Juggler sequence
Background of the juggler sequence:
You are encouraged to solve this task according to the task description, using any language you may know.
Juggler sequences were publicized by an American mathematician and author Clifford A. Pickover. The name of the sequence gets it's name from the similarity of the rising and falling nature of the numbers in the sequences, much like balls in the hands of a juggler.
- Description
A juggler sequence is an integer sequence that starts with a positive integer a[0], with each subsequent term in the sequence being defined by the recurrence relation:
a[k + 1] = floor(a[k] ^ 0.5) if a[k] is even or a[k + 1] = floor(a[k] ^ 1.5) if a[k] is odd
If a juggler sequence reaches 1, then all subsequent terms are equal to 1. This is known to be the case for initial terms up to 1,000,000 but it is not known whether all juggler sequences after that will eventually reach 1.
- Task
Compute and show here the following statistics for juggler sequences with an initial term of a[n] where n is between 20 and 39 inclusive:
- l[n] - the number of terms needed to reach 1.
- h[n] - the maximum value reached in that sequence.
- i[n] - the index of the term (starting from 0) at which the maximum is (first) reached.
If your language supports big integers with an integer square root function, also compute and show here the same statistics for as many as you reasonably can of the following values for n:
113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443, 275485, 1267909, 2264915, 5812827
Those with fast languages and fast machines may also like to try their luck at n = 7110201.
However, as h[n] for most of these numbers is thousands or millions of digits long, show instead of h[n]:
- d[n] - the number of digits in h[n]
The results can be (partially) verified against the table here.
- Related tasks
- See also
- oeis:A007320 Number of steps needed for Juggler sequence started at n to reach 1
- oeis:A094716 Largest value in the Juggler sequence started at n
11l
F juggler(n)
V a = Int64(n)
V r_count = 0
V r_max = a
V r_maxidx = 0
L a != 1
V f = Float(a)
a = Int64(I a [&] 1 == 0 {sqrt(f)} E f * sqrt(f))
r_count++
I a > r_max
r_max = a
r_maxidx = r_count
R (r_count, r_max, r_maxidx)
print(‘n l[n] h[n] i[n]’)
print(‘------------------------------’)
L(n) 20..39
V (l, h, i) = juggler(n)
print(f:‘{n} {l:2} {h:14} {i}’)
- Output:
n l[n] h[n] i[n] ------------------------------ 20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2598 2 34 6 36 3 35 8 2978 2 36 3 36 0 37 17 24906114455136 8 38 3 38 0 39 14 233046 3
F isqrt(BigInt x)
assert(x >= 0)
V q = BigInt(1)
L q <= x
q *= 4
V z = x
V r = BigInt(0)
L q > 1
q I/= 4
V t = z - r - q
r I/= 2
I t >= 0
z = t
r += q
R r
F juggler(k, countdig = 1B, maxiters = 1000)
V (m, maxj, maxjpos) = (BigInt(k), BigInt(k), 0)
L(i) 1 .< maxiters
m = I m % 2 == 0 {isqrt(m)} E isqrt(m * m * m)
I m >= maxj
(maxj, maxjpos) = (m, i)
I m == 1
print(f:‘{k:9}{commatize(i):6}{maxjpos:6}{commatize(I countdig {String(maxj).len} E maxj):20}{I countdig {‘ digits’} E ‘’}’)
R i
print(‘ERROR: Juggler series starting with ’k‘ did not converge in ’maxiters‘ iterations’)
print(" n l(n) i(n) h(n) or d(n)\n-------------------------------------------")
L(k) 20..39
juggler(k, 0B)
L(k) [113, 173, 193, 2183, 11229, 15065]
juggler(k)
- Output:
n l(n) i(n) h(n) or d(n) ------------------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 113 16 9 27 digits 173 32 17 82 digits 193 73 47 271 digits 2183 72 32 5,929 digits 11229 101 54 8,201 digits 15065 66 25 11,723 digits
Ada
with Ada.Text_IO;
with Ada.Numerics.Generic_Elementary_Functions;
procedure Juggler is
subtype Number is Long_Long_Integer;
type Index_Type is new Natural;
subtype Initial_Values is Number range 20 .. 39;
generic
Initial : Number;
package Generic_Juggler is
procedure Next (Value : out Number; Index : out Index_Type);
end Generic_Juggler;
package body Generic_Juggler is
type Real is new Long_Long_Float;
package Real_Math is
new Ada.Numerics.Generic_Elementary_Functions (Real);
K : Index_Type := 0;
A_K : Real := Real (Initial);
procedure Next (Value : out Number; Index : out Index_Type) is
use Real_Math;
begin
Value := Number (A_K);
Index := K;
A_K := (if Number (A_K) mod 2 = 0
then Real'Floor (A_K ** 0.5)
else Real'Floor (A_K ** 1.5));
K := K + 1;
end Next;
end Generic_Juggler;
procedure Statistics (N : Number; L_N : out Index_Type;
H_N : out Number; I_N : out Index_Type)
is
package Juggler_Generator is new Generic_Juggler (Initial => N);
use Juggler_Generator;
Value : Number;
begin
H_N := 0;
I_N := 0;
loop
Next (Value, L_N);
if Value > H_N then
H_N := Value;
I_N := L_N;
end if;
exit when Value = 1;
end loop;
end Statistics;
procedure Put_Table is
package Number_IO is new Ada.Text_IO.Integer_IO (Number);
package Index_IO is new Ada.Text_IO.Integer_IO (Index_Type);
use Ada.Text_IO, Number_IO, Index_IO;
L_N : Index_Type;
H_N : Number;
I_N : Index_Type;
begin
Put_Line (" N L(N) H(N) I(N)");
Put_Line ("---------------------------------");
for N in Initial_Values loop
Statistics (N, L_N, H_N, I_N);
Put (N, Width => 3); Put (L_N, Width => 7);
Put (H_N, Width => 16); Put (I_N, Width => 7); New_Line;
end loop;
end Put_Table;
begin
Put_Table;
end Juggler;
- Output:
N L(N) H(N) I(N) --------------------------------- 20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2598 2 34 6 36 3 35 8 2978 2 36 3 36 0 37 17 24906114455136 8 38 3 38 0 39 14 233046 3
AppleScript
Core language
Keeping within AppleScript's usable number range:
on juggler(n)
script o
property sequence : {n}
end script
set i to 1
set {max, pos} to {n, i}
repeat until (n = 1)
set n to n ^ (n mod 2 + 0.5) div 1
set end of o's sequence to n
set i to i + 1
if (n > max) then set {max, pos} to {n, i}
end repeat
return {n:n, sequence:o's sequence, |length|:i, max:max, maxPos:pos}
end juggler
on intToText(n)
if (n < 2 ^ 29) then return n as integer as text
set lst to {n mod 10 as integer}
set n to n div 10
repeat until (n = 0)
set beginning of lst to n mod 10 as integer
set n to n div 10
end repeat
return join(lst, "")
end intToText
on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join
on task()
set output to {}
repeat with n from 20 to 39
set {|length|:len, max:max, maxPos:pos} to juggler(n)
set end of output to join({n, ": l[n] = ", len - 1, ", h[n] = ", intToText(max), ", i[n] = ", pos - 1}, "")
end repeat
return join(output, linefeed)
end task
task()
- Output:
"20: l[n] = 3, h[n] = 20, i[n] = 0
21: l[n] = 9, h[n] = 140, i[n] = 4
22: l[n] = 3, h[n] = 22, i[n] = 0
23: l[n] = 9, h[n] = 110, i[n] = 1
24: l[n] = 3, h[n] = 24, i[n] = 0
25: l[n] = 11, h[n] = 52214, i[n] = 3
26: l[n] = 6, h[n] = 36, i[n] = 3
27: l[n] = 6, h[n] = 140, i[n] = 1
28: l[n] = 6, h[n] = 36, i[n] = 3
29: l[n] = 9, h[n] = 156, i[n] = 1
30: l[n] = 6, h[n] = 36, i[n] = 3
31: l[n] = 6, h[n] = 172, i[n] = 1
32: l[n] = 6, h[n] = 36, i[n] = 3
33: l[n] = 8, h[n] = 2598, i[n] = 2
34: l[n] = 6, h[n] = 36, i[n] = 3
35: l[n] = 8, h[n] = 2978, i[n] = 2
36: l[n] = 3, h[n] = 36, i[n] = 0
37: l[n] = 17, h[n] = 24906114455136, i[n] = 8
38: l[n] = 3, h[n] = 38, i[n] = 0
39: l[n] = 14, h[n] = 233046, i[n] = 3"
Shell script
One of AppleScript's main roles is telling other software to do things. This includes Unix executables, many of which come with the system. In the following, the 'do shell script' command feeds a script to the Bash shell, which script itself contains code to be passed to and executed by the "bc" executable. It's essentially a script within a script within a script. The text returned from "bc", which can handle larger numbers than core AppleScript, contains lines which are just the zeros returned by the 'juggler' function, so these are stripped out using "sed". The 'do shell script' command is supplied by the StandardAdditions OSAX which comes with the system as a standard AppleScript extension. So ironically, there's not a single command from the core language in the following code. But it's legitimate AppleScript and the input and output are both AppleScript text objects.
do shell script "echo '
define juggler(n) {
#auto temp,i,max,pos
#scale = 0;
temp = n; i = 0; max = n; pos = i;
while (temp > 1) {
i = i + 1; temp = sqrt(temp ^ (1 + (temp % 2 * 2)));
if (temp > max) { max = temp; pos = i; }
}
if (n < 40) {
print n,\": l[n] = \",i,\", h[n] = \",max, \", i[n] = \",pos,\"\\n\";
} else {
print n,\": l[n] = \",i,\", d[n] = \",length(max), \", i[n] = \",pos,\"\\n\";
}
return;
}
for (n = 20 ; n < 40 ; n++) { juggler(n); }
print \"\\n\";
juggler(113); juggler(173); juggler(193); juggler(2183); juggler(11229); juggler(15065);
juggler(15845); # 91 seconds so far.
juggler(30817); # Another 191 to here.
# juggler(48443) produced no result after running all night.
' | bc | sed -n '/^0$/ !p;'"
- Output:
"20: l[n] = 3, h[n] = 20, i[n] = 0
21: l[n] = 9, h[n] = 140, i[n] = 4
22: l[n] = 3, h[n] = 22, i[n] = 0
23: l[n] = 9, h[n] = 110, i[n] = 1
24: l[n] = 3, h[n] = 24, i[n] = 0
25: l[n] = 11, h[n] = 52214, i[n] = 3
26: l[n] = 6, h[n] = 36, i[n] = 3
27: l[n] = 6, h[n] = 140, i[n] = 1
28: l[n] = 6, h[n] = 36, i[n] = 3
29: l[n] = 9, h[n] = 156, i[n] = 1
30: l[n] = 6, h[n] = 36, i[n] = 3
31: l[n] = 6, h[n] = 172, i[n] = 1
32: l[n] = 6, h[n] = 36, i[n] = 3
33: l[n] = 8, h[n] = 2598, i[n] = 2
34: l[n] = 6, h[n] = 36, i[n] = 3
35: l[n] = 8, h[n] = 2978, i[n] = 2
36: l[n] = 3, h[n] = 36, i[n] = 0
37: l[n] = 17, h[n] = 24906114455136, i[n] = 8
38: l[n] = 3, h[n] = 38, i[n] = 0
39: l[n] = 14, h[n] = 233046, i[n] = 3
113: l[n] = 16, d[n] = 27, i[n] = 9
173: l[n] = 32, d[n] = 82, i[n] = 17
193: l[n] = 73, d[n] = 271, i[n] = 47
2183: l[n] = 72, d[n] = 5929, i[n] = 32
11229: l[n] = 101, d[n] = 8201, i[n] = 54
15065: l[n] = 66, d[n] = 11723, i[n] = 25
15845: l[n] = 139, d[n] = 23889, i[n] = 43
30817: l[n] = 93, d[n] = 45391, i[n] = 39"
BQN
Juggle ← {
Step ← ⌊⊢⋆(0.5 + 2|⊢)
¯1‿0‿0 + 3↑{
n‿imax‿max‿term ← 𝕩
𝕊⍟(term≠1) ⟨n+1, (max<term)⊑imax‿n, max⌈term, Step term⟩
} 0‿0‿0‿𝕩
}
>⟨"NLIH"⟩ ∾ (⊢∾Juggle)¨ 20+↕20
- Output:
┌─ ╵ 'N' 'L' 'I' 'H' 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 ┘
C#
using System;
using System.Collections.Generic;
using System.Numerics;
public class JugglerSequence
{
public static void Main(string[] args)
{
Console.WriteLine(" n l[n] i[n] h[n]");
Console.WriteLine("---------------------------------");
for (int number = 20; number <= 39; number++)
{
JugglerData result = Juggler(number);
Console.WriteLine($"{number,2}{result.Count,7}{result.MaxCount,6}{result.MaxNumber,17}");
}
Console.WriteLine();
List<int> values = new List<int> { 113, 173, 193, 2183, 11229, 15065, 15845, 30817 };
Console.WriteLine(" n l[n] i[n] d[n]");
Console.WriteLine("----------------------------");
foreach (int value in values)
{
JugglerData result = Juggler(value);
Console.WriteLine($"{value,5}{result.Count,8}{result.MaxCount,7}{result.DigitCount,7}");
}
}
private static JugglerData Juggler(int number)
{
if (number < 1)
{
throw new ArgumentException("Starting value must be >= 1: " + number);
}
BigInteger bigNumber = new BigInteger(number);
int count = 0;
int maxCount = 0;
BigInteger maxNumber = bigNumber;
while (!bigNumber.Equals(BigInteger.One))
{
if (bigNumber.IsEven)
{
bigNumber = bigNumber.Sqrt();
}
else
{
BigInteger cubed = BigInteger.Pow(bigNumber, 3);
bigNumber = cubed.Sqrt(); // Approximating the cube root by taking the square root of the cubed value.
}
count++;
if (bigNumber.CompareTo(maxNumber) > 0)
{
maxNumber = bigNumber;
maxCount = count;
}
}
return new JugglerData(count, maxCount, maxNumber, maxNumber.ToString().Length);
}
private class JugglerData
{
public int Count { get; }
public int MaxCount { get; }
public BigInteger MaxNumber { get; }
public int DigitCount { get; }
public JugglerData(int count, int maxCount, BigInteger maxNumber, int digitCount)
{
Count = count;
MaxCount = maxCount;
MaxNumber = maxNumber;
DigitCount = digitCount;
}
}
}
public static class BigIntegerExtensions
{
public static BigInteger Sqrt(this BigInteger n)
{
if (n == 0) return 0;
if (n > 0)
{
int bitLength = Convert.ToInt32(Math.Ceiling(BigInteger.Log(n, 2)));
BigInteger root = BigInteger.One << (bitLength / 2);
while (!IsSqrt(n, root))
{
root += n / root;
root /= 2;
}
return root;
}
throw new ArithmeticException("NaN");
}
private static bool IsSqrt(BigInteger n, BigInteger root)
{
BigInteger lowerBound = root * root;
BigInteger upperBound = (root + 1) * (root + 1);
return n >= lowerBound && n < upperBound;
}
}
- Output:
n l[n] i[n] h[n] --------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 n l[n] i[n] d[n] ---------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2183 72 32 5929 11229 101 54 8201 15065 66 25 11723 15845 139 43 23889 30817 93 39 45391
C++
#include <cassert>
#include <iomanip>
#include <iostream>
#include <string>
#include <gmpxx.h>
using big_int = mpz_class;
auto juggler(int n) {
assert(n >= 1);
int count = 0, max_count = 0;
big_int a = n, max = n;
while (a != 1) {
if (a % 2 == 0)
a = sqrt(a);
else
a = sqrt(big_int(a * a * a));
++count;
if (a > max) {
max = a;
max_count = count;
}
}
return std::make_tuple(count, max_count, max, max.get_str().size());
}
int main() {
std::cout.imbue(std::locale(""));
std::cout << "n l[n] i[n] h[n]\n";
std::cout << "--------------------------------\n";
for (int n = 20; n < 40; ++n) {
auto [count, max_count, max, digits] = juggler(n);
std::cout << std::setw(2) << n << " " << std::setw(2) << count
<< " " << std::setw(2) << max_count << " " << max
<< '\n';
}
std::cout << '\n';
std::cout << " n l[n] i[n] d[n]\n";
std::cout << "----------------------------------------\n";
for (int n : {113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443,
275485, 1267909, 2264915, 5812827, 7110201, 56261531,
92502777, 172376627, 604398963}) {
auto [count, max_count, max, digits] = juggler(n);
std::cout << std::setw(11) << n << " " << std::setw(3) << count
<< " " << std::setw(3) << max_count << " " << digits
<< '\n';
}
}
- Output:
n l[n] i[n] h[n] -------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 n l[n] i[n] d[n] ---------------------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391 48,443 157 60 972,463 275,485 225 148 1,909,410 1,267,909 151 99 1,952,329 2,264,915 149 89 2,855,584 5,812,827 135 67 7,996,276 7,110,201 205 119 89,981,517 56,261,531 254 92 105,780,485 92,502,777 191 117 139,486,096 172,376,627 262 90 449,669,621 604,398,963 327 172 640,556,693
F#
This task uses Isqrt_(integer_square_root)_of_X#F.23
// Juggler sequence. Nigel Galloway: August 19th., 2021
let J n=Seq.unfold(fun(n,i,g,l)->if n=1I then None else let e=match n.IsEven with true->Isqrt n |_->Isqrt(n**3) in Some((i,g,l),if e>i then (e,e,l+1,l+1) else (e,i,g,l+1)))(n,n,0,0)|>Seq.last
printfn " n l[n] i[n] h[n]\n___________________"; [20I..39I]|>Seq.iter(fun n->let i,g,l=J n in printfn $"%d{int n}%5d{l+1}%5d{g} %A{i}")
printfn " n l[n] i[n] d[n]\n________________________"; [113I;173I;193I;2183I;11229I;15065I;15845I;30817I]|>Seq.iter(fun n->let i,g,l=J n in printfn $"%8d{int n}%5d{l+1}%5d{g} %d{(bigint.Log10>>int>>(+)1) i}")
- Output:
n l[n] i[n] h[n] ___________________ 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 n l[n] i[n] d[n] ________________________ 113 16 9 27 173 32 17 82 193 73 47 271 2183 72 32 5929 11229 101 54 8201 15065 66 25 11723 15845 139 43 23889 30817 93 39 45391
Factor
USING: combinators formatting generalizations io kernel math
math.extras math.functions.integer-logs math.order math.ranges
sequences strings tools.memory.private ;
: next ( m -- n )
dup odd? [ dup dup * * ] when integer-sqrt ;
: new-max ( l i h a -- l i h a )
[ drop dup ] 2dip nip dup ;
: (step) ( l i h a -- l i h a )
[ 1 + ] 3dip 2dup < [ new-max ] when next ;
: step ( l i h a -- l i h a )
dup 1 = [ (step) ] unless ;
: juggler ( n quot: ( h -- obj ) -- l i h )
[ 0 0 ] [ dup [ step ] to-fixed-point drop ] [ call ] tri*
[ 1 [-] ] dip ; inline
CONSTANT: fmt "%-8s %-8s %-8s %s\n"
: row. ( n quot -- )
dupd juggler [ commas ] 4 napply fmt printf ; inline
: dashes. ( n -- )
CHAR: - <string> print ;
: header. ( str -- )
[ "n" "l[n]" "i[n]" ] dip fmt printf 45 dashes. ;
: juggler. ( seq quot str -- )
header. [ row. ] curry each ; inline
20 39 [a,b] [ ] "h[n]" juggler. nl
{ 113 173 193 2183 11229 15065 15845 30817 }
[ integer-log10 1 + ] "d[n]" juggler.
- Output:
n l[n] i[n] h[n] --------------------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n l[n] i[n] d[n] --------------------------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391
Go
This originally took about 13.5 minutes to reach n = 5,812,827 on my machine (Intel core i7-8565U) using Go's native 'math/big' package.
However, when I exchanged that for Go's GMP wrapper there was a massive speed-up (now only 6.4 seconds to reach n = 5,812,827) and even 7,110,201 became viable with an overall time of 1 minute 40 seconds.
The next four record holders for the largest term (see talk page), are also doable but increased the overall time to nearly 24 minutes on my machine.
package main
import (
"fmt"
"log"
//"math/big"
big "github.com/ncw/gmp"
"rcu"
)
var zero = new(big.Int)
var one = big.NewInt(1)
var two = big.NewInt(2)
func juggler(n int64) (int, int, *big.Int, int) {
if n < 1 {
log.Fatal("Starting value must be a positive integer.")
}
count := 0
maxCount := 0
a := big.NewInt(n)
max := big.NewInt(n)
tmp := new(big.Int)
for a.Cmp(one) != 0 {
if tmp.Rem(a, two).Cmp(zero) == 0 {
a.Sqrt(a)
} else {
tmp.Mul(a, a)
tmp.Mul(tmp, a)
a.Sqrt(tmp)
}
count++
if a.Cmp(max) > 0 {
max.Set(a)
maxCount = count
}
}
return count, maxCount, max, len(max.String())
}
func main() {
fmt.Println("n l[n] i[n] h[n]")
fmt.Println("-----------------------------------")
for n := int64(20); n < 40; n++ {
count, maxCount, max, _ := juggler(n)
cmax := rcu.Commatize(int(max.Int64()))
fmt.Printf("%2d %2d %2d %s\n", n, count, maxCount, cmax)
}
fmt.Println()
nums := []int64{
113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443, 275485, 1267909,
2264915, 5812827, 7110201, 56261531, 92502777, 172376627, 604398963,
}
fmt.Println(" n l[n] i[n] d[n]")
fmt.Println("-------------------------------------")
for _, n := range nums {
count, maxCount, _, digits := juggler(n)
cn := rcu.Commatize(int(n))
fmt.Printf("%11s %3d %3d %s\n", cn, count, maxCount, rcu.Commatize(digits))
}
}
- Output:
n l[n] i[n] h[n] ----------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n l[n] i[n] d[n] ------------------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391 48,443 157 60 972,463 275,485 225 148 1,909,410 1,267,909 151 99 1,952,329 2,264,915 149 89 2,855,584 5,812,827 135 67 7,996,276 7,110,201 205 119 89,981,517 56,261,531 254 92 105,780,485 92,502,777 191 117 139,486,096 172,376,627 262 90 449,669,621 604,398,963 327 172 640,556,693
Haskell
Integer square root is computed as in Isqrt_(integer_square_root)_of_X#Haskell
import Text.Printf
import Data.List
juggler :: Integer -> [Integer]
juggler = takeWhile (> 1) . iterate (\x -> if odd x
then isqrt (x*x*x)
else isqrt x)
task :: Integer -> IO ()
task n = printf s n (length ns + 1) (i :: Int) (showMax m)
where
ns = juggler n
(m, i) = maximum $ zip ns [0..]
s = "n = %d length = %d maximal value at = %d (%s)\n"
showMax n = let s = show n
in if n > 10^100
then show (length s) ++ " digits"
else show n
main = do
mapM_ task [20..39]
putStrLn "\nTough guys\n"
mapM_ task [ 113, 173, 193, 2183, 11229, 15065, 15845, 30817 ]
n = 20 length = 3 maximal value at = 0 (20) n = 21 length = 10 maximal value at = 4 (140) n = 22 length = 3 maximal value at = 0 (22) n = 23 length = 10 maximal value at = 1 (110) n = 24 length = 3 maximal value at = 0 (24) n = 25 length = 11 maximal value at = 3 (52214) n = 26 length = 7 maximal value at = 3 (36) n = 27 length = 7 maximal value at = 1 (140) n = 28 length = 7 maximal value at = 3 (36) n = 29 length = 10 maximal value at = 1 (156) n = 30 length = 7 maximal value at = 3 (36) n = 31 length = 7 maximal value at = 1 (172) n = 32 length = 7 maximal value at = 3 (36) n = 33 length = 8 maximal value at = 2 (2598) n = 34 length = 7 maximal value at = 3 (36) n = 35 length = 8 maximal value at = 2 (2978) n = 36 length = 4 maximal value at = 0 (36) n = 37 length = 18 maximal value at = 8 (24906114455136) n = 38 length = 4 maximal value at = 0 (38) n = 39 length = 15 maximal value at = 3 (233046) Tough guys n = 113 length = 17 maximal value at = 9 (202924588924125339424550328) n = 173 length = 33 maximal value at = 17 (4450608860210678234719664930918817118564659064289879586228390154864378511410864886) n = 193 length = 74 maximal value at = 47 (271 digits) n = 2183 length = 73 maximal value at = 32 (5929 digits) n = 11229 length = 102 maximal value at = 54 (8201 digits) n = 15065 length = 67 maximal value at = 25 (11723 digits) n = 15845 length = 140 maximal value at = 43 (23889 digits) n = 30817 length = 94 maximal value at = 39 (45391 digits)
J
jug=: <.@^ 0.5+2|]
would work if 64 bit floats were adequate for the task example, but they are not.
Instead, we take the square root of either the even number or the third power of the odd number:
jugx=: <.@%:@(^ 1x+2*2|])
Task examples:
require'format/printf'
task=: {{
echo '%d: l: %d, h: %d, i:%d' sprintf y;(#;>./;]i.>./)jugx^:a: y
}}
task"0(+i.)20
20: l: 4, h: 20, i:0
21: l: 10, h: 140, i:4
22: l: 4, h: 22, i:0
23: l: 10, h: 110, i:1
24: l: 4, h: 24, i:0
25: l: 12, h: 52214, i:3
26: l: 7, h: 36, i:3
27: l: 7, h: 140, i:1
28: l: 7, h: 36, i:3
29: l: 10, h: 156, i:1
30: l: 7, h: 36, i:3
31: l: 7, h: 172, i:1
32: l: 7, h: 36, i:3
33: l: 9, h: 2598, i:2
34: l: 7, h: 36, i:3
35: l: 9, h: 2978, i:2
36: l: 4, h: 36, i:0
37: l: 18, h: 24906114455136, i:8
38: l: 4, h: 38, i:0
39: l: 15, h: 233046, i:3
Sadly, J's extended precision implementation is antiquated (slow), hopefully that will be fixed before too long.
Still, some of the stretch exercises can be computed quickly:
taskx=: {{
echo '%d: l: %d, d: %d, i:%d' sprintf y;(#;#@":@(>./);]i.>./)jugx^:a: y
}}
taskx"0(113 173 193 2183 11229)
113: l: 17, d: 27, i:9
173: l: 33, d: 82, i:17
193: l: 74, d: 271, i:47
2183: l: 73, d: 5929, i:32
11229: l: 102, d: 8201, i:54
Java
import java.math.BigInteger;
import java.util.List;
public final class JugglerSequence {
public static void main(String[] aArgs) {
System.out.println(" n l[n] i[n] h[n]");
System.out.println("---------------------------------");
for ( int number = 20; number <= 39; number++ ) {
JugglerData result = juggler(number);
System.out.println(String.format("%2d%7d%6d%17d",
number, result.aCount, result.aMaxCount, result.aMaxNumber));
}
System.out.println();
List<Integer> values = List.of( 113, 173, 193, 2183, 11229, 15065, 15845, 30817 );
System.out.println(" n l[n] i[n] d[n]");
System.out.println("----------------------------");
for ( int value : values ) {
JugglerData result = juggler(value);
System.out.println(String.format("%5d%8d%7d%7d",
value, result.aCount, result.aMaxCount, result.aDigitCount));
}
}
private static JugglerData juggler(int aNumber) {
if ( aNumber < 1 ) {
throw new IllegalArgumentException("Starting value must be >= 1: " + aNumber);
}
BigInteger number = BigInteger.valueOf(aNumber);
int count = 0;
int maxCount = 0;
BigInteger maxNumber = number;
while ( ! number.equals(BigInteger.ONE) ) {
number = number.testBit(0) ? number.pow(3).sqrt() : number.sqrt();
count = count + 1;
if ( number.compareTo(maxNumber) > 0 ) {
maxNumber = number;
maxCount = count;
}
}
return new JugglerData(count, maxCount, maxNumber, String.valueOf(maxNumber).length());
}
private static record JugglerData(int aCount, int aMaxCount, BigInteger aMaxNumber, int aDigitCount) {}
}
- Output:
n l[n] i[n] h[n] --------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 n l[n] i[n] d[n] ---------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2183 72 32 5929 11229 101 54 8201 15065 66 25 11723 15845 139 43 23889 30817 93 39 45391
jq
Works with gojq, the Go implementation of jq
The following jq program uses `idivide/1`, `isqrt/0`, and `lpad/1` as defined at Isqrt_(integer_square_root)_of_X#jq.
def juggler:
. as $n
| if $n < 1 then "juggler starting value must be a positive integer." | error
else { a: $n, count: 0, maxCount: 0, max: $n }
| until (.a == 1;
if .a % 2 == 0 then .a |= isqrt
else .a = ((.a * .a * .a)|isqrt)
end
| .count += 1
| if .a > .max
then .max = .a
| .maxCount = .count
else .
end)
| [.count, .maxCount, .max, (.max|tostring|length)]
end
;
def fmt(a;b;c;d):
"\(.[0]|lpad(a)) \(.[1]|lpad(b)) \(.[2]|lpad(c)) \(.[3]|lpad(d))" ;
def task1:
"n l[n] i[n] h[n]",
"-----------------------------------",
(range(20; 40)
| . as $n
| juggler as $res
| [$n, $res[0], $res[1], $res[2] ]
| fmt(4;4;4;14) ) ;
def task2:
def nums:[113, 173, 193, 2183, 11229, 15065, 15845, 30817];
" n l[n] i[n] d[n]",
"-----------------------------",
(nums[]
| . as $n
| juggler as $res
| [$n, $res[0], $res[1], $res[3] ]
| fmt(6; 6; 6; 8) );
task1, "", task2
- Output:
n l[n] i[n] h[n] ----------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 n l[n] i[n] d[n] ----------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2183 72 32 5929 11229 101 54 8201 15065 66 25 11723 15845 139 43 23889 30817 93 39 45391
Julia
using Formatting
function juggler(k, countdig=true, maxiters=20000)
m, maxj, maxjpos = BigInt(k), BigInt(k), BigInt(0)
for i in 1:maxiters
m = iseven(m) ? isqrt(m) : isqrt(m*m*m)
if m >= maxj
maxj, maxjpos = m, i
end
if m == 1
println(lpad(k, 9), lpad(i, 6), lpad(maxjpos, 6), lpad(format(countdig ?
ndigits(maxj) : Int(maxj), commas=true), 20), countdig ? " digits" : "")
return i
end
end
error("Juggler series starting with $k did not converge in $maxiters iterations")
end
println(" n l(n) i(n) h(n) or d(n)\n------------------------------------------")
foreach(k -> juggler(k, false), 20:39)
@time foreach(juggler,
[113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443, 275485, 1267909,
2264915, 5812827])
@time juggler(7110201)
- Output:
n l(n) i(n) h(n) or d(n) ------------------------------------------ 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 113 16 9 27 digits 173 32 17 82 digits 193 73 47 271 digits 2183 72 32 5,929 digits 11229 101 54 8,201 digits 15065 66 25 11,723 digits 15845 139 43 23,889 digits 30817 93 39 45,391 digits 48443 157 60 972,463 digits 275485 225 148 1,909,410 digits 1267909 151 99 1,952,329 digits 2264915 149 89 2,855,584 digits 5812827 135 67 7,996,276 digits 4.969021 seconds (113.27 k allocations: 2.023 GiB, 0.29% gc time) 7110201 205 119 89,981,517 digits 89.493898 seconds (1.11 M allocations: 27.713 GiB, 1.19% gc time)
Mathematica / Wolfram Language
next[n_Integer] := If[EvenQ@n, Floor[Sqrt[n]], Floor[n^(3/2)]]
stats[n_Integer] :=
Block[{data = Most@NestWhileList[next, n, # > 1 &], mx},
mx = First@Ordering[data, -1];
{n, Length[data], data[[mx]], mx - 1}]
{TableForm[Table[stats@n, {n, 20, 39}],
TableHeadings -> {None, {"n", "length", "max", "max pos"}}]
- Output:
n length max max pos 20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2598 2 34 6 36 3 35 8 2978 2 36 3 36 0 37 17 24906114455136 8 38 3 38 0 39 14 233046 3
Nim
Using only standard library, so limited to values of n
less than 40.
import math, strformat
func juggler(n: Positive): tuple[count: int; max: uint64; maxIdx: int] =
var a = n.uint64
result = (0, a, 0)
while a != 1:
let f = float(a)
a = if (a and 1) == 0: sqrt(f).uint64
else: uint64(f * sqrt(f))
inc result.count
if a > result.max:
result.max = a
result.maxIdx = result.count
echo "n l[n] h[n] i[n]"
echo "——————————————————————————————"
for n in 20..39:
let (l, h, i) = juggler(n)
echo &"{n} {l:2} {h:14} {i}"
- Output:
n l[n] h[n] i[n] —————————————————————————————— 20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2598 2 34 6 36 3 35 8 2978 2 36 3 36 0 37 17 24906114455136 8 38 3 38 0 39 14 233046 3
Perl
#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Juggler_sequence
use warnings;
use Math::BigInt lib => 'GMP';
print " n l(n) i(n) h(n) or d(n)\n";
print " ------- ---- ---- ------------\n";
for my $i ( 20 .. 39,
113, 173, 193, 2183, 11229, 15065, 15845, 30817,
48443, 275485, 1267909, 2264915, 5812827,
7110201 # tried my luck, luck takes about 94 seconds
)
{
my $max = my $n = Math::BigInt->new($i);
my $at = my $count = 0;
while( $n > 1 )
{
$n = sqrt( $n & 1 ? $n ** 3 : $n );
$count++;
$n > $max and ($max, $at) = ($n, $count);
}
if( length $max < 27 )
{
printf "%8d %4d %3d %s\n", $i, $count, $at, $max;
}
else
{
printf "%8d %4d %3d d(n) = %d digits\n", $i, $count, $at, length $max;
}
}
- Output:
n l(n) i(n) h(n) or d(n) ------- ---- ---- ------------ 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2598 34 6 3 36 35 8 2 2978 36 3 0 36 37 17 8 24906114455136 38 3 0 38 39 14 3 233046 113 16 9 d(n) = 27 digits 173 32 17 d(n) = 82 digits 193 73 47 d(n) = 271 digits 2183 72 32 d(n) = 5929 digits 11229 101 54 d(n) = 8201 digits 15065 66 25 d(n) = 11723 digits 15845 139 43 d(n) = 23889 digits 30817 93 39 d(n) = 45391 digits 48443 157 60 d(n) = 972463 digits 275485 225 148 d(n) = 1909410 digits 1267909 151 99 d(n) = 1952329 digits 2264915 149 89 d(n) = 2855584 digits 5812827 135 67 d(n) = 7996276 digits 7110201 205 119 d(n) = 89981517 digits
Phix
You can run this online here.
with javascript_semantics include mpfr.e function juggler(integer n, bool bDigits=false) atom t0 = time(), t1 = time()+1 assert(n>=1) mpz a = mpz_init(n), h = mpz_init(n) integer l = 0, hi = 0 while mpz_cmp_si(a,1)!=0 do if mpz_odd(a) then mpz_pow_ui(a,a,3) end if mpz_sqrt(a,a) l += 1 if mpz_cmp(a,h)>0 then mpz_set(h,a) hi = l end if if platform()!=JS and time()>t1 then progress("working (l=%d)\r",{l}) t1 = time()+1 end if end while atom hd = iff(bDigits?mpz_sizeinbase(h,10):mpz_get_atom(h)) t0 = time()-t0 string t = iff(t0>=1?" ("&elapsed(t0)&")":"") return {n, l, hd, hi, t} end function procedure main() atom t0 = time() printf(1," n l[n] h[n] i[n]\n") printf(1,"-----------------------------------\n") for n=20 to 39 do printf(1,"%2d %2d %,18d %2d %s\n", juggler(n)) end for sequence nums = {113, 173, 193, 2183, 11229, 15065, 15845, 30817} -- alas mpz_sqrt() throws a wobbly over the rest: -- 48443, 275485, 1267909, 2264915, 5812827, 7110201} printf(1,"\n n l[n] d[n] i[n]\n") printf(1,"-----------------------------\n") -- ... and pwa/p2js(/mpfr.js) only copes with the first 3 for i=1 to iff(platform()=JS?3:length(nums)) do printf(1,"%9d %3d %,6d %2d %s\n", juggler(nums[i],true)) end for ?elapsed(time()-t0) end procedure main()
- Output:
n l[n] h[n] i[n] ----------------------------------- 20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52,214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2,598 2 34 6 36 3 35 8 2,978 2 36 3 36 0 37 17 24,906,114,455,136 8 38 3 38 0 39 14 233,046 3 n l[n] d[n] i[n] ----------------------------- 113 16 27 9 173 32 82 17 193 73 271 47 2183 72 5,929 32 11229 101 8,201 54 15065 66 11,723 25 15845 139 23,889 43 30817 93 45,391 39 "0.1s"
Actually pwa/p2js will cope a bit further than that 193, but at a pretty glacial rate (your browser's JavaScript BigInt implementation/performance might differ from mine):
2183 72 5,929 32 (1 minute and 8s) 11229 101 8,201 54 (2 minutes and 33s) 15065 66 11,723 25 (7 minutes and 43s) 15845 139 23,889 43 (1 hour, 10 minutes and 32s) "1 hour, 21 minutes and 47s"
(Everything prior was over and done in 0.1s) I think I can fairly safely predict that 30817 would be over 4 hours. Should someone provide a better implementation of mpz_sqrt() for either or both of desktop/Phix and pwa/p2js's mpfr.js (the latter is currently a trivial 10 liner), things might improve...
Python
Slowed to a crawl at n of 1267909, so did not run for larger n.
from math import isqrt
def juggler(k, countdig=True, maxiters=1000):
m, maxj, maxjpos = k, k, 0
for i in range(1, maxiters):
m = isqrt(m) if m % 2 == 0 else isqrt(m * m * m)
if m >= maxj:
maxj, maxjpos = m, i
if m == 1:
print(f"{k: 9}{i: 6,}{maxjpos: 6}{len(str(maxj)) if countdig else maxj: 20,}{' digits' if countdig else ''}")
return i
print("ERROR: Juggler series starting with $k did not converge in $maxiters iterations")
print(" n l(n) i(n) h(n) or d(n)\n-------------------------------------------")
for k in range(20, 40):
juggler(k, False)
for k in [113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443, 275485, 1267909]:
juggler(k)
- Output:
n l(n) i(n) h(n) or d(n) -------------------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 113 16 9 27 digits 173 32 17 82 digits 193 73 47 271 digits 2183 72 32 5,929 digits 11229 101 54 8,201 digits 15065 66 25 11,723 digits 15845 139 43 23,889 digits 30817 93 39 45,391 digits 48443 157 60 972,463 digits 275485 225 148 1,909,410 digits 1267909 151 99 1,952,329 digits
Quackery
[ dip number$
over size -
space swap of
swap join echo$ ] is recho ( n n --> )
[ 1 & ] is odd ( n --> b )
[ dup dup * * ] is cubed ( n --> n )
[ dup 1
[ 2dup > while
+ 1 >>
2dup / again ]
drop nip ] is sqrt ( n --> n )
[ nested
[ dup -1 peek 1 != while
dup -1 peek
dup odd if cubed
sqrt join again ] ] is juggler ( n --> [ )
[ dup 4 recho
juggler
dup size 1 -
3 recho
0 swap behead swap
witheach
[ 2dup < if
[ rot drop
i^ 1+ unrot
swap ]
drop ]
15 recho 2 recho cr ] is stats ( n --> )
20 times [ i^ 20 + stats ]
- Output:
20 3 20 0 21 9 140 4 22 3 22 0 23 9 110 1 24 3 24 0 25 11 52214 3 26 6 36 3 27 6 140 1 28 6 36 3 29 9 156 1 30 6 36 3 31 6 172 1 32 6 36 3 33 8 2598 2 34 6 36 3 35 8 2978 2 36 3 36 0 37 17 24906114455136 8 38 3 38 0 39 14 233046 3
Raku
Reaches 30817 fairly quickly but later values suck up enough memory that it starts thrashing the disk cache and performance drops off a cliff (on my system). Killed it after 10 minutes and capped list at 30817. Could rewrite to not try to hold entire sequence in memory at once, but probably not worth it. If you want sheer numeric calculation performance, Raku is probably not where it's at.
use Lingua::EN::Numbers;
sub juggler (Int $n where * > 0) { $n, { $_ +& 1 ?? .³.&isqrt !! .&isqrt } … 1 }
sub isqrt ( \x ) { my ( $X, $q, $r, $t ) = x, 1, 0 ;
$q +<= 2 while $q ≤ $X ;
while $q > 1 {
$q +>= 2; $t = $X - $r - $q; $r +>= 1;
if $t ≥ 0 { $X = $t; $r += $q }
}
$r
}
say " n l[n] i[n] h[n]";
for 20..39 {
my @j = .&juggler;
my $max = @j.max;
printf "%2s %4d %4d %s\n", .&comma, +@j-1, @j.first(* == $max, :k), comma $max;
}
say "\n n l[n] i[n] d[n]";
( 113, 173, 193, 2183, 11229, 15065, 15845, 30817 ).hyper(:1batch).map: {
my $start = now;
my @j = .&juggler;
my $max = @j.max;
printf "%10s %4d %4d %10s %6.2f seconds\n", .&comma, +@j-1, @j.first(* == $max, :k),
$max.chars.&comma, (now - $start);
}
- Output:
n l[n] i[n] h[n] 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n l[n] i[n] d[n] 113 16 9 27 0.01 seconds 173 32 17 82 0.01 seconds 193 73 47 271 0.09 seconds 2,183 72 32 5,929 1.05 seconds 11,229 101 54 8,201 1.98 seconds 15,065 66 25 11,723 2.05 seconds 15,845 139 43 23,889 10.75 seconds 30,817 93 39 45,391 19.60 seconds
REXX
REXX doesn't have a native integer sqrt function, so one was utilized that was previously written.
Also, one optimization was to examine the last decimal digit for oddness (instead of getting the remainder when
dividing by two).
Another optimization was to reduce the number of digits after the sqrt was calculated.
/*REXX program calculates and displays the juggler sequence for any positive integer*/
numeric digits 20 /*define the number of decimal digits. */
parse arg LO HI list /*obtain optional arguments from the CL*/
if LO='' | LO="," then do; LO= 20; HI= 39; end /*Not specified? Then use the default.*/
if HI='' | HI="," then HI= LO /* " " " " " " */
w= length( commas(HI) ) /*find the max width of any number N. */
d= digits(); dd= d + d%3 + 1 /*get # numeric digits; another version*/
if LO>0 then say c('n',w) c("steps",7) c('maxIndex',8) c("biggest term" ,dd)
if LO>0 then say c('' ,w,.) c("" ,7,.) c('' ,8,.) c("" ,dd,.)
do n=LO to HI while n>0; steps= juggler(n) /*invoke JUGGLER: find the juggler num.*/
nc= commas(n) /*maybe add commas to N. */
say right(nc, w) c(steps, 8) c(imx, 8) right( commas(mx), dd-1)
end /*n*/
/*biggest term isn't shown for list #s.*/
xtra= words(list) /*determine how many numbers in list. */
if xtra==0 then exit 0 /*no special ginormous juggler numbers?*/
w= max(9, length( commas( word(list, xtra) ) ) ) /*find the max width of any list number*/
say; say; say
say c('n',w) c("steps",7) c('maxIndex',8) c("max number of digits",dd)
say c('' ,w,.) c("" ,7,.) c('' ,8,.) c("" ,dd,.)
do p=1 for xtra; n= word(list, p) /*process each of the numbers in list. */
steps= juggler(n); nc= commas(n) /*get a number & pass it on to JUGGLER.*/
say right(nc, w) c(steps, 8) c(imx, 8) right( commas(length(mx)), dd-1)
end /*p*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
c: parse arg c1,c2,c3; if c3=='' then c3= ' '; else c3= '─'; return center(c1,c2,c3)
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
Isqrt: procedure; parse arg x; q= 1; r= 0 /*obtain X; R will be the Isqrt(X). */
do until q>x; q= q * 4 /*multiply Q by four until > X. */
end /*until*/
do while q>1; q= q % 4 /*processing while Q>1; quarter Q. */
t= x - r - q; r= r % 2 /*set T ──► X-R-Q; halve R. */
if t>=0 then do; x= t; r= r + q /*T≥0? Then set X ──► T; add Q ──► R.*/
end
end /*while*/; return r /*return the integer square root of X.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
juggler: parse arg #; imx= 0; mx= # /*get N; set index of MX and MX ──► 0.*/
@.=0; @.1=1; @.3=1; @.5=1; @.7=1; @.9=1 /*set semaphores (≡1) for odd dec. digs*/
do j=1 until z==1 /*here is where we begin to juggle. */
parse var # '' -1 _ /*obtain the last decimal digit of #. */
if @._ then do; cube= #*#*# /*Odd? Then compute integer sqrt(#**3).*/
if pos(., cube)>0 then do /*need to increase decimal digits.*/
parse var cube with 'E' x
if x>=digits() then numeric digits x+2
end
z= Isqrt(#*#*#) /*compute the integer sqrt(#**3) */
end
else z= Isqrt(#) /*Even? Then compute integer sqrt(#). */
L= length(z)
if L>=d then numeric digits L+1 /*reduce the number of numeric digits. */
if z>mx then do; mx= z; imx= j; end /*found a new max; set MX; set IMX. */
#= z
end /*j*/; return j
- output when using the inputs: , , 113 173 193 2183 11229 15065 30817 48443
n steps maxIndex biggest term ── ─────── ──────── ─────────────────────────── 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n steps maxIndex max number of digits ───────── ─────── ──────── ─────────────────────────── 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391 48,443 157 60 972,463
RPL
≪ 0 SWAP DUP2 DO DUP 2 MOD 1.5 0.5 IFTE ^ FLOOR SWAP 1 + SWAP IF 3 PICK OVER < THEN ROT DROP DUP ROT ROT 4 ROLL DROP OVER 4 ROLLD END UNTIL DUP 1 == END DROP SWAP R→B ROT 3 →LIST ≫ 'JUGLR' STO ≪ { "n" "l[n}" "h[n}" "i[n}" } 20 39 FOR n { } n + n JUGLR + NEXT ≫ 'TASK' STO
- Output:
21: { "n" "l[n}" "h[n}" "i[n}" } 20: { 20 3 #20 0 } 19: { 21 9 # 140d 4 } 18: { 22 3 # 22d 0 } 17: { 23 9 # 110d 1 } 16: { 24 3 # 24d 0 } 15: { 25 11 # 52214d 3 } 14: { 26 6 # 36d 3 } 13: { 27 6 # 140d 1 } 12: { 28 6 # 36d 3 } 11: { 29 9 # 156d 1 } 10: { 30 6 # 36d 3 } 9: { 31 6 # 172d 1 } 8: { 32 6 # 36d 3 } 7: { 33 8 # 2598d 2 } 6: { 34 6 # 36d 3 } 5: { 35 8 # 2978d 2 } 4: { 36 3 # 36d 0 } 3: { 37 17 # 24906114455136d 8 } 2: { 38 3 # 38d 0 } 1: { 39 14 # 233046d 3 }
Ruby
def juggler(k) = k.even? ? Integer.sqrt(k) : Integer.sqrt(k*k*k)
(20..39).chain([113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443, 275485, 1267909, 2264915]).each do |k|
k1 = k
l = h = i = 0
until k == 1 do
h, i = k, l if k > h
l += 1
k = juggler(k)
end
if k1 < 40 then
puts "#{k1}: l[n] = #{l}, h[n] = #{h}, i[n] = #{i}"
else
puts "#{k1}: l[n] = #{l}, d[n] = #{h.to_s.size}, i[n] = #{i}"
end
end
- Output:
20: l[n] = 3, h[n] = 20, i[n] = 0 21: l[n] = 9, h[n] = 140, i[n] = 4 22: l[n] = 3, h[n] = 22, i[n] = 0 23: l[n] = 9, h[n] = 110, i[n] = 1 24: l[n] = 3, h[n] = 24, i[n] = 0 25: l[n] = 11, h[n] = 52214, i[n] = 3 26: l[n] = 6, h[n] = 36, i[n] = 3 27: l[n] = 6, h[n] = 140, i[n] = 1 28: l[n] = 6, h[n] = 36, i[n] = 3 29: l[n] = 9, h[n] = 156, i[n] = 1 30: l[n] = 6, h[n] = 36, i[n] = 3 31: l[n] = 6, h[n] = 172, i[n] = 1 32: l[n] = 6, h[n] = 36, i[n] = 3 33: l[n] = 8, h[n] = 2598, i[n] = 2 34: l[n] = 6, h[n] = 36, i[n] = 3 35: l[n] = 8, h[n] = 2978, i[n] = 2 36: l[n] = 3, h[n] = 36, i[n] = 0 37: l[n] = 17, h[n] = 24906114455136, i[n] = 8 38: l[n] = 3, h[n] = 38, i[n] = 0 39: l[n] = 14, h[n] = 233046, i[n] = 3 113: l[n] = 16, d[n] = 27, i[n] = 9 173: l[n] = 32, d[n] = 82, i[n] = 17 193: l[n] = 73, d[n] = 271, i[n] = 47 2183: l[n] = 72, d[n] = 5929, i[n] = 32 11229: l[n] = 101, d[n] = 8201, i[n] = 54 15065: l[n] = 66, d[n] = 11723, i[n] = 25 15845: l[n] = 139, d[n] = 23889, i[n] = 43 30817: l[n] = 93, d[n] = 45391, i[n] = 39 48443: l[n] = 157, d[n] = 972463, i[n] = 60 275485: l[n] = 225, d[n] = 1909410, i[n] = 148 1267909: l[n] = 151, d[n] = 1952329, i[n] = 99 2264915: l[n] = 149, d[n] = 2855584, i[n] = 89
Wren
Wren CLI
This took just over 17 minutes to reach n = 30,817 on my machine and I gave up after that.
import "./fmt" for Fmt
import "./big" for BigInt
var one = BigInt.one
var juggler = Fn.new { |n|
if (n < 1) Fiber.abort("Starting value must be a positive integer.")
var a = BigInt.new(n)
var count = 0
var maxCount = 0
var max = a.copy()
while (a != one) {
if (a.isEven) {
a = a.isqrt
} else {
a = (a.square * a).isqrt
}
count = count + 1
if (a > max) {
max = a
maxCount = count
}
}
return [count, maxCount, max, max.toString.count]
}
System.print("n l[n] i[n] h[n]")
System.print("-----------------------------------")
for (n in 20..39) {
var res = juggler.call(n)
Fmt.print("$2d $2d $2d $,i", n, res[0], res[1], res[2])
}
System.print()
var nums = [113, 173, 193, 2183, 11229, 15065, 15845, 30817]
System.print(" n l[n] i[n] d[n]")
System.print("----------------------------")
for (n in nums) {
var res = juggler.call(n)
Fmt.print("$,6d $3d $3d $,6i", n, res[0], res[1], res[3])
}
- Output:
n l[n] i[n] h[n] ----------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n l[n] i[n] d[n] ---------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391
Embedded
Massive speed-up, of course, when one brings in GMP. Now takes about 1 minute 48 seconds to reach 7,110,201 which is not much slower than Go on the same machine!
/* Juggler_sequence_2.wren */
import "./gmp" for Mpz
import "./fmt" for Fmt
var one = Mpz.one
var juggler = Fn.new { |n|
if (n < 1) Fiber.abort("Starting value must be a positive integer.")
var a = Mpz.from(n)
var count = 0
var maxCount = 0
var max = a.copy()
while (a != one) {
if (a.isEven) {
a.sqrt
} else {
a.cube.sqrt
}
count = count + 1
if (a > max) {
max.set(a)
maxCount = count
}
}
return [count, maxCount, max, max.toString.count]
}
System.print("n l[n] i[n] h[n]")
System.print("-----------------------------------")
for (n in 20..39) {
var res = juggler.call(n)
Fmt.print("$2d $2d $2d $,i", n, res[0], res[1], res[2])
}
System.print()
var nums = [
113, 173, 193, 2183, 11229, 15065, 15845, 30817, 48443,
275485, 1267909, 2264915, 5812827, 7110201
]
System.print(" n l[n] i[n] d[n]")
System.print("-----------------------------------")
for (n in nums) {
var res = juggler.call(n)
Fmt.print("$,9d $3d $3d $,i", n, res[0], res[1], res[3])
}
- Output:
n l[n] i[n] h[n] ----------------------------------- 20 3 0 20 21 9 4 140 22 3 0 22 23 9 1 110 24 3 0 24 25 11 3 52,214 26 6 3 36 27 6 1 140 28 6 3 36 29 9 1 156 30 6 3 36 31 6 1 172 32 6 3 36 33 8 2 2,598 34 6 3 36 35 8 2 2,978 36 3 0 36 37 17 8 24,906,114,455,136 38 3 0 38 39 14 3 233,046 n l[n] i[n] d[n] ----------------------------------- 113 16 9 27 173 32 17 82 193 73 47 271 2,183 72 32 5,929 11,229 101 54 8,201 15,065 66 25 11,723 15,845 139 43 23,889 30,817 93 39 45,391 48,443 157 60 972,463 275,485 225 148 1,909,410 1,267,909 151 99 1,952,329 2,264,915 149 89 2,855,584 5,812,827 135 67 7,996,276 7,110,201 205 119 89,981,517