Home primes

From Rosetta Code
Task
Home primes
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Home prime. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

In number theory, the home prime HP(n) of an integer n greater than 1 is the prime number obtained by repeatedly factoring the increasing concatenation of prime factors including repetitions.

The traditional notation has the prefix "HP" and a postfix count of the number of iterations until the home prime is found (if the count is greater than 0), for instance HP4(2) === HP22(1) === 211 is the same as saying the home prime of 4 needs 2 iterations and is the same as the home prime of 22 which needs 1 iteration, and (both) resolve to 211, a prime.

Prime numbers are their own home prime;

So:

   HP2 = 2
   
   HP7 = 7

If the integer obtained by concatenating increasing prime factors is not prime, iterate until you reach a prime number; the home prime.

   HP4(2) = HP22(1) = 211
   HP4(2) = 2 × 2 => 22; HP22(1) = 2 × 11 => 211; 211 is prime  
   
   HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
   HP10(4) = 2 × 5 => 25; HP25(3) = 5 × 5 => 55; HP55(2) = 5 × 11 => 511; HP511(1) = 7 × 73 => 773; 773 is prime  


Task
  • Find and show here, on this page, the home prime iteration chains for the integers 2 through 20 inclusive.


Stretch goal
  • Find and show the iteration chain for 65.


Impossible goal
  • Show the the home prime for HP49.


See also


Factor

Works with: Factor version 0.99 2021-02-05
USING: formatting kernel make math math.parser math.primes
math.primes.factors math.ranges present prettyprint sequences
sequences.extras ;

: squish ( seq -- n ) [ present ] map-concat dec> ;

: next ( m -- n ) factors squish ; inline

: (chain) ( n -- ) [ dup prime? ] [ dup , next ] until , ;

: chain ( n -- seq ) [ (chain) ] { } make ;

: prime. ( n -- ) dup "HP%d = %d\n" printf ;

: setup ( seq -- n s r ) unclip-last swap dup length 1 [a,b] ;

: multi. ( n -- ) chain setup [ "HP%d(%d) = " printf ] 2each . ;

: chain. ( n -- ) dup prime? [ prime. ] [ multi. ] if ;

2 20 [a,b] [ chain. ] each
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP22(1) = 211
HP5 = 5
HP6(1) = 23
HP7 = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11 = 11
HP12(1) = 223
HP13 = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17 = 17
HP18(1) = 233
HP19 = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413

Go

Translation of: Wren
Library: Go-rcu
package main

import (
    "fmt"
    "math/big"
    "rcu"
    "sort"
)

var zero = new(big.Int)
var one = big.NewInt(1)
var two = big.NewInt(2)
var three = big.NewInt(3)
var four = big.NewInt(4)
var five = big.NewInt(5)
var six = big.NewInt(6)

// simple wheel based prime factors routine for BigInt
func primeFactorsWheel(m *big.Int) []*big.Int {
    n := new(big.Int).Set(m)
    t := new(big.Int)
    inc := []*big.Int{four, two, four, two, four, six, two, six}
    var factors []*big.Int
    for t.Rem(n, two).Cmp(zero) == 0 {
        factors = append(factors, two)
        n.Quo(n, two)
    }
    for t.Rem(n, three).Cmp(zero) == 0 {
        factors = append(factors, three)
        n.Quo(n, three)
    }
    for t.Rem(n, five).Cmp(zero) == 0 {
        factors = append(factors, five)
        n.Quo(n, five)
    }
    k := big.NewInt(7)
    i := 0
    for t.Mul(k, k).Cmp(n) <= 0 {
        if t.Rem(n, k).Cmp(zero) == 0 {
            factors = append(factors, new(big.Int).Set(k))
            n.Quo(n, k)
        } else {
            k.Add(k, inc[i])
            i = (i + 1) % 8
        }
    }
    if n.Cmp(one) > 0 {
        factors = append(factors, n)
    }
    return factors
}

func pollardRho(n *big.Int) *big.Int {
    g := func(x, n *big.Int) *big.Int {
        x2 := new(big.Int)
        x2.Mul(x, x)
        x2.Add(x2, one)
        return x2.Mod(x2, n)
    }
    x, y, d := new(big.Int).Set(two), new(big.Int).Set(two), new(big.Int).Set(one)
    t, z := new(big.Int), new(big.Int).Set(one)
    count := 0
    for {
        x = g(x, n)
        y = g(g(y, n), n)
        t.Sub(x, y)
        t.Abs(t)
        t.Mod(t, n)
        z.Mul(z, t)
        count++
        if count == 100 {
            d.GCD(nil, nil, z, n)
            if d.Cmp(one) != 0 {
                break
            }
            z.Set(one)
            count = 0
        }
    }
    if d.Cmp(n) == 0 {
        return new(big.Int)
    }
    return d
}

func primeFactors(m *big.Int) []*big.Int {
    n := new(big.Int).Set(m)
    var factors []*big.Int
    lim := big.NewInt(1e9)
    for n.Cmp(one) > 0 {
        if n.Cmp(lim) > 0 {
            d := pollardRho(n)
            if d.Cmp(zero) != 0 {
                factors = append(factors, primeFactorsWheel(d)...)
                n.Quo(n, d)
                if n.ProbablyPrime(10) {
                    factors = append(factors, n)
                    break
                }
            } else {
                factors = append(factors, primeFactorsWheel(n)...)
                break
            }
        } else {
            factors = append(factors, primeFactorsWheel(n)...)
            break
        }
    }
    sort.Slice(factors, func(i, j int) bool { return factors[i].Cmp(factors[j]) < 0 })
    return factors
}

func main() {
    list := make([]int, 20)
    for i := 2; i <= 20; i++ {
        list[i-2] = i
    }
    list[19] = 65
    for _, i := range list {
        if rcu.IsPrime(i) {
            fmt.Printf("HP%d = %d\n", i, i)
            continue
        }
        n := 1
        j := big.NewInt(int64(i))
        h := []*big.Int{j}
        for {
            pf := primeFactors(j)
            k := ""
            for _, f := range pf {
                k += fmt.Sprintf("%d", f)
            }
            j, _ = new(big.Int).SetString(k, 10)
            h = append(h, j)
            if j.ProbablyPrime(10) {
                for l := n; l > 0; l-- {
                    fmt.Printf("HP%d(%d) = ", h[n-l], l)
                }
                fmt.Println(h[n])
                break
            } else {
                n++
            }
        }
    }
}
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP22(1) = 211
HP5 = 5
HP6(1) = 23
HP7 = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11 = 11
HP12(1) = 223
HP13 = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17 = 17
HP18(1) = 233
HP19 = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413
HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = HP11101203(15) = HP332353629(14) = HP33152324247(13) = HP3337473732109(12) = HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9) = HP3397179373752371411(8) = HP157116011350675311441(7) = HP331333391143947279384649(6) = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) = HP292951656531350398312122544283(3) = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651

J

step =: -.&' '&.":@q:
hseq =: [,$:@step`(0&$)@.(1&p:)
fmtHP =: (' is prime',~":@])`('HP',":@],'(',":@[,')'&[)@.(*@[)
fmtlist =: [:;@}.[:,(<' = ')&,"0@(|.@i.@# fmtHP each [)
printHP =: 0 0&$@stdout@(fmtlist@hseq,(10{a.)&[)
printHP"0 [ 2}.i.21
exit 0
Output:
2 is prime
3 is prime
HP4(2) = HP22(1) = 211 is prime
5 is prime
HP6(1) = 23 is prime
7 is prime
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107 is prime
HP9(2) = HP33(1) = 311 is prime
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773 is prime
11 is prime
HP12(1) = 223 is prime
13 is prime
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367 is prime
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129 is prime
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373 is prime
17 is prime
HP18(1) = 233 is prime
19 is prime
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413 is prime

Java

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public final class HomePrimes {

	public static void main(String[] aArgs) {
		listPrimes(PRIME_LIMIT);
		
		List<Integer> values = List.of( 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 65 );
		for ( int value : values ) {
			BigInteger number = BigInteger.valueOf(value);
			List<BigInteger> previousNumbers = Stream.of( number ).collect(Collectors.toList());
			boolean searching = true;
			while ( searching ) {
				number = concatenate(primeFactors(number));
				previousNumbers.add(number);
				if ( number.isProbablePrime(CERTAINTY_LEVEL) ) {
					final int lastIndex = previousNumbers.size() - 1;
					for ( int k = lastIndex; k >= 1; k-- ) {
						System.out.print("HP" + previousNumbers.get(lastIndex - k) + "(" + k + ") = ");
					}
					System.out.println(previousNumbers.get(lastIndex));
					searching = false;
				}
			} 
		}
	}
	
	private static List<BigInteger> primeFactors(BigInteger aNumber) {		
		List<BigInteger> result = new ArrayList<BigInteger>();
		
		if ( aNumber.compareTo(BigInteger.valueOf(PRIME_LIMIT * PRIME_LIMIT)) <= 0 ) {
			return smallPrimeFactors(aNumber);
		}	
		
		if ( aNumber.isProbablePrime(CERTAINTY_LEVEL) ) {
			result.add(aNumber);
			return result;
		}
		
		BigInteger divisor = pollardRho(aNumber);
    	result.addAll(primeFactors(divisor));
    	aNumber = aNumber.divide(divisor);    	
    	result.addAll(primeFactors(aNumber));   
		Collections.sort(result); 
		return result; 
	}
	
	private static List<BigInteger> smallPrimeFactors(BigInteger aNumber) {
		int number = aNumber.intValueExact();
		List<BigInteger> result = new ArrayList<BigInteger>();
	
		for ( int i = 0; i < primes.size() && number > 1; i++ ) {
			while ( number % primes.get(i) == 0 ) {
				result.add(BigInteger.valueOf(primes.get(i)));
				number /= primes.get(i);
			}
		}
		
		if ( number > 1 ) {
			result.add(BigInteger.valueOf(number));
		}
		return result;
	}

	private static BigInteger pollardRho(BigInteger aNumber) {
		if ( ! aNumber.testBit(0) ) {
			return BigInteger.TWO;
		}		
		
		final BigInteger constant  = new BigInteger(aNumber.bitLength(), RANDOM);
		BigInteger x  = new BigInteger(aNumber.bitLength(), RANDOM);
		BigInteger y = x;
		BigInteger divisor = null;		
		
		do {
			x = x.multiply(x).add(constant).mod(aNumber);
			y = y.multiply(y).add(constant).mod(aNumber);
			y = y.multiply(y).add(constant).mod(aNumber);
			divisor = x.subtract(y).gcd(aNumber);
		} while ( divisor.compareTo(BigInteger.ONE) == 0 );
		return divisor;
	}
	
	private static BigInteger concatenate(List<BigInteger> aList) {
		String number = aList.stream().map(String::valueOf).collect(Collectors.joining());
		return new BigInteger(number);
	}
	
	public static void listPrimes(int aNumber) {
		BitSet sieve = new BitSet(aNumber + 1);
		sieve.set(2, aNumber + 1);		
		for ( int i = 2; i <= Math.sqrt(aNumber); i = sieve.nextSetBit(i + 1) ) {
			for ( int j = i * i; j <= aNumber; j = j + i ) {
				sieve.clear(j);
			}
		}
		
		primes = new ArrayList<Integer>(sieve.cardinality());
		for ( int i = 2; i >= 0; i = sieve.nextSetBit(i + 1) ) {
			primes.add(i);
		}
	}
	
	private static List<Integer> primes;
	
	private static final int CERTAINTY_LEVEL = 20;
	private static final int PRIME_LIMIT = 10_000;
	private static final ThreadLocalRandom RANDOM = ThreadLocalRandom.current();
	
}
Output:
HP2(1) = 2
HP3(1) = 3
HP4(2) = HP22(1) = 211
HP5(1) = 5
HP6(1) = 23
HP7(1) = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6)
 = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1)
 = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11(1) = 11
HP12(1) = 223
HP13(1) = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17(1) = 17
HP18(1) = 233
HP19(1) = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8)
 = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3)
 = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413
HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = HP11101203(15) = HP332353629(14) = HP33152324247(13)
 = HP3337473732109(12) = HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9)
 = HP3397179373752371411(8) = HP157116011350675311441(7) = HP331333391143947279384649(6)
 = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) = HP292951656531350398312122544283(3)
 = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651

Julia

using Primes

function homeprimechain(n::BigInt)
    isprime(n) && return [n]
    concat = prod(string(i)^j for (i, j) in factor(n).pe)
    return pushfirst!(homeprimechain(parse(BigInt, concat)), n)
end
homeprimechain(n::Integer) = homeprimechain(BigInt(n))

function printHPiter(n, numperline = 4)
    chain = homeprimechain(n)
    len = length(chain)
    for (i, ent) in enumerate(chain)
        print(i < len ? "HP$ent" * "($(len - i)) = " * (i % numperline == 0 ? "\n" : "") : "$ent is prime.\n\n")
    end
end

for i in [2:20; 65]
   print("Home Prime chain for $i: ")
   printHPiter(i)
end
Output:
Home Prime chain for 2: 2 is prime.

Home Prime chain for 3: 3 is prime.

Home Prime chain for 4: HP4(2) = HP22(1) = 211 is prime.

Home Prime chain for 5: 5 is prime.

Home Prime chain for 6: HP6(1) = 23 is prime.

Home Prime chain for 7: 7 is prime.

Home Prime chain for 8: HP8(13) = HP222(12) = HP2337(11) = HP31941(10) =
HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) =
HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) =
HP531832651281459(1) = 3331113965338635107 is prime.

Home Prime chain for 9: HP9(2) = HP33(1) = 311 is prime.

Home Prime chain for 10: HP10(4) = HP25(3) = HP55(2) = HP511(1) =
773 is prime.

Home Prime chain for 11: 11 is prime.

Home Prime chain for 12: HP12(1) = 223 is prime.

Home Prime chain for 13: 13 is prime.

Home Prime chain for 14: HP14(5) = HP27(4) = HP333(3) = HP3337(2) =
HP4771(1) = 13367 is prime.

Home Prime chain for 15: HP15(4) = HP35(3) = HP57(2) = HP319(1) =
1129 is prime.

Home Prime chain for 16: HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 
31636373 is prime.

Home Prime chain for 17: 17 is prime.

Home Prime chain for 18: HP18(1) = 233 is prime.

Home Prime chain for 19: 19 is prime.

Home Prime chain for 20: HP20(15) = HP225(14) = HP3355(13) = HP51161(12) =
HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) =
HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) =
HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413 is prime.

Home Prime chain for 65: HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = 
HP11101203(15) = HP332353629(14) = HP33152324247(13) = HP3337473732109(12) =
HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9) = HP3397179373752371411(8) =
HP157116011350675311441(7) = HP331333391143947279384649(6) = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) =
HP292951656531350398312122544283(3) = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651 is prime.

Mathematica/Wolfram Language

ClearAll[HP, HPChain]
HP[n_] := FromDigits[Catenate[IntegerDigits /@ Sort[Catenate[ConstantArray @@@ FactorInteger[n]]]]]
HPChain[n_] := NestWhileList[HP, n, PrimeQ/*Not]
Row[Prepend["Home prime chain for " <> ToString[#] <> ": "]@Riffle[HPChain[#], ", "]] & /@ Range[2, 20] // Column
Row[Prepend["Home prime chain for 65: "]@Riffle[HPChain[65], ", "]]
Output:
Home prime chain for 2: 2
Home prime chain for 3: 3
Home prime chain for 4: 4, 22, 211
Home prime chain for 5: 5
Home prime chain for 6: 6, 23
Home prime chain for 7: 7
Home prime chain for 8: 8, 222, 2337, 31941, 33371313, 311123771, 7149317941, 22931219729, 112084656339, 3347911118189, 11613496501723, 97130517917327, 531832651281459, 3331113965338635107
Home prime chain for 9: 9, 33, 311
Home prime chain for 10: 10, 25, 55, 511, 773
Home prime chain for 11: 11
Home prime chain for 12: 12, 223
Home prime chain for 13: 13
Home prime chain for 14: 14, 27, 333, 3337, 4771, 13367
Home prime chain for 15: 15, 35, 57, 319, 1129
Home prime chain for 16: 16, 2222, 211101, 3116397, 31636373
Home prime chain for 17: 17
Home prime chain for 18: 18, 233
Home prime chain for 19: 19
Home prime chain for 20: 20, 225, 3355, 51161, 114651, 3312739, 17194867, 194122073, 709273797, 39713717791, 113610337981, 733914786213, 3333723311815403, 131723655857429041, 772688237874641409, 3318308475676071413

Home prime chain for 65: 65, 513, 33319, 1113233, 11101203, 332353629, 33152324247, 3337473732109, 111801316843763, 151740406071813, 31313548335458223, 3397179373752371411, 157116011350675311441, 331333391143947279384649, 11232040692636417517893491, 711175663983039633268945697, 292951656531350398312122544283, 2283450603791282934064985326977, 333297925330304453879367290955541, 1381321118321175157763339900357651

Nim

Translation of: Wren
Library: bignum

This algorithm is really efficient. We get the result for HP2 to HP20 in about 6 ms and adding HP65 in 1.3 s. I think that the threshold to switch to Pollard-Rho is very important.

import algorithm, sequtils, strformat, strutils
import bignum

let
  Two = newInt(2)
  Three = newInt(3)
  Five = newInt(5)


proc primeFactorsWheel(n: Int): seq[Int] =
  const Inc = [4, 2, 4, 2, 4, 6, 2, 6]
  var n = n
  while (n mod 2).isZero:
    result.add Two
    n = n div 2
  while (n mod 3).isZero:
    result.add Three
    n = n div 3
  while (n mod 5).isZero:
    result.add Five
    n = n div 5
  var k = 7
  var i = 0
  while k * k <= n:
    if (n mod k).isZero:
      result.add newInt(k)
      n = n div k
    else:
      inc k, Inc[i]
      i = (i + 1) and 7
  if n > 1: result.add n


func pollardRho(n : Int): Int =

  func g(x, y: Int): Int = (x * x + 1) mod y

  var x, y = newInt(2)
  var z, d = newInt(1)
  var count = 0
  while true:
    x = g(x, n)
    y = g(g(y, n), n)
    d = abs(x - y) mod n
    z *= d
    inc count
    if count == 100:
      d = gcd(z, n)
      if d != 1: break
      z = newInt(1)
      count = 0
  if d == n: return newInt(0)
  result = d


proc primeFactors(n: Int): seq[Int] =
  var n = n
  while n > 1:
    if n > 100_000_000:
      let d = pollardRho(n)
      if not d.isZero:
        result.add primeFactorsWheel(d)
        n = n div d
        if n.probablyPrime(25) != 0:
          result.add n
          break
      else:
        result.add primeFactorsWheel(n)
        break
    else:
      result.add primeFactorsWheel(n)
      break
  result.sort()


let list = toSeq(2..20) & 65
for i in list:
  if i in [2, 3, 5, 7, 11, 13, 17, 19]:
    echo &"HP{i} = {i}"
    continue
  var n = 1
  var j = newInt(i)
  var h = @[j]
  while true:
    j = newInt(primeFactors(j).join())
    h.add j
    if j.probablyPrime(25) != 0:
      for k in countdown(n, 1):
        stdout.write &"HP{h[n-k]}({k}) = "
      echo h[n]
      break
    else:
      inc n
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP22(1) = 211
HP5 = 5
HP6(1) = 23
HP7 = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11 = 11
HP12(1) = 223
HP13 = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17 = 17
HP18(1) = 233
HP19 = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413
HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = HP11101203(15) = HP332353629(14) = HP33152324247(13) = HP3337473732109(12) = HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9) = HP3397179373752371411(8) = HP157116011350675311441(7) = HP331333391143947279384649(6) = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) = HP292951656531350398312122544283(3) = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651

PARI/GP

Translation of: Julia
homeprimechain(n) = {
    my(chain = [], concat_result, factors, factor_str);
    while (!isprime(n),
        chain = concat(chain, n);  /* Append n to the chain */
        factors = factor(n);
        /* Correctly build the concatenated string of factors */
        factor_str = Str(concat(Vec(vector(#factors~, i,
           concat(Vec(concat(vector(factors[i, 2], j, Str(factors[i, 1])))))))));
        concat_result = factor_str;
        \\print("concat_result="  concat_result);
        n = eval(concat_result);  /* Convert string back to number */
    );
    concat(chain, n); /* Append the final prime to the chain */
}

printHPiter(n, numperline = 4) = {
    my(chain = homeprimechain(n), len = #chain, i);
    for (i = 1, len,
        if (i < len,
            print1("HP" , chain[i] , " (" , len - i , ") = " , if(i % numperline == 0, "\n", "")),
            print(chain[i], " is prime.\n\n");
        );
    );
}

{
/* Iterate over a set of numbers */
forstep(i = 2, 20, 1, print("Home Prime chain for ", i, ": "); printHPiter(i););
printHPiter(65);
}
Output:
Home Prime chain for 2: 
2 is prime.


Home Prime chain for 3: 
3 is prime.


Home Prime chain for 4: 
HP4 (2) = HP22 (1) = 211 is prime.


Home Prime chain for 5: 
5 is prime.


Home Prime chain for 6: 
HP6 (1) = 23 is prime.


Home Prime chain for 7: 
7 is prime.


Home Prime chain for 8: 
HP8 (13) = HP222 (12) = HP2337 (11) = HP31941 (10) = 
HP33371313 (9) = HP311123771 (8) = HP7149317941 (7) = HP22931219729 (6) = 
HP112084656339 (5) = HP3347911118189 (4) = HP11613496501723 (3) = HP97130517917327 (2) = 
HP531832651281459 (1) = 3331113965338635107 is prime.


Home Prime chain for 9: 
HP9 (2) = HP33 (1) = 311 is prime.


Home Prime chain for 10: 
HP10 (4) = HP25 (3) = HP55 (2) = HP511 (1) = 
773 is prime.


Home Prime chain for 11: 
11 is prime.


Home Prime chain for 12: 
HP12 (1) = 223 is prime.


Home Prime chain for 13: 
13 is prime.


Home Prime chain for 14: 
HP14 (5) = HP27 (4) = HP333 (3) = HP3337 (2) = 
HP4771 (1) = 13367 is prime.


Home Prime chain for 15: 
HP15 (4) = HP35 (3) = HP57 (2) = HP319 (1) = 
1129 is prime.


Home Prime chain for 16: 
HP16 (4) = HP2222 (3) = HP211101 (2) = HP3116397 (1) = 
31636373 is prime.


Home Prime chain for 17: 
17 is prime.


Home Prime chain for 18: 
HP18 (1) = 233 is prime.


Home Prime chain for 19: 
19 is prime.


Home Prime chain for 20: 
HP20 (15) = HP225 (14) = HP3355 (13) = HP51161 (12) = 
HP114651 (11) = HP3312739 (10) = HP17194867 (9) = HP194122073 (8) = 
HP709273797 (7) = HP39713717791 (6) = HP113610337981 (5) = HP733914786213 (4) = 
HP3333723311815403 (3) = HP131723655857429041 (2) = HP772688237874641409 (1) = 3318308475676071413 is prime.


HP65 (19) = HP513 (18) = HP33319 (17) = HP1113233 (16) = 
HP11101203 (15) = HP332353629 (14) = HP33152324247 (13) = HP3337473732109 (12) = 
HP111801316843763 (11) = HP151740406071813 (10) = HP31313548335458223 (9) = HP3397179373752371411 (8) = 
HP157116011350675311441 (7) = HP331333391143947279384649 (6) = HP11232040692636417517893491 (5) = HP711175663983039633268945697 (4) = 
HP292951656531350398312122544283 (3) = HP2283450603791282934064985326977 (2) = HP333297925330304453879367290955541 (1) = 1381321118321175157763339900357651 is prime.




Perl

Library: ntheory
use strict;
use warnings;
use ntheory 'factor';

for my $m (2..20, 65) {
    my (@steps, @factors) = $m;
    push @steps, join '_', @factors while (@factors = factor $steps[-1] =~ s/_//gr) > 1;
    my $step = $#steps;
    if ($step >= 1) { print 'HP' . $_ . "($step) = " and --$step or last for @steps }
    else            { print "HP$m = " }
    print "$steps[-1]\n";
}
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP2_2(1) = 2_11
HP5 = 5
HP6(1) = 2_3
HP7 = 7
HP8(13) = HP2_2_2(12) = HP2_3_37(11) = HP3_19_41(10) = HP3_3_3_7_13_13(9) = HP3_11123771(8) = HP7_149_317_941(7) = HP229_31219729(6) = HP11_2084656339(5) = HP3_347_911_118189(4) = HP11_613_496501723(3) = HP97_130517_917327(2) = HP53_1832651281459(1) = 3_3_3_11_139_653_3863_5107
HP9(2) = HP3_3(1) = 3_11
HP10(4) = HP2_5(3) = HP5_5(2) = HP5_11(1) = 7_73
HP11 = 11
HP12(1) = 2_2_3
HP13 = 13
HP14(5) = HP2_7(4) = HP3_3_3(3) = HP3_3_37(2) = HP47_71(1) = 13_367
HP15(4) = HP3_5(3) = HP5_7(2) = HP3_19(1) = 11_29
HP16(4) = HP2_2_2_2(3) = HP2_11_101(2) = HP3_11_6397(1) = 3_163_6373
HP17 = 17
HP18(1) = 2_3_3
HP19 = 19
HP20(15) = HP2_2_5(14) = HP3_3_5_5(13) = HP5_11_61(12) = HP11_4651(11) = HP3_3_12739(10) = HP17_194867(9) = HP19_41_22073(8) = HP709_273797(7) = HP3_97_137_17791(6) = HP11_3610337981(5) = HP7_3391_4786213(4) = HP3_3_3_3_7_23_31_1815403(3) = HP13_17_23_655857429041(2) = HP7_7_2688237874641409(1) = 3_31_8308475676071413
HP65(19) = HP5_13(18) = HP3_3_3_19(17) = HP11_13_233(16) = HP11_101203(15) = HP3_3_23_53629(14) = HP3_3_1523_24247(13) = HP3_3_3_7_47_3732109(12) = HP11_18013_16843763(11) = HP151_740406071813(10) = HP3_13_13_54833_5458223(9) = HP3_3_97_179_373_7523_71411(8) = HP1571_1601_1350675311441(7) = HP3_3_13_33391_143947_279384649(6) = HP11_23_204069263_6417517893491(5) = HP7_11_1756639_83039633268945697(4) = HP29_29_5165653_13503983_12122544283(3) = HP228345060379_1282934064985326977(2) = HP3_3_3_2979253_3030445387_9367290955541(1) = 1381_3211183211_75157763339900357651

Phix

Added a new mpz_pollard_rho routine, based on the wp:Pollard's_rho_algorithm C code.

with javascript_semantics
requires("1.0.0")
include mpfr.e

procedure test(integer n)
    string s = sprintf("%d",n), lastp = ""
    sequence res = {s}
    atom t0 = time()
    while true do
        s = substitute(s,"_","")
        sequence rr = mpz_pollard_rho(s,true)
        if length(rr)=1 then exit end if
        s = join(rr,"_")
        res = append(res,s)
    end while
    atom t = time()-t0
    integer niter = length(res)-1
    string iter = iff(niter>1?sprintf("(%d)",niter):""),
           e = iff(t>0.1?" ["&elapsed(t)&"]":"")
    s = sprintf("HP%d%s = ",{n,iter})
    if niter=0 then
        printf(1,"%s%d %s\n",{s,n,e})
    else
        for i=2 to niter do
            niter -= 1
            printf(1,"%sHP%s(%d)\n",{s,res[i],niter})
            if i=2 then
                s = repeat(' ',length(s))
                s[-2] = '='
            end if
        end for
        printf(1,"%s%s %s\n",{s,res[$],e})
    end if
end procedure
papply(tagset(20,2)&65,test)
Output:

Using underscores to show the individual factors that were concatenated together

HP2 = 2
HP3 = 3
HP4(2) = HP2_2(1)
       = 2_11
HP5 = 5
HP6 = 2_3
HP7 = 7
HP8(13) = HP2_2_2(12)
        = HP2_3_37(11)
        = HP3_19_41(10)
        = HP3_3_3_7_13_13(9)
        = HP3_11123771(8)
        = HP7_149_317_941(7)
        = HP229_31219729(6)
        = HP11_2084656339(5)
        = HP3_347_911_118189(4)
        = HP11_613_496501723(3)
        = HP97_130517_917327(2)
        = HP53_1832651281459(1)
        = 3_3_3_11_139_653_3863_5107
HP9(2) = HP3_3(1)
       = 3_11
HP10(4) = HP2_5(3)
        = HP5_5(2)
        = HP5_11(1)
        = 7_73
HP11 = 11
HP12 = 2_2_3
HP13 = 13
HP14(5) = HP2_7(4)
        = HP3_3_3(3)
        = HP3_3_37(2)
        = HP47_71(1)
        = 13_367
HP15(4) = HP3_5(3)
        = HP5_7(2)
        = HP3_19(1)
        = 11_29
HP16(4) = HP2_2_2_2(3)
        = HP2_11_101(2)
        = HP3_11_6397(1)
        = 3_163_6373
HP17 = 17
HP18 = 2_3_3
HP19 = 19
HP20(15) = HP2_2_5(14)
         = HP3_3_5_5(13)
         = HP5_11_61(12)
         = HP11_4651(11)
         = HP3_3_12739(10)
         = HP17_194867(9)
         = HP19_41_22073(8)
         = HP709_273797(7)
         = HP3_97_137_17791(6)
         = HP11_3610337981(5)
         = HP7_3391_4786213(4)
         = HP3_3_3_3_7_23_31_1815403(3)
         = HP13_17_23_655857429041(2)
         = HP7_7_2688237874641409(1)
         = 3_31_8308475676071413
HP65(19) = HP5_13(18)
         = HP3_3_3_19(17)
         = HP11_13_233(16)
         = HP11_101203(15)
         = HP3_3_23_53629(14)
         = HP3_3_1523_24247(13)
         = HP3_3_3_7_47_3732109(12)
         = HP11_18013_16843763(11)
         = HP151_740406071813(10)
         = HP3_13_13_54833_5458223(9)
         = HP3_3_97_179_373_7523_71411(8)
         = HP1571_1601_1350675311441(7)
         = HP3_3_13_33391_143947_279384649(6)
         = HP11_23_204069263_6417517893491(5)
         = HP7_11_1756639_83039633268945697(4)
         = HP29_29_5165653_13503983_12122544283(3)
         = HP228345060379_1282934064985326977(2)
         = HP3_3_3_2979253_3030445387_9367290955541(1)
         = 1381_3211183211_75157763339900357651  [13.9s]

Python

Abhorrently Slow, but it works.

# home_primes.py by Xing216
def primeFactors(n: int) -> list[int]:
    primeFactorsL = []
    while n % 2 == 0:
        primeFactorsL.append(2)
        n = n // 2
    for i in range(3,int(n**0.5)+1,2):
        while n % i== 0:
            primeFactorsL.append(i)
            n = n // i
    if n > 2:
        primeFactorsL.append(n)
    return primeFactorsL
def list_to_int(l: list[int]) -> int:
    return int(''.join(str(i) for i in l))
def home_prime_chain(i:int) -> list[int]:
    pf_int = i
    chain = []
    while True:
        pf = primeFactors(pf_int)
        pf_int = list_to_int(pf)
        if len(pf) == 1:
            return chain
        else:
            chain.append(pf_int)
for i in range(2,21):
    chain_list = home_prime_chain(i)
    chain_len = len(chain_list)
    chain_idx_list = list(range(chain_len))[::-1]
    j = chain_len
    if chain_list != []:
        print(f"HP{i}({chain_len}) =", end=" ")
        for k,l in list(zip(chain_list, chain_idx_list)):
            if l == 0:
                print(f"{k}")
            else:
                print(f"HP{k}({l}) =", end=" ")
    else:
        print(f"HP{i}(1) = {i}")
Output:
HP2(1) = 2
HP3(1) = 3
HP4(2) = HP22(1) = 211
HP5(1) = 5
HP6(1) = 23
HP7(1) = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11(1) = 11
HP12(1) = 223
HP13(1) = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17(1) = 17
HP18(1) = 233
HP19(1) = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413

Raku

Not the fastest, but not too bad either. Make an abortive attempt at HP49.

Assuming there are n steps; HP49(n - 25) is slow, HP49(n - 31) is really slow, and I gave up on HP49(n - 34) after 45 minutes.

Using Prime::Factor from the Raku ecosystem.

use Prime::Factor;

my $start = now;

(flat 2..20, 65).map: -> $m {
    my ($now, @steps, @factors) = now, $m;

    @steps.push: @factors.join('_') while (@factors = prime-factors @steps[*-1].Int) > 1;

    say (my $step = +@steps) > 1 ?? (@steps[0..*-2].map( { "HP$_\({--$step})" } ).join: ' = ') !! ("HP$m"),
      " = ", @steps[*-1], "  ({(now - $now).fmt("%0.3f")} seconds)";
}

say "Total elapsed time: {(now - $start).fmt("%0.3f")} seconds\n";

say 'HP49:';
my ($now, @steps, @factors) = now, 49;
my $step = 0;
while (@factors = prime-factors @steps[*-1].Int) > 1 {
    @steps.push: @factors.join('_');
    say "HP{@steps[$step].Int}\(n - {$step++}) = ", @steps[*-1], "  ({(now - $now).fmt("%0.3f")} seconds)";
    $now = now;
    last if $step > 30;
}
Output:
HP2 = 2  (0.000 seconds)
HP3 = 3  (0.000 seconds)
HP4(2) = HP2_2(1) = 2_11  (0.001 seconds)
HP5 = 5  (0.000 seconds)
HP6(1) = 2_3  (0.000 seconds)
HP7 = 7  (0.000 seconds)
HP8(13) = HP2_2_2(12) = HP2_3_37(11) = HP3_19_41(10) = HP3_3_3_7_13_13(9) = HP3_11123771(8) = HP7_149_317_941(7) = HP229_31219729(6) = HP11_2084656339(5) = HP3_347_911_118189(4) = HP11_613_496501723(3) = HP97_130517_917327(2) = HP53_1832651281459(1) = 3_3_3_11_139_653_3863_5107  (0.014 seconds)
HP9(2) = HP3_3(1) = 3_11  (0.000 seconds)
HP10(4) = HP2_5(3) = HP5_5(2) = HP5_11(1) = 7_73  (0.001 seconds)
HP11 = 11  (0.000 seconds)
HP12(1) = 2_2_3  (0.000 seconds)
HP13 = 13  (0.000 seconds)
HP14(5) = HP2_7(4) = HP3_3_3(3) = HP3_3_37(2) = HP47_71(1) = 13_367  (0.001 seconds)
HP15(4) = HP3_5(3) = HP5_7(2) = HP3_19(1) = 11_29  (0.001 seconds)
HP16(4) = HP2_2_2_2(3) = HP2_11_101(2) = HP3_11_6397(1) = 3_163_6373  (0.001 seconds)
HP17 = 17  (0.000 seconds)
HP18(1) = 2_3_3  (0.000 seconds)
HP19 = 19  (0.000 seconds)
HP20(15) = HP2_2_5(14) = HP3_3_5_5(13) = HP5_11_61(12) = HP11_4651(11) = HP3_3_12739(10) = HP17_194867(9) = HP19_41_22073(8) = HP709_273797(7) = HP3_97_137_17791(6) = HP11_3610337981(5) = HP7_3391_4786213(4) = HP3_3_3_3_7_23_31_1815403(3) = HP13_17_23_655857429041(2) = HP7_7_2688237874641409(1) = 3_31_8308475676071413  (0.020 seconds)
HP65(19) = HP5_13(18) = HP3_3_3_19(17) = HP11_13_233(16) = HP11_101203(15) = HP3_3_23_53629(14) = HP3_3_1523_24247(13) = HP3_3_3_7_47_3732109(12) = HP11_18013_16843763(11) = HP151_740406071813(10) = HP3_13_13_54833_5458223(9) = HP3_3_97_179_373_7523_71411(8) = HP1571_1601_1350675311441(7) = HP3_3_13_33391_143947_279384649(6) = HP11_23_204069263_6417517893491(5) = HP7_11_1756639_83039633268945697(4) = HP29_29_5165653_13503983_12122544283(3) = HP228345060379_1282934064985326977(2) = HP3_3_3_2979253_3030445387_9367290955541(1) = 1381_3211183211_75157763339900357651  (6.686 seconds)
Total elapsed time: 6.737 seconds

HP49:
HP49(n - 0) = 7_7  (0.000 seconds)
HP77(n - 1) = 7_11  (0.000 seconds)
HP711(n - 2) = 3_3_79  (0.000 seconds)
HP3379(n - 3) = 31_109  (0.000 seconds)
HP31109(n - 4) = 13_2393  (0.000 seconds)
HP132393(n - 5) = 3_44131  (0.000 seconds)
HP344131(n - 6) = 17_31_653  (0.000 seconds)
HP1731653(n - 7) = 7_11_43_523  (0.000 seconds)
HP71143523(n - 8) = 11_11_577_1019  (0.000 seconds)
HP11115771019(n - 9) = 311_35742029  (0.000 seconds)
HP31135742029(n - 10) = 7_17_261644891  (0.000 seconds)
HP717261644891(n - 11) = 11_19_3431873899  (0.002 seconds)
HP11193431873899(n - 12) = 11_613_4799_345907  (0.001 seconds)
HP116134799345907(n - 13) = 3_204751_189066719  (0.001 seconds)
HP3204751189066719(n - 14) = 3_1068250396355573  (0.003 seconds)
HP31068250396355573(n - 15) = 621611_49980213343  (0.005 seconds)
HP62161149980213343(n - 16) = 3_3_6906794442245927  (0.006 seconds)
HP336906794442245927(n - 17) = 73_4615161567701999  (0.009 seconds)
HP734615161567701999(n - 18) = 3_13_18836286194043641  (0.009 seconds)
HP31318836286194043641(n - 19) = 3_3_3_43_14369_161461_11627309  (0.004 seconds)
HP333431436916146111627309(n - 20) = 3_32057_1618455677_2142207827  (0.153 seconds)
HP33205716184556772142207827(n - 21) = 3_1367_2221_5573_475297_1376323127  (0.006 seconds)
HP31367222155734752971376323127(n - 22) = 7_3391_51263_25777821480557336017  (0.003 seconds)
HP733915126325777821480557336017(n - 23) = 47_67_347_431_120361987_12947236602187  (0.043 seconds)
HP476734743112036198712947236602187(n - 24) = 3_7_7_17_12809_57470909_57713323_4490256751  (0.124 seconds)
HP377171280957470909577133234490256751(n - 25) = 3096049809383_121823389214993262890297  (27.913 seconds)
HP3096049809383121823389214993262890297(n - 26) = 7_379_62363251_18712936424989555929478399  (0.132 seconds)
HP73796236325118712936424989555929478399(n - 27) = 13_1181_145261411_33089538087518197265265053  (0.034 seconds)
HP13118114526141133089538087518197265265053(n - 28) = 3_19_521_441731977174163487542111577539726749  (0.002 seconds)
HP319521441731977174163487542111577539726749(n - 29) = 59_5415617656474189392601483764603009147911  (0.002 seconds)
HP595415617656474189392601483764603009147911(n - 30) = 13_8423_1466957_3706744784027901056001426046777  (0.015 seconds)

REXX

/*REXX program finds and displays the   home prime   of a range of positive integers.   */
numeric digits 20                                /*ensure handling of larger integers.  */
parse arg  LO HI .                               /*obtain optional arguments from the CL*/
if LO=='' | LO=="," then LO=  2                  /*Not specified?  Then use the default.*/
if HI=='' | HI=="," then HI= 20                  /* "     "         "   "   "     "     */
@hpc= 'home prime chain for '                    /*a literal used in two SAY statements.*/
                                 w= length(HI)   /*HI width, used for output alignment. */
       do j=max(2, LO)  to HI                    /*find home primes for an integer range*/
       pf= factr(j);             f= words(pf)    /*get prime factors; number of factors.*/
       if f==1  then do;  say @hpc j": "  j  ' is prime.';  iterate;  end   /*J is prime*/
       xxx.1= j                                  /*save  J  in the first array element. */
                do n=2  until #==1               /*keep processing until we find a prime*/
                xxx.n= space(pf, 0)              /*obtain factors of a concatenated p.f.*/
                pf= factr(xxx.n);   #= words(pf) /*assign factors to PF;  # of factors. */
                end   /*n*/
       ee= n                                     /*save  EE  as the final (last) prime. */
       n= n - 1;   z= n                          /*adjust N (for DO loop); assign N to Z*/
       $=                                        /*nullify the string of   home primes. */
                do m=1  for n                    /*build a list  ($)  of     "     "    */
                $= $  'HP'xxx.m"("z') ─► '       /*concatenate to string of  "     "    */
                z= z - 1                         /*decrease the index counter by unity. */
                end   /*m*/                      /* [↑]  the index counter is decreasing*/

       say @hpc right(j, w)":"   $   xxx.ee  ' is prime.'  /*show string of home primes.*/
       end   /*n*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
factr: procedure;  parse arg x 1 d,$             /*set X, D  to argument 1;  $  to null.*/
       if x==1  then return ''                   /*handle the special case of   X = 1.  */
         do  while x//2==0; $= $ 2; x= x% 2; end /*append all the  2  factors of new  X.*/
         do  while x//3==0; $= $ 3; x= x% 3; end /*   "    "   "   3     "     "  "   " */
         do  while x//5==0; $= $ 5; x= x% 5; end /*   "    "   "   5     "     "  "   " */
         do  while x//7==0; $= $ 7; x= x% 7; end /*   "    "   "   7     "     "  "   " */
       q= 1;                              r= 0   /*R:  will be iSqrt(x).             ___*/
         do  while q<=x; q=q*4; end              /*these two lines compute integer  √ X */
         do  while q>1;  q=q%4; _= d-r-q; r= r%2; if _>=0  then do; d= _; r= r+q; end; end

         do k=11  by 6  to r                     /*insure that  J  isn't divisible by 3.*/
         parse var k  ''  -1  _                  /*obtain the last decimal digit of  K. */
         if _\==5  then  do  while x//k==0;  $=$ k;  x=x%k;  end    /*maybe reduce by K.*/
         if _ ==3  then iterate                  /*Is next  Y  is divisible by 5?  Skip.*/
         y= k+2;         do  while x//y==0;  $=$ y;  x=x%y;  end    /*maybe reduce by Y.*/
         end   /*k*/
                                                 /* [↓]  The $ list has a leading blank.*/
       if x==1  then return $                    /*Is residual=unity? Then don't append.*/
                     return $ x                  /*return   $   with appended residual. */
output   when using the default input:
home prime chain for   2:  2  is prime.
home prime chain for   3:  3  is prime.
home prime chain for   4:  HP4(2) ─►  HP22(1) ─►  211  is prime.
home prime chain for   5:  5  is prime.
home prime chain for   6:  HP6(1) ─►  23  is prime.
home prime chain for   7:  7  is prime.
home prime chain for   8:  HP8(13) ─►  HP222(12) ─►  HP2337(11) ─►  HP31941(10) ─►  HP33371313(9) ─►  HP311123771(8) ─►  HP7149317941(7) ─►  HP22931219729(6) ─►  HP112084656339(5) ─►  HP3347911118189(4) ─►  HP11613496501723(3) ─►  HP97130517917327(2) ─►  HP531832651281459(1) ─►  3331113965338635107  is prime.
home prime chain for   9:  HP9(2) ─►  HP33(1) ─►  311  is prime.
home prime chain for  10:  HP10(4) ─►  HP25(3) ─►  HP55(2) ─►  HP511(1) ─►  773  is prime.
home prime chain for  11:  11  is prime.
home prime chain for  12:  HP12(1) ─►  223  is prime.
home prime chain for  13:  13  is prime.
home prime chain for  14:  HP14(5) ─►  HP27(4) ─►  HP333(3) ─►  HP3337(2) ─►  HP4771(1) ─►  13367  is prime.
home prime chain for  15:  HP15(4) ─►  HP35(3) ─►  HP57(2) ─►  HP319(1) ─►  1129  is prime.
home prime chain for  16:  HP16(4) ─►  HP2222(3) ─►  HP211101(2) ─►  HP3116397(1) ─►  31636373  is prime.
home prime chain for  17:  17  is prime.
home prime chain for  18:  HP18(1) ─►  233  is prime.
home prime chain for  19:  19  is prime.
home prime chain for  20:  HP20(15) ─►  HP225(14) ─►  HP3355(13) ─►  HP51161(12) ─►  HP114651(11) ─►  HP3312739(10) ─►  HP17194867(9) ─►  HP194122073(8) ─►  HP709273797(7) ─►  HP39713717791(6) ─►  HP113610337981(5) ─►  HP733914786213(4) ─►  HP3333723311815403(3) ─►  HP131723655857429041(2) ─►  HP772688237874641409(1) ─►  3318308475676071413  is prime.

RPL

Works with: HP version 49
« FACTORS ""
  OVER SIZE 1 - 1 FOR j
     "" PICK3 j DUP 1 + SUB EVAL ROT
     1 ROT START OVER + NEXT
     NIP +
  -2 STEP
  NIP STR→
» 'CONCFACT' STO

« 0 → iter
  « WHILE DUP ISPRIME? NOT
    REPEAT DUP CONCFACT 'iter' 1 STO+ END
    IF iter THEN 
       1 iter FOR j 
          "HP" ROT + "(" + j + ") = " + SWAP +
       NEXT
    ELSE "HP" OVER + " = " + SWAP + END
» » 'HP' STO
« n HP » 'n' 2 20 1 SEQ
Output:
1: { "HP2 = 2" 
     "HP3 = 3" 
     "HP4(2) = HP22(1) = 211" 
     "HP5 = 5" 
     "HP6(1) = 23" 
     "HP7 = 7" 
     "HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107" 
     "HP9(2) = HP33(1) = 311" 
     "HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773" 
     "HP11 = 11" 
     "HP12(1) = 223" 
     "HP13 = 13" 
     "HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367" 
     "HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129" 
     "HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373" 
     "HP17 = 17" 
     "HP18(1) = 233" 
     "HP19 = 19" 
     "HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413" }

Ruby

require 'prime'

def concat(n)
  n.prime_division.map{|pr, exp| pr.to_s * exp }.join.to_i
end

def hp(n)
  res = [n]
  res << n = concat(n) until n.prime?
  res
end

def hp_to_s(ar)
  return "HP#{ar[0]}(1) = #{ar[0]}" if ar.size == 1
  ar[0..-2].map.with_index(1){|n, i| "HP#{n}(#{(ar.size-i)}) = "}.join + ar.last.to_s
end

(2..20).each {|n| puts hp_to_s(hp(n)) }
Output:
HP2(1) = 2
HP3(1) = 3
HP4(2) = HP22(1) = 211
HP5(1) = 5
HP6(1) = 23
HP7(1) = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11(1) = 11
HP12(1) = 223
HP13(1) = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17(1) = 17
HP18(1) = 233
HP19(1) = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413

Rust

use std::str::FromStr;
use num_bigint::BigUint;
use num_prime::nt_funcs::{is_prime, factorize};

fn homechains(n: &BigUint) -> Vec<BigUint> {
    let mut links = vec![BigUint::from_str("0").unwrap(); 0].to_vec();
    if is_prime(n, None).probably() {
        links.push(n.clone());
        return links;
    }
    let mut s = String::from_str("").unwrap();
    let d = factorize(n.clone());
    for (p, e) in d {
        let s2 = format!("{p}");
        for _ in 0..e {
            s.push_str(&s2);
        }
    }
    let k = BigUint::from_str(&s).unwrap(); 
    links.push(k.clone());
    links.append(&mut homechains(&k));
    return links;
}

fn home_chains_print(num: u64, chains: &mut Vec<BigUint>) {
    let mut clen = chains.len();
    if clen == 1 {
        println!("HP{num} ─► {num}");
    } else {
        if chains[clen - 1] == chains[clen - 2] {
            chains.pop();
            clen -= 1;
        }
        print!("HP{num}({clen}) ─► ");
        for (i, k) in chains.iter().enumerate() {
            if clen - i > 1 {
                print!("HP{k}({}) ─► ", clen - i - 1);
                if (i + 1) % 5 == 0 {
                    println!();
                }
            } else {
                println!("{k}");
            }
        }
    }
}


fn main() {
    for num in 2_u64..21 {
        let m = BigUint::from_str(&format!("{num}")).unwrap();
        let mut chains = homechains(&m);
        home_chains_print(num, &mut chains);
    }
    let mut chains = homechains(&BigUint::from_str("65").unwrap());
    home_chains_print(65_u64, &mut chains);
}
Output:
HP2 ─► 2
HP3 ─► 3
HP4(2) ─► HP22(1) ─► 211
HP5 ─► 5
HP6(1) ─► 23
HP7 ─► 7
HP8(13) ─► HP222(12) ─► HP2337(11) ─► HP31941(10) ─► HP33371313(9) ─► HP311123771(8) ─►
HP7149317941(7) ─► HP22931219729(6) ─► HP112084656339(5) ─► HP3347911118189(4) ─► HP11613496501723(3) ─►
HP97130517917327(2) ─► HP531832651281459(1) ─► 3331113965338635107
HP9(2) ─► HP33(1) ─► 311
HP10(4) ─► HP25(3) ─► HP55(2) ─► HP511(1) ─► 773
HP11 ─► 11
HP12(1) ─► 223
HP13 ─► 13
HP14(5) ─► HP27(4) ─► HP333(3) ─► HP3337(2) ─► HP4771(1) ─► 13367
HP15(4) ─► HP35(3) ─► HP57(2) ─► HP319(1) ─► 1129
HP16(4) ─► HP2222(3) ─► HP211101(2) ─► HP3116397(1) ─► 31636373
HP17 ─► 17
HP18(1) ─► 233
HP19 ─► 19
HP20(15) ─► HP225(14) ─► HP3355(13) ─► HP51161(12) ─► HP114651(11) ─► HP3312739(10) ─►
HP17194867(9) ─► HP194122073(8) ─► HP709273797(7) ─► HP39713717791(6) ─► HP113610337981(5) ─►
HP733914786213(4) ─► HP3333723311815403(3) ─► HP131723655857429041(2) ─► HP772688237874641409(1) ─► 3318308475676071413    
HP65(19) ─► HP513(18) ─► HP33319(17) ─► HP1113233(16) ─► HP11101203(15) ─► HP332353629(14) ─► 
HP33152324247(13) ─► HP3337473732109(12) ─► HP111801316843763(11) ─► HP151740406071813(10) ─► HP31313548335458223(9) ─► 
HP3397179373752371411(8) ─► HP157116011350675311441(7) ─► HP331333391143947279384649(6) ─► HP11232040692636417517893491(5) 
─► HP711175663983039633268945697(4) ─►
HP292951656531350398312122544283(3) ─► HP2283450603791282934064985326977(2) ─► HP333297925330304453879367290955541(1) ─► 1381321118321175157763339900357651

Sidef

for n in (2..20, 65) {

    var steps = []
    var orig = n

    for (var f = n.factor; true; f = n.factor) {
        steps << f
        n = Num(f.join)
        break if n.is_prime
    }

    say ("HP(#{orig}) = ", steps.map { .join('_') }.join(' -> '))
}
Output:
HP(2) = 2
HP(3) = 3
HP(4) = 2_2 -> 2_11
HP(5) = 5
HP(6) = 2_3
HP(7) = 7
HP(8) = 2_2_2 -> 2_3_37 -> 3_19_41 -> 3_3_3_7_13_13 -> 3_11123771 -> 7_149_317_941 -> 229_31219729 -> 11_2084656339 -> 3_347_911_118189 -> 11_613_496501723 -> 97_130517_917327 -> 53_1832651281459 -> 3_3_3_11_139_653_3863_5107
HP(9) = 3_3 -> 3_11
HP(10) = 2_5 -> 5_5 -> 5_11 -> 7_73
HP(11) = 11
HP(12) = 2_2_3
HP(13) = 13
HP(14) = 2_7 -> 3_3_3 -> 3_3_37 -> 47_71 -> 13_367
HP(15) = 3_5 -> 5_7 -> 3_19 -> 11_29
HP(16) = 2_2_2_2 -> 2_11_101 -> 3_11_6397 -> 3_163_6373
HP(17) = 17
HP(18) = 2_3_3
HP(19) = 19
HP(20) = 2_2_5 -> 3_3_5_5 -> 5_11_61 -> 11_4651 -> 3_3_12739 -> 17_194867 -> 19_41_22073 -> 709_273797 -> 3_97_137_17791 -> 11_3610337981 -> 7_3391_4786213 -> 3_3_3_3_7_23_31_1815403 -> 13_17_23_655857429041 -> 7_7_2688237874641409 -> 3_31_8308475676071413
HP(65) = 5_13 -> 3_3_3_19 -> 11_13_233 -> 11_101203 -> 3_3_23_53629 -> 3_3_1523_24247 -> 3_3_3_7_47_3732109 -> 11_18013_16843763 -> 151_740406071813 -> 3_13_13_54833_5458223 -> 3_3_97_179_373_7523_71411 -> 1571_1601_1350675311441 -> 3_3_13_33391_143947_279384649 -> 11_23_204069263_6417517893491 -> 7_11_1756639_83039633268945697 -> 29_29_5165653_13503983_12122544283 -> 228345060379_1282934064985326977 -> 3_3_3_2979253_3030445387_9367290955541 -> 1381_3211183211_75157763339900357651

Transd

#lang transd

MainModule: {
    homePrime: (λ i BigLong()
        (if (is-prime i) (lout "HP" i " = " i) continue)
        (with n BigLong(i) ch Vector<BigLong>() st 1
            (append ch n)
            (while true
                (= n (join (prime-factors n) ""))
                (append ch n)
                (if (is-probable-prime n 15)
                    (for l in Range(in: ch 0 -1)  do
                        (textout "HP" l "("(- (size ch) @idx 1) ") = "))
                    (lout (back ch)) (ret)
                else (+= st 1))
            )
        )
    ),
    _start: (λ
        (for i in Range(2 21) do (homePrime BigLong(i)))
        (homePrime BigLong(65))
    )
}
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP22(1) = 211
HP5 = 5
HP6(1) = 23
HP7 = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11 = 11
HP12(1) = 223
HP13 = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17 = 17
HP18(1) = 233
HP19 = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413
HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = HP11101203(15) = HP332353629(14) = HP33152324247(13) = HP3337473732109(12) = HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9) = HP3397179373752371411(8) = HP157116011350675311441(7) = HP331333391143947279384649(6) = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) = HP292951656531350398312122544283(3) = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651

Wren

Library: Wren-math
Library: Wren-big

Wren-cli

The built-in routines use a combination of the Pollard Rho algorithm and wheel based factorization to try and factorize the large numbers involved here in a reasonable time.

Reaches HP20 in about 0.52 seconds but HP65 took just under 40 minutes!

import "./math" for Int
import "./big" for BigInt
 
var list = (2..20).toList
list.add(65)
for (i in list) {
    if (Int.isPrime(i)) {
        System.print("HP%(i) = %(i)")
        continue
    }
    var n = 1
    var j = BigInt.new(i)
    var h = [j]
    while (true) {
        var k = BigInt.primeFactors(j).reduce("") { |acc, f| acc + f.toString }
        j = BigInt.new(k)
        h.add(j)
        if (j.isProbablePrime(2)) {
            for (l in n...0) System.write("HP%(h[n-l])(%(l)) = ")
            System.print(h[n])
            break
        } else {
            n = n + 1
        }
    }
}
Output:
HP2 = 2
HP3 = 3
HP4(2) = HP22(1) = 211
HP5 = 5
HP6(1) = 23
HP7 = 7
HP8(13) = HP222(12) = HP2337(11) = HP31941(10) = HP33371313(9) = HP311123771(8) = HP7149317941(7) = HP22931219729(6) = HP112084656339(5) = HP3347911118189(4) = HP11613496501723(3) = HP97130517917327(2) = HP531832651281459(1) = 3331113965338635107
HP9(2) = HP33(1) = 311
HP10(4) = HP25(3) = HP55(2) = HP511(1) = 773
HP11 = 11
HP12(1) = 223
HP13 = 13
HP14(5) = HP27(4) = HP333(3) = HP3337(2) = HP4771(1) = 13367
HP15(4) = HP35(3) = HP57(2) = HP319(1) = 1129
HP16(4) = HP2222(3) = HP211101(2) = HP3116397(1) = 31636373
HP17 = 17
HP18(1) = 233
HP19 = 19
HP20(15) = HP225(14) = HP3355(13) = HP51161(12) = HP114651(11) = HP3312739(10) = HP17194867(9) = HP194122073(8) = HP709273797(7) = HP39713717791(6) = HP113610337981(5) = HP733914786213(4) = HP3333723311815403(3) = HP131723655857429041(2) = HP772688237874641409(1) = 3318308475676071413
HP65(19) = HP513(18) = HP33319(17) = HP1113233(16) = HP11101203(15) = HP332353629(14) = HP33152324247(13) = HP3337473732109(12) = HP111801316843763(11) = HP151740406071813(10) = HP31313548335458223(9) = HP3397179373752371411(8) = HP157116011350675311441(7) = HP331333391143947279384649(6) = HP11232040692636417517893491(5) = HP711175663983039633268945697(4) = HP292951656531350398312122544283(3) = HP2283450603791282934064985326977(2) = HP333297925330304453879367290955541(1) = 1381321118321175157763339900357651


Embedded

Library: Wren-gmp

This reduces the overall time taken to 5.1 seconds. The factorization method used is essentially the same as the Wren-cli version so the vast improvement in performance is due solely to the use of GMP.

/* Home_primes_2.wren */

import "./gmp" for Mpz
import "./math" for Int

var list = (2..20).toList
list.add(65)
for (i in list) {
    if (Int.isPrime(i)) {
        System.print("HP%(i) = %(i)")
        continue
    }
    var n = 1
    var j = Mpz.from(i)
    var h = [j.copy()]
    while (true) {
        var k = Mpz.primeFactors(j).reduce("") { |acc, f| acc + f.toString }
        j = Mpz.fromStr(k)
        h.add(j)
        if (j.probPrime(15) > 0) {
            for (l in n...0) System.write("HP%(h[n-l])(%(l)) = ")
            System.print(h[n])
            break
        } else {
            n = n + 1
        }
    }
}
Output:
Same as Wren-cli version.