Jaro-Winkler distance

From Rosetta Code
(Redirected from Jaro-Winkler Distance)
Task
Jaro-Winkler distance
You are encouraged to solve this task according to the task description, using any language you may know.

The Jaro-Winkler distance is a metric for measuring the edit distance between words. It is similar to the more basic Levenshtein distance but the Jaro distance also accounts for transpositions between letters in the words. With the Winkler modification to the Jaro metric, the Jaro-Winkler distance also adds an increase in similarity for words which start with the same letters (prefix).

The Jaro-Winkler distance is a modification of the Jaro similarity metric, which measures the similarity between two strings. The Jaro similarity is 1.0 when strings are identical and 0 when strings have no letters in common. Distance measures such as the Jaro distance or Jaro-Winkler distance, on the other hand, are 0 when strings are identical and 1 when they have no letters in common.

The Jaro similarity between two strings s1 and s2, simj, is defined as

simj = 0     if m is 0.
simj = ( (m / length of s1) + (m / length of s2) + (m - t) / m ) / 3     otherwise.

Where:

  •   is the number of matching characters (the same character within max(|s1|, |s2|)/2 - 1 of one another);
  •   is half the number of transpositions (a shared character placed in different positions).


The Winkler modification to Jaro is to check for identical prefixes of the strings.

If we define the number of initial (prefix) characters in common as:

l = the length of a common prefix between strings, up to 4 characters

and, additionally, select a multiplier (Winkler suggested 0.1) for the relative importance of the prefix for the word similarity:

p   =   0.1

The Jaro-Winkler similarity can then be defined as

simw = simj + lp(1 - simj)

Where:

  • simj   is the Jaro similarity.
  • l   is the number of matching characters at the beginning of the strings, up to 4.
  • p   is a factor to modify the amount to which the prefix similarity affects the metric.

Winkler suggested this be 0.1.

The Jaro-Winkler distance between strings, which is 0.0 for identical strings, is then defined as

dw = 1 - simw

String metrics such as Jaro-Winkler distance are useful in applications such as spelling checkers, because letter transpositions are common typing errors and humans tend to misspell the middle portions of words more often than their beginnings. This may help a spelling checker program to generate better alternatives for misspelled word replacement.

The task

Using a dictionary of your choice and the following list of 9 commonly misspelled words:

"accomodate", "definately", "goverment​", "occured", "publically", "recieve​", "seperate", "untill", "wich​"

  • Calculate the Jaro-Winkler distance between the misspelled word and words in the dictionary.
  • Use this distance to list close alternatives (at least two per word) to the misspelled words.
  • Show the calculated distances between the misspelled words and their potential replacements.
See also



11l

Translation of: Python
V WORDS = File(‘linuxwords.txt’).read_lines()
V MISSPELLINGS = [‘accomodate’,
                  ‘definately’,
                  ‘goverment’]

F jaro_winkler_distance(=st1, =st2)
   I st1.len < st2.len
      (st1, st2) = (st2, st1)
   V len1 = st1.len
   V len2 = st2.len
   I len2 == 0
      R 0.0
   V delta = max(0, len2 I/ 2 - 1)
   V flag = (0 .< len2).map(_ -> 0B)
   [Char] ch1_match
   L(ch1) st1
      V idx1 = L.index
      L(ch2) st2
         V idx2 = L.index
         I idx2 <= idx1 + delta & idx2 >= idx1 - delta & ch1 == ch2 & !(flag[idx2])
            flag[idx2] = 1B
            ch1_match.append(ch1)
            L.break
   V matches = ch1_match.len
   I matches == 0
      R 1.0
   V transpositions = 0
   V idx1 = 0
   L(ch2) st2
      V idx2 = L.index
      I flag[idx2]
         transpositions += (ch2 != ch1_match[idx1])
         idx1++
   V jaro = (Float(matches) / len1 + Float(matches) / len2 + (matches - transpositions / 2) / matches) / 3.0
   V commonprefix = 0
   L(i) 0 .< min(4, len2)
      commonprefix += (st1[i] == st2[i])
   R 1.0 - (jaro + commonprefix * 0.1 * (1 - jaro))

F within_distance(maxdistance, stri, maxtoreturn)
   V arr = :WORDS.filter(w -> jaro_winkler_distance(@stri, w) <= @maxdistance)
   arr.sort(key' x -> jaro_winkler_distance(@stri, x))
   R I arr.len <= maxtoreturn {arr} E arr[0 .< maxtoreturn]

L(STR) MISSPELLINGS
   print("\nClose dictionary words ( distance < 0.15 using Jaro-Winkler distance) to \" "STR" \" are:\n        Word   | Distance")
   L(w) within_distance(0.15, STR, 5)
      print(‘#14 | #.4’.format(w, jaro_winkler_distance(STR, w)))
Output:

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " accomodate " are:
        Word   | Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " definately " are:
        Word   | Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " goverment " are:
        Word   | Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Elm

Author: zh5

module JaroWinkler exposing (similarity)


commonPrefixLength : List a -> List a -> Int -> Int
commonPrefixLength xs ys counter =
    case ( xs, ys ) of
        ( x :: xs_, y :: ys_ ) ->
            if x == y then
                commonPrefixLength xs_ ys_ (counter + 1)

            else
                counter

        _ ->
            counter

similarity : String -> String -> Float
similarity s1 s2 =
    let
        chars1 =
            String.toList s1

        chars2 =
            String.toList s2

        jaroScore =
            jaro chars1 chars2

        l =
            toFloat <| min (commonPrefixLength chars1 chars2 0) 4

        p =
            0.1
    in
    jaroScore + (l * p * (1.0 - jaroScore))


containtsInNextN : Int -> a -> List a -> Bool
containtsInNextN i a items =
    case ( i, items ) of
        ( 0, _ ) ->
            False

        ( _, [] ) ->
            False

        ( _, item :: rest ) ->
            if item == a then
                True

            else
                containtsInNextN (i - 1) a rest


exists : Int -> Int -> List a -> a -> Bool
exists startAt endAt items i =
    if endAt < startAt then
        False

    else if startAt == 0 then
        case items of
            first :: rest ->
                if i == first then
                    True

                else
                    exists 0 (endAt - 1) rest i

            [] ->
                False

    else
        exists 0 (endAt - startAt) (List.drop startAt items) i


existsInWindow : a -> List a -> Int -> Int -> Bool
existsInWindow item items offset radius =
    let
        startAt =
            max 0 (offset - radius)

        endAt =
            min (offset + radius) (List.length items - 1)
    in
    exists startAt endAt items item


transpositions : List a -> List a -> Int -> Int
transpositions xs ys counter =
    case ( xs, ys ) of
        ( [], _ ) ->
            counter

        ( _, [] ) ->
            counter

        ( x :: xs_, y :: ys_ ) ->
            if x /= y then
                transpositions xs_ ys_ (counter + 1)

            else
                transpositions xs_ ys_ counter


commonItems : List a -> List a -> Int -> List a
commonItems items1 items2 radius =
    items1
        |> List.indexedMap
            (\index item ->
                if existsInWindow item items2 index radius then
                    [ item ]

                else
                    []
            )
        |> List.concat


jaro : List Char -> List Char -> Float
jaro chars1 chars2 =
    let
        minLenth =
            min (List.length chars1) (List.length chars2)

        matchRadius =
            minLenth // 2 + (minLenth |> modBy 2)

        c1 =
            commonItems chars1 chars2 matchRadius

        c2 =
            commonItems chars2 chars1 matchRadius

        c1length =
            toFloat (List.length c1)

        c2length =
            toFloat (List.length c2)

        mismatches =
            transpositions c1 c2 0

        transpositionScore =
            (toFloat mismatches + abs (c1length - c2length)) / 2.0

        s1length =
            toFloat (List.length chars1)

        s2length =
            toFloat (List.length chars2)

        tLength =
            max c1length c2length

        result =
            (c1length / s1length + c2length / s2length + (tLength - transpositionScore) / tLength) / 3.0
    in
    if isNaN result then
        0.0

    else
        result

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
Translation of: Wren

- the actual distance routines are translated from the Wren sample, the file reading and asociative arrays etc. are based on similar Algol 68 task solutions.


Uses unixdict.txt - possibly a different version to those used by some other solutions, as this finds a slightly different list of matches for "seperate" (assuming I got the translation correct!).
Prints the 6 closest matches regarddless of their distance (i.e. we don't restrict it to matches closer that 0.15).

PROC jaro sim = ( STRING sp1, sp2 )REAL:
     IF   STRING s1 = sp1[ AT 0 ];
          STRING s2 = sp2[ AT 0 ];
          INT le1   = ( UPB s1 - LWB s1 ) + 1;
          INT le2   = ( UPB s2 - LWB s2 ) + 1;
          le1 < 1 AND le2 < 1
     THEN # both strings are empty #         1
     ELIF le1 < 1 OR  le2 < 1
     THEN # one of the strings is empty #    0
     ELSE # both strings are non-empty #
        INT dist := IF le2 > le1 THEN le2 ELSE le1 FI;
        dist OVERAB 2 -:= 1;
        [ 0 : le1 ]BOOL matches1; FOR i FROM LWB matches1 TO UPB matches1 DO matches1[ i ] := FALSE OD;
        [ 0 : le2 ]BOOL matches2; FOR i FROM LWB matches2 TO UPB matches2 DO matches2[ i ] := FALSE OD;
        INT matches  := 0;
        INT transpos := 0;
        FOR i FROM LWB s1 TO UPB s1 DO
            INT start := i - dist;
            IF  start < 0 THEN start := 0 FI;
            INT end   := i + dist + 1;
            IF  end > le2 THEN end := le2 FI;
            FOR k FROM start TO end - 1
            WHILE IF matches2[ k ]
                  THEN TRUE
                  ELIF s1[ i ] /= s2[ k ]
                  THEN TRUE
                  ELSE
                      matches2[ k ] := matches1[ i ] := TRUE;
                      matches +:= 1;
                      FALSE
                  FI
            DO SKIP OD
        OD;
        IF matches = 0
        THEN 0
        ELSE
            INT k := 0;
            FOR i FROM LWB s1 TO UPB s1 DO
                IF matches1[ i ] THEN
                    WHILE NOT matches2[ k ] DO k +:= 1 OD;
                    IF s1[ i ] /= s2[ k ] THEN transpos +:= 1 FI;
                    k +:= 1
                FI
            OD;
            transpos OVERAB 2;
            ( ( matches / le1 )
            + ( matches / le2 )
            + ( ( matches - transpos ) / matches )
            ) / 3
        FI
     FI # jaro sim # ;
PROC jaro winkler dist = ( STRING sp, tp )REAL:
     BEGIN
        STRING s  = sp[ AT 0 ];
        STRING t  = tp[ AT 0 ];
        INT  ls = ( UPB s - LWB s ) + 1;
        INT  lt = ( UPB t - LWB t ) + 1;
        INT  l max := IF ls < lt THEN ls ELSE lt FI;
        IF   l max > 4 THEN l max := 4 FI;
        INT  l := 0;
        FOR  i FROM 0 TO l max - 1 DO IF s[ i ] = t[ i ] THEN l +:= 1 FI OD;
        REAL js = jaro sim( s, t );
        REAL p  = 0.1;
        REAL ws = js + ( l * p * ( 1 - js ) );
        1 - ws
     END # jaro winkler dist # ;
# include the Associative Array code #
PR read "aArray.a68" PR
# test cases #
[]STRING misspelt = ( "accomodate", "definately", "goverment", "occured", "publically", "recieve", "seperate", "untill", "wich" );
IF  FILE input file;
    STRING file name = "unixdict.txt";
    open( input file, file name, stand in channel ) /= 0
THEN
    # failed to open the file #
    print( ( "Unable to open """ + file name + """", newline ) )
ELSE
    # file opened OK #
    BOOL at eof := FALSE;
    # set the EOF handler for the file #
    on logical file end( input file, ( REF FILE f )BOOL:
                                     BEGIN
                                         # note that we reached EOF on the #
                                         # latest read #
                                         at eof := TRUE;
                                         # return TRUE so processing can continue #
                                         TRUE
                                     END
                       );
    REF AARRAY words := INIT LOC AARRAY;
    STRING word;
    WHILE NOT at eof
    DO
        STRING word;
        get( input file, ( word, newline ) );
        words // word := ""
    OD;
    # close the file #
    close( input file );
    # look for near matches to the misspelt words #
    INT max closest = 6; # max number of closest matches to show #
    FOR m pos FROM LWB misspelt TO UPB misspelt DO
        [ max closest ]STRING closest word;
        [ max closest ]REAL   closest jwd;
        FOR i TO max closest DO closest word[ i ] := ""; closest jwd[ i ] := 999 999 999 OD; 
        REF AAELEMENT e := FIRST words;
        WHILE e ISNT nil element DO
            STRING word = key OF e;
            REAL jwd = jaro winkler dist( misspelt[ m pos ], word );
            BOOL found better match := FALSE;
            FOR i TO max closest WHILE NOT found better match DO
                IF jwd <= closest jwd[ i ] THEN
                    # found a new closer match #
                    found better match := TRUE;
                    # shuffle the others down 1 and insert the new match #
                    FOR j FROM max closest BY - 1 TO i + 1 DO
                        closest word[ j ] := closest word[ j - 1 ];
                        closest jwd[  j ] := closest jwd[  j - 1 ]
                    OD;
                    closest word[ i ] := word;
                    closest jwd[  i ] := jwd
                FI
            OD;
            e := NEXT words
        OD;
        print( ( "Misspelt word: ", misspelt[ m pos ], ":", newline ) );
        FOR i TO max closest DO
            print( ( fixed( closest jwd[ i ], -8, 4 ), " ", closest word[ i ], newline ) )
        OD;
        print( ( newline ) )
    OD
FI
Output:
Misspelt word: accomodate:
  0.0182 accommodate
  0.1044 accordant
  0.1136 accolade
  0.1219 acclimate
  0.1327 accompanist
  0.1333 accost

Misspelt word: definately:
  0.0800 define
  0.0850 definite
  0.0886 defiant
  0.1200 definitive
  0.1219 designate
  0.1267 deflate

Misspelt word: goverment:
  0.0667 govern
  0.1167 governor
  0.1175 governess
  0.1330 governance
  0.1361 coverlet
  0.1367 sovereignty

Misspelt word: occured:
  0.0250 occurred
  0.0571 occur
  0.0952 occurrent
  0.1056 occlude
  0.1217 concurred
  0.1429 cure

Misspelt word: publically:
  0.0800 public
  0.1325 pullback
  0.1327 publication
  0.1400 pull
  0.1556 pulley
  0.1571 publish

Misspelt word: recieve:
  0.0333 receive
  0.0667 relieve
  0.0762 reeve
  0.0852 recessive
  0.0852 receptive
  0.0905 recipe

Misspelt word: seperate:
  0.0708 desperate
  0.0917 separate
  0.1042 temperate
  0.1048 repartee
  0.1167 sewerage
  0.1167 selenate

Misspelt word: untill:
  0.0333 until
  0.1111 till
  0.1333 huntsville
  0.1357 instill
  0.1422 unital
  0.1511 unilateral

Misspelt word: wich:
  0.0533 witch
  0.0533 winch
  0.0600 which
  0.0857 wichita
  0.1111 twitch
  0.1111 switch

C++

Translation of: Swift
#include <algorithm>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>

auto load_dictionary(const std::string& path) {
    std::ifstream in(path);
    if (!in)
        throw std::runtime_error("Cannot open file " + path);
    std::string line;
    std::vector<std::string> words;
    while (getline(in, line))
        words.push_back(line);
    return words;
}

double jaro_winkler_distance(std::string str1, std::string str2) {
    size_t len1 = str1.size();
    size_t len2 = str2.size();
    if (len1 < len2) {
        std::swap(str1, str2);
        std::swap(len1, len2);
    }
    if (len2 == 0)
        return len1 == 0 ? 0.0 : 1.0;
    size_t delta = std::max(size_t(1), len1/2) - 1;
    std::vector<bool> flag(len2, false);
    std::vector<char> ch1_match;
    ch1_match.reserve(len1);
    for (size_t idx1 = 0; idx1 < len1; ++idx1) {
        char ch1 = str1[idx1];
        for (size_t idx2 = 0; idx2 < len2; ++idx2) {
            char ch2 = str2[idx2];
            if (idx2 <= idx1 + delta && idx2 + delta >= idx1
                && ch1 == ch2 && !flag[idx2]) {
                flag[idx2] = true;
                ch1_match.push_back(ch1);
                break;
            }
        }
    }
    size_t matches = ch1_match.size();
    if (matches == 0)
        return 1.0;
    size_t transpositions = 0;
    for (size_t idx1 = 0, idx2 = 0; idx2 < len2; ++idx2) {
        if (flag[idx2]) {
            if (str2[idx2] != ch1_match[idx1])
                ++transpositions;
            ++idx1;
        }
    }
    double m = matches;
    double jaro = (m/len1 + m/len2 + (m - transpositions/2.0)/m)/3.0;
    size_t common_prefix = 0;
    len2 = std::min(size_t(4), len2);
    for (size_t i = 0; i < len2; ++i) {
        if (str1[i] == str2[i])
            ++common_prefix;
    }
    return 1.0 - (jaro + common_prefix * 0.1 * (1.0 - jaro));
}

auto within_distance(const std::vector<std::string>& words,
                     double max_distance, const std::string& str,
                     size_t max_to_return) {
    using pair = std::pair<std::string, double>;
    std::vector<pair> result;
    for (const auto& word : words) {
        double jaro = jaro_winkler_distance(word, str);
        if (jaro <= max_distance)
            result.emplace_back(word, jaro);
    }
    std::stable_sort(result.begin(), result.end(),
        [](const pair& p1, const pair& p2) { return p1.second < p2.second; });
    if (result.size() > max_to_return)
        result.resize(max_to_return);
    return result;
}

int main() {
    try {
        auto words(load_dictionary("linuxwords.txt"));
        std::cout << std::fixed << std::setprecision(4);
        for (auto str : {"accomodate", "definately", "goverment",
                            "occured", "publically", "recieve",
                            "seperate", "untill", "wich"}) {
            std::cout << "Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to '"
                << str << "' are:\n        Word   |  Distance\n";
            for (const auto& pair : within_distance(words, 0.15, str, 5)) {
                std::cout << std::setw(14) << pair.first << " | "
                    << std::setw(6) << pair.second << '\n';
            }
            std::cout << '\n';
        }
    } catch (const std::exception& ex) {
        std::cerr << ex.what() << '\n';
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}
Output:
Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'accomodate' are:
        Word   |  Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'definately' are:
        Word   |  Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'goverment' are:
        Word   |  Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'occured' are:
        Word   |  Distance
      occurred | 0.0250
         occur | 0.0571
      occupied | 0.0786
        occurs | 0.0905
      accursed | 0.0917

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'publically' are:
        Word   |  Distance
      publicly | 0.0400
        public | 0.0800
     publicity | 0.1044
   publication | 0.1327
    biblically | 0.1400

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'recieve' are:
        Word   |  Distance
       receive | 0.0333
      received | 0.0625
      receiver | 0.0625
      receives | 0.0625
       relieve | 0.0667

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'seperate' are:
        Word   |  Distance
     desperate | 0.0708
      separate | 0.0917
     temperate | 0.1042
     separated | 0.1144
     separates | 0.1144

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'untill' are:
        Word   |  Distance
         until | 0.0333
         untie | 0.1067
      untimely | 0.1083
          till | 0.1111
      Antilles | 0.1264

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'wich' are:
        Word   |  Distance
         witch | 0.0533
         which | 0.0600
        switch | 0.1111
        twitch | 0.1111
       witches | 0.1143

F#

This task uses Jaro Distance (F#)

// Calculate Jaro-Winkler Similarity of 2 Strings. Nigel Galloway: August 7th., 2020
let Jw P n g=let L=float(let i=Seq.map2(fun n g->n=g) n g in (if Seq.length i>4 then i|>Seq.take 4 else i)|>Seq.takeWhile id|>Seq.length)
             let J=J n g in J+P*L*(1.0-J)

let dict=System.IO.File.ReadAllLines("linuxwords.txt")
let fN g=let N=Jw 0.1 g in dict|>Array.map(fun n->(n,1.0-(N n)))|>Array.sortBy snd
["accomodate";"definately";"goverment";"occured";"publically";"recieve";"seperate";"untill";"wich"]|>
  List.iter(fun n->printfn "%s" n;fN n|>Array.take 5|>Array.iter(fun n->printf "%A" n);printfn "\n")
Output:
accomodate
("accommodate", 0.01818181818)("accommodated", 0.03333333333)("accommodates", 0.03333333333)("accommodation", 0.08153846154)("accommodating", 0.08153846154)

definately
("definitely", 0.04)("defiantly", 0.04222222222)("define", 0.08)("definite", 0.085)("definable", 0.08722222222)

goverment
("government", 0.05333333333)("govern", 0.06666666667)("governments", 0.0696969697)("governmental", 0.08333333333)("governs", 0.09523809524)

occured
("occurred", 0.025)("occur", 0.05714285714)("occupied", 0.07857142857)("occurs", 0.09047619048)("cured", 0.09523809524)

publically
("publicly", 0.04)("public", 0.08)("publicity", 0.1044444444)("publication", 0.1327272727)("politically", 0.1418181818)

recieve
("receive", 0.03333333333)("received", 0.0625)("receives", 0.0625)("receiver", 0.0625)("relieve", 0.07619047619)

seperate
("desperate", 0.0787037037)("separate", 0.09166666667)("separated", 0.1143518519)("separates", 0.1143518519)("temperate", 0.1157407407)

untill
("until", 0.03333333333)("untie", 0.1066666667)("untimely", 0.1083333333)("till", 0.1111111111)("Huntsville", 0.1333333333)

wich
("witch", 0.05333333333)("which", 0.06)("switch", 0.1111111111)("twitch", 0.1111111111)("witches", 0.1142857143)

Go

This uses unixdict and borrows code from the Jaro_distance#Go task. Otherwise it is a translation of the Wren entry.

package main

import (
    "bytes"
    "fmt"
    "io/ioutil"
    "log"
    "sort"
)

func jaroSim(str1, str2 string) float64 {
    if len(str1) == 0 && len(str2) == 0 {
        return 1
    }
    if len(str1) == 0 || len(str2) == 0 {
        return 0
    }
    match_distance := len(str1)
    if len(str2) > match_distance {
        match_distance = len(str2)
    }
    match_distance = match_distance/2 - 1
    str1_matches := make([]bool, len(str1))
    str2_matches := make([]bool, len(str2))
    matches := 0.
    transpositions := 0.
    for i := range str1 {
        start := i - match_distance
        if start < 0 {
            start = 0
        }
        end := i + match_distance + 1
        if end > len(str2) {
            end = len(str2)
        }
        for k := start; k < end; k++ {
            if str2_matches[k] {
                continue
            }
            if str1[i] != str2[k] {
                continue
            }
            str1_matches[i] = true
            str2_matches[k] = true
            matches++
            break
        }
    }
    if matches == 0 {
        return 0
    }
    k := 0
    for i := range str1 {
        if !str1_matches[i] {
            continue
        }
        for !str2_matches[k] {
            k++
        }
        if str1[i] != str2[k] {
            transpositions++
        }
        k++
    }
    transpositions /= 2
    return (matches/float64(len(str1)) +
        matches/float64(len(str2)) +
        (matches-transpositions)/matches) / 3
}

func jaroWinklerDist(s, t string) float64 {
    ls := len(s)
    lt := len(t)
    lmax := lt
    if ls < lt {
        lmax = ls
    }
    if lmax > 4 {
        lmax = 4
    }
    l := 0
    for i := 0; i < lmax; i++ {
        if s[i] == t[i] {
            l++
        }
    }
    js := jaroSim(s, t)
    p := 0.1
    ws := js + float64(l)*p*(1-js)
    return 1 - ws
}

type wd struct {
    word string
    dist float64
}

func main() {
    misspelt := []string{
        "accomodate", "definately", "goverment", "occured", "publically",
        "recieve", "seperate", "untill", "wich",
    }
    b, err := ioutil.ReadFile("unixdict.txt")
    if err != nil {
        log.Fatal("Error reading file")
    }
    words := bytes.Fields(b)
    for _, ms := range misspelt {
        var closest []wd
        for _, w := range words {
            word := string(w)
            if word == "" {
                continue
            }
            jwd := jaroWinklerDist(ms, word)
            if jwd < 0.15 {
                closest = append(closest, wd{word, jwd})
            }
        }
        fmt.Println("Misspelt word:", ms, ":")
        sort.Slice(closest, func(i, j int) bool { return closest[i].dist < closest[j].dist })
        for i, c := range closest {
            fmt.Printf("%0.4f %s\n", c.dist, c.word)
            if i == 5 {
                break
            }
        }
        fmt.Println()
    }
}
Output:
Misspelt word: accomodate :
0.0182 accommodate
0.1044 accordant
0.1136 accolade
0.1219 acclimate
0.1327 accompanist
0.1333 accord

Misspelt word: definately :
0.0800 define
0.0850 definite
0.0886 defiant
0.1200 definitive
0.1219 designate
0.1267 deflate

Misspelt word: goverment :
0.0667 govern
0.1167 governor
0.1175 governess
0.1330 governance
0.1361 coverlet
0.1367 sovereignty

Misspelt word: occured :
0.0250 occurred
0.0571 occur
0.0952 occurrent
0.1056 occlude
0.1217 concurred
0.1429 cure

Misspelt word: publically :
0.0800 public
0.1327 publication
0.1400 pull
0.1492 pullback

Misspelt word: recieve :
0.0333 receive
0.0667 relieve
0.0762 reeve
0.0852 receptive
0.0852 recessive
0.0905 recife

Misspelt word: seperate :
0.0708 desperate
0.0917 separate
0.1042 temperate
0.1167 selenate
0.1167 sewerage
0.1167 sept

Misspelt word: untill :
0.0333 until
0.1111 till
0.1333 huntsville
0.1357 instill
0.1422 unital

Misspelt word: wich :
0.0533 winch
0.0533 witch
0.0600 which
0.0857 wichita
0.1111 switch
0.1111 twitch

J

Implementation:

jaro=: {{
   Eq=. (x=/y)*(<.<:-:x>.&#y)>:|x -/&i.&# y
   xM=. (+./"1 Eq)#x
   yM=. (+./"2 Eq)#y
   M=.  xM <.&# yM
   T=.  -: +/ xM ~:&(M&{.) yM
   3%~ (M%#x) + (M%#y) + (M-T)%M
}}

jarowinkler=: {{
   p=. 0.1
   l=. +/*/\x =&((4<.x<.&#y)&{.) y
   simj=. x jaro y
   -.simj + l*p*-.simj
}}

Task example:

task=: {{
  words=. <;._2 fread '/usr/share/dict/words'
  for_word. ;:'accomodate definately goverment occured publically recieve seperate untill wich' do.
    b=.d<:close=. 2{/:~d=. word jarowinkler every words
    echo (;word),':'
    echo ' ',.(":,.b#d),.' ',.>b#words
    echo''
  end.
}}

   task''
accomodate:
 0.0681818 accommodate
 0.0945455 accorporate
 0.0703704 commodate  

definately:
 0.0422222 defiantly
 0.0622222 definably
 0.0622222 definedly

goverment:
 0.0833333 govern      
 0.0644444 government  
 0.0944444 governmental

occured:
  0.105556 occlude  
 0.0571429 occur    
 0.0952381 occursive

publically:
      0.08 public   
 0.0747222 publicity
    0.0525 publicly 

recieve:
 0.0592593 reachieve
 0.0333333 receive  
 0.0392857 recidive 

seperate:
 0.0145833 separate 
 0.0405093 separates
 0.0458333 septate  

untill:
 0.0333333 until  
         0 untill 
 0.0333333 untrill

wich:
      0.04 wicht
 0.0533333 winch
 0.0533333 witch

Java

Translation of: C++
import java.io.*;
import java.util.*;

public class JaroWinkler {
    public static void main(String[] args) {
        try {
            List<String> words = loadDictionary("linuxwords.txt");
            String[] strings = {
                "accomodate", "definately", "goverment", "occured",
                "publically", "recieve", "seperate", "untill", "wich"
            };
            for (String string : strings) {
                System.out.printf("Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to '%s' are:\n"
                                    + "        Word   |  Distance\n", string);
                for (StringDistance s : withinDistance(words, 0.15, string, 5)) {
                    System.out.printf("%14s | %.4f\n", s.word, s.distance);
                }
                System.out.println();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static class StringDistance implements Comparable<StringDistance> {
        private StringDistance(String word, double distance) {
            this.word = word;
            this.distance = distance;
        }
        public int compareTo(StringDistance s) {
            return Double.compare(distance, s.distance);
        }
        private String word;
        private double distance;
    }

    private static List<StringDistance> withinDistance(List<String> words,
                        double maxDistance, String string, int max) {
        List<StringDistance> result = new ArrayList<>();
        for (String word : words) {
            double distance = jaroWinklerDistance(word, string);
            if (distance <= maxDistance)
                result.add(new StringDistance(word, distance));
        }
        Collections.sort(result);
        if (result.size() > max)
            result = result.subList(0, max);
        return result;
    }

    private static double jaroWinklerDistance(String string1, String string2) {
        int len1 = string1.length();
        int len2 = string2.length();
        if (len1 < len2) {
            String s = string1;
            string1 = string2;
            string2 = s;
            int tmp = len1;
            len1 = len2;
            len2 = tmp;
        }
        if (len2 == 0)
            return len1 == 0 ? 0.0 : 1.0;
        int delta = Math.max(1, len1 / 2) - 1;
        boolean[] flag = new boolean[len2];
        Arrays.fill(flag, false);
        char[] ch1Match = new char[len1];
        int matches = 0;
        for (int i = 0; i < len1; ++i) {
            char ch1 = string1.charAt(i);
            for (int j = 0; j < len2; ++j) {
                char ch2 = string2.charAt(j);
                if (j <= i + delta && j + delta >= i && ch1 == ch2 && !flag[j]) {
                    flag[j] = true;
                    ch1Match[matches++] = ch1;
                    break;
                }
            }
        }
        if (matches == 0)
            return 1.0;
        int transpositions = 0;
        for (int i = 0, j = 0; j < len2; ++j) {
            if (flag[j]) {
                if (string2.charAt(j) != ch1Match[i])
                    ++transpositions;
                ++i;
            }
        }
        double m = matches;
        double jaro = (m / len1 + m / len2 + (m - transpositions / 2.0) / m) / 3.0;
        int commonPrefix = 0;
        len2 = Math.min(4, len2);
        for (int i = 0; i < len2; ++i) {
            if (string1.charAt(i) == string2.charAt(i))
                ++commonPrefix;
        }
        return 1.0 - (jaro + commonPrefix * 0.1 * (1.0 - jaro));
    }

    private static List<String> loadDictionary(String path) throws IOException {
        try (BufferedReader reader = new BufferedReader(new FileReader(path))) {
            List<String> words = new ArrayList<>();
            String word;
            while ((word = reader.readLine()) != null)
                words.add(word);
            return words;
        }
    }
}
Output:
Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'accomodate' are:
        Word   |  Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'definately' are:
        Word   |  Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'goverment' are:
        Word   |  Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'occured' are:
        Word   |  Distance
      occurred | 0.0250
         occur | 0.0571
      occupied | 0.0786
        occurs | 0.0905
      accursed | 0.0917

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'publically' are:
        Word   |  Distance
      publicly | 0.0400
        public | 0.0800
     publicity | 0.1044
   publication | 0.1327
    biblically | 0.1400

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'recieve' are:
        Word   |  Distance
       receive | 0.0333
      received | 0.0625
      receiver | 0.0625
      receives | 0.0625
       relieve | 0.0667

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'seperate' are:
        Word   |  Distance
     desperate | 0.0708
      separate | 0.0917
     temperate | 0.1042
     separated | 0.1144
     separates | 0.1144

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'untill' are:
        Word   |  Distance
         until | 0.0333
         untie | 0.1067
      untimely | 0.1083
          till | 0.1111
      Antilles | 0.1264

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'wich' are:
        Word   |  Distance
         witch | 0.0533
         which | 0.0600
        switch | 0.1111
        twitch | 0.1111
       witches | 0.1143

jq

Works with: jq

Works with gojq, the Go implementation of jq

This entry, which uses unixdict.txt, borrows the implementation in jq of the Jaro similarity measure as defined at Jaro_similarity#jq; since it is quite long, it is not repeated here.

# See [[Jaro_similarity#jq]] for the implementation of jaro/2

def length_of_common_prefix($s1; $s2):
  if ($s1|length) > ($s2|length) then length_of_common_prefix($s2; $s1)
  else ($s1|explode) as $x1
  | ($s2|explode) as $x2
  | first( range(0;$x1|length) | select( $x1[.] != $x2[.] )) // ($x1|length)
  end;

# Output: the Jaro-WInkler distance using 0.1 as the common-prefix multiplier
def jaro_winkler($s1; $s2):
  if $s1 == $s2 then 0
  else jaro($s1; $s2) as $j
  | length_of_common_prefix($s1[:4]; $s2[:4]) as $l
  | 1 - ($j + 0.1 * $l * (1 - $j))
  end ;

# Input: an array of words
# Output: [[match, distance] ...]
def candidates($word; $threshold):
  map(jaro_winkler($word; . ) as $x | select($x <= $threshold) | [., $x] );

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

def task:
  [inputs] # the dictionary
  | ("accomodate", "definately", "goverment​", "occured", "publically", "recieve​", "seperate", "untill", "wich​") as $word
  | candidates($word; 0.15) | sort_by(.[-1]) | .[:5]
  | "Matches for \($word|lpad(10)): Distance",
    (.[] | "\(.[0] | lpad(21)) : \(.[-1] * 1000 | round / 1000)") ;

task
Output:

Invocation: jq -rRn -f program.jq unixdict.txt

Matches for accomodate: Distance
          accommodate : 0.018
            accordant : 0.104
             accolade : 0.114
            acclimate : 0.122
          accompanist : 0.133
Matches for definately: Distance
               define : 0.08
             definite : 0.085
              defiant : 0.089
           definitive : 0.12
              deflate : 0.127
Matches for goverment​: Distance
               govern : 0.08
             governor : 0.13
            governess : 0.133
           governance : 0.149
Matches for    occured: Distance
             occurred : 0.025
                occur : 0.057
            occurrent : 0.095
              occlude : 0.106
            concurred : 0.122
Matches for publically: Distance
               public : 0.08
          publication : 0.133
Matches for   recieve​: Distance
              receive : 0.063
                reeve : 0.1
              relieve : 0.105
               recife : 0.108
               recipe : 0.108
Matches for   seperate: Distance
            desperate : 0.079
             separate : 0.092
            temperate : 0.116
                 sept : 0.117
              septate : 0.131
Matches for     untill: Distance
                until : 0.033
                 till : 0.111
           huntsville : 0.133
               unital : 0.142
Matches for      wich​: Distance
                winch : 0.107
                witch : 0.107
                which : 0.12
              wichita : 0.126

Julia

# download("http://users.cs.duke.edu/~ola/ap/linuxwords", "linuxwords.txt")
const words = read("linuxwords.txt", String) |> split .|> strip

function jarowinklerdistance(s1, s2)
    if length(s1) < length(s2)
        s1, s2 = s2, s1
    end
    len1, len2 = length(s1), length(s2)
    len2 == 0 && return 0.0
    delta = max(0, len2 ÷ 2 - 1)
    flag = zeros(Bool, len2)  # flags for possible transpositions, begin as false
    ch1_match = eltype(s1)[]
    for (i, ch1) in enumerate(s1)
        for (j, ch2) in enumerate(s2)
            if (j <= i + delta) && (j >= i - delta) && (ch1 == ch2) && !flag[j]
                flag[j] = true
                push!(ch1_match, ch1)
                break
            end
        end
    end
    matches = length(ch1_match)
    matches == 0 && return 1.0
    transpositions, i = 0, 0
    for (j, ch2) in enumerate(s2)
        if flag[j]
            i += 1
            transpositions += (ch2 != ch1_match[i])
        end
    end
    jaro = (matches / len1 + matches / len2 + (matches - transpositions/2) / matches) / 3.0
    commonprefix = count(i -> s1[i] == s2[i], 1:min(len2, 4))
    return 1 - (jaro + commonprefix * 0.1 * (1 - jaro))
end

function closewords(s, maxdistance, maxtoreturn)
    jw = 0.0
    arr = [(w, jw) for w in words if (jw = jarowinklerdistance(s, w)) <= maxdistance]
    sort!(arr, lt=(x, y) -> x[2] < y[2])
    return length(arr) <= maxtoreturn ? arr : arr[1:maxtoreturn]
end

for s in ["accomodate", "definately", "goverment", "occured", "publically",
    "recieve", "seperate", "untill", "wich"]
    println("\nClose dictionary words ( distance < 0.15 using Jaro-Winkler distance) to '$s' are:")
    println("    Word      |  Distance")
    for (w, jw) in closewords(s, 0.15, 5)
        println(rpad(w, 14), "| ", Float16(jw))
    end
end
Output:
Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'accomodate' are:
    Word      |  Distance
accommodate   | 0.01819
accommodated  | 0.03333
accommodates  | 0.03333
accommodating | 0.08154
accommodation | 0.08154

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'definately' are:
    Word      |  Distance
definitely    | 0.04
defiantly     | 0.04224
define        | 0.08
definite      | 0.085
definable     | 0.0872

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'goverment' are:
    Word      |  Distance
government    | 0.05334
govern        | 0.06665
governments   | 0.0697
movement      | 0.081
governmental  | 0.0833

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'occured' are:
    Word      |  Distance
occurred      | 0.025
occur         | 0.05713
occupied      | 0.07855
occurs        | 0.09045
accursed      | 0.0917

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'publically' are:
    Word      |  Distance
publicly      | 0.04
public        | 0.08
publicity     | 0.10443
publication   | 0.1327
biblically    | 0.14

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'recieve' are:
    Word      |  Distance
receive       | 0.03333
received      | 0.0625
receiver      | 0.0625
receives      | 0.0625
relieve       | 0.06665

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'seperate' are:
    Word      |  Distance
desperate     | 0.07086
separate      | 0.0917
temperate     | 0.1042
separated     | 0.1144
separates     | 0.1144

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'untill' are:
    Word      |  Distance
until         | 0.03333
untie         | 0.1067
untimely      | 0.10834
Antilles      | 0.1263
untidy        | 0.1333

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to 'wich' are:
    Word      |  Distance
witch         | 0.05334
which         | 0.06
witches       | 0.11426
rich          | 0.11664
wick          | 0.11664

Mathematica /Wolfram Language

ClearAll[JWD]
JWD[a_][b_]:=Experimental`JaroWinklerDistance[a,b]
dict=DictionaryLookup[];
TakeSmallestBy[dict->{"Element","Value"},JWD["accomodate"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["definately"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["goverment"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["occured"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["publically"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["recieve"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["seperate"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["untill"],5]//Grid
TakeSmallestBy[dict->{"Element","Value"},JWD["wich"],5]//Grid
Output:
accommodate	0.0181818
accommodated	0.0333333
accommodates	0.0333333
accommodation	0.0815385
accommodating	0.0815385

definitely	0.04
defiantly	0.0422222
definably	0.0622222
definitively	0.07
define	0.08

government	0.0422222
governments	0.0585859
govern	0.0666667
governmental	0.0722222
governs	0.0952381

occurred	0.025
occur	0.0571429
occupied	0.0785714
occurs	0.0904762
cured	0.0952381

publicly	0.04
public	0.08
publican	0.085
publicans	0.104444
publicity	0.10444

receive	0.0333333
receives	0.0625
received	0.0625
receiver	0.0625
reeve	0.0761905

desperate	0.0787037
separate	0.0916667
separateness	0.106944
sprat	0.1125
separated	0.114352

until	0.0333333
untiled	0.0904762
untiles	0.0904762
unlit	0.0977778
untypically	0.106061

winch	0.0533333
witch	0.0533333
which	0.06
switch	0.111111
twitch	0.111111

Nim

Translation of: Go
import lenientops

func jaroSim(s1, s2: string): float =

  if s1.len == 0 and s2.len == 0: return 1
  if s1.len == 0 or s2.len == 0: return 0

  let matchDistance = max(s1.len, s2.len) div 2 - 1
  var s1Matches = newSeq[bool](s1.len)
  var s2Matches = newSeq[bool](s2.len)
  var matches = 0
  for i in 0..s1.high:
    for j in max(0, i - matchDistance)..min(i + matchDistance, s2.high):
      if not s2Matches[j] and s1[i] == s2[j]:
        s1Matches[i] = true
        s2Matches[j] = true
        inc matches
        break
  if matches == 0: return 0

  var transpositions = 0.0
  var k = 0
  for i in ..s1.high:
    if not s1Matches[i]: continue
    while not s2Matches[k]: inc k
    if s1[i] != s2[k]: transpositions += 0.5
    inc k

  result = (matches / s1.len + matches / s2.len + (matches - transpositions) / matches) / 3


func jaroWinklerDist(s, t: string): float =
  let ls = s.len
  let lt = t.len
  var lmax = if ls < lt: ls else: lt
  if lmax > 4: lmax = 4
  var l = 0
  for i in 0..<lmax:
    if s[i] == t[i]: inc l
  let js = jaroSim(s, t)
  let p = 0.1
  let ws = js + float(l) * p * (1 - js)
  result = 1 - ws


when isMainModule:

  import algorithm, sequtils, strformat

  type Wd = tuple[word: string; dist: float]

  func `<`(w1, w2: Wd): bool =
    if w1.dist < w2.dist: true
    elif w1.dist == w2.dist: w1.word < w2.word
    else: false

  const Misspelt = ["accomodate", "definately", "goverment", "occured",
                    "publically", "recieve", "seperate", "untill", "wich"]

  let words = toSeq("unixdict.txt".lines)
  for ms in Misspelt:
    var closest: seq[Wd]
    for word in words:
      if word.len == 0: continue
      let jwd = jaroWinklerDist(ms, word)
      if jwd < 0.15:
        closest.add (word, jwd)
    echo "Misspelt word: ", ms, ":"
    closest.sort()
    for i, c in closest:
      echo &"{c.dist:0.4f} {c.word}"
      if i == 5: break
    echo()
Output:
Misspelt word: accomodate:
0.0182 accommodate
0.1044 accordant
0.1136 accolade
0.1219 acclimate
0.1327 accompanist
0.1333 accord

Misspelt word: definately:
0.0800 define
0.0850 definite
0.0886 defiant
0.1200 definitive
0.1219 designate
0.1267 deflate

Misspelt word: goverment:
0.0667 govern
0.1167 governor
0.1175 governess
0.1330 governance
0.1361 coverlet
0.1367 sovereignty

Misspelt word: occured:
0.0250 occurred
0.0571 occur
0.0952 occurrent
0.1056 occlude
0.1217 concurred
0.1429 cure

Misspelt word: publically:
0.0800 public
0.1327 publication
0.1400 pull
0.1492 pullback

Misspelt word: recieve:
0.0333 receive
0.0667 relieve
0.0762 reeve
0.0852 receptive
0.0852 recessive
0.0905 recife

Misspelt word: seperate:
0.0708 desperate
0.0917 separate
0.1042 temperate
0.1167 selenate
0.1167 sept
0.1167 sewerage

Misspelt word: untill:
0.0333 until
0.1111 till
0.1333 huntsville
0.1357 instill
0.1422 unital

Misspelt word: wich:
0.0533 winch
0.0533 witch
0.0600 which
0.0857 wichita
0.1111 switch
0.1111 twitch

Perl

use strict;
use warnings;
use List::Util qw(min max head);

sub jaro_winkler {
    my($s, $t) = @_;
    my(@s_matches, @t_matches, $matches);

    return 0 if $s eq $t;

    my $s_len = length $s; my @s = split //, $s;
    my $t_len = length $t; my @t = split //, $t;

    my $match_distance = int (max($s_len,$t_len)/2) - 1;

    for my $i (0 .. $#s) {
        my $start = max(0, $i - $match_distance);
        my $end   = min($i + $match_distance, $t_len - 1);
        for my $j ($start .. $end) {
            next if $t_matches[$j] or $s[$i] ne $t[$j];
            ($s_matches[$i], $t_matches[$j]) = (1, 1);
            $matches++ and last;
        }
    }
    return 1 unless $matches;

    my($k, $transpositions) = (0, 0);

    for my $i (0 .. $#s) {
        next unless $s_matches[$i];
        $k++ until  $t_matches[$k];
        $transpositions++ if $s[$i] ne $t[$k];
        $k++;
    }

    my $prefix = 0;
    $s[$_] eq $t[$_] and ++$prefix for 0 .. -1 + min 5, $s_len, $t_len;

    my $jaro = ($matches / $s_len + $matches / $t_len +
        (($matches - $transpositions / 2) / $matches)) / 3;

    1 - ($jaro + $prefix * .1 * ( 1 - $jaro) )
}

my @words = split /\n/, `cat ./unixdict.txt`;

for my $word (<accomodate definately goverment occured publically recieve seperate untill wich>) {
    my %J;
    $J{$_} = jaro_winkler($word, $_) for @words;
    print "\nClosest 5 dictionary words with a Jaro-Winkler distance < .15 from '$word':\n";
    printf "%15s : %0.4f\n", $_, $J{$_}
         for head 5, sort { $J{$a} <=> $J{$b} or $a cmp $b } grep { $J{$_} < 0.15 } keys %J;
}
Output:
Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'accomodate':
    accommodate : 0.0152
      accordant : 0.1044
    accompanist : 0.1106
       accolade : 0.1136
  accompaniment : 0.1183

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'definately':
         define : 0.0667
       definite : 0.0708
        defiant : 0.0886
     definitive : 0.1000
      designate : 0.1219

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'goverment':
         govern : 0.0556
       governor : 0.0972
      governess : 0.0979
     governance : 0.1108
       coverlet : 0.1167

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'occured':
       occurred : 0.0208
          occur : 0.0476
      occurrent : 0.0794
        occlude : 0.1056
      occurring : 0.1217

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'publically':
         public : 0.0667
    publication : 0.1106
        publish : 0.1310
           pull : 0.1400
       pullback : 0.1492

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'recieve':
        receive : 0.0333
        relieve : 0.0571
          reeve : 0.0667
      receptive : 0.0852
      recessive : 0.0852

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'seperate':
      desperate : 0.0708
       separate : 0.0786
       sewerage : 0.1000
       repartee : 0.1083
       repeater : 0.1083

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'untill':
          until : 0.0278
           till : 0.1111
           tilt : 0.1111
     huntsville : 0.1333
        instill : 0.1357

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from 'wich':
          winch : 0.0533
          witch : 0.0533
          which : 0.0600
        wichita : 0.0857
         switch : 0.1111

Phix

Uses jaro() from Jaro_distance#Phix (reproduced below for your convenience) and the standard unix_dict()

function jaro(string str1, str2)
    str1 = trim(upper(str1))
    str2 = trim(upper(str2))
    integer len1 = length(str1),
            len2 = length(str2),
            match_distance = floor(max(len1,len2)/2)-1,
            match_count = 0,
            half_transposed = 0
 
    if len1==0 then return len2==0 end if
 
    -- count the number of matches
    sequence m1 = repeat(false,len1),
             m2 = repeat(false,len2)
    for i=1 to len1 do
        for k=max(1,i-match_distance)
           to min(len2,i+match_distance) do
            if not m2[k] then
                if str1[i]=str2[k] then
                    m1[i] = true
                    m2[k] = true
                    match_count += 1
                    exit
                end if
            end if
        end for
    end for
 
    if match_count==0 then return 0 end if
 
    -- count the number of half-transpositions
    integer k = 1
    for i=1 to len1 do
        if m1[i] then
            while not m2[k] do k += 1 end while
            half_transposed += (str1[i]!=str2[k])
            k += 1
        end if
    end for
    integer transpositions = floor(half_transposed/2),
            not_transposed = match_count - transpositions
    --
    -- return the average of:
    --   percentage/fraction of the first string matched,
    --   percentage/fraction of the second string matched, and
    --   percentage/fraction of matches that were not transposed.
    --
    return (match_count/len1 + 
            match_count/len2 + 
            not_transposed/match_count)/3
end function

with javascript_semantics
function jaroWinklerDist(string s, t)
    integer lm = min({length(s),length(t),4}),
            l = sum(sq_eq(s[1..lm],t[1..lm]))
    return (1-jaro(s, t))*(1-l*0.1)
end function
 
constant mispelt = {"accomodate", "definately", "goverment", "occured", 
                    "publically", "recieve", "seperate", "untill", "wich"},
         words = unix_dict()
sequence jwds = repeat(0,length(words))
for m=1 to length(mispelt) do
    string ms = mispelt[m]
    printf(1,"\nMisspelt word: %s :\n", ms)
    for w=1 to length(words) do
        jwds[w] = jaroWinklerDist(ms,words[w])
    end for
    sequence tags = custom_sort(jwds,tagset(length(words)))
    for j=1 to 6 do
        integer tj = tags[j]
--      if jwds[tj]>0.15 then exit end if
        printf(1,"%0.4f %s\n", {jwds[tj], words[tj]})
    end for
end for

Output identical to Go/Wren Algol68

Python

"""
Test Jaro-Winkler distance metric.
linuxwords.txt is from http://users.cs.duke.edu/~ola/ap/linuxwords
"""

WORDS = [s.strip() for s in open("linuxwords.txt").read().split()]
MISSPELLINGS = [
    "accomodate​",
    "definately​",
    "goverment",
    "occured",
    "publically",
    "recieve",
    "seperate",
    "untill",
    "wich",
]

def jaro_winkler_distance(st1, st2):
    """
    Compute Jaro-Winkler distance between two strings.
    """
    if len(st1) < len(st2):
        st1, st2 = st2, st1
    len1, len2 = len(st1), len(st2)
    if len2 == 0:
        return 0.0
    delta = max(0, len2 // 2 - 1)
    flag = [False for _ in range(len2)]  # flags for possible transpositions
    ch1_match = []
    for idx1, ch1 in enumerate(st1):
        for idx2, ch2 in enumerate(st2):
            if idx2 <= idx1 + delta and idx2 >= idx1 - delta and ch1 == ch2 and not flag[idx2]:
                flag[idx2] = True
                ch1_match.append(ch1)
                break

    matches = len(ch1_match)
    if matches == 0:
        return 1.0
    transpositions, idx1 = 0, 0
    for idx2, ch2 in enumerate(st2):
        if flag[idx2]:
            transpositions += (ch2 != ch1_match[idx1])
            idx1 += 1

    jaro = (matches / len1 + matches / len2 + (matches - transpositions/2) / matches) / 3.0
    commonprefix = 0
    for i in range(min(4, len2)):
        commonprefix += (st1[i] == st2[i])

    return 1.0 - (jaro + commonprefix * 0.1 * (1 - jaro))

def within_distance(maxdistance, stri, maxtoreturn):
    """
    Find words in WORDS of closeness to stri within maxdistance, return up to maxreturn of them.
    """
    arr = [w for w in WORDS if jaro_winkler_distance(stri, w) <= maxdistance]
    arr.sort(key=lambda x: jaro_winkler_distance(stri, x))
    return arr if len(arr) <= maxtoreturn else arr[:maxtoreturn]

for STR in MISSPELLINGS:
    print('\nClose dictionary words ( distance < 0.15 using Jaro-Winkler distance) to "',
          STR, '" are:\n        Word   |  Distance')
    for w in within_distance(0.15, STR, 5):
        print('{:>14} | {:6.4f}'.format(w, jaro_winkler_distance(STR, w)))
Output:
Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " accomodate " are:
        Word   |  Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " definately " are:
        Word   |  Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " goverment " are:
        Word   |  Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " occured " are:
        Word   |  Distance
      occurred | 0.0250
         occur | 0.0571
      occupied | 0.0786
        occurs | 0.0905
      accursed | 0.0917

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " publically " are:
        Word   |  Distance
      publicly | 0.0400
        public | 0.0800
     publicity | 0.1044
   publication | 0.1327
    biblically | 0.1400

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " recieve " are:
        Word   |  Distance
       receive | 0.0333
      received | 0.0625
      receiver | 0.0625
      receives | 0.0625
       relieve | 0.0667

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " seperate " are:
        Word   |  Distance
     desperate | 0.0708
      separate | 0.0917
     temperate | 0.1042
     separated | 0.1144
     separates | 0.1144

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " untill " are:
        Word   |  Distance
         until | 0.0333
         untie | 0.1067
      untimely | 0.1083
      Antilles | 0.1264
        untidy | 0.1333

Close dictionary words ( distance < 0.15 using Jaro-Winkler distance) to " wich " are:
        Word   |  Distance
         witch | 0.0533
         which | 0.0600
       witches | 0.1143
          rich | 0.1167
          wick | 0.1167

Raku

Works with: Rakudo version 2020.07

A minor modification of the Jaro distance task entry.

using the unixdict.txt file from www.puzzlers.org

sub jaro-winkler ($s, $t) {

    return 0 if $s eq $t;

    my $s_len = + my @s = $s.comb;
    my $t_len = + my @t = $t.comb;

    my $match_distance = ($s_len max $t_len) div 2 - 1;

    my @s_matches;
    my @t_matches;
    my $matches = 0;

    for ^@s -> $i {

        my $start = 0 max $i - $match_distance;
        my $end = $i + $match_distance min ($t_len - 1);

        for $start .. $end -> $j {
            @t_matches[$j] and next;
            @s[$i] eq @t[$j] or next;
            @s_matches[$i] = 1;
            @t_matches[$j] = 1;
            $matches++;
            last;
        }
    }

    return 1 if $matches == 0;

    my $k              = 0;
    my $transpositions = 0;

    for ^@s -> $i {
        @s_matches[$i] or next;
        until @t_matches[$k] { ++$k }
        @s[$i] eq @t[$k] or ++$transpositions;
        ++$k;
    }

    my $prefix = 0;

    ++$prefix if @s[$_] eq @t[$_] for ^(min 4, $s_len, $t_len);

    my $jaro = ($matches / $s_len + $matches / $t_len +
        (($matches - $transpositions / 2) / $matches)) / 3;

    1 - ($jaro + $prefix * .1 * ( 1 - $jaro) )
}


my @words =  './unixdict.txt'.IO.slurp.words;

for <accomodate definately goverment occured publically recieve seperate untill wich>
   -> $word {

   my %result = @words.race.map: { $_ => jaro-winkler($word, $_) };

   say "\nClosest 5 dictionary words with a Jaro-Winkler distance < .15 from $word:";

   printf "%15s : %0.4f\n", .key, .value for %result.grep({ .value < .15 }).sort({+.value, ~.key}).head(5);
}
Output:
Closest 5 dictionary words with a Jaro-Winkler distance < .15 from accomodate:
    accommodate : 0.0182
      accordant : 0.1044
       accolade : 0.1136
      acclimate : 0.1219
    accompanist : 0.1327

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from definately:
         define : 0.0800
       definite : 0.0850
        defiant : 0.0886
     definitive : 0.1200
      designate : 0.1219

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from goverment:
         govern : 0.0667
       governor : 0.1167
      governess : 0.1175
     governance : 0.1330
       coverlet : 0.1361

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from occured:
       occurred : 0.0250
          occur : 0.0571
      occurrent : 0.0952
        occlude : 0.1056
      concurred : 0.1217

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from publically:
         public : 0.0800
    publication : 0.1327
           pull : 0.1400
       pullback : 0.1492

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from recieve:
        receive : 0.0333
        relieve : 0.0667
          reeve : 0.0762
      receptive : 0.0852
      recessive : 0.0852

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from seperate:
      desperate : 0.0708
       separate : 0.0917
      temperate : 0.1042
       selenate : 0.1167
           sept : 0.1167

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from untill:
          until : 0.0333
           till : 0.1111
     huntsville : 0.1333
        instill : 0.1357
         unital : 0.1422

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from wich:
          winch : 0.0533
          witch : 0.0533
          which : 0.0600
        wichita : 0.0857
         switch : 0.1111

Rust

Translation of: Python
use std::fs::File;
use std::io::{self, BufRead};

fn load_dictionary(filename: &str) -> std::io::Result<Vec<String>> {
    let file = File::open(filename)?;
    let mut dict = Vec::new();
    for line in io::BufReader::new(file).lines() {
        dict.push(line?);
    }
    Ok(dict)
}

fn jaro_winkler_distance(string1: &str, string2: &str) -> f64 {
    let mut st1 = string1;
    let mut st2 = string2;
    let mut len1 = st1.chars().count();
    let mut len2 = st2.chars().count();
    if len1 < len2 {
        std::mem::swap(&mut st1, &mut st2);
        std::mem::swap(&mut len1, &mut len2);
    }
    if len2 == 0 {
        return if len1 == 0 { 0.0 } else { 1.0 };
    }
    let delta = std::cmp::max(1, len1 / 2) - 1;
    let mut flag = vec![false; len2];
    let mut ch1_match = vec![];
    for (idx1, ch1) in st1.chars().enumerate() {
        for (idx2, ch2) in st2.chars().enumerate() {
            if idx2 <= idx1 + delta && idx2 + delta >= idx1 && ch1 == ch2 && !flag[idx2] {
                flag[idx2] = true;
                ch1_match.push(ch1);
                break;
            }
        }
    }
    let matches = ch1_match.len();
    if matches == 0 {
        return 1.0;
    }
    let mut transpositions = 0;
    let mut idx1 = 0;
    for (idx2, ch2) in st2.chars().enumerate() {
        if flag[idx2] {
            transpositions += (ch2 != ch1_match[idx1]) as i32;
            idx1 += 1;
        }
    }
    let m = matches as f64;
    let jaro =
        (m / (len1 as f64) + m / (len2 as f64) + (m - (transpositions as f64) / 2.0) / m) / 3.0;
    let mut commonprefix = 0;
    for (c1, c2) in st1.chars().zip(st2.chars()).take(std::cmp::min(4, len2)) {
        commonprefix += (c1 == c2) as i32;
    }
    1.0 - (jaro + commonprefix as f64 * 0.1 * (1.0 - jaro))
}

fn within_distance<'a>(
    dict: &'a Vec<String>,
    max_distance: f64,
    stri: &str,
    max_to_return: usize,
) -> Vec<(&'a String, f64)> {
    let mut arr: Vec<(&String, f64)> = dict
        .iter()
        .map(|w| (w, jaro_winkler_distance(stri, w)))
        .filter(|x| x.1 <= max_distance)
        .collect();
    // The trait std::cmp::Ord is not implemented for f64, otherwise
    // we could just do this:
    // arr.sort_by_key(|x| x.1);
    let compare_distance = |d1, d2| {
        use std::cmp::Ordering;
        if d1 < d2 {
            Ordering::Less
        } else if d1 > d2 {
            Ordering::Greater
        } else {
            Ordering::Equal
        }
    };
    arr.sort_by(|x, y| compare_distance(x.1, y.1));
    arr[0..std::cmp::min(max_to_return, arr.len())].to_vec()
}

fn main() {
    match load_dictionary("linuxwords.txt") {
        Ok(dict) => {
            for word in &[
                "accomodate",
                "definately",
                "goverment",
                "occured",
                "publically",
                "recieve",
                "seperate",
                "untill",
                "wich",
            ] {
                println!("Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to '{}' are:", word);
                println!("        Word   |  Distance");
                for (w, dist) in within_distance(&dict, 0.15, word, 5) {
                    println!("{:>14} | {:6.4}", w, dist)
                }
                println!();
            }
        }
        Err(error) => eprintln!("{}", error),
    }
}
Output:
Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'accomodate' are:
        Word   |  Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'definately' are:
        Word   |  Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'goverment' are:
        Word   |  Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'occured' are:
        Word   |  Distance
      occurred | 0.0250
         occur | 0.0571
      occupied | 0.0786
        occurs | 0.0905
      accursed | 0.0917

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'publically' are:
        Word   |  Distance
      publicly | 0.0400
        public | 0.0800
     publicity | 0.1044
   publication | 0.1327
    biblically | 0.1400

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'recieve' are:
        Word   |  Distance
       receive | 0.0333
      received | 0.0625
      receiver | 0.0625
      receives | 0.0625
       relieve | 0.0667

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'seperate' are:
        Word   |  Distance
     desperate | 0.0708
      separate | 0.0917
     temperate | 0.1042
     separated | 0.1144
     separates | 0.1144

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'untill' are:
        Word   |  Distance
         until | 0.0333
         untie | 0.1067
      untimely | 0.1083
          till | 0.1111
      Antilles | 0.1264

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'wich' are:
        Word   |  Distance
         witch | 0.0533
         which | 0.0600
        switch | 0.1111
        twitch | 0.1111
       witches | 0.1143

Sidef

Reusing the jaro() function from the Jaro similarity task.

func jaro_winkler_distance(s,t) {

    var jaro_similarity = jaro(s, t)

    var prefix = 0
    for i in (0 .. min(3, s.len, t.len)) {
        s.char(i) == t.char(i) ? ++prefix : break
    }

    1 - (prefix * 0.1 * (1 - jaro_similarity) + jaro_similarity)
}

# usage: 
#    sidef script.sf < unixdict.txt

var words = ARGF.slurp.words

%w(accomodate definately goverment occured publically recieve seperate untill wich).each {|word|

   var result = Hash(words.map { (_, jaro_winkler_distance(word, _)) }...)

   say "\nClosest 5 dictionary words with a Jaro-Winkler distance < .15 from #{word}:"
   result.grep {|_,v| v < .15 }.sort_by{|_,v| v }.head(5).each_2d {|k,v|
        printf("%15s : %0.4f\n", k, v)
    }
}
Output:
Closest 5 dictionary words with a Jaro-Winkler distance < .15 from accomodate:
    accommodate : 0.0182
      accordant : 0.1044
       accolade : 0.1136
      acclimate : 0.1219
    accompanist : 0.1327

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from definately:
         define : 0.0800
       definite : 0.0850
        defiant : 0.0886
     definitive : 0.1200
        deflate : 0.1267

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from goverment:
         govern : 0.0667
       governor : 0.1167
      governess : 0.1175
     governance : 0.1330
           goer : 0.1481

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from occured:
       occurred : 0.0250
          occur : 0.0571
      occurrent : 0.0952
        occlude : 0.1056
      concurred : 0.1217

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from publically:
         public : 0.0800
    publication : 0.1327

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from recieve:
        receive : 0.0333
          reeve : 0.0762
        relieve : 0.0762
      recessive : 0.0852
      receptive : 0.0852

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from seperate:
      desperate : 0.0787
       separate : 0.0917
      temperate : 0.1157
           sept : 0.1167
        septate : 0.1306

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from untill:
          until : 0.0333
           till : 0.1111
     huntsville : 0.1333
         unital : 0.1422

Closest 5 dictionary words with a Jaro-Winkler distance < .15 from wich:
          witch : 0.0533
          winch : 0.0533
          which : 0.0600
        wichita : 0.0857
         twitch : 0.1111

Swift

Translation of: Rust
import Foundation

func loadDictionary(_ path: String) throws -> [String] {
    let contents = try String(contentsOfFile: path, encoding: String.Encoding.ascii)
    return contents.components(separatedBy: "\n")
}

func jaroWinklerDistance(string1: String, string2: String) -> Double {
    var st1 = Array(string1)
    var st2 = Array(string2)
    var len1 = st1.count
    var len2 = st2.count
    if len1 < len2 {
        swap(&st1, &st2)
        swap(&len1, &len2)
    }
    if len2 == 0 {
        return len1 == 0 ? 0.0 : 1.0
    }
    let delta = max(1, len1 / 2) - 1
    var flag = Array(repeating: false, count: len2)
    var ch1Match: [Character] = []
    ch1Match.reserveCapacity(len1)
    for idx1 in 0..<len1 {
        let ch1 = st1[idx1]
        for idx2 in 0..<len2 {
            let ch2 = st2[idx2]
            if idx2 <= idx1 + delta && idx2 + delta >= idx1 && ch1 == ch2 && !flag[idx2] {
                flag[idx2] = true
                ch1Match.append(ch1)
                break
            }
        }
    }
    let matches = ch1Match.count
    if matches == 0 {
        return 1.0
    }
    var transpositions = 0
    var idx1 = 0
    for idx2 in 0..<len2 {
        if flag[idx2] {
            if st2[idx2] != ch1Match[idx1] {
                transpositions += 1
            }
            idx1 += 1
        }
    }
    let m = Double(matches)
    let jaro =
        (m / Double(len1) + m / Double(len2) + (m - Double(transpositions) / 2.0) / m) / 3.0
    var commonPrefix = 0
    for i in 0..<min(4, len2) {
        if st1[i] == st2[i] {
            commonPrefix += 1
        }
    }
    return 1.0 - (jaro + Double(commonPrefix) * 0.1 * (1.0 - jaro))
}

func withinDistance(words: [String], maxDistance: Double, string: String,
                    maxToReturn: Int) -> [(String, Double)] {
    var arr = Array(words.map{($0, jaroWinklerDistance(string1: string, string2: $0))}
        .filter{$0.1 <= maxDistance})
    arr.sort(by: { x, y in return x.1 < y.1 })
    return Array(arr[0..<min(maxToReturn, arr.count)])
}

func pad(string: String, width: Int) -> String {
    if string.count >= width {
        return string
    }
    return String(repeating: " ", count: width - string.count) + string
}

do {
    let dict = try loadDictionary("linuxwords.txt")
    for word in ["accomodate", "definately", "goverment", "occured",
                 "publically", "recieve", "seperate", "untill", "wich"] {
        print("Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to '\(word)' are:")
        print("        Word   |  Distance")
        for (w, dist) in withinDistance(words: dict, maxDistance: 0.15,
                                        string: word, maxToReturn: 5) {
            print("\(pad(string: w, width: 14)) | \(String(format: "%6.4f", dist))")
        }
        print()
    }
} catch {
    print(error.localizedDescription)
}
Output:
Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'accomodate' are:
        Word   |  Distance
   accommodate | 0.0182
  accommodated | 0.0333
  accommodates | 0.0333
 accommodating | 0.0815
 accommodation | 0.0815

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'definately' are:
        Word   |  Distance
    definitely | 0.0400
     defiantly | 0.0422
        define | 0.0800
      definite | 0.0850
     definable | 0.0872

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'goverment' are:
        Word   |  Distance
    government | 0.0533
        govern | 0.0667
   governments | 0.0697
      movement | 0.0810
  governmental | 0.0833

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'occured' are:
        Word   |  Distance
      occurred | 0.0250
         occur | 0.0571
      occupied | 0.0786
        occurs | 0.0905
      accursed | 0.0917

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'publically' are:
        Word   |  Distance
      publicly | 0.0400
        public | 0.0800
     publicity | 0.1044
   publication | 0.1327
    biblically | 0.1400

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'recieve' are:
        Word   |  Distance
       receive | 0.0333
      received | 0.0625
      receiver | 0.0625
      receives | 0.0625
       relieve | 0.0667

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'seperate' are:
        Word   |  Distance
     desperate | 0.0708
      separate | 0.0917
     temperate | 0.1042
     separated | 0.1144
     separates | 0.1144

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'untill' are:
        Word   |  Distance
         until | 0.0333
         untie | 0.1067
      untimely | 0.1083
          till | 0.1111
      Antilles | 0.1264

Close dictionary words (distance < 0.15 using Jaro-Winkler distance) to 'wich' are:
        Word   |  Distance
         witch | 0.0533
         which | 0.0600
        switch | 0.1111
        twitch | 0.1111
       witches | 0.1143

Typescript

Translation of: Java
var fs = require('fs')

// Jaro Winkler Distance Formula
function jaroDistance(string1: string, string2: string): number{
    // Compute Jaro-Winkler distance between two string
    // Swap strings if string1 is shorter than string 2
    if (string1.length < string2.length){
        const tempString: string = string1;
        string1 = string2;
        string2 = tempString
    }
    let len1: number = string1.length
    let len2: number = string2.length
    if (!len2){
        return 0.0
    }
    const delta: number = Math.max(1, len1 / 2.0) - 1.0;
    // Flags for transpositions
    let flag: boolean[] = Array(len2).fill(false)
    let ch1Match: string[] = Array(len1).fill('')
    // Count number of matching characters
    let matches = 0
    // Check if characters on both string matches
    for (let i: number = 0; i < len1; i++){
            const ch1: string = string1[i]
            for (let j = 0; j < len2; j++){
                const ch2: string = string2[j]
                if (j <= i + delta && j + delta >= 1 && ch1 == ch2 && !flag[j]){
                    flag[j] = true
                    ch1Match[matches++] = ch1;
                    break;
                }
            }
    }
    if (!matches){
        return 1.0
    }
    // Count number of transpositions (shared characters placed in different positions)
    let transpositions: number = 0.0
    for (let i: number = 0, j: number = 0; j < len2; j++){
            if (flag[j]){
                if (string2[j] != ch1Match[i]){
                    transpositions++
                }
                i++
            }
    }
    const m: number = matches
    // Jaro Similarity Formula simj = ( (m / length of s1) + (m / length of s2) + (m - t) / m ) / 3  
    const jaro: number = (m / len1 + m / len2 + (m - transpositions / 2.0) / m) / 3.0
    // Length of common prefix between string up to 4 characters
    let commonPrefix: number = 0.0
    len2 = Math.min(4, len2)
    for (let i: number = 0; i < len2; i++){
        if (string1[i] == string2[i]){
            commonPrefix++
        }
    }
    // Jaro Winkler Distance Formula simw = simj + lp(1 - simj)
    return 1.0 - (jaro + commonPrefix * 0.1 * (1.0 - jaro))
}

// Compute Jaro Winkler Distance for every word on the dictionary against the misspelled word
function withinDistance(words: string[] ,maxDistance: number, string: string, maxToReturn: number): (string | number)[][]{
    let result: (string | number)[][]  = new Array()
    words.forEach(word =>{
        const distance = jaroDistance(word, string)
        // check if computed jaro winkler distance is within the set distance parameter
        if (distance <= maxDistance){
            const tuple = [distance, word]
            result.push(tuple)
        }
    })      
    result.sort()
    // Limit of matches set to maxtoReturn
    return result.length <= maxToReturn ? result : result.slice(0, maxToReturn)
}

function loadDictionary(fileName: string): string[]{
    let words: string[] = new Array()
    try{
        //attacomsian.com/blog/reading-a-file-line-by-line-in-nodejs
        const data = fs.readFileSync(fileName, 'utf-8')
        const lines: string[] = data.split(/\r?\n/)
        lines.forEach(line => {
            words.push(line)
        })
        return words
    }
    catch(error){
        console.log("Error reading dictionary")
    }
}

function main(): void{
    try {
        const misspellings = [
            "accomodate​",
            "definately​",
            "goverment",
            "occured",
            "publically",
            "recieve",
            "seperate",
            "untill",
            "wich"
        ]
        //unixdict.txt from users.cs.duke.edu/~ola/ap/linuxwords
        let words: string[] = loadDictionary("unixdict.txt")

        misspellings.forEach(spelling =>{
            console.log("Misspelling:", spelling)
            const closeWord = withinDistance(words, 0.15, spelling, 5)
            closeWord.forEach(word =>{
                console.log((word[0] as number).toFixed(4) + " " + word[1])
            })
            console.log("")
        })
    }
    catch(error) {
        console.log("Error on main")
    }  
}
main();
Output:
Misspelling: accomodate​
0.0364 accommodate
0.0515 accommodated
0.0515 accommodates
0.0979 accommodating
0.0979 accommodation

Misspelling: definately​
0.0564 definitely
0.0586 defiantly
0.0909 define
0.0977 definite
0.1013 defiant

Misspelling: goverment
0.0533 government
0.0667 govern
0.0697 governments
0.0833 governmental
0.0952 governs

Misspelling: occured
0.0250 occurred
0.0571 occur
0.0786 occupied
0.0905 occurs
0.0917 accursed

Misspelling: publically
0.0400 publicly
0.0800 public
0.1044 publicity
0.1327 publication
0.1400 biblically

Misspelling: recieve
0.0333 receive
0.0625 received
0.0625 receiver
0.0625 receives
0.0667 relieve

Misspelling: seperate
0.0708 desperate
0.1042 temperate
0.1083 separate
0.1167 repeated
0.1167 sept

Misspelling: untill
0.0333 until
0.1067 untie
0.1083 untimely
0.1111 till
0.1264 Antilles

Misspelling: wich
0.0533 witch
0.0600 which
0.1111 switch
0.1111 twitch
0.1143 witches

V (Vlang)

Translation of: Go
import os

fn jaro_sim(str1 string, str2 string) f64 {
    if str1.len == 0 && str2.len == 0 {
        return 1
    }
    if str1.len == 0 || str2.len == 0 {
        return 0
    }
    mut match_distance := str1.len
    if str2.len > match_distance {
        match_distance = str2.len
    }
    match_distance = match_distance/2 - 1
    mut str1_matches := []bool{len: str1.len}
    mut str2_matches := []bool{len: str2.len}
    mut matches := 0.0
    mut transpositions := 0.0
    for i in 0..str1.len {
        mut start := i - match_distance
        if start < 0 {
            start = 0
        }
        mut end := i + match_distance + 1
        if end > str2.len {
            end = str2.len
        }
        for k in start..end {
            if str2_matches[k] {
                continue
            }
            if str1[i] != str2[k] {
                continue
            }
            str1_matches[i] = true
            str2_matches[k] = true
            matches++
            break
        }
    }
    if matches == 0 {
        return 0
    }
    mut k := 0
    for i in 0.. str1.len {
        if !str1_matches[i] {
            continue
        }
        for !str2_matches[k] {
            k++
        }
        if str1[i] != str2[k] {
            transpositions++
        }
        k++
    }
    transpositions /= 2
    return (matches/f64(str1.len) +
        matches/f64(str2.len) +
        (matches-transpositions)/matches) / 3
}
 
fn jaro_winkler_dist(s string, t string) f64 {
    ls := s.len
    lt := t.len
    mut lmax := lt
    if ls < lt {
        lmax = ls
    }
    if lmax > 4 {
        lmax = 4
    }
    mut l := 0
    for i in 0 .. lmax {
        if s[i] == t[i] {
            l++
        }
    }
    js := jaro_sim(s, t)
    p := 0.1
    ws := js + f64(l)*p*(1-js)
    return 1 - ws
}
 
struct Wd {
    word string
    dist f64
}
 
fn main() {
    misspelt := [
        "accomodate", "definately", "goverment", "occured", "publically",
        "recieve", "seperate", "untill", "wich",
	]
    words := os.read_lines('unixdict.txt')?
    for ms in misspelt {
        mut closest := []Wd{}
        for word in words {
            if word == "" {
                continue
            }
            jwd := jaro_winkler_dist(ms, word)
            if jwd < 0.15 {
                closest << Wd{word, jwd}
            }
        }
        println("Misspelt word: $ms:")
		closest.sort(a.dist<b.dist)
        for i, c in closest {
            println("${c.dist:.4f} ${c.word}")
            if i == 5 {
                break
            }
        }
        println('')
    }
}
Output:
Misspelt word: accomodate :
0.0182 accommodate
0.1044 accordant
0.1136 accolade
0.1219 acclimate
0.1327 accompanist
0.1333 accord

Misspelt word: definately :
0.0800 define
0.0850 definite
0.0886 defiant
0.1200 definitive
0.1219 designate
0.1267 deflate

Misspelt word: goverment :
0.0667 govern
0.1167 governor
0.1175 governess
0.1330 governance
0.1361 coverlet
0.1367 sovereignty

Misspelt word: occured :
0.0250 occurred
0.0571 occur
0.0952 occurrent
0.1056 occlude
0.1217 concurred
0.1429 cure

Misspelt word: publically :
0.0800 public
0.1327 publication
0.1400 pull
0.1492 pullback

Misspelt word: recieve :
0.0333 receive
0.0667 relieve
0.0762 reeve
0.0852 receptive
0.0852 recessive
0.0905 recife

Misspelt word: seperate :
0.0708 desperate
0.0917 separate
0.1042 temperate
0.1167 selenate
0.1167 sewerage
0.1167 sept

Misspelt word: untill :
0.0333 until
0.1111 till
0.1333 huntsville
0.1357 instill
0.1422 unital

Misspelt word: wich :
0.0533 winch
0.0533 witch
0.0600 which
0.0857 wichita
0.1111 switch
0.1111 twitch

Wren

Library: Wren-fmt
Library: Wren-sort

This uses unixdict and borrows code from the Jaro_distance#Wren task.

import "io" for File
import "./fmt" for Fmt
import "./sort" for Sort

var jaroSim = Fn.new { |s1, s2|
    var le1 = s1.count
    var le2 = s2.count
    if (le1 == 0 && le2 == 0) return 1
    if (le1 == 0 || le2 == 0) return 0
    var dist = (le2 > le1) ? le2 : le1
    dist = (dist/2).floor - 1
    var matches1 = List.filled(le1, false)
    var matches2 = List.filled(le2, false)
    var matches = 0
    var transpos = 0
    for (i in 0...s1.count) {
        var start = i - dist
        if (start < 0) start = 0
        var end = i + dist + 1
        if (end > le2) end = le2
        var k = start
        while (k < end) {
            if (!(matches2[k] || s1[i] != s2[k])) {
                matches1[i] = true
                matches2[k] = true
                matches = matches + 1
                break
            }
            k = k + 1
        }
    }
    if (matches == 0) return 0
    var k = 0
    for (i in 0...s1.count) {
        if (matches1[i]) {
            while(!matches2[k]) k = k + 1
            if (s1[i] != s2[k]) transpos = transpos + 1
            k = k + 1
        }
    }
    transpos = transpos / 2
    return (matches/le1 + matches/le2 + (matches - transpos)/matches) / 3
}

var jaroWinklerDist = Fn.new { |s, t|
    var ls = s.count
    var lt = t.count
    var lmax = (ls < lt) ? ls : lt
    if (lmax > 4) lmax = 4
    var l = 0
    for (i in 0...lmax) {
        if (s[i] == t[i]) l = l + 1
    }
    var js = jaroSim.call(s, t)
    var p = 0.1
    var ws = js + l*p*(1 - js)
    return 1 - ws
}

var misspelt = ["accomodate", "definately", "goverment", "occured", "publically", "recieve", "seperate", "untill", "wich"]
var words = File.read("unixdict.txt").split("\n").map { |w| w.trim() }.where { |w| w != "" }
for (ms in misspelt) {
    var closest = []
    for (word in words) {
       var jwd = jaroWinklerDist.call(ms, word)
       if (jwd < 0.15) closest.add([word, jwd])
    }
    System.print("Misspelt word: %(ms):")
    var cmp = Fn.new { |n1, n2| (n1[1]-n2[1]).sign }
    Sort.insertion(closest, cmp)
    for (c in closest.take(6)) Fmt.print("$0.4f $s", c[1], c[0])
    System.print()
}
Output:
Misspelt word: accomodate:
0.0182 accommodate
0.1044 accordant
0.1136 accolade
0.1219 acclimate
0.1327 accompanist
0.1333 accord

Misspelt word: definately:
0.0800 define
0.0850 definite
0.0886 defiant
0.1200 definitive
0.1219 designate
0.1267 deflate

Misspelt word: goverment:
0.0667 govern
0.1167 governor
0.1175 governess
0.1330 governance
0.1361 coverlet
0.1367 sovereignty

Misspelt word: occured:
0.0250 occurred
0.0571 occur
0.0952 occurrent
0.1056 occlude
0.1217 concurred
0.1429 cure

Misspelt word: publically:
0.0800 public
0.1327 publication
0.1400 pull
0.1492 pullback

Misspelt word: recieve:
0.0333 receive
0.0667 relieve
0.0762 reeve
0.0852 receptive
0.0852 recessive
0.0905 recife

Misspelt word: seperate:
0.0708 desperate
0.0917 separate
0.1042 temperate
0.1167 selenate
0.1167 sept
0.1167 sewerage

Misspelt word: untill:
0.0333 until
0.1111 till
0.1333 huntsville
0.1357 instill
0.1422 unital

Misspelt word: wich:
0.0533 winch
0.0533 witch
0.0600 which
0.0857 wichita
0.1111 switch
0.1111 twitch