Numbers with prime digits whose sum is 13

From Rosetta Code
Revision as of 00:38, 7 June 2021 by Petelomax (talk | contribs) (→‎{{header|Phix}}: added syntax colouring the hard way)
Numbers with prime digits whose sum is 13 is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find all the decimal numbers whose digits are all primes and sum to 13.


ALGOL W

Uses the observations about the digits and numbers in the Wren solution to generate the sequence. <lang algolw>begin

   % find numbers whose digits are prime and whose digit sum is 13  %
   % as noted by the Wren sample, the digits can only be 2, 3, 5, 7 %
   % and there can only be 3, 4, 5 or 6 digits                      %
   integer numberCount;
   numberCount := 0;
   write();
   for d1 := 0, 2, 3, 5, 7 do begin
       for d2 := 0, 2, 3, 5, 7 do begin
           if d2 not = 0 or d1 = 0 then begin
               for d3 := 0, 2, 3, 5, 7 do begin
                   if d3 not = 0 or ( d1 = 0 and d2 = 0 ) then begin
                       for d4 := 2, 3, 5, 7 do begin
                           for d5 := 2, 3, 5, 7 do begin
                               for d6 := 2, 3, 5, 7 do begin
                                   integer sum;
                                   sum := d1 + d2 + d3 + d4 + d5 + d6;
                                   if sum = 13 then begin
                                       % found a number whose prime digits sum to 13 %
                                       integer n;
                                       n := 0;
                                       for d := d1, d2, d3, d4, d5, d6 do n := ( n * 10 ) + d;
                                       writeon( i_w := 6, s_w := 1, n );
                                       numberCount := numberCount + 1;
                                       if numberCount rem 12 = 0 then write()
                                   end if_sum_eq_13
                               end for_d6
                           end for_d5
                       end for_d4
                   end if_d3_ne_0_or_d1_eq_0_and_d2_e_0
               end for_d3
           end if_d2_ne_0_or_d1_eq_0
       end for_d2
   end for_d1

end.</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533   2722
  3235   3253   3325   3352   3523   3532   5233   5323   5332   7222  22225  22252
 22333  22522  23233  23323  23332  25222  32233  32323  32332  33223  33232  33322
 52222 222223 222232 222322 223222 232222 322222

AWK

<lang AWK>

  1. syntax: GAWK -f NUMBERS_WITH_PRIME_DIGITS_WHOSE_SUM_IS_13.AWK

BEGIN {

   for (i=1; i<=1000000; i++) {
     if (prime_digits_sum13(i)) {
       printf("%6d ",i)
       if (++count % 10 == 0) {
         printf("\n")
       }
     }
   }
   printf("\n")
   exit(0)

} function prime_digits_sum13(n, r,sum) {

    while (n > 0) {
     r = int(n % 10)
     switch (r) {
       case 2:
       case 3:
       case 5:
       case 7:
         break
       default:
         return(0)
     }
     n = int(n / 10)
     sum += r
   }
   return(sum == 13)

} </lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353
  2533   2722   3235   3253   3325   3352   3523   3532   5233   5323
  5332   7222  22225  22252  22333  22522  23233  23323  23332  25222
 32233  32323  32332  33223  33232  33322  52222 222223 222232 222322
223222 232222 322222

C

Brute force <lang c>#include <stdbool.h>

  1. include <stdio.h>

bool primeDigitsSum13(int n) {

   int sum = 0;
   while (n > 0) {
       int r = n % 10;
       switch (r) {
       case 2:
       case 3:
       case 5:
       case 7:
           break;
       default:
           return false;
       }
       n /= 10;
       sum += r;
   }
   return sum == 13;

}

int main() {

   int i, c;
   // using 2 for all digits, 6 digits is the max prior to over-shooting 13
   c = 0;
   for (i = 1; i < 1000000; i++) {
       if (primeDigitsSum13(i)) {
           printf("%6d ", i);
           if (c++ == 10) {
               c = 0;
               printf("\n");
           }
       }
   }
   printf("\n");
   return 0;

}</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222

C#

Translation of: Phix

Same recursive method. <lang csharp>using System; using static System.Console; using LI = System.Collections.Generic.SortedSet<int>;

class Program {

 static LI unl(LI res, LI set, int lft, int mul = 1, int vlu = 0) {
   if (lft == 0) res.Add(vlu);
   else if (lft > 0) foreach (int itm in set)
     res = unl(res, set, lft - itm, mul * 10, vlu + itm * mul);
   return res; }
 static void Main(string[] args) { WriteLine(string.Join(" ",
     unl(new LI {}, new LI { 2, 3, 5, 7 }, 13))); }

}</lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

Alternate

Based in Nigel Galloway's suggestion from the discussion page. <lang csharp>class Program {

 static void Main(string[] args) { int[] lst; int sum;
   var w = new System.Collections.Generic.List<(int digs, int sum)> {};
   foreach (int x in lst = new int[] { 2, 3, 5, 7 } ) w.Add((x, x));
   while (w.Count > 0) { var i = w[0]; w.RemoveAt(0);
     foreach (var j in lst) if ((sum = i.sum + j) == 13)
         System.Console.Write ("{0}{1} ", i.digs, j);
       else if (sum < 12)
         w.Add((i.digs * 10 + j, sum)); } }

}</lang> Same output.

C++

Translation of: C#
(the alternate version)

<lang cpp>#include <cstdio>

  1. include <vector>
  2. include <bits/stdc++.h>

using namespace std;

int main() {

 vector<tuple<int, int>> w; int lst[4] = { 2, 3, 5, 7 }, sum;
 for (int x : lst) w.push_back({x, x});
 while (w.size() > 0) { auto i = w[0]; w.erase(w.begin());
   for (int x : lst) if ((sum = get<1>(i) + x) == 13)
       printf("%d%d ", get<0>(i), x);
     else if (sum < 12) w.push_back({get<0>(i) * 10 + x, sum}); }
 return 0; }</lang>

Same output as C#.

D

Translation of: C

<lang d>import std.stdio;

bool primeDigitsSum13(int n) {

   int sum = 0;
   while (n > 0) {
       int r = n % 10;
       switch (r) {
           case 2,3,5,7:
               break;
           default:
               return false;
       }
       n /= 10;
       sum += r;
   }
   return sum == 13;

}

void main() {

   // using 2 for all digits, 6 digits is the max prior to over-shooting 13
   int c = 0;
   for (int i = 1; i < 1_000_000; i++) {
       if (primeDigitsSum13(i)) {
           writef("%6d ", i);
           if (c++ == 10) {
               c = 0;
               writeln;
           }
       }
   }
   writeln;

}</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222

F#

<lang fsharp> // prime digits whose sum is 13. Nigel Galloway: October 21st., 2020 let rec fN g=let g=[for n in [2;3;5;7] do for g in g->n::g]|>List.groupBy(fun n->match List.sum n with 13->'n' |n when n<12->'g' |_->'x')|>Map.ofSeq

            [yield! (if g.ContainsKey 'n' then g.['n'] else []); yield! (if g.ContainsKey 'g' then fN g.['g'] else [])]

fN [[]] |> Seq.iter(fun n->n|>List.iter(printf "%d");printf " ");printfn "" </lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

Factor

Filtering selections

Generate all selections of the prime digits in the only possible lengths whose sum can be 13, then filter for sums that equal 13. <lang factor>USING: formatting io kernel math math.combinatorics math.functions math.ranges sequences sequences.extras ;

digits>number ( seq -- n ) reverse 0 [ 10^ * + ] reduce-index ;

"Numbers whose digits are prime and sum to 13:" print { 2 3 5 7 } 3 6 [a,b] [ selections [ sum 13 = ] filter ] with map-concat [ digits>number ] map "%[%d, %]\n" printf</lang>

Output:
Numbers whose digits are prime and sum to 13:
{ 337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222 }

F# translation

The following is based on Nigel Galloway's algorithm as described here on the talk page. It's about 10x faster than the previous method. <lang factor>USING: io kernel math prettyprint sequences sequences.extras ;

{ } { { 2 } { 3 } { 5 } { 7 } } [

   { 2 3 5 7 } [ suffix ] cartesian-map concat
   [ sum 13 = ] partition [ append ] dip [ sum 11 > ] reject

] until-empty [ bl ] [ [ pprint ] each ] interleave nl</lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

FreeBASIC

Ho hum. Another prime digits task.

<lang freebasic> function digit_is_prime( n as integer ) as boolean

   select case n
       case 2,3,5,7
           return true
       case else
           return false
   end select

end function

function all_digits_prime( n as uinteger ) as boolean

   dim as string sn = str(n)
   for i as uinteger = 1 to len(sn)
       if not digit_is_prime( val(mid(sn,i,1)) ) then return false
   next i
   return true

end function

function digit_sum_13( n as uinteger ) as boolean

   dim as string sn = str(n)
   dim as integer k = 0
   for i as uinteger = 1 to len(sn)
       k = k + val(mid(sn,i,1))
       if k>13 then return false
   next i
   if k<>13 then return false else return true

end function

for i as uinteger = 1 to 322222

   if all_digits_prime(i) andalso digit_sum_13(i) then print i,

next i</lang>

Output:
337           355           373           535           553           733
2227          2272          2335          2353          2533          2722
3235          3253          3325          3352          3523          3532
5233          5323          5332          7222          22225         22252
22333         22522         23233         23323         23332         25222
32233         32323         32332         33223         33232         33322
52222         222223        222232        222322        223222        232222
322222


Go

Reuses code from some other tasks. <lang go>package main

import (

   "fmt"
   "sort"
   "strconv"

)

func combrep(n int, lst []byte) [][]byte {

   if n == 0 {
       return [][]byte{nil}
   }
   if len(lst) == 0 {
       return nil
   }
   r := combrep(n, lst[1:])
   for _, x := range combrep(n-1, lst) {
       r = append(r, append(x, lst[0]))
   }
   return r

}

func shouldSwap(s []byte, start, curr int) bool {

   for i := start; i < curr; i++ {
       if s[i] == s[curr] {
           return false
       }
   }
   return true

}

func findPerms(s []byte, index, n int, res *[]string) {

   if index >= n {
       *res = append(*res, string(s))
       return
   }
   for i := index; i < n; i++ {
       check := shouldSwap(s, index, i)
       if check {
           s[index], s[i] = s[i], s[index]
           findPerms(s, index+1, n, res)
           s[index], s[i] = s[i], s[index]
       }
   }

}

func main() {

   primes := []byte{2, 3, 5, 7}
   var res []string
   for n := 3; n <= 6; n++ {
       reps := combrep(n, primes)
       for _, rep := range reps {
           sum := byte(0)
           for _, r := range rep {
               sum += r
           }
           if sum == 13 {
               var perms []string
               for i := 0; i < len(rep); i++ {
                   rep[i] += 48
               }
               findPerms(rep, 0, len(rep), &perms)
               res = append(res, perms...)
           }
       }
   }
   res2 := make([]int, len(res))
   for i, r := range res {
       res2[i], _ = strconv.Atoi(r)
   }
   sort.Ints(res2)
   fmt.Println("Those numbers whose digits are all prime and sum to 13 are:")
   fmt.Println(res2)

}</lang>

Output:
Those numbers whose digits are all prime and sum to 13 are:
[337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222]

only counting

See Julia [1] <lang go> package main

import (

   "fmt"

) var

 Primes = []byte{2, 3, 5, 7};

var

 gblCount = 0;

var

 PrimesIdx = []byte{0, 1, 2, 3};

func combrep(n int, lst []byte) [][]byte {

   if n == 0 {
       return [][]byte{nil}
   }
   if len(lst) == 0 {
       return nil
   }
   r := combrep(n, lst[1:])
   for _, x := range combrep(n-1, lst) {
       r = append(r, append(x, lst[0]))
   }
   return r

}

func Count(rep []byte)int {

   var PrimCount  [4]int
   for i := 0; i < len(PrimCount); i++ {
     PrimCount[i] = 0;
     }
   //get the count of every item
   for i := 0; i < len(rep); i++ {
     PrimCount[rep[i]]++
     }
   var numfac int = len(rep)
   var numerator,denominator[]int
   for i := 1; i <= len(rep); i++ {
     numerator = append(numerator,i) // factors 1,2,3,4. n
     denominator = append(denominator,1)
     }
   numfac =  0; //idx  in denominator
   for i := 0; i < len(PrimCount); i++ {
     denfac := 1;
     for j := 0; j < PrimCount[i]; j++ {
       denominator[numfac] = denfac
       denfac++
       numfac++
       }
   }
   //calculate permutations with identical items
   numfac = 1;
   for i := 0; i < len(numerator); i++ {
     numfac = (numfac * numerator[i])/denominator[i]
   }
   return numfac

}

func main() {

 for mySum := 2; mySum <= 103;mySum++ {
   gblCount = 0;
   //check for prime
   for i := 2; i*i <= mySum;i++{
     if mySum%i == 0 {
       gblCount=1;
       break
       }
     }
   if  gblCount != 0 {
     continue
     }
   for n := 1; n <= mySum / 2 ; n++ {
       reps := combrep(n, PrimesIdx)
       for _, rep := range reps {
           sum := byte(0)
           for _, r := range rep {
               sum += Primes[r]
           }
           if sum == byte(mySum) {
              gblCount+=Count(rep);
           }
       }
   }
   fmt.Println("The count of numbers whose digits are all prime and sum to",mySum,"is",gblCount)
 }

}</lang>

Output:
The count of numbers whose digits are all prime and sum to 2 is 1
The count of numbers whose digits are all prime and sum to 3 is 1
The count of numbers whose digits are all prime and sum to 5 is 3
The count of numbers whose digits are all prime and sum to 7 is 6
The count of numbers whose digits are all prime and sum to 11 is 19
The count of numbers whose digits are all prime and sum to 13 is 43
The count of numbers whose digits are all prime and sum to 17 is 221
The count of numbers whose digits are all prime and sum to 19 is 468
The count of numbers whose digits are all prime and sum to 23 is 2098
The count of numbers whose digits are all prime and sum to 29 is 21049
The count of numbers whose digits are all prime and sum to 31 is 45148
The count of numbers whose digits are all prime and sum to 37 is 446635
The count of numbers whose digits are all prime and sum to 41 is 2061697
The count of numbers whose digits are all prime and sum to 43 is 4427752
The count of numbers whose digits are all prime and sum to 47 is 20424241
The count of numbers whose digits are all prime and sum to 53 is 202405001
The count of numbers whose digits are all prime and sum to 59 is 2005642061
The count of numbers whose digits are all prime and sum to 61 is 4307930784
The count of numbers whose digits are all prime and sum to 67 is 42688517778
The count of numbers whose digits are all prime and sum to 71 is 196942068394
The count of numbers whose digits are all prime and sum to 73 is 423011795680
The count of numbers whose digits are all prime and sum to 79 is 4191737820642
The count of numbers whose digits are all prime and sum to 83 is 19338456915087
The count of numbers whose digits are all prime and sum to 89 is 191629965405641
The count of numbers whose digits are all prime and sum to 97 is 4078672831913824
The count of numbers whose digits are all prime and sum to 101 is 18816835854129198
The count of numbers whose digits are all prime and sum to 103 is 40416663565084464

real  0m4,489s
user  0m5,584s
sys 0m0,188s

Haskell

As an unfold, in the recursive pattern described by Nigel Galloway on the Talk page. <lang haskell>import Data.List.Split (chunksOf) import Data.List (intercalate, transpose, unfoldr) import Text.Printf

primeDigitsNumsSummingToN :: Int -> [Int] primeDigitsNumsSummingToN n = concat $ unfoldr go (return <$> primeDigits)

 where
   primeDigits = [2, 3, 5, 7]
   
   go :: Int -> Maybe ([Int], Int)
   go xs
     | null xs = Nothing
     | otherwise = Just (nextLength xs)
     
   nextLength :: Int -> ([Int], Int)
   nextLength xs =
     let harvest nv =
           [ unDigits $ fst nv
           | n == snd nv ]
         prune nv =
           [ fst nv
           | pred n > snd nv ]
     in ((,) . concatMap harvest <*> concatMap prune)
          (((,) <*> sum) <$> ((<$> xs) . (<>) . return =<< primeDigits))

TEST -------------------------

main :: IO () main = do

 let n = 13
     xs = primeDigitsNumsSummingToN n
 mapM_
   putStrLn
   [ concat
       [ (show . length) xs
       , " numbers with prime digits summing to "
       , show n
       , ":\n"
       ]
   , table " " $ chunksOf 10 (show <$> xs)
   ]

table :: String -> String -> String table gap rows =

 let ic = intercalate
     ws = maximum . fmap length <$> transpose rows
     pw = printf . flip ic ["%", "s"] . show
 in unlines $ ic gap . zipWith pw ws <$> rows

unDigits :: [Int] -> Int unDigits = foldl ((+) . (10 *)) 0</lang>

Output:
43 numbers with prime digits summing to 13:

   337    355    373   535   553   733  2227   2272   2335   2353
  2533   2722   3235  3253  3325  3352  3523   3532   5233   5323
  5332   7222  22225 22252 22333 22522 23233  23323  23332  25222
 32233  32323  32332 33223 33232 33322 52222 222223 222232 222322
223222 232222 322222

Java

Translation of: Kotlin

<lang java>public class PrimeDigits {

   private static boolean primeDigitsSum13(int n) {
       int sum = 0;
       while (n > 0) {
           int r = n % 10;
           if (r != 2 && r != 3 && r != 5 && r != 7) {
               return false;
           }
           n /= 10;
           sum += r;
       }
       return sum == 13;
   }
   public static void main(String[] args) {
       // using 2 for all digits, 6 digits is the max prior to over-shooting 13
       int c = 0;
       for (int i = 1; i < 1_000_000; i++) {
           if (primeDigitsSum13(i)) {
               System.out.printf("%6d ", i);
               if (c++ == 10) {
                   c = 0;
                   System.out.println();
               }
           }
       }
       System.out.println();
   }

}</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533 
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222 
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332 
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222 

JavaScript

As an unfold, in the recursive pattern described by Nigel Galloway on the Talk page. <lang javascript>(() => {

   'use strict';
   // ---- NUMBERS WITH PRIME DIGITS WHOSE SUM IS 13 ----
   // primeDigitsSummingToN :: Int -> [Int]
   const primeDigitsSummingToN = n => {
       const primeDigits = [2, 3, 5, 7];
       const go = xs =>
           fanArrow(
               concatMap( // Harvested,
                   nv => n === nv[1] ? (
                       [unDigits(nv[0])]
                   ) : []
               )
           )(
               concatMap( // Pruned.
                   nv => pred(n) > nv[1] ? (
                       [nv[0]]
                   ) : []
               )
           )(
               // Existing numbers with prime digits appended,
               // tupled with the resulting digit sums.
               xs.flatMap(
                   ds => primeDigits.flatMap(d => [
                       fanArrow(identity)(sum)(
                           ds.concat(d)
                       )
                   ])
               )
           );
       return concat(
           unfoldr(
               xs => 0 < xs.length ? (
                   Just(go(xs))
               ) : Nothing()
           )(
               primeDigits.map(pureList)
           )
       );
   }
   // ---------------------- TEST -----------------------
   // main :: IO ()
   const main = () =>
       chunksOf(6)(
           primeDigitsSummingToN(13)
       ).forEach(
           x => console.log(x)
       )


   // ---------------- GENERIC FUNCTIONS ----------------
   // Just :: a -> Maybe a
   const Just = x => ({
       type: 'Maybe',
       Nothing: false,
       Just: x
   });


   // Nothing :: Maybe a
   const Nothing = () => ({
       type: 'Maybe',
       Nothing: true,
   });


   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = a =>
       b => ({
           type: 'Tuple',
           '0': a,
           '1': b,
           length: 2
       });
   // chunksOf :: Int -> [a] -> a
   const chunksOf = n =>
       xs => enumFromThenTo(0)(n)(
           xs.length - 1
       ).reduce(
           (a, i) => a.concat([xs.slice(i, (n + i))]),
           []
       );


   // concat :: a -> [a]
   // concat :: [String] -> String
   const concat = xs => (
       ys => 0 < ys.length ? (
           ys.every(Array.isArray) ? (
               []
           ) : 
       ).concat(...ys) : ys
   )(list(xs));


   // concatMap :: (a -> [b]) -> [a] -> [b]
   const concatMap = f =>
       xs => xs.flatMap(f)


   // enumFromThenTo :: Int -> Int -> Int -> [Int]
   const enumFromThenTo = x1 =>
       x2 => y => {
           const d = x2 - x1;
           return Array.from({
               length: Math.floor(y - x2) / d + 2
           }, (_, i) => x1 + (d * i));
       };


   // fanArrow (&&&) :: (a -> b) -> (a -> c) -> (a -> (b, c))
   const fanArrow = f =>
       // A function from x to a tuple of (f(x), g(x))
       // ((,) . f <*> g)
       g => x => Tuple(f(x))(
           g(x)
       );


   // identity :: a -> a
   const identity = x =>
       // The identity function.
       x;


   // list :: StringOrArrayLike b => b -> [a]
   const list = xs =>
       // xs itself, if it is an Array,
       // or an Array derived from xs.
       Array.isArray(xs) ? (
           xs
       ) : Array.from(xs || []);


   // pred :: Enum a => a -> a
   const pred = x =>
       x - 1;


   // pureList :: a -> [a]
   const pureList = x => [x];
   // sum :: [Num] -> Num
   const sum = xs =>
       // The numeric sum of all values in xs.
       xs.reduce((a, x) => a + x, 0);


   // unDigits :: [Int] -> Int
   const unDigits = ds =>
       // The integer with the given digits.
       ds.reduce((a, x) => 10 * a + x, 0);


   // The 'unfoldr' function is a *dual* to 'foldr': 
   // while 'foldr' reduces a list to a summary value, 
   // 'unfoldr' builds a list from a seed value. 
   // unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
   const unfoldr = f =>
       v => {
           const xs = [];
           let xr = [v, v];
           while (true) {
               const mb = f(xr[1]);
               if (mb.Nothing) {
                   return xs;
               } else {
                   xr = mb.Just;
                   xs.push(xr[0]);
               }
           }
       };
   return main();

})();</lang>

Output:
337,355,373,535,553,733
2227,2272,2335,2353,2533,2722
3235,3253,3325,3352,3523,3532
5233,5323,5332,7222,22225,22252
22333,22522,23233,23323,23332,25222
32233,32323,32332,33223,33232,33322
52222,222223,222232,222322,223222,232222
322222

Julia

<lang julia>using Combinatorics, Primes

function primedigitsums(targetsum)

   possibles = mapreduce(x -> fill(x, div(targetsum, x)), vcat, [2, 3, 5, 7])
   a = map(x -> evalpoly(BigInt(10), x),
       mapreduce(x -> unique(collect(permutations(x))), vcat,
       unique(filter(x -> sum(x) == targetsum, collect(combinations(possibles))))))
   println("There are $(length(a)) prime-digit-only numbers summing to $targetsum : $a")

end

foreach(primedigitsums, [5, 7, 11, 13])

function primedigitcombos(targetsum)

   possibles = [2, 3, 5, 7]
   found = Vector{Vector{Int}}()
   combos = [Int[]]
   tempcombos = Vector{Vector{Int}}()
   newcombos = Vector{Vector{Int}}()
   while !isempty(combos)
       for combo in combos, j in possibles
           csum = sum(combo) + j
           if csum <= targetsum
               newcombo = sort!([combo; j])
               csum < targetsum && !(newcombo in newcombos) && push!(newcombos, newcombo)
               csum == targetsum && !(newcombo in found) && push!(found, newcombo)
           end
       end
       empty!(combos)
       tempcombos = combos
       combos = newcombos
       newcombos = tempcombos
   end
   return found

end

function countprimedigitsums(targetsum)

   found = primedigitcombos(targetsum)
   total = sum(arr -> factorial(BigInt(length(arr))) ÷
       prod(x -> factorial(BigInt(count(y -> y == x, arr))), unique(arr)), found)
   println("There are $total prime-digit-only numbers summing to $targetsum.")

end

foreach(countprimedigitsums, nextprimes(17, 40))

</lang>
Output:
There are 3 prime-digit-only numbers summing to 5 : [5, 32, 23]
There are 6 prime-digit-only numbers summing to 7 : [7, 52, 25, 322, 232, 223]
There are 19 prime-digit-only numbers summing to 11 : [722, 272, 227, 533, 353, 335, 5222, 2522, 2252, 2225, 3332, 3323, 3233, 2333, 32222, 23222, 22322, 22232, 22223]
There are 43 prime-digit-only numbers summing to 13 : [733, 373, 337, 553, 535, 355, 7222, 2722, 2272, 2227, 5332, 3532, 3352, 5323, 3523, 5233, 2533, 3253, 2353, 3325, 3235, 2335, 52222, 25222, 22522, 22252, 22225, 33322, 33232, 32332, 23332, 33223, 32323, 23323, 32233, 23233, 22333, 322222, 232222, 223222, 222322, 222232, 222223]
There are 221 prime-digit-only numbers summing to 17.
There are 468 prime-digit-only numbers summing to 19.
There are 2098 prime-digit-only numbers summing to 23.
There are 21049 prime-digit-only numbers summing to 29.
There are 45148 prime-digit-only numbers summing to 31.
There are 446635 prime-digit-only numbers summing to 37.
There are 2061697 prime-digit-only numbers summing to 41.
There are 4427752 prime-digit-only numbers summing to 43.
There are 20424241 prime-digit-only numbers summing to 47.
There are 202405001 prime-digit-only numbers summing to 53.
There are 2005642061 prime-digit-only numbers summing to 59.
There are 4307930784 prime-digit-only numbers summing to 61.
There are 42688517778 prime-digit-only numbers summing to 67.
There are 196942068394 prime-digit-only numbers summing to 71.
There are 423011795680 prime-digit-only numbers summing to 73.
There are 4191737820642 prime-digit-only numbers summing to 79.
There are 19338456915087 prime-digit-only numbers summing to 83.
There are 191629965405641 prime-digit-only numbers summing to 89.
There are 4078672831913824 prime-digit-only numbers summing to 97.
There are 18816835854129198 prime-digit-only numbers summing to 101.
There are 40416663565084464 prime-digit-only numbers summing to 103.
There are 186461075642340151 prime-digit-only numbers summing to 107.
There are 400499564627237889 prime-digit-only numbers summing to 109.
There are 1847692833654336940 prime-digit-only numbers summing to 113.
There are 389696778451488128521 prime-digit-only numbers summing to 127.
There are 1797854500757846669066 prime-digit-only numbers summing to 131.
There are 17815422682488317051838 prime-digit-only numbers summing to 137.
There are 38265729200380568226735 prime-digit-only numbers summing to 139.
There are 1749360471151229472803187 prime-digit-only numbers summing to 149.
There are 3757449669085729778349997 prime-digit-only numbers summing to 151.
There are 37233577041224219717325533 prime-digit-only numbers summing to 157.
There are 368957506121989278337474430 prime-digit-only numbers summing to 163.
There are 1702174484494837917764813972 prime-digit-only numbers summing to 167.
There are 16867303726643249517987636148 prime-digit-only numbers summing to 173.
There are 167142638782573042636172836062 prime-digit-only numbers summing to 179.
There are 359005512666242240589945886415 prime-digit-only numbers summing to 181.
There are 16412337250779890525195727788488 prime-digit-only numbers summing to 191.
There are 35252043354611887665339338710961 prime-digit-only numbers summing to 193.
There are 162634253887997896351270835136345 prime-digit-only numbers summing to 197.
There are 349321957098598244959032342621956 prime-digit-only numbers summing to 199.

Kotlin

Translation of: D

<lang scala>fun primeDigitsSum13(n: Int): Boolean {

   var nn = n
   var sum = 0
   while (nn > 0) {
       val r = nn % 10
       if (r != 2 && r != 3 && r != 5 && r != 7) {
           return false
       }
       nn /= 10
       sum += r
   }
   return sum == 13

}

fun main() {

   // using 2 for all digits, 6 digits is the max prior to over-shooting 13
   var c = 0
   for (i in 1 until 1000000) {
       if (primeDigitsSum13(i)) {
           print("%6d ".format(i))
           if (c++ == 10) {
               c = 0
               println()
           }
       }
   }
   println()

}</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533 
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222 
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332 
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222 

Nim

<lang Nim>import math, sequtils, strutils

type Digit = 0..9

proc toInt(s: seq[Digit]): int =

 ## Convert a sequence of digits to an integer.
 for n in s:
   result = 10 * result + n

const PrimeDigits = @[Digit 2, 3, 5, 7]

var list = PrimeDigits.mapIt(@[it]) # List of sequences of digits. var result: seq[int] while list.len != 0:

 var nextList: seq[seq[Digit]]       # List with one more digit.
 for digitSeq in list:
   let currSum = sum(digitSeq)
   for n in PrimeDigits:
     let newSum = currSum + n
     let newDigitSeq = digitSeq & n
     if newSum < 13: nextList.add newDigitSeq
     elif newSum == 13: result.add newDigitSeq.toInt
     else: break
 list = move(nextList)

for i, n in result:

 stdout.write ($n).align(6), if (i + 1) mod 9 == 0: '\n' else: ' '

echo()</lang>

Output:
   337    355    373    535    553    733   2227   2272   2335
  2353   2533   2722   3235   3253   3325   3352   3523   3532
  5233   5323   5332   7222  22225  22252  22333  22522  23233
 23323  23332  25222  32233  32323  32332  33223  33232  33322
 52222 222223 222232 222322 223222 232222 322222 

Pascal

Works with: Free Pascal
Only counting.
Extreme fast in finding the sum of primesdigits = value.
Limited by Uint64

<lang pascal>program PrimSumUpTo13; {$IFDEF FPC}

  {$MODE DELPHI}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils;

type

 tDigits = array[0..3] of Uint32;

const

 MAXNUM = 113;

var

gblPrimDgtCnt :tDigits;
gblCount: NativeUint;

function isPrime(n: NativeUint):boolean; var

 i : NativeUInt;

Begin

 result := (n>1);
 if n<4 then
   EXIT;
 result := false;
 if n AND 1 = 0 then
   EXIT;
 i := 3;
 while i*i<= n do
 Begin
   If n MOD i = 0 then
     EXIT;
   inc(i,2);
 end;
 result := true;

end;

procedure Sort(var t:tDigits); var

 i,j,k: NativeUint;
 temp : Uint32;

Begin

 For k := 0 to high(tdigits)-1 do
 Begin
   temp:= t[k];
   j := k;
   For i := k+1 to high(tdigits) do
   Begin
     if temp < t[i] then
     Begin
       temp := t[i];
       j := i;
     end;
   end;
   t[j] := t[k];
   t[k] := temp;
 end;

end;

function CalcPermCount:NativeUint; //TempDgtCnt[0] = 3 and TempDgtCnt[1..3]= 2 -> dgtcnt = 3+3*2= 9 //permcount = dgtcnt! /(TempDgtCnt[0]!*TempDgtCnt[1]!*TempDgtCnt[2]!*TempDgtCnt[3]!); //nom of n! = 1,2,3, 4,5, 6,7, 8,9 //denom = 1,2,3, 1,2, 1,2, 1,2 var

 TempDgtCnt : tdigits;
 i,f : NativeUint;

begin

 TempDgtCnt := gblPrimDgtCnt;
 Sort(TempDgtCnt);
 //jump over 1/1*2/2*3/3*4/4*..* TempDgtCnt[0]/TempDgtCnt[0]
 f := TempDgtCnt[0]+1;
 result :=1;
 For i := 1 to TempDgtCnt[1] do
 Begin
   result := (result*f) DIV i;
   inc(f);
 end;
 For i := 1 to TempDgtCnt[2] do
 Begin
   result := (result*f) DIV i;
   inc(f);
 end;
 For i := 1 to TempDgtCnt[3] do
 Begin
   result := (result*f) DIV i;
   inc(f);
 end;

end;

procedure check32(sum3 :NativeUint); var

 n3 : nativeInt;

begin

  n3 := sum3 DIV 3;
  gblPrimDgtCnt[1]:= 0;
  while n3 >= 0 do
  begin
    //divisible by 2
    if sum3 AND 1 = 0 then
    Begin
      gblPrimDgtCnt[0] := sum3 shr 1;
      inc(gblCount,CalcPermCount);
      sum3 -= 3;
      inc(gblPrimDgtCnt[1]);
      dec(n3);
    end;
    sum3 -= 3;
    inc(gblPrimDgtCnt[1]);
    dec(n3);
  end;

end;

var

 Num : NativeUint;
 i,sum7,sum5: NativeInt;

BEGIN

 writeln('Sum':6,'Count of arrangements':25);
 Num := 1;
 repeat
   inc(num);
   if Not(isPrime(Num)) then
     CONTINUE;
   gblCount := 0;
   sum7 :=num;
   gblPrimDgtCnt[3] := 0;
   while sum7 >=0 do
   Begin
     sum5 := sum7;
     gblPrimDgtCnt[2]:=0;
     while sum5 >= 0 do
     Begin
       check32(sum5);
       dec(sum5,5);
       inc(gblPrimDgtCnt[2]);
     end;
     inc(gblPrimDgtCnt[3]);
     dec(sum7,7);
   end;
   writeln(num:6,gblCount:25,'   ');
 until num > MAXNUM;

END.</lang>

Output:
   Sum    Count of arrangements
     2                        1
     3                        1
     5                        3
     7                        6
    11                       19
    13                       43
    17                      221
    19                      468
    23                     2098
    29                    21049
    31                    45148
    37                   446635
    41                  2061697
    43                  4427752
    47                 20424241
    53                202405001
    59               2005642061
    61               4307930784
    67              42688517778
    71             196942068394
    73             423011795680
    79            4191737820642
    83           19338456915087
    89          191629965405641
    97         4078672831913824
   101        18816835854129198
   103        40416663565084464
   107       186461075642340151
   109       400499564627237889
   113      1847692833654336940
real  0m0,003s

using gmp

<lang pascal>program PrimSumUpTo13_GMP; {$IFDEF FPC}

 {$OPTIMIZATION ON,ALL}
 {$MODE DELPHI}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils,gmp;

type

 tDigits = array[0..3] of Uint32;

const

 MAXNUM = 199;//999

var

 //split factors of n! in Uint64 groups
 Fakul : array[0..MAXNUM] of UInt64;
 IdxLimits : array[0..MAXNUM DIV 3] of word;
 gblPrimDgtCnt :tDigits;
 gblSum,
 gbldelta : MPInteger; // multi precision (big) integers selve cleaning
 s : AnsiString;

procedure Init; var

 i,j,tmp,n :NativeUint;

Begin

 //generate n! by Uint64 factors
 j := 1;
 n := 0;
 For i := 1 to MAXNUM do
 begin
   tmp := j;
   j *= i;
   if j div i <> tmp then
   Begin
     IdxLimits[n]:= i-1;
     j := i;
     inc(n);
   end;
   Fakul[i] := j;
 end;
 setlength(s,512);// 997 -> 166
 z_init_set_ui(gblSum,0);
 z_init_set_ui(gbldelta,0);

end;

function isPrime(n: NativeUint):boolean; var

 i : NativeUInt;

Begin

 result := (n>1);
 if n<4 then
   EXIT;
 result := false;
 if n AND 1 = 0 then
   EXIT;
 i := 3;
 while i*i<= n do
 Begin
   If n MOD i = 0 then
     EXIT;
   inc(i,2);
 end;
 result := true;

end;

procedure Sort(var t:tDigits); // sorting descending to reduce calculations var

 i,j,k: NativeUint;
 temp : Uint32;

Begin

 For k := 0 to high(tdigits)-1 do
 Begin
   temp:= t[k];
   j := k;
   For i := k+1 to high(tdigits) do
   Begin
     if temp < t[i] then
     Begin
       temp := t[i];
       j := i;
     end;
   end;
   t[j] := t[k];
   t[k] := temp;
 end;

end;

function calcOne(f,n: NativeUint):NativeUint; var

 i,idx,MaxMulLmt : NativeUint;

Begin

 result := f;
 if n = 0 then
   EXIT;
 MaxMulLmt := High(MaxMulLmt) DIV (f+n);
 z_mul_ui(gbldelta,gbldelta,result);
 inc(result);
 if n > 1 then
 Begin
   //multiply by parts of (f+n)!/f! with max Uint64 factors
   i := 2;
   while (i<=n) do
   begin
     idx := 1;
     while (i<=n) AND (idx<MaxMulLmt) do
     Begin
       idx *= result;
       inc(i);
       inc(result);
     end;
     z_mul_ui(gbldelta,gbldelta,idx);
   end;
   //divide by n! with max Uint64 divisors
   idx := 0;
   if n > IdxLimits[idx] then
     repeat
       z_divexact_ui(gbldelta,gbldelta,Fakul[IdxLimits[idx]]);
       inc(idx);
     until IdxLimits[idx] >= n;
   z_divexact_ui(gbldelta,gbldelta,Fakul[n]);
 end;

end;

procedure CalcPermCount; //TempDgtCnt[0] = 3 and TempDgtCnt[1..3]= 2 -> dgtcnt = 3+3*2= 9 //permcount = dgtcnt! /(TempDgtCnt[0]!*TempDgtCnt[1]!*TempDgtCnt[2]!*TempDgtCnt[3]!); //nom of n! = 1,2,3, 4,5, 6,7, 8,9 //denom = 1,2,3, 1,2, 1,2, 1,2 var

 TempDgtCnt : tdigits;
 f : NativeUint;

begin

 TempDgtCnt := gblPrimDgtCnt;
 Sort(TempDgtCnt);
 //jump over 1/1*2/2*3/3*4/4*..*
 //res := 1;
 f := TempDgtCnt[0]+1;
 z_set_ui(gbldelta,1);
 f := calcOne(f,TempDgtCnt[1]);
 f := calcOne(f,TempDgtCnt[2]);
 f := calcOne(f,TempDgtCnt[3]);
 z_add(gblSum,gblSum,gblDelta);

end;

procedure check32(sum3 :NativeInt); var

 n3 : nativeInt;

begin

  n3 := sum3 DIV 3;
  gblPrimDgtCnt[1]:= 0;
  while n3 >= 0 do
  begin
    //divisible by 2
    if sum3 AND 1 = 0 then
    Begin
      gblPrimDgtCnt[0] := sum3 shr 1;
      CalcPermCount;
    end;
    sum3 -= 3;
    inc(gblPrimDgtCnt[1]);
    dec(n3);
  end;

end; procedure CheckAll(num:NativeUint); var

 sum7,sum5: NativeInt;

BEGIN

 z_set_ui(gblSum,0);
 sum7 :=num;
 gblPrimDgtCnt[3] := 0;
 while sum7 >=0 do
 Begin
   sum5 := sum7;
   gblPrimDgtCnt[2]:=0;
   while sum5 >= 0 do
   Begin
     check32(sum5);
     dec(sum5,5);
     inc(gblPrimDgtCnt[2]);
   end;
   inc(gblPrimDgtCnt[3]);
   dec(sum7,7);
 end;

end;

var

 T0 : Int64;
 Num : NativeUint;

BEGIN

 Init;
 T0 := GettickCount64;
 // Number crunching goes here
 writeln('Sum':6,'Count of arrangements':25);
 For num := 2 to MAXNUM do
   IF isPrime(Num) then
   Begin
     CheckAll(num);
     z_get_str(pChar(s),10,gblSum);
     writeln(num:6,'  ',pChar(s));
   end;
 writeln('Time taken : ',GettickCount64-T0,' ms');
 z_clear(gblSum);
 z_clear(gbldelta);

END.</lang>

Output:
tio.run/#pascal-fpc
   Sum    Count of arrangements
     2  1
     3  1
     5  3
     7  6
    11  19
    13  43
    17  221
    19  468
    23  2098
    29  21049
    31  45148
    37  446635
    41  2061697
    43  4427752
    47  20424241
    53  202405001
    59  2005642061
    61  4307930784
    67  42688517778
    71  196942068394
    73  423011795680
    79  4191737820642
    83  19338456915087
    89  191629965405641
    97  4078672831913824
   101  18816835854129198
   103  40416663565084464
   107  186461075642340151
   109  400499564627237889
   113  1847692833654336940
   127  389696778451488128521
   131  1797854500757846669066
   137  17815422682488317051838
   139  38265729200380568226735
   149  1749360471151229472803187
   151  3757449669085729778349997
   157  37233577041224219717325533
   163  368957506121989278337474430
   167  1702174484494837917764813972
   173  16867303726643249517987636148
   179  167142638782573042636172836062
   181  359005512666242240589945886415
   191  16412337250779890525195727788488
   193  35252043354611887665339338710961
   197  162634253887997896351270835136345
   199  349321957098598244959032342621956
Time taken : 23 ms

Perl

<lang perl>#!/usr/bin/perl

use strict; use warnings;

my @queue = my @primedigits = ( 2, 3, 5, 7 ); my $numbers;

while( my $n = shift @queue )

 {
 if( eval $n == 13 )
   {
   $numbers .= $n =~ tr/+//dr . " ";
   }
 elsif( eval $n < 13 )
   {
   push @queue, map "$n+$_", @primedigits;
   }
 }

print $numbers =~ s/.{1,80}\K /\n/gr;</lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523
3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233
32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

Phix

with javascript_semantics
function unlucky(sequence set, integer needed, string v="", sequence res={})
    if needed=0 then
        res = append(res,sprintf("%6s",v))
    elsif needed>0 then
        for i=length(set) to 1 by -1 do
            res = unlucky(set,needed-set[i],(set[i]+'0')&v,res)
        end for
    end if
    return res
end function
 
sequence r = sort(unlucky({2,3,5,7},13))
puts(1,join_by(r,1,11," "))
Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222

iterative

Queue-based version of Nigel's recursive algorithm, same output.

with javascript_semantics
requires("0.8.2") -- uses latest apply() mods, rest is fine
constant dgts = {2,3,5,7}
function unlucky()
    sequence res = {}, q = {{0,0}}
    integer s, -- partial digit sum, <=11
            v  -- corresponding value
    while length(q) do
        {{s,v}, q} = {q[1], q[2..$]}
        for i=1 to length(dgts) do
            integer d = dgts[i], {ns,nv} = {s+d,v*10+d}
            if ns<=11 then q &= {{ns,nv}}
            elsif ns=13 then res &= nv end if
        end for
    end while
    return res
end function
 
sequence r = unlucky()
r = apply(true,sprintf,{{"%6d"},r})
puts(1,join_by(r,1,11," "))

I've archived a slightly more OTT version: Numbers_with_prime_digits_whose_sum_is_13/Phix.

Prolog

<lang Prolog> digit_sum(N, M) :- digit_sum(N, 0, M). digit_sum(0, A, B) :- !, A = B. digit_sum(N, A0, M) :-

   divmod(N, 10, Q, R),
   plus(A0, R, A1),
   digit_sum(Q, A1, M).

prime_digits(0). prime_digits(N) :-

   prime_digits(M),
   member(D, [2, 3, 5, 7]),
   N is 10 * M + D.	

prime13(N) :-

   prime_digits(N),
   (N > 333_333 -> !, false ; true),
   digit_sum(N, 13).

main :-

   findall(N, prime13(N), S),
   format("Those numbers whose digits are all prime and sum to 13 are: ~n~w~n", [S]),
   halt.

?- main. </lang>

Output:
Those numbers whose digits are all prime and sum to 13 are: 
[337,355,373,535,553,733,2227,2272,2335,2353,2533,2722,3235,3253,3325,3352,3523,3532,5233,5323,5332,7222,22225,22252,22333,22522,23233,23323,23332,25222,32233,32323,32332,33223,33232,33322,52222,222223,222232,222322,223222,232222,322222]

Raku

<lang perl6>put join ', ', sort +*, unique flat

  < 2 2 2 2 2 3 3 3 5 5 7 >.combinations
  .grep( *.sum == 13 )
  .map( { .join => $_ } )
  .map: { .value.permutations».join }</lang>
Output:
337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222

REXX

<lang rexx>/*REXX pgm finds and displays all decimal numbers whose digits are prime and sum to 13. */ LO= 337; HI= 322222; #= 0 /*define low&high range for #s; # count*/ $= /*variable to hold the list of #s found*/

     do j=LO  for HI-LO+1                       /*search for numbers in this range.    */
     if verify(j, 2357) \== 0  then iterate     /*J  must be comprised of prime digits.*/
     parse var  j    a  2  b  3    -1  z      /*parse: 1st, 2nd, & last decimal digs.*/
     sum= a + b + z                             /*sum:    "    "   "   "     "     "   */
                     do k=3  for length(j)-3    /*only need to sum #s with #digits ≥ 4 */
                     sum= sum + substr(j, k, 1) /*sum some middle decimal digits of  J.*/
                     end   /*k*/
     if sum\==13  then iterate                  /*Sum not equal to 13? Then skip this #*/
     #= # + 1;                        $= $ j    /*bump # count; append # to the $ list.*/
     end   /*j*/

say strip($); say /*display the output list to the term. */ say # ' decimal numbers found whose digits are prime and the decimal digits sum to 13'</lang>

output   when using the internal default inputs:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

43  decimal numbers found whose digits are prime and the decimal digits sum to  13

Ring

<lang ring> load "stdlib.ring"

sum = 0 limit = 1000000 aPrimes = []

for n = 1 to limit

   sum = 0
   st = string(n)
   for m = 1 to len(st)
       num = number(st[m])
       if isprime(num)
          sum = sum + num
          flag = 1
       else
          flag = 0
          exit
       ok
    next
    if flag = 1 and sum = 13
       add(aPrimes,n)
    ok

next

see "Unlucky numbers are:" + nl see showArray(aPrimes)

func showarray vect

    svect = ""
    for n in vect
        svect += "" + n + ","
    next
    ? "[" + left(svect, len(svect) - 1) + "]"

</lang>

Output:
Unlucky numbers are:
[337,355,373,535,553,733,2227,2272,2335,2353,2533,2722,3235,3253,3325,3352,3523,3532,5233,5323,5332,7222,22225,22252,22333,22522,23233,23323,23332,25222,32233,32323,32332,33223,33232,33322,52222,222223,222232,222322,223222,232222,322222]

Ruby

Translation of: C

<lang ruby>def primeDigitsSum13(n)

   sum = 0
   while n > 0
       r = n % 10
       if r != 2 and r != 3 and r != 5 and r != 7 then
           return false
       end
       n = (n / 10).floor
       sum = sum + r
   end
   return sum == 13

end

c = 0 for i in 1 .. 1000000

   if primeDigitsSum13(i) then
       print "%6d " % [i]
       if c == 10 then
           c = 0
           print "\n"
       else
           c = c + 1
       end
   end

end print "\n" </lang>

Output:
   337    355    373    535    553    733   2227   2272   2335   2353   2533
  2722   3235   3253   3325   3352   3523   3532   5233   5323   5332   7222
 22225  22252  22333  22522  23233  23323  23332  25222  32233  32323  32332
 33223  33232  33322  52222 222223 222232 222322 223222 232222 322222

Visual Basic .NET

Translation of: Phix

Same recursive method. <lang vbnet>Imports System Imports System.Console Imports LI = System.Collections.Generic.SortedSet(Of Integer)

Module Module1

   Function unl(ByVal res As LI, ByVal lst As LI, ByVal lft As Integer, ByVal Optional mul As Integer = 1, ByVal Optional vlu As Integer = 0) As LI
       If lft = 0 Then
           res.Add(vlu)
       ElseIf lft > 0 Then
           For Each itm As Integer In lst
               res = unl(res, lst, lft - itm, mul * 10, vlu + itm * mul)
           Next
       End If
       Return res
   End Function
   Sub Main(ByVal args As String())
       WriteLine(string.Join(" ",
           unl(new LI From {}, new LI From { 2, 3, 5, 7 }, 13)))
   End Sub

End Module</lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222

Alternate

Thanks to Nigel Galloway's suggestion from the discussion page. <lang vbnet>Imports Tu = System.Tuple(Of Integer, Integer)

Module Module1

 Sub Main()
   Dim w As New List(Of Tu), sum, x As Integer,
       lst() As Integer = { 2, 3, 5, 7 }
   For Each x In lst : w.Add(New Tu(x, x)) : Next
   While w.Count > 0 : With w(0) : For Each j As Integer In lst
       sum = .Item2 + j
       If sum = 13 Then Console.Write("{0}{1} ", .Item1, j)
       If sum < 12 Then w.Add(New Tu(.Item1 * 10 + j, sum))
     Next : End With : w.RemoveAt(0) : End While
 End Sub

End Module</lang> Same output.

Wren

Library: Wren-math
Library: Wren-seq
Library: Wren-sort

As the only digits which are prime are [2, 3, 5, 7], it is clear that a number must have between 3 and 6 digits for them to sum to 13. <lang ecmascript>import "/math" for Nums import "/seq" for Lst import "/sort" for Sort

var combrep // recursive combrep = Fn.new { |n, lst|

   if (n == 0 ) return [[]]
   if (lst.count == 0) return []
   var r = combrep.call(n, lst[1..-1])
   for (x in combrep.call(n-1, lst)) {
       var y = x.toList
       y.add(lst[0])
       r.add(y)
   }
   return r

}

var permute // recursive permute = Fn.new { |input|

   if (input.count == 1) return [input]
   var perms = []
   var toInsert = input[0]
   for (perm in permute.call(input[1..-1])) {
       for (i in 0..perm.count) {
           var newPerm = perm.toList
           newPerm.insert(i, toInsert)
           perms.add(newPerm)
       }
   }
   return perms

}

var primes = [2, 3, 5, 7] var res = [] for (n in 3..6) {

   var reps = combrep.call(n, primes)
   for (rep in reps) {
       if (Nums.sum(rep) == 13) {
           var perms = permute.call(rep)
           for (i in 0...perms.count) perms[i] = Num.fromString(perms[i].join())
           res.addAll(Lst.distinct(perms))
       }
   }

} Sort.quick(res) System.print("Those numbers whose digits are all prime and sum to 13 are:") System.print(res)</lang>

Output:
Those numbers whose digits are all prime and sum to 13 are:
[337, 355, 373, 535, 553, 733, 2227, 2272, 2335, 2353, 2533, 2722, 3235, 3253, 3325, 3352, 3523, 3532, 5233, 5323, 5332, 7222, 22225, 22252, 22333, 22522, 23233, 23323, 23332, 25222, 32233, 32323, 32332, 33223, 33232, 33322, 52222, 222223, 222232, 222322, 223222, 232222, 322222]

XPL0

<lang XPL0> int N, M, S, D; [for N:= 2 to 322222 do

       [M:= N;  S:= 0;
       repeat  M:= M/10;               \get digit D
               D:= remainder(0);
               case D of
                2, 3, 5, 7:
                       [S:= S+D;
                       if S=13 and M=0 \all digits included\ then
                               [IntOut(0, N);  ChOut(0, ^ )];
                       ]
               other   M:= 0;  \digit not prime so exit repeat loop
       until M=0;              \all digits in N tested or digit not prime
       ];

]</lang>

Output:
337 355 373 535 553 733 2227 2272 2335 2353 2533 2722 3235 3253 3325 3352 3523 3532 5233 5323 5332 7222 22225 22252 22333 22522 23233 23323 23332 25222 32233 32323 32332 33223 33232 33322 52222 222223 222232 222322 223222 232222 322222