Display a linear combination

From Rosetta Code
Revision as of 08:36, 14 October 2015 by rosettacode>G.Brougnard (Added EchoLisp)
Display a linear combination is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The purpose of this task is to display a finite linear combination in an infinite vector basis .

Write a function that, when given a finite list of scalars , creates a string representing the linear combination

Your output must comply to the following rules:

  • you don't show null terms, unless the whole combination is null. For instance while the output "0" is fine, "e(1) + 0*e(3)" or "0 + e(1)" are wrong.
  • you don't show scalars when they are equal to one or minus one. For instance the string "1*e(3)" is wrong.
  • you don't prefix by '-' if it follows a preceding term. Instead you use subtraction. Thus "e(4) - e(5)" is correct while "e(4) + -e(5)" is wrong.

Show here output for the following lists of scalars:

1)   1, 2, 3
2)   0, 1, 2, 3
3)   1, 0, 3, 4
4)   1, 2, 0
5)   0, 0, 0
6)   0
7)   1, 1, 1
8)   -1, -1, -1
9)   -1, -2, 0, -3
10)  -1

EchoLisp

<lang scheme>

build an html string from list of coeffs

(define (linear->html coeffs)

   (define plus #f) 
   (or* 
   (for/fold (html "") ((a coeffs) (i (in-naturals 1)))
     (unless (zero? a)
		(set! plus (if plus "+" "")))
     (string-append html

(cond ((= a 1) (format "%a e%d " plus i)) ((= a -1) (format "- e%d " i)) ((> a 0) (format "%a %d*e%d " plus a i)) ((< a 0) (format "- %d*e%d " (abs a) i)) (else ""))))

    "0"))

(define linears '((1 2 3)

  (0 1 2 3)
  (1 0 3 4)
  (1 2 0)
  (0 0 0)
  (0)
  (1 1 1)
  (-1 -1 -1)
  (-1 -2 0 -3)
  (-1)))
  

(define (task linears) (for/string ((linear linears)) (string-append

       (format "%a -> %a 
" linear (linear->html linear)))))

</lang>

Output:

(1 2 3) -> e1 + 2*e2 + 3*e3
(0 1 2 3) -> e2 + 2*e3 + 3*e4
(1 0 3 4) -> e1 + 3*e3 + 4*e4
(1 2 0) -> e1 + 2*e2
(0 0 0) -> 0
(0) -> 0
(1 1 1) -> e1 + e2 + e3
(-1 -1 -1) -> - e1 - e2 - e3
(-1 -2 0 -3) -> - e1 - 2*e2 - 3*e4
(-1) -> - e1

J

Implementation:

<lang J>fourbanger=:3 :0

 e=. ('e(',')',~])@":&.> 1+i.#y
 firstpos=. 0< {.y-.0
 if. */0=y do. '0' else. firstpos}.;y gluedto e end.

)

gluedto=:4 :0 each

 pfx=. '+-' {~ x<0
 select. |x
   case. 0 do. 
   case. 1 do. pfx,y
   case.   do. pfx,(":|x),'*',y
 end.

)</lang>

Example use:

<lang J> fourbanger 1 2 3 e(1)+2*e(2)+3*e(3)

  fourbanger 0 1 2 3

e(2)+2*e(3)+3*e(4)

  fourbanger 1 0 3 4

e(1)+3*e(3)+4*e(4)

  fourbanger 0 0 0

0

  fourbanger 0

0

  fourbanger 1 1 1

e(1)+e(2)+e(3)

  fourbanger _1 _1 _1

-e(1)-e(2)-e(3)

  fourbanger _1 _2 0 _3

-e(1)-2*e(2)-3*e(4)

  fourbanger _1

-e(1)</lang>

Perl 6

<lang perl6>sub linear-combination(@coeff) {

   (@coeff Z=> map { "e($_)" }, 1 .. *)\
   .grep(+*.key)\
   .map({ .key ~ '*' ~ .value })\
   .join(' + ')\
   .subst('+ -', '- ', :g)\
   .subst(/<|w>1\*/, , :g)
       || '0'

}

say linear-combination($_) for [1, 2, 3], [0, 1, 2, 3], [1, 0, 3, 4], [1, 2, 0], [0, 0, 0], [0], [1, 1, 1], [-1, -1, -1], [-1, -2, 0, -3], [-1 ]

</lang>
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

Racket

<lang racket>#lang racket/base (require racket/match racket/string)

(define (linear-combination->string es)

 (let inr ((es es) (i 1) (rv ""))
   (match* (es rv)
     [((list) "") "0"]
     [((list) rv) rv]
     [((list (? zero?) t ...) rv)
      (inr t (add1 i) rv)]
     [((list n t ...) rv)
      (define ±n
        (match* (n rv)
          ;; zero is handled above
          [(1 "") ""]
          [(1 _) "+"]
          [(-1 _) "-"]
          [((? positive? n) (not "")) (format "+~a*" n)]
          [(n _) (format "~a*" n)]))
      (inr t (add1 i) (string-append rv ±n "e("(number->string i)")"))])))

(for-each

(compose displayln linear-combination->string)
'((1 2 3)
  (0 1 2 3)
  (1 0 3 4)
  (1 2 0)
  (0 0 0)
  (0)
  (1 1 1)
  (-1 -1 -1)
  (-1 -2 0 -3)
  (-1)))

</lang>

Output:
e(1)+2*e(2)+3*e(3)
e(2)+2*e(3)+3*e(4)
e(1)+3*e(3)+4*e(4)
e(1)+2*e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2*e(2)-3*e(4)
-e(1)

Tcl

This solution strives for legibility rather than golf.

<lang Tcl>proc lincom {factors} {

   set exp 0
   set res ""
   foreach f $factors {
       incr exp
       if {$f == 0} {
           continue
       } elseif {$f == 1} {
           append res "+e($exp)"
       } elseif {$f == -1} {
           append res "-e($exp)"
       } elseif {$f > 0} {
           append res "+$f*e($exp)"
       } else {
           append res "$f*e($exp)"
       }
   }
   if {$res eq ""} {set res 0}
   regsub {^\+} $res {} res
   return $res

}

foreach test {

   {1 2 3}
   {0 1 2 3}
   {1 0 3 4}
   {1 2 0}
   {0 0 0}
   {0}
   {1 1 1}
   {-1 -1 -1}
   {-1 -2 0 -3}
   {-1}

} {

   puts [format "%10s -> %-10s" $test [lincom $test]]

}</lang>

Output:
     1 2 3 -> e(1)+2*e(2)+3*e(3)
   0 1 2 3 -> e(2)+2*e(3)+3*e(4)
   1 0 3 4 -> e(1)+3*e(3)+4*e(4)
     1 2 0 -> e(1)+2*e(2)
     0 0 0 -> 0         
         0 -> 0         
     1 1 1 -> e(1)+e(2)+e(3)
  -1 -1 -1 -> -e(1)-e(2)-e(3)
-1 -2 0 -3 -> -e(1)-2*e(2)-3*e(4)
        -1 -> -e(1)     

zkl

Translation of: Perl 6

<lang zkl>fcn linearCombination(coeffs){

  [1..].zipWith(fcn(n,c){ if(c==0) "" else "%s*e(%s)".fmt(c,n) },coeffs)
     .filter().concat("+").replace("+-","-").replace("1*","")
  or 0

}</lang> <lang zkl>T(T(1,2,3),T(0,1,2,3),T(1,0,3,4),T(1,2,0),T(0,0,0),T(0),T(1,1,1),T(-1,-1,-1),

 T(-1,-2,0,-3),T(-1),T)

.pump(Console.println,linearCombination);</lang>

Output:
e(1)+2*e(2)+3*e(3)
e(2)+2*e(3)+3*e(4)
e(1)+3*e(3)+4*e(4)
e(1)+2*e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2*e(2)-3*e(4)
-e(1)
0