Continued fraction/Arithmetic/G(matrix NG, Contined Fraction N)

From Rosetta Code
Continued fraction/Arithmetic/G(matrix NG, Contined Fraction N) is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

This task investigates mathmatical operations that can be performed on a single continued fraction. This requires only a baby version of NG:

I may perform perform the following operations:

Input the next term of N1
Output a term of the continued fraction resulting from the operation.

I output a term if the integer parts of and are equal. Otherwise I input a term from N. If I need a term from N but N has no more terms I inject .

When I input a term t my internal state: is transposed thus

When I output a term t my internal state: is transposed thus

When I need a term t but there are no more my internal state: is transposed thus

I am done when b1 and b are zero.

Demonstrate your solution by calculating:

[1;5,2] + 1/2
[3;7] + 1/2
[3;7] divided by 4

Using a generator for (e.g., from Continued fraction) calculate . You are now at the starting line for using Continued Fractions to implement Arithmetic-geometric mean without ulps and epsilons.

The first step in implementing Arithmetic-geometric mean is to calculate do this now to cross the starting line and begin the race.

C++

/* Interface for all matrixNG classes
Nigel Galloway, February 10th., 2013.
*/

class matrixNG {
private:
virtual void consumeTerm(){}
virtual void consumeTerm(int n){}
virtual const bool needTerm(){}
protected: int cfn = 0, thisTerm;
bool haveTerm = false;
friend class NG;
};
/* Implement the babyNG matrix
Nigel Galloway, February 10th., 2013.
*/

class NG_4 : public matrixNG {
private: int a1, a, b1, b, t;
const bool needTerm() {
if (b1==0 and b==0) return false;
if (b1==0 or b==0) return true; else thisTerm = a/b;
if (thisTerm==(int)(a1/b1)){
t=a; a=b; b=t-b*thisTerm; t=a1; a1=b1; b1=t-b1*thisTerm;
haveTerm=true; return false;
}
return true;
}
void consumeTerm(){a=a1; b=b1;}
void consumeTerm(int n){t=a; a=a1; a1=t+a1*n; t=b; b=b1; b1=t+b1*n;}
public:
NG_4(int a1, int a, int b1, int b): a1(a1), a(a), b1(b1), b(b){}
};
/* Implement a Continued Fraction which returns the result of an arithmetic operation on
1 or more Continued Fractions (Currently 1 or 2).
Nigel Galloway, February 10th., 2013.
*/

class NG : public ContinuedFraction {
private:
matrixNG* ng;
ContinuedFraction* n[2];
public:
NG(NG_4* ng, ContinuedFraction* n1): ng(ng){n[0] = n1;}
NG(NG_8* ng, ContinuedFraction* n1, ContinuedFraction* n2): ng(ng){n[0] = n1; n[1] = n2;}
const int nextTerm() {ng->haveTerm = false; return ng->thisTerm;}
const bool moreTerms(){
while(ng->needTerm()) if(n[ng->cfn]->moreTerms()) ng->consumeTerm(n[ng->cfn]->nextTerm()); else ng->consumeTerm();
return ng->haveTerm;
}
};

Testing

[1;5,2] + 1/2

int main() {
NG_4 a1(2,1,0,2);
r2cf n1(13,11);
for(NG n(&a1, &n1); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
1 1 2 7

[3;7] * 7/22

int main() {
NG_4 a2(7,0,0,22);
r2cf n2(22,7);
for(NG n(&a2, &n2); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
1

[3;7] + 1/22

int main() {
NG_4 a3(2,1,0,2);
r2cf n3(22,7);
for(NG n(&a3, &n3); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
3 1 1 1 4

[3;7] divided by 4

int main() {
NG_4 a4(1,0,0,4);
r2cf n4(22,7);
for(NG n(&a4, &n4); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
0 1 3 1 2

1 2 {\displaystyle {\frac {1}{\sqrt {2}}}}

First I generate as a continued fraction, then I obtain an approximate value using r2cf for comparison.

int main() {
NG_4 a5(0,1,1,0);
SQRT2 n5;
int i = 0;
for(NG n(&a5, &n5); n.moreTerms() and i++ < 20; std::cout << n.nextTerm() << " ");
std::cout << "..." << std::endl;
for(r2cf cf(10000000, 14142136); cf.moreTerms(); std::cout << cf.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
0 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2

1 + 2 2 {\displaystyle {\frac {1+{\sqrt {2}}}{2}}}

First I generate as a continued fraction, then I obtain an approximate value using r2cf for comparison.

int main() {
int i = 0;
NG_4 a6(1,1,0,2);
SQRT2 n6;
for(NG n(&a6, &n6); n.moreTerms() and i++ < 20; std::cout << n.nextTerm() << " ");
std::cout << "..." << std::endl;
for(r2cf cf(24142136, 20000000); cf.moreTerms(); std::cout << cf.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
Output:
1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 ...
1 4 1 4 1 4 1 4 1 4 3 2 1 9 5

J

Note that the continued fraction representation used here differs from those implemented in the Continued_fraction fraction task. In that task, we alternated a and b values. Here, we only work with a values -- b is implicitly always 1.

Implementation:

ng4cf=: 4 : 0
cf=. 1000{.!._ y
ng=. x
r=.i. ndx=.0
while. +./0~:{:ng do.
if.=/<.%/ng do.
r=.r, t=.{.<.%/ng
ng=. t (|.@] - ]*0,[) ng
else.
if. _=t=.ndx{cf do.
ng=. ng+/ .*2 2$1 1 0 0
else.
ng=. ng+/ .*2 2$t,1 1 0
end.
if. (#cf)=ndx=. ndx+1 do. r return. end.
end.
end.
r
)

Notes:

  • we arbitrarily stop processing continued fractions after 1000 elements. That's more than enough precision for most purposes.
  • we can convert a continued fraction to a rational number using (+%)/ though if we want the full represented precision we should instead use (+%)[email protected]: (which is slower).
  • we can convert a rational number to a continued fraction using 1 1 {."1@}. ({: , (0 , {:) #: {.)^:(*@{:)^:a: but also this expects a numerator,denominator pair so if you have only a single number use ,&1 to give it a denominator. This works equally well with floating point and arbitrary precision numbers.

Some arbitrary continued fractions and their floating point representations

   arbs=:(,1);(,3);?~&.>3+i.10
":@>arbs
1
3
1 2 0
0 2 3 1
1 0 3 2 4
0 2 3 5 1 4
2 5 0 1 6 3 4
7 5 6 3 0 4 1 2
7 0 1 2 6 3 8 4 5
8 0 5 6 3 7 4 9 1 2
0 9 8 1 3 10 2 5 6 7 4
1 7 3 4 5 8 9 10 6 11 0 2
(+%)/@>arbs
1 3 1 0.444444 4.44444 0.431925 2.16238 7.19368 8.46335 13.1583 0.109719 1.13682

Some NG based cf functions, verifying their behavior against our test set:

   plus1r2=: (2 1,:0 2)&ng4cf
(plus1r2 each -&((+%)/@>) ]) arbs
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

For every one of our arbitrary continued fractions, the 2 1,:0 2 NG matrix gives us a new continued fraction whose rational value is the original rational value + 1r2.

   times7r22=: (7 0,:0 22)&ng4cf 
(times7r22 each %&((+%)/@>) ]) arbs
0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182 0.318182
(times7r22 each %&((+%)[email protected]:@>) ]) arbs
7r22 7r22 7r22 7r22 7r22 7r22 7r22 7r22 7r22 7r22 7r22 7r22

For every one of our arbitrary continued fractions, the 7 0,:0 22 NG matrix gives us a new continued fraction whose rational value is 7r22 times the original rational value.

   times1r4=:(1 0,:0 4)&ng4cf
(times1r4 each %&((+%)/@>) ]) arbs
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

It seems like a diagonal matrix has the effect of multiplying the numerator by the upper left element and the denominator by the lower right element. And our first experiment suggests that an upper right element in NG with a 0 for the bottom left will add the top right divided by bottom right to our continued fraction.

   reciprocal=:(0 1,:1 0)&ng4cf
(reciprocal each *&((+%)/@>) ]) arbs
1 1 1 1 1 1 1 1 1 1 1 1

Looks like we can also divide by our continued fraction...

   plus1r2times1r2=: (1 1,:0 2)&ng4cf
(plus1r2times1r2 each (= 0.5+0.5*])&((+%)/@>) ]) arbs
1 1 1 1 1 1 1 1 1 1 1 1

We can add and multiply using a single "ng4" operation.

Task examples:

1r2 + 13r11

   (+%)/1 5 2
1.18182
plus1r2 1 5 2
1 1 2 7
(+%)/plus1r2 1 5 2
1.68182

7r22 * 22r7

   (+%)/3 7x
22r7
times7r22 3 7x
1

1r2 + 22r7

   plus1r2 3 7x
3 1 1 1 4
(+%)/plus1r2 3 7x
3.64286
(+%)/x:plus1r2 3 7x
51r14

1r4 * 22r7

   times1r4 3 7x
0 1 3 1 2
(+%)/x:times1r4 3 7x
11r14

   reciprocal 1,999$2
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
(+%)/1,999$2
1.41421
(+%)/reciprocal 1,999$2
0.707107

   plus1r2times1r2 1,999$2
1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 ...
(+%)/plus1r2times1r2 1,999$2
1.20711

   plus1r2times1r2 0 1,999$2
0 1 5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 ...
(+%)/plus1r2times1r2 0 1,999$2
0.853553

Kotlin

This is based on the Python entry but has been expanded to deal with the '√2' calculations:

// version 1.1.3
// compile with -Xcoroutines=enable flag from command line
 
import kotlin.coroutines.experimental.*
 
typealias CFGenerator = (Pair<Int, Int>) -> Sequence<Int>
 
data class CFData(
val str: String,
val ng: IntArray,
val r: Pair<Int,Int>,
val gen: CFGenerator
)
 
fun r2cf(frac: Pair<Int, Int>) =
buildSequence {
var num = frac.first
var den = frac.second
while (Math.abs(den) != 0) {
val div = num / den
val rem = num % den
num = den
den = rem
yield(div)
}
}
 
fun d2cf(d: Double) =
buildSequence {
var dd = d
while (true) {
val div = Math.floor(dd)
val rem = dd - div
yield(div.toInt())
if (rem == 0.0) break
dd = 1.0 / rem
}
}
 
@Suppress("UNUSED_PARAMETER")
fun root2(dummy: Pair<Int, Int>) =
buildSequence {
yield(1)
while (true) yield(2)
}
 
@Suppress("UNUSED_PARAMETER")
fun recipRoot2(dummy: Pair<Int, Int>) =
buildSequence {
yield(0)
yield(1)
while (true) yield(2)
}
 
class NG(var a1: Int, var a: Int, var b1: Int, var b: Int) {
 
fun ingress(n: Int) {
var t = a
a = a1
a1 = t + a1 * n
t = b
b = b1
b1 = t + b1 * n
}
 
fun egress(): Int {
val n = a / b
var t = a
a = b
b = t - b * n
t = a1
a1 = b1
b1 = t - b1 * n
return n
}
 
val needTerm get() = (b == 0 || b1 == 0) || ((a / b) != (a1 / b1))
 
val egressDone: Int
get() {
if (needTerm) {
a = a1
b = b1
}
return egress()
}
 
val done get() = b == 0 && b1 == 0
}
 
fun main(args: Array<String>) {
val data = listOf(
CFData("[1;5,2] + 1/2 ", intArrayOf(2, 1, 0, 2), 13 to 11, ::r2cf),
CFData("[3;7] + 1/2 ", intArrayOf(2, 1, 0, 2), 22 to 7, ::r2cf),
CFData("[3;7] divided by 4 ", intArrayOf(1, 0, 0, 4), 22 to 7, ::r2cf),
CFData("sqrt(2) ", intArrayOf(0, 1, 1, 0), 0 to 0, ::recipRoot2),
CFData("1 / sqrt(2) ", intArrayOf(0, 1, 1, 0), 0 to 0, ::root2),
CFData("(1 + sqrt(2)) / 2 ", intArrayOf(1, 1, 0, 2), 0 to 0, ::root2),
CFData("(1 + 1 / sqrt(2)) / 2", intArrayOf(1, 1, 0, 2), 0 to 0, ::recipRoot2)
)
println("Produced by NG class:")
for ((str, ng, r, gen) in data) {
print("$str -> ")
val (a1, a, b1, b) = ng
val op = NG(a1, a, b1, b)
for (n in gen(r).take(20)) {
if (!op.needTerm) print(" ${op.egress()} ")
op.ingress(n)
}
while (true) {
print(" ${op.egressDone} ")
if (op.done) break
}
println()
}
println("\nProduced by direct calculation:")
val data2 = listOf(
Pair("(1 + sqrt(2)) / 2 ", (1 + Math.sqrt(2.0)) / 2),
Pair("(1 + 1 / sqrt(2)) / 2", (1 + 1 / Math.sqrt(2.0)) / 2)
)
for ((str, d) in data2) {
println("$str -> ${d2cf(d).take(20).joinToString(" ")}")
}
}
Output:
Produced by NG class:
[1;5,2] + 1/2         ->  1  1  2  7 
[3;7] + 1/2           ->  3  1  1  1  4 
[3;7] divided by 4    ->  0  1  3  1  2 
sqrt(2)               ->  1  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
1 / sqrt(2)           ->  0  1  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
(1 + sqrt(2)) / 2     ->  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4 
(1 + 1 / sqrt(2)) / 2 ->  0  1  5  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  5 

Produced by direct calculation:
(1 + sqrt(2)) / 2     ->  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
(1 + 1 / sqrt(2)) / 2 ->  0  1  5  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1

Perl 6

Works with: Rakudo version 2013.05

All the important stuff takes place in the NG object. Everything else is helper subs for testing and display.

class NG {
has ( $!a1, $!a, $!b1, $!b );
submethod BUILD ( :$!a1, :$!a, :$!b1, :$!b ) { }
 
# Public methods
method new( $a1, $a, $b1, $b ) { self.bless( *, :$a1, :$a, :$b1, :$b ) }
method apply(@cf, :$limit = Inf) {
(gather {
map { take self!extract unless self!needterm; self!inject($_) }, @cf;
take self!drain until self!done;
})[ ^ $limit ]
}
 
# Private methods
method !inject ($n) {
sub xform($n, $x, $y) { $x, $n * $x + $y }
( $!a, $!a1 ) = xform( $n, $!a1, $!a );
( $!b, $!b1 ) = xform( $n, $!b1, $!b );
}
method !extract {
sub xform($n, $x, $y) { $y, $x - $y * $n }
my $n = $!a div $!b;
($!a, $!b ) = xform( $n, $!a, $!b );
($!a1, $!b1) = xform( $n, $!a1, $!b1 );
$n
}
method !drain { $!a = $!a1, $!b = $!b1 if self!needterm; self!extract }
method !needterm { so [||] !$!b, !$!b1, $!a/$!b != $!a1/$!b1 }
method !done { not [||] $!b, $!b1 }
}
 
sub r2cf(Rat $x is copy) { # Rational to continued fraction
gather loop {
$x -= take $x.floor;
last if !$x;
$x = 1 / $x;
}
}
 
sub cf2r(@a) { # continued fraction to Rational
my $x = @a[* - 1]; # Use FatRats for arbitrary precision
$x = ( @a[$_- 1] + 1 / $x ).FatRat for reverse 1 ..^ @a;
$x
}
 
sub ppcf(@cf) { # format continued fraction for pretty printing
"[{ @cf.join(',').subst(',',';') }]"
}
 
sub pprat($a) { # format Rational for pretty printing
# Use FatRats for arbitrary precision
$a.FatRat.denominator == 1 ?? $a !! $a.FatRat.nude.join('/')
}
 
sub test_NG ($rat, @ng, $op) {
my @cf = $rat.Rat(1e-18).&r2cf;
my @op = NG.new( |@ng ).apply( @cf );
say $rat.perl, ' as a cf: ', @cf.&ppcf, " $op = ",
@op.&ppcf, "\tor ", @op.&cf2r.&pprat, "\n";
}
 
# Testing
test_NG(|$_) for (
[ 13/11, [<2 1 0 2>], '+ 1/2 ' ],
[ 22/7, [<2 1 0 2>], '+ 1/2 ' ],
[ 22/7, [<1 0 0 4>], '/ 4 ' ],
[ 22/7, [<7 0 0 22>], '* 7/22 ' ],
[ 2**.5, [<1 1 0 2>], "\n(1+√2)/2 (approximately)" ]
);
 

Output

<13/11> as a cf: [1;5,2] + 1/2  = [1;1,2,7]	or 37/22

<22/7> as a cf: [3;7] + 1/2     = [3;1,1,1,4]	or 51/14

<22/7> as a cf: [3;7] / 4       = [0;1,3,1,2]	or 11/14

<22/7> as a cf: [3;7] * 7/22    = [1]	or 1

1.4142135623731e0 as a cf: [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 
(1+√2)/2 (approximately) = [1;4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4]	or 225058681/186444716

The cf for (1+√2)/2 in the testing routine is an approximation. The NG object is capable of working with infinitely long continued fractions, but displaying them can be problematic. You can pass in a limit to the apply method to get a fixed maximum number of terms though. Here are the first 100 terms from the infinite cf (1+√2)/2 and its Rational representation.

my @continued-fraction = NG.new( 1,1,0,2 ).apply( ( 1, 2 xx * ), limit => 100 );
say @continued-fraction.&ppcf.comb(/ . ** 1..80/).join("\n");
say @continued-fraction.&cf2r.&pprat;
[1;4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4
,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4
,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4]
161733217200188571081311986634082331709/133984184101103275326877813426364627544

Python

Translation of: Ruby

Python: NG

class NG:
def __init__(self, a1, a, b1, b):
self.a1, self.a, self.b1, self.b = a1, a, b1, b
 
def ingress(self, n):
self.a, self.a1 = self.a1, self.a + self.a1 * n
self.b, self.b1 = self.b1, self.b + self.b1 * n
 
@property
def needterm(self):
return (self.b == 0 or self.b1 == 0) or not self.a//self.b == self.a1//self.b1
 
@property
def egress(self):
n = self.a // self.b
self.a, self.b = self.b, self.a - self.b * n
self.a1, self.b1 = self.b1, self.a1 - self.b1 * n
return n
 
@property
def egress_done(self):
if self.needterm: self.a, self.b = self.a1, self.b1
return self.egress
 
@property
def done(self):
return self.b == 0 and self.b1 == 0

Python: Testing

Uses r2cf method from here.

data = [["[1;5,2] + 1/2",      [2,1,0,2], [13,11]],
["[3;7] + 1/2", [2,1,0,2], [22, 7]],
["[3;7] divided by 4", [1,0,0,4], [22, 7]]]
 
for string, ng, r in data:
print( "%-20s->" % string, end='' )
op = NG(*ng)
for n in r2cf(*r):
if not op.needterm: print( " %r" % op.egress, end='' )
op.ingress(n)
while True:
print( " %r" % op.egress_done, end='' )
if op.done: break
print()
Output:
[1;5,2] + 1/2       -> 1 1 2 7
[3;7] + 1/2         -> 3 1 1 1 4
[3;7] divided by 4  -> 0 1 3 1 2

Racket

Translation of: Python
Translation of: C++

Main part of the NG-baby matrices. They are implemented as mutable structs.

#lang racket/base
 
(struct ng (a1 a b1 b) #:transparent #:mutable)
 
(define (ng-ingress! v t)
(define a (ng-a v))
(define a1 (ng-a1 v))
(define b (ng-b v))
(define b1 (ng-b1 v))
(set-ng-a! v a1)
(set-ng-a1! v (+ a (* a1 t)))
(set-ng-b! v b1)
(set-ng-b1! v (+ b (* b1 t))))
 
(define (ng-needterm? v)
(or (zero? (ng-b v))
(zero? (ng-b1 v))
(not (= (quotient (ng-a v) (ng-b v)) (quotient (ng-a1 v) (ng-b1 v))))))
 
(define (ng-egress! v)
(define t (quotient (ng-a v) (ng-b v)))
(define a (ng-a v))
(define a1 (ng-a1 v))
(define b (ng-b v))
(define b1 (ng-b1 v))
(set-ng-a! v b)
(set-ng-a1! v b1)
(set-ng-b! v (- a (* b t)))
(set-ng-b1! v (- a1 (* b1 t)))
t)
 
(define (ng-infty! v)
(when (ng-needterm? v)
(set-ng-a! v (ng-a1 v))
(set-ng-b! v (ng-b1 v))))
 
(define (ng-done? v)
(and (zero? (ng-b v)) (zero? (ng-b1 v))))

Auxiliary functions to create producers of well known continued fractions. The function rational->cf is copied from r2cf task.

(define ((rational->cf n d))
(and (not (zero? d))
(let-values ([(q r) (quotient/remainder n d)])
(set! n d)
(set! d r)
q)))
 
(define (sqrt2->cf)
(define first? #t)
(lambda ()
(if first?
(begin
(set! first? #f)
1)
2)))

The function combine-ng-cf->cf combines a ng-matrix and a cf- producer and creates a cf-producer. The cf-producers can represent infinitely long continued fractions. The function cf-showln shows the first coefficients of a continued fraction represented in a cf-producer.

(define (combine-ng-cf->cf ng cf)
(define empty-producer? #f)
(lambda ()
(let loop ()
(cond
[(not empty-producer?) (define t (cf))
(cond
[t (ng-ingress! ng t)
(if (ng-needterm? ng)
(loop)
(ng-egress! ng))]
[else (set! empty-producer? #t)
(loop)])]
[(ng-done? ng) #f]
[(ng-needterm? ng) (ng-infty! ng)
(loop)]
[else (ng-egress! ng)]))))
 
(define (cf-showln cf n)
(for ([i (in-range n)])
(define val (cf))
(when val
(printf " ~a" val)))
(when (cf)
(printf " ..."))
(printf "~n"))

Some test

(display "[1;5,2] + 1/2 ->")
(cf-showln (combine-ng-cf->cf (ng 2 1 0 2) (rational->cf 13 11)) 20)
 
(display "[3;7] + 1/2 ->")
(cf-showln (combine-ng-cf->cf (ng 2 1 0 2) (rational->cf 22 7)) 20)
 
(display "[3;7] / 4 ->")
(cf-showln (combine-ng-cf->cf (ng 1 0 0 4) (rational->cf 22 7)) 20)
 
(display "sqrt(2)/2 ->")
(cf-showln (combine-ng-cf->cf (ng 1 0 0 2) (sqrt2->cf)) 20)
 
(display "1/sqrt(2) ->")
(cf-showln (combine-ng-cf->cf (ng 0 1 1 0) (sqrt2->cf)) 20)
 
(display "(1+sqrt(2))/2 ->")
(cf-showln (combine-ng-cf->cf (ng 1 1 0 2) (sqrt2->cf)) 20)

Sample output:

[1;5,2] + 1/2 -> 1 1 2 7
[3;7] + 1/2 -> 3 1 1 1 4
[3;7] / 4 -> 0 1 3 1 2
sqrt(2)/2 -> 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
1/sqrt(2) -> 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
(1+sqrt(2))/2 -> 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 ...

Ruby

NG

# I define a class to implement baby NG
class NG
def initialize(a1, a, b1, b)
@a1, @a, @b1, @b = a1, a, b1, b
end
def ingress(n)
@a, @a1 = @a1, @a + @a1 * n
@b, @b1 = @b1, @b + @b1 * n
end
def needterm?
return true if @b == 0 or @b1 == 0
return true unless @a/@b == @a1/@b1
false
end
def egress
n = @a / @b
@a, @b = @b, @a - @b * n
@a1, @b1 = @b1, @a1 - @b1 * n
n
end
def egress_done
@a, @b = @a1, @b1 if needterm?
egress
end
def done?
@b == 0 and @b1 == 0
end
end

Testing

Uses r2cf method from here.

data = [["[1;5,2] + 1/2",      [2,1,0,2], [13,11]],
["[3;7] + 1/2", [2,1,0,2], [22, 7]],
["[3;7] divided by 4", [1,0,0,4], [22, 7]]]
 
data.each do |str, ng, r|
printf "%-20s->", str
op = NG.new(*ng)
r2cf(*r) do |n|
print " #{op.egress}" unless op.needterm?
op.ingress(n)
end
print " #{op.egress_done}" until op.done?
puts
end
Output:
[1;5,2] + 1/2       -> 1 1 2 7
[3;7] + 1/2         -> 3 1 1 1 4
[3;7] divided by 4  -> 0 1 3 1 2

Tcl

This uses the Generator class, R2CF class and printcf procedure from the r2cf task.

Works with: Tcl version 8.6
Translation of: Ruby
# The single-operand version of the NG operator, using our little generator framework
oo::class create NG1 {
superclass Generator
 
variable a1 a b1 b cf
constructor args {
next
lassign $args a1 a b1 b
}
method Ingress n {
lassign [list [expr {$a + $a1*$n}] $a1 [expr {$b + $b1*$n}] $b1] \
a1 a b1 b
}
method NeedTerm? {} {
expr {$b1 == 0 || $b == 0 || $a/$b != $a1/$b1}
}
method Egress {} {
set n [expr {$a/$b}]
lassign [list $b1 $b [expr {$a1 - $b1*$n}] [expr {$a - $b*$n}]] \
a1 a b1 b
return $n
}
method EgressDone {} {
if {[my NeedTerm?]} {
set a $a1
set b $b1
}
tailcall my Egress
}
method Done? {} {
expr {$b1 == 0 && $b == 0}
}
 
method operand {N} {
set cf $N
return [self]
}
method Produce {} {
while 1 {
set n [$cf]
if {![my NeedTerm?]} {
yield [my Egress]
}
my Ingress $n
}
while {![my Done?]} {
yield [my EgressDone]
}
}
}

Demonstrating:

# The square root of 2 as a continued fraction in the framework
oo::class create Root2 {
superclass Generator
method apply {} {
yield 1
while {[self] ne ""} {
yield 2
}
}
}
 
set op [[NG1 new 2 1 0 2] operand [R2CF new 13/11]]
printcf "\[1;5,2\] + 1/2" $op
 
set op [[NG1 new 7 0 0 22] operand [R2CF new 22/7]]
printcf "\[3;7\] * 7/22" $op
 
set op [[NG1 new 2 1 0 2] operand [R2CF new 22/7]]
printcf "\[3;7\] + 1/2" $op
 
set op [[NG1 new 1 0 0 4] operand [R2CF new 22/7]]
printcf "\[3;7\] / 4" $op
 
set op [[NG1 new 0 1 1 0] operand [Root2 new]]
printcf "1/\u221a2" $op 20
 
set op [[NG1 new 1 1 0 2] operand [Root2 new]]
printcf "(1+\u221a2)/2" $op 20
printcf "approx val" [R2CF new 24142136 20000000]
Output:
[1;5,2] + 1/2  -> 1,1,2,7
[3;7] * 7/22   -> 1
[3;7] + 1/2    -> 3,1,1,1,4
[3;7] / 4      -> 0,1,3,1,2
1/√2           -> 0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,…
(1+√2)/2       -> 1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,…
approx val     -> 1,4,1,4,1,4,1,4,1,4,3,2,1,9,5

zkl

Translation of: Python
class NG{
fcn init(_a1,_a, _b1,_b){ var a1=_a1,a=_a, b1=_b1,b=_b; }
var [proxy] done =fcn{ b==0 and b1==0 };
var [proxy] needterm=fcn{ (b==0 or b1==0) or (a/b!=a1/b1) };
fcn ingress(n){
t:=self.copy(True); // tmp copy of vars for eager vs late evaluation
a,a1=t.a1, t.a + n*t.a1;
b,b1=t.b1, t.b + n*t.b1;
}
fcn egress{
n,t:=a/b,self.copy(True);
a,b =t.b, t.a - n*t.b;
a1,b1=t.b1,t.a1 - n*t.b1;
n
}
fcn egress_done{
if(needterm) a,b=a1,b1;
egress()
}
}
   // from task: Continued fraction/Arithmetic/Construct from rational number
fcn r2cf(nom,dnom){ // -->Walker (iterator)
Walker.tweak(fcn(_,state){
nom,dnom:=state;
if(dnom==0) return(Void.Stop);
n,d:=nom.divr(dnom);
state.clear(dnom,d);
n
}.fp1(List(nom,dnom)))
}
data:=T(T("[1;5,2] + 1/2",      T(2,1,0,2), T(13,11)),
T("[3;7] + 1/2", T(2,1,0,2), T(22, 7)),
T("[3;7] divided by 4", T(1,0,0,4), T(22, 7)));
foreach string,ng,r in (data){
print("%-20s-->".fmt(string));
op:=NG(ng.xplode());
foreach n in (r2cf(r.xplode())){
if(not op.needterm) print(" %s".fmt(op.egress()));
op.ingress(n);
}
do{ print(" ",op.egress_done()) }while(not op.done);
println();
}
Output:
[1;5,2] + 1/2       --> 1 1 2 7
[3;7] + 1/2         --> 3 1 1 1 4
[3;7] divided by 4  --> 0 1 3 1 2