (r in 0..n-1) {
               var col = new List();
               foreach (c in 0..n-1)
                   col.Add(false);
               rows.Add(col);
           }
       }
       Constructor(b : Board) {
           Constructor();
           foreach (r in 0..n-1)
               foreach (c in 0..n-1)
                   SetSpaceOccupied(r, c, b.SpaceOccupied(r, c));
       }
       SpaceOccupied(row : Int, col : Int) : Bool {
           return rows[row][col];
       }
       SetSpaceOccupied(row : Int, col : Int, b : Bool)  {
           rows[row][col] = b;
       }
       ValidPos(row : Int, col : Int) : Bool {
           return ((row >= 0) && (row < n)) && ((col >= 0) && (col < n)); 
       }
       VectorOccupied(row : Int, col : Int, rowDir : Int, colDir : Int) : Bool {
           var nextRow = row + rowDir;
           var nextCol = col + colDir;
           if (!ValidPos(nextRow, nextCol)) 
               return false;
           if (SpaceOccupied(nextRow, nextCol)) 
               return true;
           return VectorOccupied(nextRow, nextCol, rowDir, colDir);
       }
       TryAddQueen(row : Int, col : Int) : Bool {
           foreach (rowDir in -1..1)
               foreach (colDir in -1..1)
                   if (rowDir != 0 || colDir != 0)
                       if (VectorOccupied(row, col, rowDir, colDir))
                           return false;
           SetSpaceOccupied(row, col, true);
           return true;
       }
       Output() {
           foreach (row in 0..n-1) {
               foreach (col in 0..n-1) {
                   if (SpaceOccupied(row, col)) {
                       Write("Q");
                   }
                   else {
                       Write(".");
                   }
               }
               WriteLine("");
           }
       }
   }

}</lang>

Icon and Unicon

Icon

Here's a solution to the n = 8 case:

<lang icon> procedure main()

   write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))

end

procedure q(c)

   static udiag, ddiag, row
   initial {
       udiag := list(15, 0)
       ddiag := list(15, 0)
       row := list(8, 0)
   }
   every 0 = row[r := 1 to 8] = ddiag[r + c - 1] = udiag[8 + r - c] do   # test if free
       suspend row[r] <- ddiag[r + c - 1] <- udiag[8 + r - c] <- r       # place and yield

end </lang>

Notes:

  • Solution assumes attempting to place 8 queens on a standard chessboard, and is a simplification of a program in the The Icon Programming Library (IPL) which is in the public domain.
  • There are 15 left-side-down-diagonals and 15 left-side-up-diagonals represented in the lists. An unfilled row or diagonal has value 0, otherwise the row number is stored to indicate placement.
  • The numeric equality operator =, like all the comparators in Icon, yields the right argument as its solution, or fails. The chain of 0 = A = B = C therefore tests each of A B and C for equality with 0; these semantics read very naturally.
  • every drives the chain of = tests to yield every possible result; the iterable component is the generator 1 to 8 which is progressively stored into r and will be backtracked if any of the equality tests fail. If all the placements are zero, the chain of equalities suceeds, and the suspend is invoked for that iteration.
  • <- is the "reversible assignment" operator. It restores the original value and fails if it is resumed by backtracking. The suspend will use it to temporarily consume the placements and then it will yield the value of the chosen row r.
  • procedure q() attempts to place the c-th column queen into row 1 to 8 in turn, suspending only if that queen can be placed at [c,r]
  • As the calls to q() are evaluated in main, each one will suspend a possible row, thereby allowing the next q(n) in main to be evaluated. If any of the q() fails to yield a row for the nth queen (or runs out of solutions) the previous, suspended calls to q() are backtracked progressively. If the final q(8) yields a row, the write() will be called with the row positions of each queen. Note that even the final q(8) will be suspended along with the other 7 calls to q(). Unless the write() is driven to produce more solutions (see next point) the suspended procedures will be closed at the "end of statement" ie after the write has "succeeded".
  • If you want to derive all possible solutions, main() can be embellished with the every keyword:

<lang icon> procedure main()

   every write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))

end </lang> This drives the backtracking to find more solutions.

The following is a general N-queens solution, adapted from a solution placed into the public domain by Peter A. Bigot in 1990. The program produces a solution for a specified value of N. The comment explains how to modify the program to produce all solutions for a given N. <lang icon> global n, rw, dd, ud

procedure main(args)

   n := integer(args[1]) | 8
   rw := list(n)
   dd := list(2*n-1)
   ud := list(2*n-1)
   solvequeen(1)

end

procedure solvequeen(c)

   if (c > n) then return show()
   else suspend placequeen(c) & solvequeen(c+1)

end

procedure placequeen(c)

   suspend (/rw[r := 1 to n] <- /dd[r+c-1] <- /ud[n+r-c] <- c)

end

procedure show()

   static count, line, border
   initial {
       count := 0
       line := repl("|   ",n) || "|"
       border := repl("----",n) || "-"
       }
   write("solution: ", count+:=1)
   write("  ", border)
   every line[4*(!rw - 1) + 3] <- "Q" do {
       write("  ", line)
       write("  ", border)
       }
   write()
   return      # Comment out to see all possible solutions

end</lang>

A sample run for N = 6:

->nq 6
solution: 1
  -------------------------
  |   |   |   | Q |   |   |
  -------------------------
  | Q |   |   |   |   |   |
  -------------------------
  |   |   |   |   | Q |   |
  -------------------------
  |   | Q |   |   |   |   |
  -------------------------
  |   |   |   |   |   | Q |
  -------------------------
  |   |   | Q |   |   |   |
  -------------------------

->

Two solutions are in the IPL queens and genqueen.

Unicon

Both Icon solutions work in Unicon.

J

This is one of several J solutions shown and explained on this J wiki page

<lang j>perm =: ! A.&i. ] NB. all permutations of integers 0 to y comb2 =: (, #: I.@,@(</)&i.)~ NB. all size 2 combinations of integers 0 to y mask =: [ */@:~:&(|@-/) { queenst=: comb2 (] #"1~ mask)&.|: perm</lang>

Note that the Roger Hui's approach (used here) matches the description attributed to Raymond Hettinger (in the Python implementation).

Java

Translation of: C

<lang java>public class NQueens {

 private static int[] b = new int[8];
 private static int s = 0;
 static boolean unsafe(int y) {
   int x = b[y];
   for (int i = 1; i <= y; i++) {
     int t = b[y - i];
     if (t == x ||
         t == x - i ||
         t == x + i) {
       return true;
     }
   }
   return false;
 }
 public static void putboard() {
   System.out.println("\n\nSolution " + (++s));
   for (int y = 0; y < 8; y++) {
     for (int x = 0; x < 8; x++) {
       System.out.print((b[y] == x) ? "|Q" : "|_");
     }
     System.out.println("|");
   }
 }
 public static void main(String[] args) {
   int y = 0;
   b[0] = -1;
   while (y >= 0) {
     do {
       b[y]++;
     } while ((b[y] < 8) && unsafe(y));
     if (b[y] < 8) {
       if (y < 7) {
         b[++y] = -1;
       } else {
         putboard();
       }
     } else {
       y--;
     }
   }
 }

}</lang>

<lang logo>to try :files :diag1 :diag2 :tried

 if :files = 0 [make "solutions :solutions+1  show :tried  stop]
 localmake "safe (bitand :files :diag1 :diag2)
 until [:safe = 0] [
   localmake "f bitnot bitand :safe minus :safe
   try bitand :files :f  ashift bitand :diag1 :f -1  (ashift bitand :diag2 :f 1)+1  fput bitnot :f :tried
   localmake "safe bitand :safe :safe-1
 ]

end

to queens :n

 make "solutions 0
 try (lshift 1 :n)-1 -1 -1 []
 output :solutions

end

print queens 8  ; 92</lang>

Mathematica

This code recurses through the possibilities, using the "safe" method to check if the current set is allowed. The recursive method has the advantage that finding all possibilities is about as hard (code-wise, not computation-wise) as finding just one. <lang Mathematica>safe[q_List, n_] :=

With[{l = Length@q}, 
 Length@Union@q == Length@Union[q + Range@l] == 
  Length@Union[q - Range@l] == l]

nQueen[q_List:{}, n_] :=

If[safe[q, n], 
 If[Length[q] == n, q, 
  Cases[Flatten[{nQueen[Append[q, #], n]}, 2] & /@ Range[n], 
   Except[{Null} | {}]]], Null]</lang>

This returns a list of valid permutations by giving the queen's column number for each row. It can be displayed in a list of chess-board tables like this: <lang Mathematica>matrixView[n_] :=

Grid[Normal@
    SparseArray[MapIndexed[{#, First@#2} -> "Q" &, #], {n, n}, "."], 
   Frame -> All] & /@ nQueen[n]

matrixView[6] // OutputForm</lang>

{.   .   .   Q   .   ., .   .   .   .   Q   ., .   Q   .   .   .   ., .   .   Q   .   .   .}

 Q   .   .   .   .   .  .   .   Q   .   .   .  .   .   .   Q   .   .  .   .   .   .   .   Q

 .   .   .   .   Q   .  Q   .   .   .   .   .  .   .   .   .   .   Q  .   Q   .   .   .   .

 .   Q   .   .   .   .  .   .   .   .   .   Q  Q   .   .   .   .   .  .   .   .   .   Q   .

 .   .   .   .   .   Q  .   .   .   Q   .   .  .   .   Q   .   .   .  Q   .   .   .   .   .

 .   .   Q   .   .   .  .   Q   .   .   .   .  .   .   .   .   Q   .  .   .   .   Q   .   .



MUMPS

<lang MUMPS>Queens New count,flip,row,sol Set sol=0 For row(1)=1:1:4 Do try(2)  ; Not 8, the other 4 are symmetric... ; ; Remove symmetric solutions Set sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do . New xx,yy . Kill sol($Translate(sol,12345678,87654321)) ; Vertical flip . Kill sol($Reverse(sol)) ; Horizontal flip . Set flip="--------" for xx=1:1:8 Do  ; Flip over top left to bottom right diagonal . . New nx,ny . . Set yy=$Extract(sol,xx),nx=8+1-xx,ny=8+1-yy . . Set $Extract(flip,ny)=nx . . Quit . Kill sol(flip) . Set flip="--------" for xx=1:1:8 Do  ; Flip over top right to bottom left diagonal . . New nx,ny . . Set yy=$Extract(sol,xx),nx=xx,ny=yy . . Set $Extract(flip,ny)=nx . . Quit . Kill sol(flip) . Quit ; ; Display remaining solutions Set count=0,sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do Quit:sol="" . New s1,s2,s3,txt,x,y . Set s1=sol,s2=$Order(sol(s1)),s3="" Set:s2'="" s3=$Order(sol(s2)) . Set txt="+--+--+--+--+--+--+--+--+" . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt . For y=8:-1:1 Do . . Write !,y," |" . . For x=1:1:8 Write $Select($Extract(s1,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . If s2'="" Write " |" . . If s2'="" For x=1:1:8 Write $Select($Extract(s2,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . If s3'="" Write " |" . . If s3'="" For x=1:1:8 Write $Select($Extract(s3,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt . . Quit . Set txt=" A B C D E F G H" . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt Write ! . Set sol=s3 . Quit Quit try(col) New ok,pcol If col>8 Do Quit . New out,x . Set out="" For x=1:1:8 Set out=out_row(x) . Set sol(out)=1 . Quit For row(col)=1:1:8 Do . Set ok=1 . For pcol=1:1:col-1 If row(pcol)=row(col) Set ok=0 Quit . Quit:'ok . For pcol=1:1:col-1 If col-pcol=$Translate(row(pcol)-row(col),"-") Set ok=0 Quit . Quit:'ok . Do try(col+1) . Quit Quit Do Queens

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| | Q| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| | Q| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | |##| |##| Q|##| |##| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| | Q| |##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| | Q| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| |##| Q|##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| | Q| |##| |##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| | |##| |##| |##| Q|##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| |##| |##| Q| |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| Q|##| |##| |##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| | Q| | |##| |##| | Q| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| Q|##| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| |##| Q| |##| |##| | Q| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| Q|##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| |##| | Q| | |##| |##| |##| | Q| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| | Q| |##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| | Q| |##| |##| | |##| |##| |##| |##| Q| |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+

8 | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+

5 |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H</lang>

OCaml

Library: FaCiLe

<lang ocaml>(* Authors: Nicolas Barnier, Pascal Brisset

  Copyright 2004 CENA. All rights reserved.
  This code is distributed under the terms of the GNU LGPL *)

open Facile open Easy

(* Print a solution *) let print queens =

 let n = Array.length queens in
 if n <= 10 then (* Pretty printing *)
   for i = 0 to n - 1 do
     let c = Fd.int_value queens.(i) in (* queens.(i) is bound *)
     for j = 0 to n - 1 do
       Printf.printf "%c " (if j = c then '*' else '-')
     done;
     print_newline ()
   done
 else (* Short print *)
   for i = 0 to n-1 do
     Printf.printf "line %d : col %a\n" i Fd.fprint queens.(i)
   done;
 flush stdout;

(* Solve the n-queens problem *) let queens n =

 (* n decision variables in 0..n-1 *)
 let queens = Fd.array n 0 (n-1) in
 (* 2n auxiliary variables for diagonals *)
 let shift op = Array.mapi (fun i qi -> Arith.e2fd (op (fd2e qi) (i2e i))) queens in
 let diag1 = shift (+~) and diag2 = shift (-~) in
 (* Global constraints *)
 Cstr.post (Alldiff.cstr queens);
 Cstr.post (Alldiff.cstr diag1);
 Cstr.post (Alldiff.cstr diag2);
 (* Heuristic Min Size, Min Value *)
 let h a = (Var.Attr.size a, Var.Attr.min a) in
 let min_min = Goals.Array.choose_index (fun a1 a2 -> h a1 < h a2) in
 (* Search goal *)
 let labeling = Goals.Array.forall ~select:min_min Goals.indomain in
 (* Solve *)
 let bt = ref 0 in
 if Goals.solve ~control:(fun b -> bt := b) (labeling queens) then begin
   Printf.printf "%d backtracks\n" !bt;
   print queens
 end else
   prerr_endline "No solution"

let _ =

 if Array.length Sys.argv <> 2
 then raise (Failure "Usage: queens <nb of queens>");
 Gc.set ({(Gc.get ()) with Gc.space_overhead = 500}); (* May help except with an underRAMed system *)
 queens (int_of_string Sys.argv.(1));;</lang>

Oz

A pretty naive solution, using constraint programming: <lang oz>declare

 fun {Queens N}
    proc {$ Board}
       %% a board is a N-tuple of rows
       Board = {MakeTuple queens N}
       for Y in 1..N  do
          %% a row is a N-tuple of values in [0,1]
          %% (0: no queen, 1: queen)
          Board.Y = {FD.tuple row N 0#1}
       end
       {ForAll {Rows Board} SumIs1}
       {ForAll {Columns Board} SumIs1}
       %% for every two points on a diagonal
       for [X1#Y1 X2#Y2] in {DiagonalPairs N} do
          %$ at most one of them has a queen
          Board.Y1.X1 + Board.Y2.X2 =<: 1
       end
       %% enumerate all such boards
       {FD.distribute naive {FlatBoard Board}}
    end
 end
 fun {Rows Board}
    {Record.toList Board}
 end
 fun {Columns Board}
    for X in {Arity Board.1} collect:C1 do
       {C1
        for Y in {Arity Board} collect:C2 do
           {C2 Board.Y.X}
        end}
    end
 end
 proc {SumIs1 Xs}
    {FD.sum Xs '=:' 1}
 end
 fun {DiagonalPairs N}
    proc {Coords Root}
       [X1#Y1 X2#Y2] = Root
       Diff
    in
       X1::1#N Y1::1#N
       X2::1#N Y2::1#N
       %% (X1,Y1) and (X2,Y2) are on a diagonal if {Abs X2-X1} = {Abs Y2-Y1}
       Diff::1#N-1
       {FD.distance X2 X1 '=:' Diff}
       {FD.distance Y2 Y1 '=:' Diff}
       %% enumerate all such coordinates
       {FD.distribute naive [X1 Y1 X2 Y2]}
    end
 in
    {SearchAll Coords}
 end
 fun {FlatBoard Board}
    {Flatten {Record.toList {Record.map Board Record.toList}}}
 end
 Solutions = {SearchAll {Queens 8}}

in

 {Length Solutions} = 92 %% assert
 {Inspect {List.take Solutions 3}}</lang>

There is a more concise and much more efficient solution in the Mozart documentation.


Perl 6

Neither pretty nor efficient, a simple backtracking solution

<lang perl6> sub MAIN($N = 8) {

   sub collision(@field, $row) {
       for ^$row -> $i {
           my $distance = @field[$i] - @field[$row];
           return 1 if $distance == any(0, $row - $i, $i - $row);
       }
       0;
   }
   sub search(@field is rw, $row) {
       if $row == $N {
           return @field;
       } else {
           for ^$N -> $i {
               @field[$row] = $i;
               if !collision(@field, $row) {
                   my @r = search(@field, $row + 1);
                   return @r if @r;
               }
           }
       }
       return;
   }
   my @field;
   for (0..$N/2) {
       my @f = search [$_], 1;
       if @f {
           say ~@f;
           last;
       }
   }

}

  1. output:

0 4 7 5 2 6 1 3 </lang>

PicoLisp

Calling 'permute'

<lang PicoLisp>(load "@lib/simul.l") # for 'permute'

(de queens (N)

  (let (R (range 1 N)  Cnt 0)
     (for L (permute (range 1 N))
        (when
           (= N  # from the Python solution
              (length (uniq (mapcar + L R)))
              (length (uniq (mapcar - L R))) )
           (inc 'Cnt) ) )
     Cnt ) )</lang>

Permuting inline

This alternative version does not first pre-generate all permutations with 'permute', but creates them recursively. Also, it directly checks for duplicates, instead of calling 'uniq' and 'length'. This is much faster. <lang PicoLisp>(de queens (N)

  (let (R (range 1 N)  L (copy R)  X L  Cnt 0)
     (recur (X)  # Permute
        (if (cdr X)
           (do (length X)
              (recurse (cdr X))
              (rot X) )
           (or
              (seek  # Direct check for duplicates
                 '((L) (member (car L) (cdr L)))
                 (mapcar + L R) )
              (seek
                 '((L) (member (car L) (cdr L)))
                 (mapcar - L R) )
              (inc 'Cnt) ) ) )
     Cnt ) )</lang>

Output in both cases:

: (queens 8)
-> 92

PureBasic

A recursive approach is taken. A queen is placed in an unused column for each new row. An array keeps track if a queen has already been placed in a given column so that no duplicate columns result. That handles the Rook attacks. Bishop attacks are handled by checking the diagonal alignments of each new placement against the previously placed queens and if an attack is possible the solution backtracks. The solutions are kept track of in a global variable and the routine queens(n) is called with the required number of queens specified. <lang PureBasic>Global solutions

Procedure showBoard(Array queenCol(1))

 Protected row, column, n = ArraySize(queenCol())
 PrintN(" Solution " + Str(solutions))
 For row = 0 To n
   For column = 0 To n
     If queenCol(row) = column
       Print("|Q")
     Else
       Print("| ")
     EndIf
   Next
   PrintN("|")
 Next

EndProcedure

Macro advanceIfPossible()

 x + 1
 While x <= n And columns(x): x + 1: Wend
 If x > n
   ProcedureReturn #False ;backtrack
 EndIf 

EndMacro

Procedure placeQueens(Array queenCol(1), Array columns(1), row = 0)

 Protected n = ArraySize(queenCol())
 
 If row > n
   solutions + 1
   showBoard(queenCol())
   ProcedureReturn #False ;backtrack
 EndIf
 
 Protected x, queen, passed
 While columns(x): x + 1: Wend
   
 ;place a new queen in one of the available columns
 Repeat 
   passed = #True
   For queen = 0 To row - 1
     If ((queenCol(queen) - x) = (queen - row)) Or ((queenCol(queen) - x) = -(queen - row))
       advanceIfPossible()
       passed = #False
       Break ;ForNext loop
     EndIf
   Next
   
   If passed
     queenCol(row) = x: columns(x) = 1
     If Not placeQueens(queenCol(), columns(), row + 1)
       columns(x) = 0
       advanceIfPossible()
     EndIf 
   EndIf 
 ForEver

EndProcedure

Procedure queens(n)

 If n > 0
   Dim queenCol(n - 1)
   Dim columns(n - 1)
   placeQueens(queenCol(), columns()) 
 EndIf 

EndProcedure

If OpenConsole()

 Define i
 For i = 1 To 12
   solutions = 0
   queens(i)
   PrintN(#CRLF$ + Str(solutions) + " solutions found for " + Str(i) + "-queens.")
   Input()
 Next 
 
 Print(#CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang> Sample output showing the last solution (all are actually displayed) for 1 - 12 queens:

 Solution 1
|Q|

1 solutions found for 1-queens. {Press ENTER}

0 solutions found for 2-queens. {Press ENTER}

0 solutions found for 3-queens. {Press ENTER}

 Solution 2
| | |Q| |
|Q| | | |
| | | |Q|
| |Q| | |

2 solutions found for 4-queens. {Press ENTER}

 Solution 10
| | | | |Q|
| | |Q| | |
|Q| | | | |
| | | |Q| |
| |Q| | | |

10 solutions found for 5-queens. {Press ENTER}

 Solution 4
| | | | |Q| |
| | |Q| | | |
|Q| | | | | |
| | | | | |Q|
| | | |Q| | |
| |Q| | | | |

4 solutions found for 6-queens. {Press ENTER}

 Solution 40
| | | | | | |Q|
| | | | |Q| | |
| | |Q| | | | |
|Q| | | | | | |
| | | | | |Q| |
| | | |Q| | | |
| |Q| | | | | |

40 solutions found for 7-queens. {Press ENTER}

 Solution 92
| | | | | | | |Q|
| | | |Q| | | | |
|Q| | | | | | | |
| | |Q| | | | | |
| | | | | |Q| | |
| |Q| | | | | | |
| | | | | | |Q| |
| | | | |Q| | | |

92 solutions found for 8-queens. {Press ENTER}

 Solution 352
| | | | | | | | |Q|
| | | | | | |Q| | |
| | | |Q| | | | | |
| |Q| | | | | | | |
| | | | | | | |Q| |
| | | | | |Q| | | |
|Q| | | | | | | | |
| | |Q| | | | | | |
| | | | |Q| | | | |

352 solutions found for 9-queens. {Press ENTER}

 Solution 724
| | | | | | | | | |Q|
| | | | | | | |Q| | |
| | | | |Q| | | | | |
| | |Q| | | | | | | |
|Q| | | | | | | | | |
| | | | | |Q| | | | |
| |Q| | | | | | | | |
| | | | | | | | |Q| |
| | | | | | |Q| | | |
| | | |Q| | | | | | |

724 solutions found for 10-queens. {Press ENTER}

 Solution 2680
| | | | | | | | | | |Q|
| | | | | | | | |Q| | |
| | | | | | |Q| | | | |
| | | | |Q| | | | | | |
| | |Q| | | | | | | | |
|Q| | | | | | | | | | |
| | | | | | | | | |Q| |
| | | | | | | |Q| | | |
| | | | | |Q| | | | | |
| | | |Q| | | | | | | |
| |Q| | | | | | | | | |

2680 solutions found for 11-queens. {Press ENTER}

 Solution 14200
| | | | | | | | | | | |Q|
| | | | | | | | | |Q| | |
| | | | | | | |Q| | | | |
| | | | |Q| | | | | | | |
| | |Q| | | | | | | | | |
|Q| | | | | | | | | | | |
| | | | | | |Q| | | | | |
| |Q| | | | | | | | | | |
| | | | | | | | | | |Q| |
| | | | | |Q| | | | | | |
| | | |Q| | | | | | | | |
| | | | | | | | |Q| | | |

14200 solutions found for 12-queens. {Press ENTER}

Python

This solution, originally by [Raymond Hettinger] for demonstrating the power of the itertools module, generates all solutions.

<lang python>from itertools import permutations

n = 8 cols = range(n) for vec in permutations(cols):

   if n == len(set(vec[i]+i for i in cols)) \
        == len(set(vec[i]-i for i in cols)):
       print ( vec )</lang>

The output is presented in vector form (each number represents the column position of a queen on consecutive rows). The vector can be pretty printed by substituting a call to board instead of print, with the same argument, and where board is pre-defined as: <lang python>def board(vec):

   print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")</lang>

Raymond's description is:

With the solution represented as a vector with one queen in each row, we don't have to check to see if two queens are on the same row. By using a permutation generator, we know that no value in the vector is repeated, so we don't have to check to see if two queens are on the same column. Since rook moves don't need to be checked, we only need to check bishop moves.
The technique for checking the diagonals is to add or subtract the column number from each entry, so any two entries on the same diagonal will have the same value (in other words, the sum or difference is unique for each diagonal). Now all we have to do is make sure that the diagonals for each of the eight queens are distinct. So, we put them in a set (which eliminates duplicates) and check that the set length is eight (no duplicates were removed).
Any permutation with non-overlapping diagonals is a solution. So, we print it and continue checking other permutations.

One disadvantage with this solution is that we can't simply "skip" all the permutations that start with a certain prefix, after discovering that that prefix is incompatible. For example, it is easy to verify that no permutation of the form (1,2,...) could ever be a solution, but since we don't have control over the generation of the permutations, we can't just tell it to "skip" all the ones that start with (1,2).

Alternative Solution

Works with: Python version 2.6, 3.x

<lang python># From: http://wiki.python.org/moin/SimplePrograms, with permission from the author, Steve Howell BOARD_SIZE = 8

def under_attack(col, queens):

   return col in queens or \
          any(abs(col - x) == len(queens)-i for i,x in enumerate(queens))

def solve(n):

   solutions = [[]]
   for row in range(n):
       solutions = [solution+[i+1]
                      for i in range(BOARD_SIZE)
                      for solution in solutions
                      if not under_attack(i+1, solution)]
   return solutions

for answer in solve(BOARD_SIZE): print(list(enumerate(answer, start=1)))</lang>

Ruby

This implements the heuristics found on the wikipedia page to return just one solution <lang ruby># 1. Divide n by 12. Remember the remainder (n is 8 for the eight queens

  1. puzzle).
  2. 2. Write a list of the even numbers from 2 to n in order.
  3. 3. If the remainder is 3 or 9, move 2 to the end of the list.
  4. 4. Append the odd numbers from 1 to n in order, but, if the remainder is 8,
  5. switch pairs (i.e. 3, 1, 7, 5, 11, 9, …).
  6. 5. If the remainder is 2, switch the places of 1 and 3, then move 5 to the
  7. end of the list.
  8. 6. If the remainder is 3 or 9, move 1 and 3 to the end of the list.
  9. 7. Place the first-column queen in the row with the first number in the
  10. list, place the second-column queen in the row with the second number in
  11. the list, etc.

def n_queens(n)

 if n == 1
   return "Q"
 elsif n < 4
   puts "no solutions for n=#{n}"
   return ""
 end
 evens = (2..n).step(2).to_a
 odds = (1..n).step(2).to_a
 rem = n % 12  # (1)
 nums = evens  # (2)
 nums.push(nums.shift) if rem == 3 or rem == 9  # (3)
 # (4)
 if rem == 8
   odds = odds.each_slice(2).inject([]) {|ary, (a,b)| ary += [b,a]}
 end
 nums.concat(odds)
 # (5)
 if rem == 2
   idx = []
   [1,3,5].each {|i| idx[i] = nums.index(i)}
   nums[idx[1]], nums[idx[3]] = nums[idx[3]], nums[idx[1]]
   nums.slice!(idx[5])
   nums.push(5)
 end
 # (6)
 if rem == 3 or rem == 9
   [1,3].each do |i|
     nums.slice!( nums.index(i) )
     nums.push(i)
   end
 end
 # (7)
 board = Array.new(n) {Array.new(n) {"."}}
 n.times {|i| board[i][nums[i] - 1] = "Q"}
 board.inject("") {|str, row| str << row.join(" ") << "\n"}

end

(1 .. 15).each {|n| puts "n=#{n}"; puts n_queens(n); puts}</lang>

Output:

n=1
Q

n=2
no solutions for n=2


n=3
no solutions for n=3


n=4
. Q . .
. . . Q
Q . . .
. . Q .

n=5
. Q . . .
. . . Q .
Q . . . .
. . Q . .
. . . . Q

n=6
. Q . . . .
. . . Q . .
. . . . . Q
Q . . . . .
. . Q . . .
. . . . Q .

n=7
. Q . . . . .
. . . Q . . .
. . . . . Q .
Q . . . . . .
. . Q . . . .
. . . . Q . .
. . . . . . Q

n=8
. Q . . . . . .
. . . Q . . . .
. . . . . Q . .
. . . . . . . Q
. . Q . . . . .
Q . . . . . . .
. . . . . . Q .
. . . . Q . . .

n=9
. . . Q . . . . .
. . . . . Q . . .
. . . . . . . Q .
. Q . . . . . . .
. . . . Q . . . .
. . . . . . Q . .
. . . . . . . . Q
Q . . . . . . . .
. . Q . . . . . .

n=10
. Q . . . . . . . .
. . . Q . . . . . .
. . . . . Q . . . .
. . . . . . . Q . .
. . . . . . . . . Q
Q . . . . . . . . .
. . Q . . . . . . .
. . . . Q . . . . .
. . . . . . Q . . .
. . . . . . . . Q .

n=11
. Q . . . . . . . . .
. . . Q . . . . . . .
. . . . . Q . . . . .
. . . . . . . Q . . .
. . . . . . . . . Q .
Q . . . . . . . . . .
. . Q . . . . . . . .
. . . . Q . . . . . .
. . . . . . Q . . . .
. . . . . . . . Q . .
. . . . . . . . . . Q

n=12
. Q . . . . . . . . . .
. . . Q . . . . . . . .
. . . . . Q . . . . . .
. . . . . . . Q . . . .
. . . . . . . . . Q . .
. . . . . . . . . . . Q
Q . . . . . . . . . . .
. . Q . . . . . . . . .
. . . . Q . . . . . . .
. . . . . . Q . . . . .
. . . . . . . . Q . . .
. . . . . . . . . . Q .

n=13
. Q . . . . . . . . . . .
. . . Q . . . . . . . . .
. . . . . Q . . . . . . .
. . . . . . . Q . . . . .
. . . . . . . . . Q . . .
. . . . . . . . . . . Q .
Q . . . . . . . . . . . .
. . Q . . . . . . . . . .
. . . . Q . . . . . . . .
. . . . . . Q . . . . . .
. . . . . . . . Q . . . .
. . . . . . . . . . Q . .
. . . . . . . . . . . . Q

n=14
. Q . . . . . . . . . . . .
. . . Q . . . . . . . . . .
. . . . . Q . . . . . . . .
. . . . . . . Q . . . . . .
. . . . . . . . . Q . . . .
. . . . . . . . . . . Q . .
. . . . . . . . . . . . . Q
. . Q . . . . . . . . . . .
Q . . . . . . . . . . . . .
. . . . . . Q . . . . . . .
. . . . . . . . Q . . . . .
. . . . . . . . . . Q . . .
. . . . . . . . . . . . Q .
. . . . Q . . . . . . . . .

n=15
. . . Q . . . . . . . . . . .
. . . . . Q . . . . . . . . .
. . . . . . . Q . . . . . . .
. . . . . . . . . Q . . . . .
. . . . . . . . . . . Q . . .
. . . . . . . . . . . . . Q .
. Q . . . . . . . . . . . . .
. . . . Q . . . . . . . . . .
. . . . . . Q . . . . . . . .
. . . . . . . . Q . . . . . .
. . . . . . . . . . Q . . . .
. . . . . . . . . . . . Q . .
. . . . . . . . . . . . . . Q
Q . . . . . . . . . . . . . .
. . Q . . . . . . . . . . . .

Scala

The algorithm below is lazy. It returns an iterator, and each solution is computed as you ask for the next element of the iterator. If you ask for one element, it will only compute one solution.

The test for legal moves is a bit redundant, as the algorithm can never generate two positions in the same row.

<lang scala>case class Pos(row: Int, column: Int) {

 def sameRow(p: Pos) = row == p.row
 def sameColumn(p: Pos) = column == p.column
 def sameDiag(p: Pos) = (p.column - column).abs == (p.row - row).abs
 def illegal(p: Pos) = sameRow(p) || sameColumn(p) || sameDiag(p)
 def legal(p: Pos) = !illegal(p)

}

def rowSet(size: Int, row: Int) = Iterator.tabulate(size)(column => Pos(row, column))

def expand(solutions: Iterator[List[Pos]], size: Int, row: Int) =

 for {
   solution <- solutions
   pos <- rowSet(size, row)
   if solution forall (_ legal pos)
 } yield pos :: solution

def seed(size: Int) = rowSet(size, 0) map (sol => List(sol))

def solve(size: Int) = (1 until size).foldLeft(seed(size)) (expand(_, size, _))</lang>

Tcl

This solution is based on the C version on wikipedia. By default it solves the 8-queen case; to solve for any other number, pass N as an extra argument on the script's command line (see the example for the N=6 case, which has anomalously few solutions).

Works with: Tcl version 8.5

<lang tcl>package require Tcl 8.5

proc unsafe {y} {

   global b
   set x [lindex $b $y]
   for {set i 1} {$i <= $y} {incr i} {

set t [lindex $b [expr {$y - $i}]] if {$t==$x || $t==$x-$i || $t==$x+$i} { return 1 }

   }
   return 0

}

proc putboard {} {

   global b s N
   puts "\n\nSolution #[incr s]"
   for {set y 0} {$y < $N} {incr y} {

for {set x 0} {$x < $N} {incr x} { puts -nonewline [expr {[lindex $b $y] == $x ? "|Q" : "|_"}] } puts "|"

   }

}

proc main {n} {

   global b N
   set N $n
   set b [lrepeat $N 0]
   set y 0
   lset b 0 -1
   while {$y >= 0} {

lset b $y [expr {[lindex $b $y] + 1}] while {[lindex $b $y] < $N && [unsafe $y]} { lset b $y [expr {[lindex $b $y] + 1}] } if {[lindex $b $y] >= $N} { incr y -1 } elseif {$y < $N-1} { lset b [incr y] -1; } else { putboard }

   }

}

main [expr {$argc ? int(0+[lindex $argv 0]) : 8}]</lang> Sample output:

$ tclsh8.5 8queens.tcl 6

Solution #1
|_|Q|_|_|_|_|
|_|_|_|Q|_|_|
|_|_|_|_|_|Q|
|Q|_|_|_|_|_|
|_|_|Q|_|_|_|
|_|_|_|_|Q|_|


Solution #2
|_|_|Q|_|_|_|
|_|_|_|_|_|Q|
|_|Q|_|_|_|_|
|_|_|_|_|Q|_|
|Q|_|_|_|_|_|
|_|_|_|Q|_|_|


Solution #3
|_|_|_|Q|_|_|
|Q|_|_|_|_|_|
|_|_|_|_|Q|_|
|_|Q|_|_|_|_|
|_|_|_|_|_|Q|
|_|_|Q|_|_|_|


Solution #4
|_|_|_|_|Q|_|
|_|_|Q|_|_|_|
|Q|_|_|_|_|_|
|_|_|_|_|_|Q|
|_|_|_|Q|_|_|
|_|Q|_|_|_|_|

Ursala

This is invoked as a command line application by queens -n, where n is a number greater than 3. Multiple solutions may be reported but reflections and rotations thereof are omitted. <lang Ursala>#import std

  1. import nat

remove_reflections = ^D(length@ht,~&); ~&K2hlPS+ * ^lrNCCs/~&r difference*D remove_rotations = ~&K2hlrS2S+ * num; ~&srlXSsPNCCs

  1. executable <'par',>
  2. optimize+

queens =

%np+~command.options.&h.keyword.&iNC; -+

  ~&iNC+ file$[contents: --<>+ mat` *+ %nP*=*],
  remove_rotations+ remove_reflections+ ~&rSSs+ nleq-<&l*rFlhthPXPSPS,
  ~&i&& ~&lNrNCXX; ~&rr->rl ^/~&l ~&lrrhrSiF4E?/~&rrlPlCrtPX @r ^|/~& ^|T\~& -+
     -<&l^|*DlrTS/~& ~&iiDlSzyCK9hlPNNXXtCS,
     ^jrX/~& @rZK20lrpblPOlrEkPK13lhPK2 ~&i&& nleq$-&lh+-,
  ^/~&NNXS+iota -<&l+ ~&plll2llr2lrPrNCCCCNXS*=irSxPSp+ ^H/block iota; *iiK0 ^/~& sum+-</lang>

The output shows one solution on each line. A solution is reported as a sequence of numbers with the -th number being the index of the occupied row in the -th column.

$ queens -4                     
2 3 0 1                         
$ queens -5                     
0 2 1 3 4                       
2 4 3 0 1
1 3 2 4 0
$ queens 6
4 3 0 2 1 5