Eertree
An eertree is a data structure designed for efficient processing of certain palindrome tasks, for instance counting the number of sub-palindromes in an input string.

You are encouraged to solve this task according to the task description, using any language you may know.
The data structure has commonalities to both tries and suffix trees. See links below.
- Task
Construct an eertree for the string "eertree", then output all sub-palindromes by traversing the tree.
- See also
- Wikipedia entry: trie.
- Wikipedia entry: suffix tree
- Cornell University Library, Computer Science, Data Structures and Algorithms ───► EERTREE: An Efficient Data Structure for Processing Palindromes in Strings.
- EERTREE: An efficient data structure for processing palindromes in strings[1]
11l
T Node
Int length
Int suffix
[Char = Int] edges
F (length, suffix = 0)
.length = length
.suffix = suffix
-V oddRoot = 1
F eertree(s)
V tree = [Node(0, :oddRoot), Node(-1, :oddRoot)]
V suffix = :oddRoot
L(c) s
V i = L.index
V n = suffix
Int k
L
k = tree[n].length
V b = i - k - 1
I b >= 0 & s[b] == c
L.break
n = tree[n].suffix
V? edge = tree[n].edges.find(c)
I edge != N
suffix = edge
L.continue
suffix = tree.len
tree [+]= Node(k + 2)
tree[n].edges[c] = suffix
I tree[suffix].length == 1
tree[suffix].suffix = 0
L.continue
L
n = tree[n].suffix
V b = i - tree[n].length - 1
I b >= 0 & s[b] == c
L.break
tree[suffix].suffix = tree[n].edges[c]
R tree
F subPalindromes(tree)
[String] s
F children(Int n, String =p) -> Void
L(c, n) @tree[n].edges
p = c‘’p‘’c
@s [+]= p
@children(n, p)
children(0, ‘’)
L(c, n) tree[1].edges
s [+]= c
children(n, c)
R s
V tree = eertree(‘eertree’)
print(subPalindromes(tree))
- Output:
[ee, e, r, t, rtr, ertre, eertree]
C#
using System;
using System.Collections.Generic;
namespace Eertree {
class Node {
public Node(int length) {
this.Length = length;
// empty or
this.Edges = new Dictionary<char, int>();
}
public Node(int length, Dictionary<char, int> edges, int suffix) {
this.Length = length;
this.Edges = edges;
this.Suffix = suffix;
}
public int Length { get; set; }
public Dictionary<char, int> Edges { get; set; }
public int Suffix { get; set; }
}
class Program {
const int EVEN_ROOT = 0;
const int ODD_ROOT = 1;
static List<Node> Eertree(string s) {
List<Node> tree = new List<Node> {
//new Node(0, null, ODD_ROOT), or
new Node(0, new Dictionary<char, int>(), ODD_ROOT),
//new Node(-1, null, ODD_ROOT) or
new Node(-1, new Dictionary<char, int>(), ODD_ROOT)
};
int suffix = ODD_ROOT;
int n, k;
for (int i = 0; i < s.Length; i++) {
char c = s[i];
for (n = suffix; ; n = tree[n].Suffix) {
k = tree[n].Length;
int b = i - k - 1;
if (b >= 0 && s[b] == c) {
break;
}
}
if (tree[n].Edges.ContainsKey(c)) {
suffix = tree[n].Edges[c];
continue;
}
suffix = tree.Count;
tree.Add(new Node(k + 2));
tree[n].Edges[c] = suffix;
if (tree[suffix].Length == 1) {
tree[suffix].Suffix = 0;
continue;
}
while (true) {
n = tree[n].Suffix;
int b = i - tree[n].Length - 1;
if (b >= 0 && s[b] == c) {
break;
}
}
tree[suffix].Suffix = tree[n].Edges[c];
}
return tree;
}
static List<string> SubPalindromes(List<Node> tree) {
List<string> s = new List<string>();
SubPalindromes_children(0, "", tree, s);
foreach (var c in tree[1].Edges.Keys) {
int m = tree[1].Edges[c];
string ct = c.ToString();
s.Add(ct);
SubPalindromes_children(m, ct, tree, s);
}
return s;
}
static void SubPalindromes_children(int n, string p, List<Node> tree, List<string> s) {
foreach (var c in tree[n].Edges.Keys) {
int m = tree[n].Edges[c];
string p1 = c + p + c;
s.Add(p1);
SubPalindromes_children(m, p1, tree, s);
}
}
static void Main(string[] args) {
List<Node> tree = Eertree("eertree");
List<string> result = SubPalindromes(tree);
string listStr = string.Join(", ", result);
Console.WriteLine("[{0}]", listStr);
}
}
}
- Output:
[ee, e, r, t, rtr, ertre, eertree]
C++
#include <iostream>
#include <functional>
#include <map>
#include <vector>
struct Node {
int length;
std::map<char, int> edges;
int suffix;
Node(int l) : length(l), suffix(0) {
/* empty */
}
Node(int l, const std::map<char, int>& m, int s) : length(l), edges(m), suffix(s) {
/* empty */
}
};
constexpr int evenRoot = 0;
constexpr int oddRoot = 1;
std::vector<Node> eertree(const std::string& s) {
std::vector<Node> tree = {
Node(0, {}, oddRoot),
Node(-1, {}, oddRoot)
};
int suffix = oddRoot;
int n, k;
for (size_t i = 0; i < s.length(); ++i) {
char c = s[i];
for (n = suffix; ; n = tree[n].suffix) {
k = tree[n].length;
int b = i - k - 1;
if (b >= 0 && s[b] == c) {
break;
}
}
auto it = tree[n].edges.find(c);
auto end = tree[n].edges.end();
if (it != end) {
suffix = it->second;
continue;
}
suffix = tree.size();
tree.push_back(Node(k + 2));
tree[n].edges[c] = suffix;
if (tree[suffix].length == 1) {
tree[suffix].suffix = 0;
continue;
}
while (true) {
n = tree[n].suffix;
int b = i - tree[n].length - 1;
if (b >= 0 && s[b] == c) {
break;
}
}
tree[suffix].suffix = tree[n].edges[c];
}
return tree;
}
std::vector<std::string> subPalindromes(const std::vector<Node>& tree) {
std::vector<std::string> s;
std::function<void(int, std::string)> children;
children = [&children, &tree, &s](int n, std::string p) {
auto it = tree[n].edges.cbegin();
auto end = tree[n].edges.cend();
for (; it != end; it = std::next(it)) {
auto c = it->first;
auto m = it->second;
std::string pl = c + p + c;
s.push_back(pl);
children(m, pl);
}
};
children(0, "");
auto it = tree[1].edges.cbegin();
auto end = tree[1].edges.cend();
for (; it != end; it = std::next(it)) {
auto c = it->first;
auto n = it->second;
std::string ct(1, c);
s.push_back(ct);
children(n, ct);
}
return s;
}
int main() {
using namespace std;
auto tree = eertree("eertree");
auto pal = subPalindromes(tree);
auto it = pal.cbegin();
auto end = pal.cend();
cout << "[";
if (it != end) {
cout << it->c_str();
it++;
}
while (it != end) {
cout << ", " << it->c_str();
it++;
}
cout << "]" << endl;
return 0;
}
- Output:
[ee, e, r, t, rtr, ertre, eertree]
D
import std.array;
import std.stdio;
void main() {
auto tree = eertree("eertree");
writeln(subPalindromes(tree));
}
struct Node {
int length;
int[char] edges;
int suffix;
}
const evenRoot = 0;
const oddRoot = 1;
Node[] eertree(string s) {
Node[] tree = [
Node(0, null, oddRoot),
Node(-1, null, oddRoot),
];
int suffix = oddRoot;
int n, k;
foreach (i, c; s) {
for (n=suffix; ; n=tree[n].suffix) {
k = tree[n].length;
int b = i-k-1;
if (b>=0 && s[b]==c) {
break;
}
}
if (c in tree[n].edges) {
suffix = tree[n].edges[c];
continue;
}
suffix = tree.length;
tree ~= Node(k+2);
tree[n].edges[c] = suffix;
if (tree[suffix].length == 1) {
tree[suffix].suffix = 0;
continue;
}
while (true) {
n = tree[n].suffix;
int b = i-tree[n].length-1;
if (b>=0 && s[b]==c) {
break;
}
}
tree[suffix].suffix = tree[n].edges[c];
}
return tree;
}
auto subPalindromes(Node[] tree) {
auto s = appender!(string[]);
void children(int n, string p) {
foreach (c, n; tree[n].edges) {
p = c ~ p ~ c;
s ~= p;
children(n, p);
}
}
children(0, "");
foreach (c, n; tree[1].edges) {
string ct = [c].idup;
s ~= ct;
children(n, ct);
}
return s.data;
}
- Output:
["ee", "e", "r", "t", "rtr", "ertre", "eertree"]
FreeBASIC
Dim As String cadena = "eertree"
Dim As Integer n, m, p, cnt = 0
Dim As String strpal, strrev
Dim As String pal(1 To Len(cadena)^2)
For n = 1 To Len(cadena)
For m = n To Len(cadena)
strpal = Mid(cadena, n, m-n+1)
strrev = ""
For p = Len(strpal) To 1 Step -1
strrev &= Mid(strpal, p, 1)
Next p
If strpal = strrev Then
cnt += 1
pal(cnt) = strpal
End If
Next m
Next n
For n = 1 To cnt-1
For m = n+1 To cnt
If pal(n) > pal(m) Then
Swap pal(n), pal(m)
End If
Next m
Next n
For n = cnt To 2 Step -1
If pal(n) = pal(n-1) Then
For m = n To cnt-1
pal(m) = pal(m+1)
Next m
cnt -= 1
End If
Next n
For n = 1 To cnt
Print pal(n)
Next n
Sleep
- Output:
Same as Ring entry.
Go
package main
import "fmt"
func main() {
tree := eertree([]byte("eertree"))
fmt.Println(subPalindromes(tree))
}
type edges map[byte]int
type node struct {
length int
edges
suffix int
}
const evenRoot = 0
const oddRoot = 1
func eertree(s []byte) []node {
tree := []node{
evenRoot: {length: 0, suffix: oddRoot, edges: edges{}},
oddRoot: {length: -1, suffix: oddRoot, edges: edges{}},
}
suffix := oddRoot
var n, k int
for i, c := range s {
for n = suffix; ; n = tree[n].suffix {
k = tree[n].length
if b := i - k - 1; b >= 0 && s[b] == c {
break
}
}
if e, ok := tree[n].edges[c]; ok {
suffix = e
continue
}
suffix = len(tree)
tree = append(tree, node{length: k + 2, edges: edges{}})
tree[n].edges[c] = suffix
if tree[suffix].length == 1 {
tree[suffix].suffix = 0
continue
}
for {
n = tree[n].suffix
if b := i - tree[n].length - 1; b >= 0 && s[b] == c {
break
}
}
tree[suffix].suffix = tree[n].edges[c]
}
return tree
}
func subPalindromes(tree []node) (s []string) {
var children func(int, string)
children = func(n int, p string) {
for c, n := range tree[n].edges {
c := string(c)
p := c + p + c
s = append(s, p)
children(n, p)
}
}
children(0, "")
for c, n := range tree[1].edges {
c := string(c)
s = append(s, c)
children(n, c)
}
return
}
- Output:
[ee e r t rtr ertre eertree]
Java
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class Eertree {
public static void main(String[] args) {
List<Node> tree = eertree("eertree");
List<String> result = subPalindromes(tree);
System.out.println(result);
}
private static class Node {
int length;
Map<Character, Integer> edges = new HashMap<>();
int suffix;
public Node(int length) {
this.length = length;
}
public Node(int length, Map<Character, Integer> edges, int suffix) {
this.length = length;
this.edges = edges != null ? edges : new HashMap<>();
this.suffix = suffix;
}
}
private static final int EVEN_ROOT = 0;
private static final int ODD_ROOT = 1;
private static List<Node> eertree(String s) {
List<Node> tree = new ArrayList<>();
tree.add(new Node(0, null, ODD_ROOT));
tree.add(new Node(-1, null, ODD_ROOT));
int suffix = ODD_ROOT;
int n, k;
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
for (n = suffix; ; n = tree.get(n).suffix) {
k = tree.get(n).length;
int b = i - k - 1;
if (b >= 0 && s.charAt(b) == c) {
break;
}
}
if (tree.get(n).edges.containsKey(c)) {
suffix = tree.get(n).edges.get(c);
continue;
}
suffix = tree.size();
tree.add(new Node(k + 2));
tree.get(n).edges.put(c, suffix);
if (tree.get(suffix).length == 1) {
tree.get(suffix).suffix = 0;
continue;
}
while (true) {
n = tree.get(n).suffix;
int b = i - tree.get(n).length - 1;
if (b >= 0 && s.charAt(b) == c) {
break;
}
}
tree.get(suffix).suffix = tree.get(n).edges.get(c);
}
return tree;
}
private static List<String> subPalindromes(List<Node> tree) {
List<String> s = new ArrayList<>();
subPalindromes_children(0, "", tree, s);
for (Map.Entry<Character, Integer> cm : tree.get(1).edges.entrySet()) {
String ct = String.valueOf(cm.getKey());
s.add(ct);
subPalindromes_children(cm.getValue(), ct, tree, s);
}
return s;
}
// nested methods are a pain, even if lambdas make that possible for Java
private static void subPalindromes_children(final int n, final String p, final List<Node> tree, List<String> s) {
for (Map.Entry<Character, Integer> cm : tree.get(n).edges.entrySet()) {
Character c = cm.getKey();
Integer m = cm.getValue();
String pl = c + p + c;
s.add(pl);
subPalindromes_children(m, pl, tree, s);
}
}
}
- Output:
[ee, r, t, rtr, ertre, eertree, e]
JavaScript
class Node {
constructor(len, suffix, id, level) {
this.edges = new Map(); // edges <Character, Node>
this.link = suffix; // Suffix link points to another node
this.length = len; // Length of the palindrome represented by this node
this.palindrome = "";
this.parent = null;
}
}
class Eertree {
constructor() {
this.imaginary = new Node(-1, null, this.count++, 1); // also called odd length root node
this.empty = new Node(0, this.imaginary, this.count++, 2); // also called even length root node
this.maxSuffixOfT = this.empty; // this is the current node we are on also the maximum Suffix of tree T
this.s = ""; // String processed by the Eertree
}
/**
* Add will only add at most 1 node to the tree.
* We get the max suffix palindrome with the same character before it
* so we can get cQc which will be the new palindrome, c otherwise
* If the node is already in the tree then we return 0 and create no new nodes
* @param {Character} c
* @returns int 1 if it created a new node an 0 otherwise
*/
add(c){
/**
* Traverse the suffix palindromes of T in the order of decreasing length
* Keep traversing until we get to imaginary node or until T[len - k] = a
* @param {Node} startNode
* @param {Character} a
* @returns {Node} u
*/
const getMaxSuffixPalindrome = (startNode, a) =>{
let u = startNode;
let n = this.s.length;
let k = u.length;
while(u !== this.imaginary && this.s[n - k - 1] !== a){
if(u === u.link){
throw new Error('Infinite Loop');
}
u = u.link;
k = u.length;
}
return u;
};
let Q = getMaxSuffixPalindrome(this.maxSuffixOfT, c);
let createNewNode = !(Q.edges.has(c));
if(createNewNode){
let P = new Node();
P.length = Q.length + 2;
// this is because Q is a palindrome and the suffix and prefix == c so cQc = P
//P.length == 1 if Q is the imaginary node
if(P.length === 1){
P.link = this.empty;
P.palindrome = c;
}
else{
/**
* Now we need to find the node to suffix link to
* Continue traversing suffix palindromes of T starting with the suffix
* we found earlier 's link
*/
P.link = getMaxSuffixPalindrome(Q.link, c).edges.get(c);
P.palindrome = c + Q.palindrome + c;
}
P.parent = Q;
Q.edges.set(c, P);
}
this.maxSuffixOfT = Q.edges.get(c);
this.s += c;
return createNewNode === true ? 1 : 0;
}
traverse(){
let subpalindromes = [];
const dfs = (node) => {
if(node !== this.imaginary && node !== this.empty){
subpalindromes.push(node.palindrome);
}
for(let [_, childNode] of node.edges){
dfs(childNode);
}
}
dfs(this.imaginary);
dfs(this.empty);
return subpalindromes;
}
}
var getSubpalindromes = function(s) {
let eertree = new Eertree();
for(let c of s){
eertree.add(c);
}
return eertree.traverse();
}
console.log(getSubpalindromes('eertree'));
- Output:
Results of processing string "eertree": Number of sub-palindromes: 7 Sub-palindromes: ["e", "r", "t", "rtr", "ertre", "eertree", "ee"]
Julia
mutable struct Node
edges::Dict{Char, Node}
link::Union{Node, Missing}
sz::Int
Node() = new(Dict(), missing, 0)
end
sizednode(x) = (n = Node(); n.sz = x; n)
function eertree(str)
nodes = Vector{Node}()
oddroot = sizednode(-1)
evenroot = sizednode(0)
oddroot.link = evenroot
evenroot.link = oddroot
S = "0"
maxsuffix = evenroot
function maxsuffixpal(startnode,a::Char)
# Traverse the suffix-palindromes of tree looking for equality with a
u = startnode
i = length(S)
k = u.sz
while u !== oddroot && S[i - k] != a
if u === u.link
throw("circular reference above oddroot")
end
u = u.link
k = u.sz
end
u
end
function addchar(a::Char)
Q = maxsuffixpal(maxsuffix, a)
creatednode = !haskey(Q.edges, a)
if creatednode
P = sizednode(Q.sz + 2)
push!(nodes, P)
if P.sz == 1
P.link = evenroot
else
P.link = maxsuffixpal(Q.link, a).edges[a]
end
Q.edges[a] = P # adds edge (Q, P)
end
maxsuffix = Q.edges[a] # P becomes the new maxsuffix
S *= string(a)
creatednode
end
function getsubpalindromes()
result = Vector{String}()
getsubpalindromes(oddroot, [oddroot], "", result)
getsubpalindromes(evenroot, [evenroot], "", result)
result
end
function getsubpalindromes(nd, nodestohere, charstohere, result)
for (lnkname, nd2) in nd.edges
getsubpalindromes(nd2, vcat(nodestohere, nd2), charstohere * lnkname, result)
end
if nd !== oddroot && nd !== evenroot
assembled = reverse(charstohere) *
(nodestohere[1] === evenroot ? charstohere : charstohere[2:end])
push!(result, assembled)
end
end
println("Results of processing string \"$str\":")
for c in str
addchar(c)
end
println("Number of sub-palindromes: ", length(nodes))
println("Sub-palindromes: ", getsubpalindromes())
end
eertree("eertree")
- Output:
Results of processing string "eertree": Number of sub-palindromes: 7 Sub-palindromes: ["e", "r", "eertree", "ertre", "rtr", "t", "ee"]
Kotlin
// version 1.1.4
class Node {
val edges = mutableMapOf<Char, Node>() // edges (or forward links)
var link: Node? = null // suffix link (backward links)
var len = 0 // the length of the node
}
class Eertree(str: String) {
val nodes = mutableListOf<Node>()
private val rto = Node() // odd length root node, or node -1
private val rte = Node() // even length root node, or node 0
private val s = StringBuilder("0") // accumulated input string, T = S[1..i]
private var maxSufT = rte // maximum suffix of tree T
init {
// Initialize and build the tree
rte.link = rto
rto.link = rte
rto.len = -1
rte.len = 0
for (ch in str) add(ch)
}
private fun getMaxSuffixPal(startNode: Node, a: Char): Node {
// We traverse the suffix-palindromes of T in the order of decreasing length.
// For each palindrome we read its length k and compare T[i-k] against a
// until we get an equality or arrive at the -1 node.
var u = startNode
val i = s.length
var k = u.len
while (u !== rto && s[i - k - 1] != a) {
if (u === u.link!!) throw RuntimeException("Infinite loop detected")
u = u.link!!
k = u.len
}
return u
}
private fun add(a: Char): Boolean {
// We need to find the maximum suffix-palindrome P of Ta
// Start by finding maximum suffix-palindrome Q of T.
// To do this, we traverse the suffix-palindromes of T
// in the order of decreasing length, starting with maxSuf(T)
val q = getMaxSuffixPal(maxSufT, a)
// We check Q to see whether it has an outgoing edge labeled by a.
val createANewNode = a !in q.edges.keys
if (createANewNode) {
// We create the node P of length Q + 2
val p = Node()
nodes.add(p)
p.len = q.len + 2
if (p.len == 1) {
// if P = a, create the suffix link (P, 0)
p.link = rte
}
else {
// It remains to create the suffix link from P if |P|>1. Just
// continue traversing suffix-palindromes of T starting with the
// the suffix link of Q.
p.link = getMaxSuffixPal(q.link!!, a).edges[a]
}
// create the edge (Q, P)
q.edges[a] = p
}
// P becomes the new maxSufT
maxSufT = q.edges[a]!!
// Store accumulated input string
s.append(a)
return createANewNode
}
fun getSubPalindromes(): List<String> {
// Traverse tree to find sub-palindromes
val result = mutableListOf<String>()
// Odd length words
getSubPalindromes(rto, listOf(rto), "", result)
// Even length words
getSubPalindromes(rte, listOf(rte), "", result)
return result
}
private fun getSubPalindromes(nd: Node, nodesToHere: List<Node>,
charsToHere: String, result: MutableList<String>) {
// Each node represents a palindrome, which can be reconstructed
// by the path from the root node to each non-root node.
// Traverse all edges, since they represent other palindromes
for ((lnkName, nd2) in nd.edges) {
getSubPalindromes(nd2, nodesToHere + nd2, charsToHere + lnkName, result)
}
// Reconstruct based on charsToHere characters.
if (nd !== rto && nd !== rte) { // Don't print for root nodes
val assembled = charsToHere.reversed() +
if (nodesToHere[0] === rte) // Even string
charsToHere
else // Odd string
charsToHere.drop(1)
result.add(assembled)
}
}
}
fun main(args: Array<String>) {
val str = "eertree"
println("Processing string '$str'")
val eertree = Eertree(str)
println("Number of sub-palindromes: ${eertree.nodes.size}")
val result = eertree.getSubPalindromes()
println("Sub-palindromes: $result")
}
- Output:
Processing string 'eertree' Number of sub-palindromes: 7 Sub-palindromes: [e, r, eertree, ertre, rtr, t, ee]
M2000 Interpreter
If Version<9.5 Then exit
If Version=9.5 And Revision<2 Then Exit
Class Node {
inventory myedges
length, suffix=0
Function edges(s$) {
=-1 : if exist(.myedges, s$) then =eval(.myedges)
}
Module edges_append (a$, where) {
Append .myedges, a$:=where
}
Class:
Module Node(.length) {
Read ? .suffix, .myedges
}
}
function eertree(s$) {
Const evenRoot=0, oddRoot=1
Inventory Tree= oddRoot:=Node(-1,1),evenRoot:=Node(0,1)
k=0
suffix=oddRoot
for i=0 to len(s$)-1 {
c$=mid$(s$,i+1,1)
n=suffix
Do {
k=tree(n).length
b=i-k-1
if b>=0 then if mid$(s$,b+1,1)=c$ Then exit
n =tree(n).suffix
} Always
e=tree(n).edges(c$)
if e>=0 then suffix=e :continue
suffix=len(Tree)
Append Tree, len(Tree):=Node(k+2)
Tree(n).edges_append c$, suffix
If tree(suffix).length=1 then tree(suffix).suffix=0 : continue
Do {
n=tree(n).suffix
b=i-tree(n).length-1
if b>0 Then If mid$(s$, b+1,1)=c$ then exit
} Always
e=tree(n).edges(c$)
if e>=0 then tree(suffix).suffix=e
}
=tree
}
children=lambda (s, tree, n, root$="")->{
L=Len(tree(n).myEdges)
if L=0 then =s : exit
L--
For i=0 to L {
c=tree(n).myEdges
c$=Eval$(c, i) ' read keys at position i
nxt=c(i!) ' read value using position
p$ = if$(n=1 -> c$, c$+root$+c$)
append s, (p$,)
\\ better use lambda() and not children()
\\ for recursion when we copy this lambda to other identifier.
s = lambda(s, tree, nxt, p$)
}
= s
}
aString=Lambda ->{
Push Quote$(Letter$)
}
aLine=Lambda ->{
Shift 2 ' swap two top stack items
if stackitem$()="" then { Drop} Else Push letter$+", "+Letter$
}
Palindromes$=Lambda$ children, aString, aLine (Tree)-> {
="("+children(children((,), Tree, 0), Tree, 1)#Map(aString)#Fold$(aline,"")+")"
}
Print Palindromes$(eertree("eertree"))
- Output:
("ee", "e", "r", "t", "rtr", "ertre", "eertree")
Nim
import algorithm, strformat, strutils, tables
type
Node = ref object
edges: Table[char, Node] # Edges (forward links).
link: Node # Suffix link (backward link).
len: int # Length of the node.
Eertree = object
nodes: seq[Node]
rto: Node # Odd length root node or node -1.
rte: Node # Even length root node or node 0.Node
str: string # Accumulated input string.
maxSuf: Node # Maximum suffix.
#---------------------------------------------------------------------------------------------------
func initEertree(): Eertree =
## Create and initialize an eertree.
result = Eertree(rto: Node(len: - 1), rte: Node(len: 0))
result.rto.link = result.rto
result.rte.link = result.rto
result.str = "0"
result.maxSuf = result.rte
#---------------------------------------------------------------------------------------------------
func getMaxSuffixPal(tree: Eertree; startNode: Node; ch: char): Node =
## We traverse the suffix-palindromes of "tree" in the order of decreasing length.
## For each palindrome we read its length "k" and compare "tree[i-k]" against "ch"
## until we get an equality or arrive at the -1 node.
result = startNode
let i = tree.str.high
while result != tree.rto and tree.str[i - result.len] != ch:
doAssert(result != result.link, "circular reference above odd root")
result = result.link
#---------------------------------------------------------------------------------------------------
func add(tree: var Eertree; ch: char): bool =
## We need to find the maximum suffix-palindrome P of Ta.
## Start by finding maximum suffix-palindrome Q of T.
## To do this, we traverse the suffix-palindromes of T
## in the order of decreasing length, starting with maxSuf(T).
let q = tree.getMaxSuffixPal(tree.maxSuf, ch)
# We check "q" to see whether it has an outgoing edge labeled by "ch".
result = ch notin q.edges
if result:
# We create the node "p" of length "q.len + 2"
let p = Node()
tree.nodes.add(p)
p.len = q.len + 2
if p.len == 1:
# If p = ch, create the suffix link (p, 0).
p.link = tree.rte
else:
# It remains to create the suffix link from "p" if "|p|>1". Just continue
# traversing suffix-palindromes of T starting with the suffix link of "q".
p.link = tree.getMaxSuffixPal(q.link, ch).edges[ch]
# Create the edge "(q, p)".
q.edges[ch] = p
# "p" becomes the new maxSuf.
tree.maxSuf = q.edges[ch]
# Store accumulated input string.
tree.str.add(ch)
#---------------------------------------------------------------------------------------------------
func getSubPalindromes(tree: Eertree; node: Node;
nodesToHere: seq[Node]; charsToHere: string;
result: var seq[string]) =
## Each node represents a palindrome, which can be reconstructed
## by the path from the root node to each non-root node.
# Traverse all edges, since they represent other palindromes.
for linkName, node2 in node.edges.pairs:
tree.getSubPalindromes(node2, nodesToHere & node2, charsToHere & linkName, result)
# Reconstruct based on charsToHere characters.
if node notin [tree.rto, tree.rte]:
# Don’t print for root nodes.
let assembled = reversed(charsTohere).join() &
(if nodesToHere[0] == tree.rte: charsToHere
else: charsToHere[1..^1])
result.add(assembled)
#---------------------------------------------------------------------------------------------------
func getSubPalindromes(tree: Eertree): seq[string] =
## Traverse tree to find sub-palindromes.
# Odd length words
tree.getSubPalindromes(tree.rto, @[tree.rto], "", result)
# Even length words
tree.getSubPalindromes(tree.rte, @[tree.rte], "", result)
#———————————————————————————————————————————————————————————————————————————————————————————————————
when isMainModule:
const Str = "eertree"
echo fmt"Processing string: '{Str}'"
var eertree = initEertree()
for ch in Str:
discard eertree.add(ch)
echo fmt"Number of sub-palindromes: {eertree.nodes.len}"
let result = eertree.getSubPalindromes()
echo fmt"Sub-palindromes: {result.join("", "")}"
- Output:
Processing string: 'eertree' Number of sub-palindromes: 7 Sub-palindromes: r, eertree, ertre, rtr, t, e, ee
Objeck
use Collection.Generic;
class Eertree {
function : Main(args : String[]) ~ Nil {
tree := GetEertree("eertree");
Show(SubPalindromes(tree));
}
function : GetEertree(s : String) ~ Vector<Node> {
tree := Vector->New()<Node>;
tree->AddBack(Node->New(0, Nil, 1));
tree->AddBack(Node->New(-1, Nil, 1));
suffix := 1;
n : Int; k : Int;
for(i := 0; i < s->Size(); ++i;) {
c := s->Get(i);
done := false;
for (j := suffix; <>done; j := tree->Get(j)->GetSuffix();) {
k := tree->Get(j)->GetLength();
b := i - k - 1;
if (b >= 0 & s->Get(b) = c) {
n := j;
done := true;
};
};
skip := false;
if (tree->Get(n)->GetEdges()->Has(c)) {
suffix := tree->Get(n)->GetEdges()->Find(c)->Get();
skip := true;
};
if(<>skip) {
suffix := tree->Size();
tree->AddBack(Node->New(k + 2));
tree->Get(n)->GetEdges()->Insert(c, suffix);
if (tree->Get(suffix)->GetLength() = 1) {
tree->Get(suffix)->SetSuffix(0);
skip := true;
};
if(<>skip) {
done := false;
while (<>done) {
n := tree->Get(n)->GetSuffix();
b := i - tree->Get(n)->GetLength() - 1;
if (b >= 0 & s->Get(b) = c) {
done := true;
};
};
tree->Get(suffix)->SetSuffix(tree->Get(n)->GetEdges()->Find(c)->Get());
};
};
};
return tree;
}
function : SubPalindromes(tree : Vector<Node>) ~ Vector<String> {
s := Vector->New()<String>;
SubPalindromesChildren(0, "", tree, s);
keys := tree->Get(1)->GetEdges()->GetKeys()<CharHolder>;
each(k : keys) {
key := keys->Get(k);
str := key->Get()->ToString();
s->AddBack(str);
value := tree->Get(1)->GetEdges()->Find(key)->As(IntHolder)->Get();
SubPalindromesChildren(value, str, tree, s);
};
return s;
}
function : SubPalindromesChildren(n : Int, p : String, tree : Vector<Node>, s : Vector<String>) ~ Nil {
keys := tree->Get(n)->GetEdges()->GetKeys()<CharHolder>;
each(k : keys) {
key := keys->Get(k);
c := key->Get();
value := tree->Get(n)->GetEdges()->Find(key)->As(IntHolder)->Get();
str := ""; str += c; str += p; str += c;
s->AddBack(str);
SubPalindromesChildren(value, str, tree, s);
};
}
function : Show(result : Vector<String>) ~ Nil {
out := "[";
each(i : result) {
out += result->Get(i);
if(i + 1 < result->Size()) {
out += ", ";
};
};
out += "]";
out->PrintLine();
}
}
class Node {
@length : Int;
@edges : Map<CharHolder, IntHolder>;
@suffix : Int;
New(length : Int, edges : Map<CharHolder, IntHolder>, suffix : Int) {
@length := length;
@edges := edges <> Nil ? edges : Map->New()<CharHolder, IntHolder>;
@suffix := suffix;
}
New(length : Int) {
@length := length;
@edges := Map->New()<CharHolder, IntHolder>;
}
method : public : GetLength() ~ Int {
return @length;
}
method : public : GetSuffix() ~ Int {
return @suffix;
}
method : public : SetSuffix(suffix : Int) ~ Nil {
@suffix := suffix;
}
method : public : GetEdges() ~ Map<CharHolder, IntHolder> {
return @edges;
}
}
- Output:
[ee, e, r, t, rtr, ertre, eertree]
Perl
$str = "eertree";
for $n (1 .. length($str)) {
for $m (1 .. length($str)) {
$strrev = "";
$strpal = substr($str, $n-1, $m);
if ($strpal ne "") {
for $p (reverse 1 .. length($strpal)) {
$strrev .= substr($strpal, $p-1, 1);
}
($strpal eq $strrev) and push @pal, $strpal;
}
}
}
print join ' ', grep {not $seen{$_}++} @pal, "\n";
- Output:
e ee eertree ertre r rtr t
Phix
If you use this in anger it may be wise to replace {string chars, sequence next} with a dictionary, which can obviously be either a new dictionary for each node, or perhaps better a single/per tree dictionary keyed on {n,ch}.
with javascript_semantics enum LEN,SUFF,CHARS,NEXT function node(integer len, suffix=1, string chars="", sequence next={}) return {len,suffix,chars,next} -- must match above enum! end function function eertree(string s) sequence tree = {node(-1), -- odd lengths node(0)} -- even lengths integer suff = 2 -- max suffix palindrome for i=1 to length(s) do integer cur = suff, curlen, ch = s[i], k while (true) do curlen = tree[cur][LEN] k = i-1-curlen if k>=1 and s[k]==ch then exit end if cur = tree[cur][SUFF] end while k = find(ch,tree[cur][CHARS]) if k then suff = tree[cur][NEXT][k] else tree = append(tree,node(curlen+2)) suff = length(tree) tree[cur][CHARS] &= ch tree[cur][NEXT] = deep_copy(tree[cur][NEXT])&suff if tree[suff][LEN]==1 then tree[suff][SUFF] = 2 else while (true) do cur = tree[cur][SUFF] curlen = tree[cur][LEN] k = i-1-curlen if k>=0 and s[k]==ch then k = find(ch,tree[cur][CHARS]) if k then tree[suff][SUFF] = tree[cur][NEXT][k] end if exit end if end while end if end if end for return tree end function function children(sequence s, tree, integer n, string root="") for i=1 to length(tree[n][CHARS]) do integer c = tree[n][CHARS][i], nxt = tree[n][NEXT][i] string p = iff(n=1 ? c&"" : c&root&c) s = append(s, p) s = children(s, tree, nxt, p) end for return s end function procedure main() sequence tree = eertree("eertree") puts(1,"tree:\n") for i=1 to length(tree) do sequence ti = deep_copy(tree[i]) ti[NEXT] = sprint(ti[NEXT]) ti = i&ti printf(1,"[%d]: len:%2d suffix:%d chars:%-5s next:%s\n",ti) end for puts(1,"\n") -- odd then even lengths: ?children(children({},tree,1), tree, 2) end procedure main()
- Output:
The tree matches Fig 1 in the pdf linked above.
tree: [1]: len:-1 suffix:1 chars:ert next:{3,5,6} [2]: len: 0 suffix:1 chars:e next:{4} [3]: len: 1 suffix:2 chars: next:{} [4]: len: 2 suffix:3 chars: next:{} [5]: len: 1 suffix:2 chars: next:{} [6]: len: 1 suffix:2 chars:r next:{7} [7]: len: 3 suffix:5 chars:e next:{8} [8]: len: 5 suffix:3 chars:e next:{9} [9]: len: 7 suffix:4 chars: next:{} {"e","r","t","rtr","ertre","eertree","ee"}
Python
#!/bin/python
from __future__ import print_function
class Node(object):
def __init__(self):
self.edges = {} # edges (or forward links)
self.link = None # suffix link (backward links)
self.len = 0 # the length of the node
class Eertree(object):
def __init__(self):
self.nodes = []
# two initial root nodes
self.rto = Node() #odd length root node, or node -1
self.rte = Node() #even length root node, or node 0
# Initialize empty tree
self.rto.link = self.rte.link = self.rto;
self.rto.len = -1
self.rte.len = 0
self.S = [0] # accumulated input string, T=S[1..i]
self.maxSufT = self.rte # maximum suffix of tree T
def get_max_suffix_pal(self, startNode, a):
# We traverse the suffix-palindromes of T in the order of decreasing length.
# For each palindrome we read its length k and compare T[i-k] against a
# until we get an equality or arrive at the -1 node.
u = startNode
i = len(self.S)
k = u.len
while id(u) != id(self.rto) and self.S[i - k - 1] != a:
assert id(u) != id(u.link) #Prevent infinte loop
u = u.link
k = u.len
return u
def add(self, a):
# We need to find the maximum suffix-palindrome P of Ta
# Start by finding maximum suffix-palindrome Q of T.
# To do this, we traverse the suffix-palindromes of T
# in the order of decreasing length, starting with maxSuf(T)
Q = self.get_max_suffix_pal(self.maxSufT, a)
# We check Q to see whether it has an outgoing edge labeled by a.
createANewNode = not a in Q.edges
if createANewNode:
# We create the node P of length Q+2
P = Node()
self.nodes.append(P)
P.len = Q.len + 2
if P.len == 1:
# if P = a, create the suffix link (P,0)
P.link = self.rte
else:
# It remains to create the suffix link from P if |P|>1. Just
# continue traversing suffix-palindromes of T starting with the suffix
# link of Q.
P.link = self.get_max_suffix_pal(Q.link, a).edges[a]
# create the edge (Q,P)
Q.edges[a] = P
#P becomes the new maxSufT
self.maxSufT = Q.edges[a]
#Store accumulated input string
self.S.append(a)
return createANewNode
def get_sub_palindromes(self, nd, nodesToHere, charsToHere, result):
#Each node represents a palindrome, which can be reconstructed
#by the path from the root node to each non-root node.
#Traverse all edges, since they represent other palindromes
for lnkName in nd.edges:
nd2 = nd.edges[lnkName] #The lnkName is the character used for this edge
self.get_sub_palindromes(nd2, nodesToHere+[nd2], charsToHere+[lnkName], result)
#Reconstruct based on charsToHere characters.
if id(nd) != id(self.rto) and id(nd) != id(self.rte): #Don't print for root nodes
tmp = "".join(charsToHere)
if id(nodesToHere[0]) == id(self.rte): #Even string
assembled = tmp[::-1] + tmp
else: #Odd string
assembled = tmp[::-1] + tmp[1:]
result.append(assembled)
if __name__=="__main__":
st = "eertree"
print ("Processing string", st)
eertree = Eertree()
for ch in st:
eertree.add(ch)
print ("Number of sub-palindromes:", len(eertree.nodes))
#Traverse tree to find sub-palindromes
result = []
eertree.get_sub_palindromes(eertree.rto, [eertree.rto], [], result) #Odd length words
eertree.get_sub_palindromes(eertree.rte, [eertree.rte], [], result) #Even length words
print ("Sub-palindromes:", result)
- Output:
Processing string eertree Number of sub-palindromes: 7 Sub-palindromes: ['r', 'e', 'eertree', 'ertre', 'rtr', 't', 'ee']
Racket
#lang racket
(struct node (edges ; edges (or forward links)
link ; suffix link (backward links)
len) ; the length of the node
#:mutable)
(define (new-node link len) (node (make-hash) link len))
(struct eertree (nodes
rto ; odd length root node, or node -1
rte ; even length root node, or node 0
S ; accumulated input string, T=S[1..i]
max-suf-t) ; maximum suffix of tree T
#:mutable)
(define (new-eertree)
(let* ((rto (new-node #f -1))
(rte (new-node rto 0)))
(eertree null rto rte (list 0) rte)))
(define (eertree-get-max-suffix-pal et start-node a)
#| We traverse the suffix-palindromes of T in the order of decreasing length.
For each palindrome we read its length k and compare T[i-k] against a
until we get an equality or arrive at the -1 node. |#
(match et
[(eertree nodes rto rte (and S (app length i)) max-suf-t)
(let loop ((u start-node))
(let ((k (node-len u)))
(if (or (eq? u rto) (= (list-ref S (- i k 1)) a))
u
(let ((u→ (node-link u)))
(when (eq? u u→) (error 'eertree-get-max-suffix-pal "infinite loop"))
(loop u→)))))]))
(define (eertree-add! et a)
#| We need to find the maximum suffix-palindrome P of Ta
Start by finding maximum suffix-palindrome Q of T.
To do this, we traverse the suffix-palindromes of T
in the order of decreasing length, starting with maxSuf(T) |#
(match (eertree-get-max-suffix-pal et (eertree-max-suf-t et) a)
[(node Q.edges Q.→ Q.len)
;; We check Q to see whether it has an outgoing edge labeled by a.
(define new-node? (not (hash-has-key? Q.edges a)))
(when new-node?
(define P (new-node #f (+ Q.len 2))) ; We create the node P of length Q+2
(set-eertree-nodes! et (append (eertree-nodes et) (list P)))
(define P→
(if (= (node-len P) 1)
(eertree-rte et) ; if P = a, create the suffix link (P,0)
;; It remains to c reate the suffix link from P if |P|>1.
;; Just continue traversing suffix-palindromes of T starting with the suffix link of Q.
(hash-ref (node-edges (eertree-get-max-suffix-pal et Q.→ a)) a)))
(set-node-link! P P→)
(hash-set! Q.edges a P)) ; create the edge (Q,P)
(set-eertree-max-suf-t! et (hash-ref Q.edges a)) ; P becomes the new maxSufT
(set-eertree-S! et (append (eertree-S et) (list a))) ; Store accumulated input string
new-node?]))
(define (eertree-get-sub-palindromes et)
(define (inr nd (node-path (list nd)) (char-path/rev null))
;; Each node represents a palindrome, which can be reconstructed by the path from the root node to
;; each non-root node.
(let ((deeper ; Traverse all edges, since they represent other palindromes
(for/fold ((result null)) (([→-name nd2] (in-hash (node-edges nd))))
; The lnk-name is the character used for this edge
(append result (inr nd2 (append node-path (list nd2)) (cons →-name char-path/rev)))))
(root-node? (or (eq? (eertree-rto et) nd) (eq? (eertree-rte et) nd))))
(if root-node? ; Don't add root nodes
deeper
(let ((even-string? (eq? (car node-path) (eertree-rte et)))
(char-path (reverse char-path/rev)))
(cons (append char-path/rev (if even-string? char-path (cdr char-path))) deeper)))))
inr)
(define (eertree-get-palindromes et)
(define sub (eertree-get-sub-palindromes et))
(append (sub (eertree-rto et))
(sub (eertree-rte et))))
(module+ main
(define et (new-eertree))
;; eertree works in integer space, so we'll map to/from char space here
(for ((c "eertree")) (eertree-add! et (char->integer c)))
(map (compose list->string (curry map integer->char)) (eertree-get-palindromes et)))
- Output:
'("t" "rtr" "ertre" "eertree" "r" "e" "ee")
Raku
(formerly Perl 6)
my $str = "eertree";
my @pal = ();
my ($strrev,$strpal);
for (1 .. $str.chars) -> $n {
for (1 .. $str.chars) -> $m {
$strrev = "";
$strpal = $str.substr($n-1, $m);
if ($strpal ne "") {
for ($strpal.chars ... 1) -> $p {
$strrev ~= $strpal.substr($p-1,1);
}
($strpal eq $strrev) and @pal.push($strpal);
}
}
}
say @pal.unique;
- Output:
(e ee eertree ertre r rtr t)
REXX
This REXX program is modeled after the Ring example.
/*REXX program creates a list of (unique) sub─palindromes that exist in an input string.*/
parse arg x . /*obtain optional input string from CL.*/
if x=='' | x=="," then x= 'eertree' /*Not specified? Then use the default.*/
L= length(x) /*the length (in chars) of input string*/
@.= . /*@ tree indicates uniqueness of pals. */
$= /*list of unsorted & unique palindromes*/
do j=1 for L /*start at the left side of the string.*/
do k=1 for L /*traverse from left to right of string*/
parse var x =(j) y +(k) /*extract a substring from the string. */
if reverse(y)\==y | @.y\==. then iterate /*Partial string a palindrome? Skip it*/
@.y= y /*indicate a sub─palindrome was found. */
$= $' ' y /*append the sub─palindrome to the list*/
end /*k*/ /* [↑] an extra blank is inserted. */
end /*j*/
say '──────── The input string that is being used: ' space(x)
say '──────── The number of sub─palindromes found: ' words($)
say '──────── The list of sub─palindromes found: ' strip($)
/*stick a fork in it, we're all done. */
- output when using the default input:
──────── The input string that is being used: eertree ──────── The number of sub─palindromes found: 7 ──────── The list of sub─palindromes found: e ee eertree ertre r rtr t
Ring
# Project : Eertree
str = "eertree"
pal = []
for n=1 to len(str)
for m=1 to len(str)
strrev = ""
strpal = substr(str, n, m)
if strpal != ""
for p=len(strpal) to 1 step -1
strrev = strrev + strpal[p]
next
if strpal = strrev
add(pal, strpal)
ok
ok
next
next
sortpal = sort(pal)
for n=len(sortpal) to 2 step -1
if sortpal[n] = sortpal[n-1]
del(sortpal, n)
ok
next
see sortpal + nl
Output:
e ee eertree ertre r rtr t
Ruby
class Node
def initialize(length, edges = {}, suffix = 0)
@length = length
@edges = edges
@suffix = suffix
end
attr_reader :length
attr_reader :edges
attr_accessor :suffix
end
EVEN_ROOT = 0
ODD_ROOT = 1
def eertree(s)
tree = [
Node.new(0, {}, ODD_ROOT),
Node.new(-1, {}, ODD_ROOT)
]
suffix = ODD_ROOT
s.each_char.with_index { |c, i|
n = suffix
k = 0
loop do
k = tree[n].length
b = i - k - 1
if b >= 0 and s[b] == c then
break
end
n = tree[n].suffix
end
if tree[n].edges.key?(c) then
suffix = tree[n].edges[c]
next
end
suffix = tree.length
tree << Node.new(k + 2)
tree[n].edges[c] = suffix
if tree[suffix].length == 1 then
tree[suffix].suffix = 0
next
end
loop do
n = tree[n].suffix
b = i - tree[n].length - 1
if b >= 0 and s[b] == c then
break
end
end
tree[suffix].suffix = tree[n].edges[c]
}
return tree
end
def subPalindromes(tree)
s = []
children = lambda { |n,p,f|
for c,v in tree[n].edges
m = tree[n].edges[c]
p = c + p + c
s << p
f.call(m, p, f)
end
}
children.call(0, '', children)
for c,n in tree[1].edges
s << c
children.call(n, c, children)
end
return s
end
tree = eertree("eertree")
print subPalindromes(tree), "\n"
- Output:
["ee", "e", "r", "t", "rtr", "ertre", "eertree"]
Rust
use std::collections::HashMap;
use std::convert::TryInto;
struct Node {
length: isize,
edges: HashMap<u8, usize>,
suffix: usize,
}
impl Node {
fn new(length: isize, suffix: usize) -> Self {
Node {
length,
suffix,
edges: HashMap::new(),
}
}
}
const EVEN_ROOT: usize = 0;
const ODD_ROOT: usize = 1;
fn eertree(s: &[u8]) -> Vec<Node> {
let mut tree = vec![
Node::new(0, ODD_ROOT), // even root
Node::new(-1, ODD_ROOT), // odd root
];
let mut suffix = ODD_ROOT;
for (i, &c) in s.iter().enumerate() {
let mut n = suffix;
let mut k;
loop {
k = tree[n].length;
let k_plus_one: usize = (k + 1).try_into().unwrap_or(0);
if let Some(b) = i.checked_sub(k_plus_one) {
if b < s.len() && s[b] == c {
break;
}
}
n = tree[n].suffix;
}
if tree[n].edges.contains_key(&c) {
suffix = tree[n].edges[&c];
continue;
}
suffix = tree.len();
tree.push(Node::new(k + 2, 0));
tree[n].edges.insert(c, suffix);
if tree[suffix].length == 1 {
tree[suffix].suffix = EVEN_ROOT;
continue;
}
loop {
n = tree[n].suffix;
let tree_n_length_plus_one: usize = (tree[n].length + 1).try_into().unwrap_or(0);
if let Some(b) = i.checked_sub(tree_n_length_plus_one) {
if b < s.len() && s[b] == c {
break;
}
}
}
tree[suffix].suffix = tree[n].edges[&c];
}
tree
}
fn sub_palindromes(tree: &[Node]) -> Vec<String> {
let mut result = Vec::new();
fn children(node: usize, p: String, tree: &[Node], result: &mut Vec<String>) {
for (&c, &n) in &tree[node].edges {
let c = c as char;
let p_new = format!("{}{}{}", c, p, c);
result.push(p_new.clone());
children(n, p_new, tree, result);
}
}
children(EVEN_ROOT, String::new(), tree, &mut result);
for (&c, &n) in &tree[ODD_ROOT].edges {
let c = c as char;
let p = c.to_string();
result.push(p.clone());
children(n, p, tree, &mut result);
}
result
}
fn main() {
let tree = eertree(b"eertree");
let palindromes = sub_palindromes(&tree);
for palindrome in palindromes {
println!("{}", palindrome);
}
}
- Output:
ee e t rtr ertre eertree r
Visual Basic .NET
Module Module1
Class Node
Public Sub New(Len As Integer)
Length = Len
Edges = New Dictionary(Of Char, Integer)
End Sub
Public Sub New(len As Integer, edg As Dictionary(Of Char, Integer), suf As Integer)
Length = len
Edges = If(IsNothing(edg), New Dictionary(Of Char, Integer), edg)
Suffix = suf
End Sub
Property Edges As Dictionary(Of Char, Integer)
Property Length As Integer
Property Suffix As Integer
End Class
ReadOnly EVEN_ROOT As Integer = 0
ReadOnly ODD_ROOT As Integer = 1
Function Eertree(s As String) As List(Of Node)
Dim tree As New List(Of Node) From {
New Node(0, New Dictionary(Of Char, Integer), ODD_ROOT),
New Node(-1, New Dictionary(Of Char, Integer), ODD_ROOT)
}
Dim suffix = ODD_ROOT
Dim n As Integer
Dim k As Integer
For i = 1 To s.Length
Dim c = s(i - 1)
n = suffix
While True
k = tree(n).Length
Dim b = i - k - 2
If b >= 0 AndAlso s(b) = c Then
Exit While
End If
n = tree(n).Suffix
End While
If tree(n).Edges.ContainsKey(c) Then
suffix = tree(n).Edges(c)
Continue For
End If
suffix = tree.Count
tree.Add(New Node(k + 2))
tree(n).Edges(c) = suffix
If tree(suffix).Length = 1 Then
tree(suffix).Suffix = 0
Continue For
End If
While True
n = tree(n).Suffix
Dim b = i - tree(n).Length - 2
If b >= 0 AndAlso s(b) = c Then
Exit While
End If
End While
Dim a = tree(n)
Dim d = a.Edges(c)
Dim e = tree(suffix)
e.Suffix = d
Next
Return tree
End Function
Function SubPalindromes(tree As List(Of Node)) As List(Of String)
Dim s As New List(Of String)
Dim children As Action(Of Integer, String) = Sub(n As Integer, p As String)
For Each c In tree(n).Edges.Keys
Dim m = tree(n).Edges(c)
Dim p1 = c + p + c
s.Add(p1)
children(m, p1)
Next
End Sub
children(0, "")
For Each c In tree(1).Edges.Keys
Dim m = tree(1).Edges(c)
Dim ct = c.ToString()
s.Add(ct)
children(m, ct)
Next
Return s
End Function
Sub Main()
Dim tree = Eertree("eertree")
Dim result = SubPalindromes(tree)
Dim listStr = String.Join(", ", result)
Console.WriteLine("[{0}]", listStr)
End Sub
End Module
- Output:
[ee, e, r, t, rtr, ertre, eertree]
Wren
class Node {
construct new() {
_edges = {} // edges (or forward links)
_link = null // suffix link (backward links)
_len = 0 // the length of the node
}
edges { _edges }
link { _link }
link=(l) { _link = l }
len { _len }
len=(l) { _len = l }
}
class Eertree {
construct new(str) {
_nodes = []
_rto = Node.new() // odd length root node, or node -1
_rte = Node.new() // even length root node, or node 0
_s = "0" // accumulated input string, T = S[1..i]
_maxSufT = _rte // maximum suffix of tree T
// Initialize and build the tree
_rte.link = _rto
_rto.link = _rte
_rto.len = -1
_rte.len = 0
for (ch in str) add_(ch)
}
nodes { _nodes }
getMaxSuffixPal_(startNode, a) {
// We traverse the suffix-palindromes of T in the order of decreasing length.
// For each palindrome we read its length k and compare T[i-k] against a
// until we get an equality or arrive at the -1 node.
var u = startNode
var i = _s.count
var k = u.len
while (u != _rto && _s[i - k - 1] != a) {
if (u == u.link) Fiber.abort("Infinite loop detected")
u = u.link
k = u.len
}
return u
}
add_(a) {
// We need to find the maximum suffix-palindrome P of Ta
// Start by finding maximum suffix-palindrome Q of T.
// To do this, we traverse the suffix-palindromes of T
// in the order of decreasing length, starting with maxSuf(T)
var q = getMaxSuffixPal_(_maxSufT, a)
// We check Q to see whether it has an outgoing edge labeled by a.
var createANewNode = !q.edges.keys.contains(a)
if (createANewNode) {
// We create the node P of length Q + 2
var p = Node.new()
_nodes.add(p)
p.len = q.len + 2
if (p.len == 1) {
// if P = a, create the suffix link (P, 0)
p.link = _rte
} else {
// It remains to create the suffix link from P if |P|>1. Just
// continue traversing suffix-palindromes of T starting with the
// the suffix link of Q.
p.link = getMaxSuffixPal_(q.link, a).edges[a]
}
// create the edge (Q, P)
q.edges[a] = p
}
// P becomes the new maxSufT
_maxSufT = q.edges[a]
// Store accumulated input string
_s = _s + a
return createANewNode
}
getSubPalindromes() {
// Traverse tree to find sub-palindromes
var result = []
// Odd length words
getSubPalindromes_(_rto, [_rto], "", result)
// Even length words
getSubPalindromes_(_rte, [_rte], "", result)
return result
}
getSubPalindromes_(nd, nodesToHere, charsToHere, result) {
// Each node represents a palindrome, which can be reconstructed
// by the path from the root node to each non-root node.
// Traverse all edges, since they represent other palindromes
for (lnkName in nd.edges.keys) {
var nd2 = nd.edges[lnkName]
getSubPalindromes_(nd2, nodesToHere + [nd2], charsToHere + lnkName, result)
}
// Reconstruct based on charsToHere characters.
if (nd != _rto && nd != _rte) { // Don't print for root nodes
var assembled = charsToHere[-1..0] +
((nodesToHere[0] == _rte) ? charsToHere : charsToHere[1..-1])
result.add(assembled)
}
}
}
var str = "eertree"
System.print("Processing string '%(str)'")
var eertree = Eertree.new(str)
System.print("Number of sub-palindromes: %(eertree.nodes.count)")
var result = eertree.getSubPalindromes()
System.print("Sub-palindromes: %(result)")
- Output:
Processing string 'eertree' Number of sub-palindromes: 7 Sub-palindromes: [e, eertree, ertre, rtr, t, r, ee]
zkl
class Node{
fcn init(length){
var edges=Dictionary(), # edges (or forward links). (char:Node)
link=Void, # suffix link (backward links)
sz =length; # node length.
}
}
class Eertree{
fcn init(string=Void){
var nodes=List(),
# two initial root nodes
rto=Node(-1), # odd length root node, or node -1
rte=Node(0); # even length root node, or node 0
rto.link=rte.link=rto; # Initialize empty tree
var S =Data(Void,0), # accumulated input string, T=S[1..i], byte buffer
maxSufT=rte; # maximum suffix of tree T
if(string) string.pump(addChar); // go ahead and build the tree
}
fcn get_max_suffix_pal(startNode,a){
# We traverse the suffix-palindromes of T in the order of decreasing length.
# For each palindrome we read its length k and compare T[i-k] against a
# until we get an equality or arrive at the -1 node.
u,i,k := startNode, S.len(), u.sz;
while(u.id!=rto.id and S.charAt(i - k - 1)!=a){
_assert_(u.id!=u.link.id); # Prevent infinte loop
u,k = u.link,u.sz;
}
return(u);
}
fcn addChar(a){
# We need to find the maximum suffix-palindrome P of Ta
# Start by finding maximum suffix-palindrome Q of T.
# To do this, we traverse the suffix-palindromes of T
# in the order of decreasing length, starting with maxSuf(T)
Q:=get_max_suffix_pal(maxSufT,a);
# We check Q to see whether it has an outgoing edge labeled by a.
createANewNode:=(not Q.edges.holds(a));
if(createANewNode){
P:=Node(Q.sz + 2); nodes.append(P);
if(P.sz==1) P.link=rte; # if P = a, create the suffix link (P,0)
else # It remains to create the suffix link from P if |P|>1. Just
# continue traversing suffix-palindromes of T starting with the suffix
# link of Q.
P.link=get_max_suffix_pal(Q.link,a).edges[a];
Q.edges[a]=P; # create the edge (Q,P)
}
maxSufT=Q.edges[a]; # P becomes the new maxSufT
S.append(a); # Store accumulated input string
return(createANewNode); // in case anyone wants to know a is new edge
}
fcn get_sub_palindromes{
result:=List();
sub_palindromes(rto, T(rto),"", result); # Odd length words
sub_palindromes(rte, T(rte),"", result); # Even length words
result
}
fcn [private] sub_palindromes(nd, nodesToHere, charsToHere, result){
// nodesToHere needs to be read only
# Each node represents a palindrome, which can be reconstructed
# by the path from the root node to each non-root node.
# Traverse all edges, since they represent other palindromes
nd.edges.pump(Void,'wrap([(lnkName,nd2)]){
sub_palindromes(nd2, nodesToHere+nd2, charsToHere+lnkName, result);
});
# Reconstruct based on charsToHere characters.
if(nd.id!=rto.id and nd.id!=rte.id){ # Don't print for root nodes
if(nodesToHere[0].id==rte.id) # Even string
assembled:=charsToHere.reverse() + charsToHere;
else assembled:=charsToHere.reverse() + charsToHere[1,*]; # Odd string
result.append(assembled);
}
}
}
st:="eertree";
println("Processing string \"", st,"\"");
eertree:=Eertree(st);
println("Number of sub-palindromes: ", eertree.nodes.len());
println("Sub-palindromes: ", eertree.get_sub_palindromes());
- Output:
Processing string "eertree" Number of sub-palindromes: 7 Sub-palindromes: L("e","r","eertree","ertre","rtr","t","ee")