In computer science, an AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; at no time do they differ by more than one because rebalancing is done ensure this is the case. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.

Task
AVL tree
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at AVL tree. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

AVL trees are often compared with red-black trees because they support the same set of operations and because red-black trees also take O(log n) time for the basic operations. Because AVL trees are more rigidly balanced, they are faster than red-black trees for lookup-intensive applications. Similar to red-black trees, AVL trees are height-balanced, but in general not weight-balanced nor μ-balanced; that is, sibling nodes can have hugely differing numbers of descendants.


Task

Implement an AVL tree in the language of choice, and provide at least basic operations.

Agda

This implementation uses the type system to enforce the height invariants, though not the BST invariants <lang agda> module Avl where

-- The Peano naturals data Nat : Set where

z : Nat
s : Nat -> Nat

-- An AVL tree's type is indexed by a natural. -- Avl N is the type of AVL trees of depth N. There arj 3 different -- node constructors: -- Left: The left subtree is one level deeper than the right -- Balanced: The subtrees have the same depth -- Right: The right Subtree is one level deeper than the left -- Since the AVL invariant is that the depths of a node's subtrees -- always differ by at most 1, this perfectly encodes the AVL depth invariant. data Avl : Nat -> Set where

 Empty : Avl z
 Left : {X : Nat} -> Nat -> Avl (s X) -> Avl X -> Avl (s (s X))
 Balanced : {X : Nat} -> Nat -> Avl X -> Avl X -> Avl (s X)
 Right : {X : Nat} -> Nat -> Avl X -> Avl (s X) -> Avl (s (s X))

-- A wrapper type that hides the AVL tree invariant. This is the interface -- exposed to the user. data Tree : Set where

 avl : {N : Nat} -> Avl N -> Tree

-- Comparison result data Ord : Set where

 Less : Ord
 Equal : Ord
 Greater : Ord

-- Comparison function cmp : Nat -> Nat -> Ord cmp z (s X) = Less cmp z z = Equal cmp (s X) z = Greater cmp (s X) (s Y) = cmp X Y

-- Insertions can either leave the depth the same or -- increase it by one. Encode this in the type. data InsertResult : Nat -> Set where

 Same : {X : Nat} -> Avl X -> InsertResult X
 Bigger : {X : Nat} -> Avl (s X) -> InsertResult X

-- If the left subtree is 2 levels deeper than the right, rotate to the right. -- balance-left X L R means X is the root, L is the left subtree and R is the right. balance-left : {N : Nat} -> Nat -> Avl (s (s N)) -> Avl N -> InsertResult (s (s N)) balance-left X (Right Y A (Balanced Z B C)) D = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-left X (Right Y A (Left Z B C)) D = Same (Balanced Z (Balanced X A B) (Right Y C D)) balance-left X (Right Y A (Right Z B C)) D = Same (Balanced Z (Left X A B) (Balanced Y C D)) balance-left X (Left Y (Balanced Z A B) C) D = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-left X (Left Y (Left Z A B) C) D = Same (Balanced Z (Left X A B) (Balanced Y C D)) balance-left X (Left Y (Right Z A B) C) D = Same (Balanced Z (Right X A B) (Balanced Y C D)) balance-left X (Balanced Y (Balanced Z A B) C) D = Bigger (Right Z (Balanced X A B) (Left Y C D)) balance-left X (Balanced Y (Left Z A B) C) D = Bigger (Right Z (Left X A B) (Left Y C D)) balance-left X (Balanced Y (Right Z A B) C) D = Bigger (Right Z (Right X A B) (Left Y C D))

-- Symmetric with balance-left balance-right : {N : Nat} -> Nat -> Avl N -> Avl (s (s N)) -> InsertResult (s (s N)) balance-right X A (Left Y (Left Z B C) D) = Same (Balanced Z (Balanced X A B) (Right Y C D)) balance-right X A (Left Y (Balanced Z B C) D) = Same(Balanced Z (Balanced X A B) (Balanced Y C D)) balance-right X A (Left Y (Right Z B C) D) = Same(Balanced Z (Left X A B) (Balanced Y C D)) balance-right X A (Balanced Z B (Left Y C D)) = Bigger(Left Z (Right X A B) (Left Y C D)) balance-right X A (Balanced Z B (Balanced Y C D)) = Bigger (Left Z (Right X A B) (Balanced Y C D)) balance-right X A (Balanced Z B (Right Y C D)) = Bigger (Left Z (Right X A B) (Right Y C D)) balance-right X A (Right Z B (Left Y C D)) = Same (Balanced Z (Balanced X A B) (Left Y C D)) balance-right X A (Right Z B (Balanced Y C D)) = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-right X A (Right Z B (Right Y C D)) = Same (Balanced Z (Balanced X A B) (Right Y C D))

-- insert' T N does all the work of inserting the element N into the tree T. insert' : {N : Nat} -> Avl N -> Nat -> InsertResult N insert' Empty N = Bigger (Balanced N Empty Empty) insert' (Left Y L R) X with cmp X Y insert' (Left Y L R) X | Less with insert' L X insert' (Left Y L R) X | Less | Same L' = Same (Left Y L' R) insert' (Left Y L R) X | Less | Bigger L' = balance-left Y L' R insert' (Left Y L R) X | Equal = Same (Left Y L R) insert' (Left Y L R) X | Greater with insert' R X insert' (Left Y L R) X | Greater | Same R' = Same (Left Y L R') insert' (Left Y L R) X | Greater | Bigger R' = Same (Balanced Y L R') insert' (Balanced Y L R) X with cmp X Y insert' (Balanced Y L R) X | Less with insert' L X insert' (Balanced Y L R) X | Less | Same L' = Same (Balanced Y L' R) insert' (Balanced Y L R) X | Less | Bigger L' = Bigger (Left Y L' R) insert' (Balanced Y L R) X | Equal = Same (Balanced Y L R) insert' (Balanced Y L R) X | Greater with insert' R X insert' (Balanced Y L R) X | Greater | Same R' = Same (Balanced Y L R') insert' (Balanced Y L R) X | Greater | Bigger R' = Bigger (Right Y L R') insert' (Right Y L R) X with cmp X Y insert' (Right Y L R) X | Less with insert' L X insert' (Right Y L R) X | Less | Same L' = Same (Right Y L' R) insert' (Right Y L R) X | Less | Bigger L' = Same (Balanced Y L' R) insert' (Right Y L R) X | Equal = Same (Right Y L R) insert' (Right Y L R) X | Greater with insert' R X insert' (Right Y L R) X | Greater | Same R' = Same (Right Y L R') insert' (Right Y L R) X | Greater | Bigger R' = balance-right Y L R'

-- Wrapper around insert' to use the depth-agnostic type Tree. insert : Tree -> Nat -> Tree insert (avl T) X with insert' T X ... | Same T' = avl T' ... | Bigger T' = avl T' </lang>

beed

<lang cpp> eenioonneraashon staat {

   heder,
   balansd,
   lepht_hi,
   riit_hi

}

eenioonneraashon direcshon {

 phronn_lepht,
 phronn_riit

}

eenioonneraashon booleean {

troo,
phals

}

clahs nohd<t> {

   nohd<t> lepht;
   nohd<t> riit;
   nohd<t> pairent;
   staat balans;
   t daata;
   nohd()
   {
      lepht = this;
      riit = this;
      balans = heder;
   }
   nohd(nohd<t> p, t daata_in)
   {
     pairent = p;
     balans = balansd;
     daata = daata_in; 
   }
   is_heder(booleean anser)
   {
       balans.eecuuols(heder,anser); 
   }
   eecuuols(nohd<t> other, booleean anser)
   {
       _nohd.nohd.eecuuols(other.nohd._nohd, anser);
   }
   nnoou_necst()
   {
       booleean is_heder = phals;
       nohd.is_heder(is_heder);
       iph (is_heder)
       {
           nohd = nohd.lepht;
           reeturn;
       }
       booleean riit_is_null = phals;
       nohd.riit.is_nul(riit_is_null);
       iph (!riit_is_null)
       {
          nohd = nohd.riit;
          booleean lepht_is_nul = phals;
          nohd.lepht.is_nul(lepht_is_nul);
          uuhiil (!lepht_is_null)
          {
              nohd = nohd.lepht;
              nohd.lepht.is_nul(lepht_is_nul);
          }
       }
       els
       {
           nohd<t> uui = nohd.pairent;
           booleean uui_is_heder = phals;
           uui.is_heder(uui_is_heder);
           iph (uui_is_heder)
           {
               nohd = uui;
               reeturn;
           }
           booleean nohd_is_uui_riit = phals;
           nohd.eecuuols(uui.riit,nohd_is_uui_riit);
           uuhiil (nohd_is_uui_riit)
           {
               nohd = uui;
               uui = uui.pairent;
               nohd.eecuuols(uui.riit,nohd_is_uui_riit);
           }
           nohd = uui;
       }
   }
   rohtaat_lepht(nohd<t> root)
   {
       nohd<t> pairent = root.pairent;
       nohd<t> e = root.riit;
       root.pairent = e;
       e.pairent = pairent;
       booleean e_lepht_is_nul = phals;
       nohd<t> e_lepht = e.lepht;
       e_lepht.is_nul(e_lepht_is_nul);
       iph (!e_lepht_is_nul) {e.lepht.pairent = root;}
       root.riit = e.lepht;
       e.lepht = root;
       root = e;
   }
   rohtaat_riit(nohd<t> root)
   {
       nohd<t> pairent = root.pairent;
       nohd<t> e = root.lepht;
       root.pairent = e;
       e.pairent = pairent;
       booleean e_riit_is_nul = phals;
       nohd<t> e_riit =  e.riit;
       e_riit.is_nul(e_lepht_is_nul);
       iph (!e_lepht_is_nul) {e.riit.pairent = root;}
       root.lepht = e.riit;
       e.riit = root;
       root = e;
   }
   balans_lepht(nohd<t> root)
   {
       nohd<t> lepht = root.lepht;
       select (lepht.balans)
       {
           caas lepht_hi
           {
               root.balans = balansd;
               lepht.balans = balansd;
               rohtaat_riit(root);
           }
           caas riit_hi
           {
               nohd<t> subriit = lepht.riit;
               select(subriit.balans)
               {
                   caas balansd
                   {
                       root.balans = balansd;
                       lepht.balans = balansd;
                   }
                   caas riit_hi
                   {
                       root.balans = balansd;
                       lepht.balans = lepht_hi;
                   }
                   caas lepht_hi
                   {
                       root.balans = riit_hi;
                       lepht.balans = balansd;
                   }
               }
               subriit.balans = balansd;
               rohtaat_lepht(lepht);
               root.lepht = lepht;
               rohtaat_riit(root);
           }
           caas balansd
           {
               root.balans = lepht_hi;
               lepht.balans = riit_hi;
               rohtaat_riit(root);
           }
       }   
   }
   balans_riit(nohd<t> root)
   {
       nohd<t> riit = root.riit;
       select (riit.balans)
       {
           caas riit_hi
           { 
               root.balans = balansd;
               riit.balans = balansd;
               rohtaat_lepht(root);
           }
          caas lepht_hi
          {
              nohd<t> sublepht = riit.lepht;
              select(sublepht.balans)
              {
                  caas balansd
                  {
                      root.balans = balansd;
                      riit.balans = balansd;
                  }
                  caas lepht_hi
                  {
                      root.balans = balansd;
                      riit.balans = riit_hi;
                  }
                  caas riit_hi
                  {
                      root.balans = lepht_hi;
                      riit.balans = balansd;
                  }
              }
              sublepht.balans = balansd;
              rohtaat_riit(riit);
              root.riit = riit;
              rohtaat_lepht(root);
          }
          caas balansd
          {
              root.balans = riit_hi;
              riit.balans = lepht_hi;
              rohtaat_lepht(root);
          }
       }   
   }
   
   balans_tree(nohd<t> root, direcshon phronn)
   {
       booleean torler = troo;
       uuhiil (torler)
       {
           nohd<t> pairent = root.pairent;
           direcshon necst_phronn = phronn_lepht;
           booleean is_pairent_lepht = phals;
           pairent.lepht.eecuuols(root,is_pairent_lepht);
           iph (!is_pairent_lepht)
           {
               necst_phronn = phronn_riit;
           }
           booleean is_phronn_lepht = phals;
           phronn.eecuuols(phronn_lepht, is_phronn_lepht);
           iph (is_phronn_lepht)
           {
               select (root.balans)
               {
                   caas lepht_hi
                   {
                       booleean pheder = phals;
                       pairent.is_heder(pheder);
                       iph (pheder)
                       {
                           balans_lepht(pairent.pairent);
                       }
                       els
                       {
                           booleean lepht_is_root = phals;
                           pairent.lepht.eecuuols(root,lepht_is_root);
                           iph (lepht_is_root)
                           {
                               balans_lepht(pairent.lepht);
                           }
                           els
                           {
                               balans_lepht = pairent.riit;
                               torler = phals;
                           }
                       }
                   }
                   caas balansd
                   {
                       root.balans = lepht_hi;
                       torler = troo;
                   }
   
                   caas riit_hi
                   {
                       root.balans = balansd;
                       torler = phals;
                   }
               }
           }
           els
           {
              select (root.balans)
              {
                  caas lepht_hi
                  {
                      root.balans = balansd;
                      torler = phals;
                  }    
                  caas balansd
                  {
                      root.balans = riit_hi;
                      torler = troo;
                  }
                  caas riit_hi
                  {
                       booleean heder = phals;
                       pairent.is_heder(heder);
                       iph (heder)
                       {
                           balans_riit(pairent.pairent);
                       }
                       els
                       {
                           booleean lpairent = phals;
                           pairent.lepht.eecuuols(root,lpairent);
                           iph (lpairent)
                           {
                               balans_riit(pairent.lepht);
                           }
                           els
                           {
                               balans_riit(pairent.riit);
                               torler = phals;
                           }
                       }
                    }
                }
            }
            iph (torler)
            {
                booleean heder_up = phals;
                pairent.is_heder(heder_up);
                iph (heder_up)
                {
                  torler = phals;
                 }
                 els
                 {
                     root = pairent;
                     phronn = necst_phronn;
                 }
            }
        }
   }
   balans_tree_reennoou(nohd<t> root, direcshon phronn)
   {
        booleean shorter = troo;
        uuhiil (shorter)
        {
           nohd<t> pairent = root.pairent;
           direcshon necst_phronn = phronn_lepht;
           booleean is_pairent_lepht = phals;
           pairent.lepht.eecuuols(root,is_pairent_lepht);
           iph (!is_pairent_lepht)
           {
               necst_phronn = phronn_riit;
           }
           booleean is_phronn_lepht = phals;
           phronn.eecuuols(phronn_lepht, is_phronn_lepht);
           iph (is_phronn_lepht)
           {
               select (root.balans)
               {
                   caas lepht_hi
                   {
                       root.balans = staat.balansd;
                       shorter = troo;
                   }


                   caas balansd
                   {
                       root.balans = staat.riit_hi;
                       shorter = phals;
                   }
                   caas riit_hi
                   {
                       booleean riit_is_balansd = phals;
                       root.riit.balans.eecuuols(balansd,riit_is_balansd);
                       iph (riit_is_balansd)
                       {
                           shorter = phals;
                       }
                       els
                       {
                           shorter = troo;
                       }
                       booleean heder = phals;
                       pairent.is_heder(heder);
                       iph (heder)
                       {
                           balans_riit(pairent.pairent);
                       }
                       els
                       {
                           booleean lpairent = phals;
                           pairent.lepht.eecuuols(root,lpairent);
                           iph (lpairent)
                           {
                               balans_riit(pairent.lepht);
                           }
                           els
                           {
                               balans_riit(pairent.riit);
                           }
                      }    
                  }
               }
            }
            els
            {
               select (root.balans)
               {
                   caas riit_hi
                   {
                       root.balans = balansd;
                       shorter = troo;
                   }


                  caas balansd
                  {
                     root.balans = lepht_hi;
                     shorter = phals;
                  }


                  caas lepht_hi
                  {
                       booleean lepht_is_balansd = phals;
                       root.lepht.balans.eecuuols(balansd,lepht_is_balansd);
                       iph (lepht_is_balansd)
                       {
                           shorter = phals;
                       }
                       els
                       {
                           shorter = troo;
                       }
                       booleean is_heder = phals;
                       pairent.is_heder(is_heder);
                       iph (is_heder)
                       {
                           balans_lepht(pairent.pairent);
                       }
                       els
                       {
                           pairent.lepht.eecuuols(root,lpairent);
                           iph (lpairent)
                           {
                               balans_lepht(pairent.lepht);
                           }
                           els
                           {
                               balans_lepht(pairent.riit);
                           }
                      }
                  }
               }
           }
           iph (shorter)
           {
              booleean heder_up = phals;
              pairent.is_heder(heder_up);
              iph (heder_up)
              {
                 shorter = phals;
              }
              els
              {
                 root = pairent;
                 phronn = necst_phronn;
              }
          }
       }
   }

}


clahs entree_orlredee_ecsists_ecssepshon {

  string naann;
   entree_orlredee_ecsists_ecssepshon(string naann_in)
   {
        naann = naann_in;
   }
   print()
   {
        string ouut(naan);
        string to_ad( orlredee ecsists);
        ouut.concat(to_ad);
        ouut.print();
   }

}


}

clahs set_entree<t> {

   set_entree(nohd<t> n)
   {
       _nohd = n;
   }
   ualioo(t _daata)
   {
     _daata = _nohd.daata;
    }
   is_heder(booleean b) { _nohd.nohd.is_heder(b); }


   nohd<t> _nohd;

}

clahs set<t> {

   nohd<t> heder;
   set()
   {
      heder();
   }
   ad(t daata)
   {
      string out(in ad);
      out.println();
       booleean root_is_nul = phals;
       heder.pairent.is_nul(root_is_nul);
       iph (root_is_nul)
       {
           nohd<t> n(heder,daata);
           heder.pairent = n;
           heder.lepht = heder.pairent;
           heder.riit = heder.pairent;
       }
       els
       {
           nohd<t> root = heder.pairent;
           reepeet
           {
               booleean is_les = phals;
               string outb(connpairing entrees);
               outb.println();
               daata.les(root.daata, is_les);
               iph (is_les)
               {
                   booleean root_lepht_is_nul = phals;
                   root.nohd.lepht.is_nul(root_lepht_is_nul);
                   iph (!root_lepht_is_nul)
                   {
                       root.nohd = root.lepht;
                   }
                   els
                   {
                       nohd<t> nioo_nohd(root,daata);
                       root.lepht = nioo_nohd;
                       booleean is_phurst = phals;
                       heder.lepht.eecuuols(root,is_phurst);
                       iph (is_phurst)
                       {
                           heder.lepht = nioo_nohd;
                       }
                       direcshon dir(phronn_lepht);
                       balans_tree(root.nohd, dir);
                       reeturn;
                   }
              }
              els
              {
                   booleean is_graater = phals;
                   root.daata.les(daata, is_graater);
                   iph (is_graater)
                   {  
                       booleean root_riit_is_nul = phals;
                       root.nohd.riit.is_nul(root_riit_is_nul);
                       iph (!root_riit_is_nul)
                       {
                           root = root.riit;
                       }
                       els
                       {
                           nohd<t> nioo(root,daata);
                           root.riit = nioo;
                           booleean is_lahst = phals;
                           heder.riit.eecuuols(root,is_lahst);
                           iph (is_lahst)
                           {
                               heder.riit = nioo_nohd;
                           }
                           direcshon dirb(phronn_riit);
                           balans_tree(root.nohd, dirb);
                           reeturn;
                       }
                   }
                   els // iiten orlredee ecsists
                   {
                       string s(entree orlredee ecsists);
                       entree_orlredee_ecsists_ecssepshon p(s);
                       throuu p;
                   }
              }
          }
      }
  }

} </lang>

C

See AVL tree/C

C#

See AVL_tree/C_sharp.

C++

Translation of: D

<lang cpp>

  1. include <algorithm>
  2. include <iostream>

/* AVL node */ template <class T> class AVLnode { public:

   T key;
   int balance;
   AVLnode *left, *right, *parent;
   AVLnode(T k, AVLnode *p) : key(k), balance(0), parent(p),
                       left(NULL), right(NULL) {}
   ~AVLnode() {
       delete left;
       delete right;
   }

};

/* AVL tree */ template <class T> class AVLtree { public:

   AVLtree(void);
   ~AVLtree(void);
   bool insert(T key);
   void deleteKey(const T key);
   void printBalance();

private:

   AVLnode<T> *root;
   AVLnode<T>* rotateLeft          ( AVLnode<T> *a );
   AVLnode<T>* rotateRight         ( AVLnode<T> *a );
   AVLnode<T>* rotateLeftThenRight ( AVLnode<T> *n );
   AVLnode<T>* rotateRightThenLeft ( AVLnode<T> *n );
   void rebalance                  ( AVLnode<T> *n );
   int height                      ( AVLnode<T> *n );
   void setBalance                 ( AVLnode<T> *n );
   void printBalance               ( AVLnode<T> *n );
   void clearNode                  ( AVLnode<T> *n );

};

/* AVL class definition */ template <class T> void AVLtree<T>::rebalance(AVLnode<T> *n) {

   setBalance(n);
   if (n->balance == -2) {
       if (height(n->left->left) >= height(n->left->right))
           n = rotateRight(n);
       else
           n = rotateLeftThenRight(n);
   }
   else if (n->balance == 2) {
       if (height(n->right->right) >= height(n->right->left))
           n = rotateLeft(n);
       else
           n = rotateRightThenLeft(n);
   }
   if (n->parent != NULL) {
       rebalance(n->parent);
   }
   else {
       root = n;
   }

}

template <class T> AVLnode<T>* AVLtree<T>::rotateLeft(AVLnode<T> *a) {

   AVLnode<T> *b = a->right;
   b->parent = a->parent;
   a->right = b->left;
   if (a->right != NULL)
       a->right->parent = a;
   b->left = a;
   a->parent = b;
   if (b->parent != NULL) {
       if (b->parent->right == a) {
           b->parent->right = b;
       }
       else {
           b->parent->left = b;
       }
   }
   setBalance(a);
   setBalance(b);
   return b;

}

template <class T> AVLnode<T>* AVLtree<T>::rotateRight(AVLnode<T> *a) {

   AVLnode<T> *b = a->left;
   b->parent = a->parent;
   a->left = b->right;
   if (a->left != NULL)
       a->left->parent = a;
   b->right = a;
   a->parent = b;
   if (b->parent != NULL) {
       if (b->parent->right == a) {
           b->parent->right = b;
       }
       else {
           b->parent->left = b;
       }
   }
   setBalance(a);
   setBalance(b);
   return b;

}

template <class T> AVLnode<T>* AVLtree<T>::rotateLeftThenRight(AVLnode<T> *n) {

   n->left = rotateLeft(n->left);
   return rotateRight(n);

}

template <class T> AVLnode<T>* AVLtree<T>::rotateRightThenLeft(AVLnode<T> *n) {

   n->right = rotateRight(n->right);
   return rotateLeft(n);

}

template <class T> int AVLtree<T>::height(AVLnode<T> *n) {

   if (n == NULL)
       return -1;
   return 1 + std::max(height(n->left), height(n->right));

}

template <class T> void AVLtree<T>::setBalance(AVLnode<T> *n) {

   n->balance = height(n->right) - height(n->left);

}

template <class T> void AVLtree<T>::printBalance(AVLnode<T> *n) {

   if (n != NULL) {
       printBalance(n->left);
       std::cout << n->balance << " ";
       printBalance(n->right);
   }

}

template <class T> AVLtree<T>::AVLtree(void) : root(NULL) {}

template <class T> AVLtree<T>::~AVLtree(void) {

   delete root;

}

template <class T> bool AVLtree<T>::insert(T key) {

   if (root == NULL) {
       root = new AVLnode<T>(key, NULL);
   }
   else {
       AVLnode<T>
           *n = root,
           *parent;
       while (true) {
           if (n->key == key)
               return false;
           parent = n;
           bool goLeft = n->key > key;
           n = goLeft ? n->left : n->right;
           if (n == NULL) {
               if (goLeft) {
                   parent->left = new AVLnode<T>(key, parent);
               }
               else {
                   parent->right = new AVLnode<T>(key, parent);
               }
               rebalance(parent);
               break;
           }
       }
   }
   return true;

}

template <class T> void AVLtree<T>::deleteKey(const T delKey) {

   if (root == NULL)
       return;
   AVLnode<T>
       *n       = root,
       *parent  = root,
       *delNode = NULL,
       *child   = root;
   while (child != NULL) {
       parent = n;
       n = child;
       child = delKey >= n->key ? n->right : n->left;
       if (delKey == n->key)
           delNode = n;
   }
   if (delNode != NULL) {
       delNode->key = n->key;
       child = n->left != NULL ? n->left : n->right;
       if (root->key == delKey) {
           root = child;
       }
       else {
           if (parent->left == n) {
               parent->left = child;
           }
           else {
               parent->right = child;
           }
           rebalance(parent);
       }
   }

}

template <class T> void AVLtree<T>::printBalance() {

   printBalance(root);
   std::cout << std::endl;

}

int main(void) {

   AVLtree<int> t;
   std::cout << "Inserting integer values 1 to 10" << std::endl;
   for (int i = 1; i <= 10; ++i)
       t.insert(i);
   std::cout << "Printing balance: ";
   t.printBalance();

} </lang>

Output:
Inserting integer values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0 

More elaborate version

See AVL_tree/C++

Managed C++

See AVL_tree/Managed_C++ </lang>

Common Lisp

Provided is an imperative implementation of an AVL tree with a similar interface and documentation to HASH-TABLE. <lang lisp>(defpackage :avl-tree

 (:use :cl)
 (:export
  :avl-tree
  :make-avl-tree
  :avl-tree-count
  :avl-tree-p
  :avl-tree-key<=
  :gettree
  :remtree
  :clrtree
  :dfs-maptree
  :bfs-maptree))

(in-package :avl-tree)

(defstruct %tree

 key
 value
 (height 0 :type fixnum)
 left
 right)

(defstruct (avl-tree (:constructor %make-avl-tree))

 key<=
 tree
 (count 0 :type fixnum))

(defun make-avl-tree (key<=)

 "Create a new AVL tree using the given comparison function KEY<=

for emplacing keys into the tree."

 (%make-avl-tree :key<= key<=))

(declaim (inline

         recalc-height
         height balance
         swap-kv
         right-right-rotate
         right-left-rotate
         left-right-rotate
         left-left-rotate
         rotate))

(defun recalc-height (tree)

 "Calculate the new height of the tree from the heights of the children."
 (when tree
   (setf (%tree-height tree)
         (1+ (the fixnum (max (height (%tree-right tree))
                              (height (%tree-left tree))))))))

(declaim (ftype (function (t) fixnum) height balance)) (defun height (tree)

 (if tree (%tree-height tree) 0))

(defun balance (tree)

 (if tree
     (- (height (%tree-right tree))
        (height (%tree-left tree)))
     0))

(defmacro swap (place-a place-b)

 "Swap the values of two places."
 (let ((tmp (gensym)))
   `(let ((,tmp ,place-a))
      (setf ,place-a ,place-b)
      (setf ,place-b ,tmp))))

(defun swap-kv (tree-a tree-b)

 "Swap the keys and values of two trees."
 (swap (%tree-value tree-a) (%tree-value tree-b))
 (swap (%tree-key tree-a) (%tree-key tree-b)))
We should really use gensyms for the variables in here.

(defmacro slash-rotate (tree right left)

 "Rotate nodes in a slash `/` imbalance."
 `(let* ((a ,tree)
         (b (,right a))
         (c (,right b))
         (a-left (,left a))
         (b-left (,left b)))
    (setf (,right a) c)
    (setf (,left a) b)
    (setf (,left b) a-left)
    (setf (,right b) b-left)
    (swap-kv a b)
    (recalc-height b)
    (recalc-height a)))

(defmacro angle-rotate (tree right left)

 "Rotate nodes in an angle bracket `<` imbalance."
 `(let* ((a ,tree)
         (b (,right a))
         (c (,left b))
         (a-left (,left a))
         (c-left (,left c))
         (c-right (,right c)))
    (setf (,left a) c)
    (setf (,left c) a-left)
    (setf (,right c) c-left)
    (setf (,left b) c-right)
    (swap-kv a c)
    (recalc-height c)
    (recalc-height b)
    (recalc-height a)))

(defun right-right-rotate (tree)

 (slash-rotate tree %tree-right %tree-left))

(defun left-left-rotate (tree)

 (slash-rotate tree %tree-left %tree-right))

(defun right-left-rotate (tree)

 (angle-rotate tree %tree-right %tree-left))

(defun left-right-rotate (tree)

 (angle-rotate tree %tree-left %tree-right))

(defun rotate (tree)

 (declare (type %tree tree))
 "Perform a rotation on the given TREE if it is imbalanced."
 (recalc-height tree)
 (with-slots (left right) tree
   (let ((balance (balance tree)))
     (cond ((< 1 balance) ;; Right imbalanced tree
            (if (<= 0 (balance right))
                (right-right-rotate tree)
                (right-left-rotate tree)))
           ((> -1 balance) ;; Left imbalanced tree
            (if (<= 0 (balance left))
                (left-right-rotate tree)
                (left-left-rotate tree)))))))

(defun gettree (key avl-tree &optional default)

 "Finds an entry in AVL-TREE whos key is KEY and returns the

associated value and T as multiple values, or returns DEFAULT and NIL if there was no such entry. Entries can be added using SETF."

 (with-slots (key<= tree) avl-tree
   (labels
       ((rec (tree)
          (if tree
              (with-slots ((t-key key) left right value) tree
                (if (funcall key<= t-key key)
                    (if (funcall key<= key t-key)
                        (values value t)
                        (rec right))
                    (rec left)))
              (values default nil))))
     (rec tree))))

(defun puttree (value key avl-tree)

 ;;(declare (optimize speed))
 (declare (type avl-tree avl-tree))
 "Emplace the the VALUE with the given KEY into the AVL-TREE, or

overwrite the value if the given key already exists."

 (let ((node (make-%tree :key key :value value)))
   (with-slots (key<= tree count) avl-tree
     (cond (tree
            (labels
                ((rec (tree)
                   (with-slots ((t-key key) left right) tree
                     (if (funcall key<= t-key key)
                         (if (funcall key<= key t-key)
                             (setf (%tree-value tree) value)
                             (cond (right (rec right))
                                   (t (setf right node)
                                      (incf count))))
                         (cond (left (rec left))
                               (t (setf left node)
                                  (incf count))))
                     (rotate tree))))
              (rec tree)))
           (t (setf tree node)
              (incf count))))
   value))

(defun (setf gettree) (value key avl-tree &optional default)

 (declare (ignore default))
 (puttree value key avl-tree))

(defun remtree (key avl-tree)

 (declare (type avl-tree avl-tree))
 "Remove the entry in AVL-TREE associated with KEY. Return T if

there was such an entry, or NIL if not."

 (with-slots (key<= tree count) avl-tree
   (labels
       ((find-left (tree)
          (with-slots ((t-key key) left right) tree
            (if left
                (find-left left)
                tree)))
        (rec (tree &optional parent type)
          (when tree
            (prog1
                (with-slots ((t-key key) left right) tree
                  (if (funcall key<= t-key key)
                      (cond
                        ((funcall key<= key t-key)
                         (cond
                           ((and left right)
                            (let ((sub-left (find-left right)))
                              (swap-kv sub-left tree)
                              (rec right tree :right)))
                           (t
                            (let ((sub (or left right)))
                              (case type
                                (:right (setf (%tree-right parent) sub))
                                (:left (setf (%tree-left parent) sub))
                                (nil (setf (avl-tree-tree avl-tree) sub))))
                            (decf count)))
                         t)
                        (t (rec right tree :right)))
                      (rec left tree :left)))
              (when parent (rotate parent))))))
     (rec tree))))

(defun clrtree (avl-tree)

 "This removes all the entries from AVL-TREE and returns the tree itself."
 (setf (avl-tree-tree avl-tree) nil)
 (setf (avl-tree-count avl-tree) 0)
 avl-tree)

(defun dfs-maptree (function avl-tree)

 "For each entry in AVL-TREE call the two-argument FUNCTION on

the key and value of each entry in depth-first order from left to right. Consequences are undefined if AVL-TREE is modified during this call."

 (with-slots (key<= tree) avl-tree
   (labels
       ((rec (tree)
          (when tree
            (with-slots ((t-key key) left right key value) tree
              (rec left)
              (funcall function key value)
              (rec right)))))
     (rec tree))))

(defun bfs-maptree (function avl-tree)

 "For each entry in AVL-TREE call the two-argument FUNCTION on

the key and value of each entry in breadth-first order from left to right. Consequences are undefined if AVL-TREE is modified during this call."

 (with-slots (key<= tree) avl-tree
   (let* ((queue (cons nil nil))
          (end queue))
     (labels ((pushend (value)
                (when value
                  (setf (cdr end) (cons value nil))
                  (setf end (cdr end))))
              (empty-p () (eq nil (cdr queue)))
              (popfront ()
                (prog1 (pop (cdr queue))
                  (when (empty-p) (setf end queue)))))
       (when tree
         (pushend tree)
         (loop until (empty-p)
            do (let ((current (popfront)))
                 (with-slots (key value left right) current
                   (funcall function key value)
                   (pushend left)
                   (pushend right)))))))))

(defun test ()

 (let ((tree (make-avl-tree #'<=))
       (printer (lambda (k v) (print (list k v)))))
   (loop for key in '(0 8 6 4 2 3 7 9 1 5 5)
      for value in '(a b c d e f g h i j k)
      do (setf (gettree key tree) value))
   (loop for key in '(0 1 2 3 4 10)
      do (print (multiple-value-list (gettree key tree))))
   (terpri)
   (print tree)
   (terpri)
   (dfs-maptree printer tree)
   (terpri)
   (bfs-maptree printer tree)
   (terpri)
   (loop for key in '(0 1 2 3 10 7)
      do (print (remtree key tree)))
   (terpri)
   (print tree)
   (terpri)
   (clrtree tree)
   (print tree))
 (values))

(defun profile-test ()

 (let ((tree (make-avl-tree #'<=))
       (randoms (loop repeat 1000000 collect (random 100.0))))
   (loop for key in randoms do (setf (gettree key tree) key))))</lang>

D

Translation of: Java

<lang d>import std.stdio, std.algorithm;

class AVLtree {

   private Node* root;
   private static struct Node {
       private int key, balance;
       private Node* left, right, parent;
       this(in int k, Node* p) pure nothrow @safe @nogc {
           key = k;
           parent = p;
       }
   }
   public bool insert(in int key) pure nothrow @safe {
       if (root is null)
           root = new Node(key, null);
       else {
           Node* n = root;
           Node* parent;
           while (true) {
               if (n.key == key)
                   return false;
               parent = n;
               bool goLeft = n.key > key;
               n = goLeft ? n.left : n.right;
               if (n is null) {
                   if (goLeft) {
                       parent.left = new Node(key, parent);
                   } else {
                       parent.right = new Node(key, parent);
                   }
                   rebalance(parent);
                   break;
               }
           }
       }
       return true;
   }
   public void deleteKey(in int delKey) pure nothrow @safe @nogc {
       if (root is null)
           return;
       Node* n = root;
       Node* parent = root;
       Node* delNode = null;
       Node* child = root;
       while (child !is null) {
           parent = n;
           n = child;
           child = delKey >= n.key ? n.right : n.left;
           if (delKey == n.key)
               delNode = n;
       }
       if (delNode !is null) {
           delNode.key = n.key;
           child = n.left !is null ? n.left : n.right;
           if (root.key == delKey) {
               root = child;
           } else {
               if (parent.left is n) {
                   parent.left = child;
               } else {
                   parent.right = child;
               }
               rebalance(parent);
           }
       }
   }
   private void rebalance(Node* n) pure nothrow @safe @nogc {
       setBalance(n);
       if (n.balance == -2) {
           if (height(n.left.left) >= height(n.left.right))
               n = rotateRight(n);
           else
               n = rotateLeftThenRight(n);
       } else if (n.balance == 2) {
           if (height(n.right.right) >= height(n.right.left))
               n = rotateLeft(n);
           else
               n = rotateRightThenLeft(n);
       }
       if (n.parent !is null) {
           rebalance(n.parent);
       } else {
           root = n;
       }
   }
   private Node* rotateLeft(Node* a) pure nothrow @safe @nogc {
       Node* b = a.right;
       b.parent = a.parent;
       a.right = b.left;
       if (a.right !is null)
           a.right.parent = a;
       b.left = a;
       a.parent = b;
       if (b.parent !is null) {
           if (b.parent.right is a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node* rotateRight(Node* a) pure nothrow @safe @nogc {
       Node* b = a.left;
       b.parent = a.parent;
       a.left = b.right;
       if (a.left !is null)
           a.left.parent = a;
       b.right = a;
       a.parent = b;
       if (b.parent !is null) {
           if (b.parent.right is a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node* rotateLeftThenRight(Node* n) pure nothrow @safe @nogc {
       n.left = rotateLeft(n.left);
       return rotateRight(n);
   }
   private Node* rotateRightThenLeft(Node* n) pure nothrow @safe @nogc {
       n.right = rotateRight(n.right);
       return rotateLeft(n);
   }
   private int height(in Node* n) const pure nothrow @safe @nogc {
       if (n is null)
           return -1;
       return 1 + max(height(n.left), height(n.right));
   }
   private void setBalance(Node*[] nodes...) pure nothrow @safe @nogc {
       foreach (n; nodes)
           n.balance = height(n.right) - height(n.left);
   }
   public void printBalance() const @safe {
       printBalance(root);
   }
   private void printBalance(in Node* n) const @safe {
       if (n !is null) {
           printBalance(n.left);
           write(n.balance, ' ');
           printBalance(n.right);
       }
   }

}

void main() @safe {

   auto tree = new AVLtree();
   writeln("Inserting values 1 to 10");
   foreach (immutable i; 1 .. 11)
       tree.insert(i);
   write("Printing balance: ");
   tree.printBalance;

}</lang>

Output:
Inserting values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0 

Go

A package: <lang go>package avl

// AVL tree adapted from Julienne Walker's presentation at // http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_avl.aspx. // This port uses similar indentifier names.

// The Key interface must be supported by data stored in the AVL tree. type Key interface {

   Less(Key) bool
   Eq(Key) bool

}

// Node is a node in an AVL tree. type Node struct {

   Data    Key      // anything comparable with Less and Eq.
   Balance int      // balance factor
   Link    [2]*Node // children, indexed by "direction", 0 or 1.

}

// A little readability function for returning the opposite of a direction, // where a direction is 0 or 1. Go inlines this. // Where JW writes !dir, this code has opp(dir). func opp(dir int) int {

   return 1 - dir

}

// single rotation func single(root *Node, dir int) *Node {

   save := root.Link[opp(dir)]
   root.Link[opp(dir)] = save.Link[dir]
   save.Link[dir] = root
   return save

}

// double rotation func double(root *Node, dir int) *Node {

   save := root.Link[opp(dir)].Link[dir]
   root.Link[opp(dir)].Link[dir] = save.Link[opp(dir)]
   save.Link[opp(dir)] = root.Link[opp(dir)]
   root.Link[opp(dir)] = save
   save = root.Link[opp(dir)]
   root.Link[opp(dir)] = save.Link[dir]
   save.Link[dir] = root
   return save

}

// adjust valance factors after double rotation func adjustBalance(root *Node, dir, bal int) {

   n := root.Link[dir]
   nn := n.Link[opp(dir)]
   switch nn.Balance {
   case 0:
       root.Balance = 0
       n.Balance = 0
   case bal:
       root.Balance = -bal
       n.Balance = 0
   default:
       root.Balance = 0
       n.Balance = bal
   }
   nn.Balance = 0

}

func insertBalance(root *Node, dir int) *Node {

   n := root.Link[dir]
   bal := 2*dir - 1
   if n.Balance == bal {
       root.Balance = 0
       n.Balance = 0
       return single(root, opp(dir))
   }
   adjustBalance(root, dir, bal)
   return double(root, opp(dir))

}

func insertR(root *Node, data Key) (*Node, bool) {

   if root == nil {
       return &Node{Data: data}, false
   }
   dir := 0
   if root.Data.Less(data) {
       dir = 1
   }
   var done bool
   root.Link[dir], done = insertR(root.Link[dir], data)
   if done {
       return root, true
   }
   root.Balance += 2*dir - 1
   switch root.Balance {
   case 0:
       return root, true
   case 1, -1:
       return root, false
   }
   return insertBalance(root, dir), true

}

// Insert a node into the AVL tree. // Data is inserted even if other data with the same key already exists. func Insert(tree **Node, data Key) {

   *tree, _ = insertR(*tree, data)

}

func removeBalance(root *Node, dir int) (*Node, bool) {

   n := root.Link[opp(dir)]
   bal := 2*dir - 1
   switch n.Balance {
   case -bal:
       root.Balance = 0
       n.Balance = 0
       return single(root, dir), false
   case bal:
       adjustBalance(root, opp(dir), -bal)
       return double(root, dir), false
   }
   root.Balance = -bal
   n.Balance = bal
   return single(root, dir), true

}

func removeR(root *Node, data Key) (*Node, bool) {

   if root == nil {
       return nil, false
   }
   if root.Data.Eq(data) {
       switch {
       case root.Link[0] == nil:
           return root.Link[1], false
       case root.Link[1] == nil:
           return root.Link[0], false
       }
       heir := root.Link[0]
       for heir.Link[1] != nil {
           heir = heir.Link[1]
       }
       root.Data = heir.Data
       data = heir.Data
   }
   dir := 0
   if root.Data.Less(data) {
       dir = 1
   }
   var done bool
   root.Link[dir], done = removeR(root.Link[dir], data)
   if done {
       return root, true
   }
   root.Balance += 1 - 2*dir
   switch root.Balance {
   case 1, -1:
       return root, true
   case 0:
       return root, false
   }
   return removeBalance(root, dir)

}

// Remove a single item from an AVL tree. // If key does not exist, function has no effect. func Remove(tree **Node, data Key) {

   *tree, _ = removeR(*tree, data)

}</lang> A demonstration program: <lang go>package main

import (

   "encoding/json"
   "fmt"
   "log"
   "avl"

)

type intKey int

// satisfy avl.Key func (k intKey) Less(k2 avl.Key) bool { return k < k2.(intKey) } func (k intKey) Eq(k2 avl.Key) bool { return k == k2.(intKey) }

// use json for cheap tree visualization func dump(tree *avl.Node) {

   b, err := json.MarshalIndent(tree, "", "   ")
   if err != nil {
       log.Fatal(err)
   }
   fmt.Println(string(b))

}

func main() {

   var tree *avl.Node
   fmt.Println("Empty tree:")
   dump(tree)
   fmt.Println("\nInsert test:")
   avl.Insert(&tree, intKey(3))
   avl.Insert(&tree, intKey(1))
   avl.Insert(&tree, intKey(4))
   avl.Insert(&tree, intKey(1))
   avl.Insert(&tree, intKey(5))
   dump(tree)
   fmt.Println("\nRemove test:")
   avl.Remove(&tree, intKey(3))
   avl.Remove(&tree, intKey(1))
   dump(tree)

}</lang>

Output:
Empty tree:
null

Insert test:
{
   "Data": 3,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": -1,
         "Link": [
            {
               "Data": 1,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            },
            null
         ]
      },
      {
         "Data": 4,
         "Balance": 1,
         "Link": [
            null,
            {
               "Data": 5,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            }
         ]
      }
   ]
}

Remove test:
{
   "Data": 4,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      },
      {
         "Data": 5,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      }
   ]
}

Haskell

Based on solution of homework #4 from course http://www.seas.upenn.edu/~cis194/spring13/lectures.html. <lang haskell>import Data.Monoid

data Tree a

 = Leaf
 | Node Int
        (Tree a)
        a
        (Tree a)
 deriving (Show, Eq)

foldTree

 :: Ord a
 => [a] -> Tree a

foldTree = foldr insert Leaf

height Leaf = -1 height (Node h _ _ _) = h

depth a b = 1 + (height a `max` height b)

insert

 :: Ord a
 => a -> Tree a -> Tree a

insert v Leaf = Node 1 Leaf v Leaf insert v t@(Node n left v_ right)

 | v_ < v = rotate $ Node n left v_ (insert v right)
 | v_ > v = rotate $ Node n (insert v left) v_ right
 | otherwise = t

max_

 :: Ord a
 => Tree a -> Maybe a

max_ Leaf = Nothing max_ (Node _ _ v right) =

 case right of
   Leaf -> Just v
   _ -> max_ right

delete

 :: Ord a
 => a -> Tree a -> Tree a

delete _ Leaf = Leaf delete x (Node h left v right)

 | x == v =
   maybe left (\m -> rotate $ Node h left m (delete m right)) (max_ right)
 | x > v = rotate $ Node h left v (delete x right)
 | x < v = rotate $ Node h (delete x left) v right

rotate :: Tree a -> Tree a rotate Leaf = Leaf -- left left case rotate (Node h (Node lh ll lv lr) v r)

 | lh - height r > 1 && height ll - height lr > 0 =
   Node lh ll lv (Node (depth r lr) lr v r)

-- right right case rotate (Node h l v (Node rh rl rv rr))

 | rh - height l > 1 && height rr - height rl > 0 =
   Node rh (Node (depth l rl) l v rl) rv rr

-- left right case rotate (Node h (Node lh ll lv (Node rh rl rv rr)) v r)

 | lh - height r > 1 =
   Node h (Node (rh + 1) (Node (lh - 1) ll lv rl) rv rr) v r

-- right left case rotate (Node h l v (Node rh (Node lh ll lv lr) rv rr))

 | rh - height l > 1 =
   Node h l v (Node (lh + 1) ll lv (Node (rh - 1) lr rv rr))

-- re-weighting rotate (Node h l v r) =

 let (l_, r_) = (rotate l, rotate r)
 in Node (depth l_ r_) l_ v r_

draw

 :: Show a
 => Tree a -> String

draw t = '\n' : draw_ t 0 <> "\n"

 where
   draw_ Leaf _ = []
   draw_ (Node h l v r) d = draw_ r (d + 1) <> node <> draw_ l (d + 1)
     where
       node = padding d <> show (v, h) <> "\n"
       padding n = replicate (n * 4) ' '

main :: IO () main = putStr $ draw $ foldTree [1 .. 15]</lang>

Output:
            (15,0)
        (14,1)
            (13,0)
    (12,2)
            (11,0)
        (10,1)
            (9,0)
(8,3)
            (7,0)
        (6,1)
            (5,0)
    (4,2)
            (3,0)
        (2,1)
            (1,0)

Java

This code has been cobbled together from various online examples. It's not easy to find a clear and complete explanation of AVL trees. Textbooks tend to concentrate on red-black trees because of their better efficiency. (AVL trees need to make 2 passes through the tree when inserting and deleting: one down to find the node to operate upon and one up to rebalance the tree.) <lang java>public class AVLtree {

   private Node root;
   private static class Node {
       private int key;
       private int balance;
       private int height;
       private Node left;
       private Node right;
       private Node parent;
       Node(int key, Node parent) {
           this.key = key;
           this.parent = parent;
       }
   }
   public boolean insert(int key) {
       if (root == null) {
           root = new Node(key, null);
           return true;
       }
       Node n = root;
       while (true) {
           if (n.key == key)
               return false;
           Node parent = n;
           boolean goLeft = n.key > key;
           n = goLeft ? n.left : n.right;
           if (n == null) {
               if (goLeft) {
                   parent.left = new Node(key, parent);
               } else {
                   parent.right = new Node(key, parent);
               }
               rebalance(parent);
               break;
           }
       }
       return true;
   }
   private void delete(Node node) {
       if (node.left == null && node.right == null) {
           if (node.parent == null) {
               root = null;
           } else {
               Node parent = node.parent;
               if (parent.left == node) {
                   parent.left = null;
               } else {
                   parent.right = null;
               }
               rebalance(parent);
           }
           return;
       }
       if (node.left != null) {
           Node child = node.left;
           while (child.right != null) child = child.right;
           node.key = child.key;
           delete(child);
       } else {
           Node child = node.right;
           while (child.left != null) child = child.left;
           node.key = child.key;
           delete(child);
       }
   }
   public void delete(int delKey) {
       if (root == null)
           return;
       Node child = root;
       while (child != null) {
           Node node = child;
           child = delKey >= node.key ? node.right : node.left;
           if (delKey == node.key) {
               delete(node);
               return;
           }
       }
   }
   private void rebalance(Node n) {
       setBalance(n);
       if (n.balance == -2) {
           if (height(n.left.left) >= height(n.left.right))
               n = rotateRight(n);
           else
               n = rotateLeftThenRight(n);
       } else if (n.balance == 2) {
           if (height(n.right.right) >= height(n.right.left))
               n = rotateLeft(n);
           else
               n = rotateRightThenLeft(n);
       }
       if (n.parent != null) {
           rebalance(n.parent);
       } else {
           root = n;
       }
   }
   private Node rotateLeft(Node a) {
       Node b = a.right;
       b.parent = a.parent;
       a.right = b.left;
       if (a.right != null)
           a.right.parent = a;
       b.left = a;
       a.parent = b;
       if (b.parent != null) {
           if (b.parent.right == a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node rotateRight(Node a) {
       Node b = a.left;
       b.parent = a.parent;
       a.left = b.right;
       if (a.left != null)
           a.left.parent = a;
       b.right = a;
       a.parent = b;
       if (b.parent != null) {
           if (b.parent.right == a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node rotateLeftThenRight(Node n) {
       n.left = rotateLeft(n.left);
       return rotateRight(n);
   }
   private Node rotateRightThenLeft(Node n) {
       n.right = rotateRight(n.right);
       return rotateLeft(n);
   }
   private int height(Node n) {
       if (n == null)
           return -1;
       return n.height;
   }
   private void setBalance(Node... nodes) {
       for (Node n : nodes) {
           reheight(n);
           n.balance = height(n.right) - height(n.left);
       }
   }
   public void printBalance() {
       printBalance(root);
   }
   private void printBalance(Node n) {
       if (n != null) {
           printBalance(n.left);
           System.out.printf("%s ", n.balance);
           printBalance(n.right);
       }
   }
   private void reheight(Node node) {
       if (node != null) {
           node.height = 1 + Math.max(height(node.left), height(node.right));
       }
   }
   public static void main(String[] args) {
       AVLtree tree = new AVLtree();
       System.out.println("Inserting values 1 to 10");
       for (int i = 1; i < 10; i++)
           tree.insert(i);
       System.out.print("Printing balance: ");
       tree.printBalance();
   }

}</lang>

Inserting values 1 to 10
Printing balance: 0 0 0 1 0 1 0 0 0

More elaborate version

See AVL_tree/Java

Kotlin

Translation of: Java

<lang kotlin>class AvlTree {

   private var root: Node? = null
   private class Node(var key: Int, var parent: Node?) {
       var balance: Int = 0
       var left : Node? = null
       var right: Node? = null
   }
   fun insert(key: Int): Boolean {
       if (root == null)
           root = Node(key, null)
       else {
           var n: Node? = root
           var parent: Node
           while (true) {
               if (n!!.key == key) return false
               parent = n
               val goLeft = n.key > key
               n = if (goLeft) n.left else n.right
               if (n == null) {
                   if (goLeft)
                       parent.left  = Node(key, parent)
                   else
                       parent.right = Node(key, parent)
                   rebalance(parent)
                   break
               }
           }
       }
       return true
   }
   fun delete(delKey: Int) {
       if (root == null) return
       var n:       Node? = root
       var parent:  Node? = root
       var delNode: Node? = null
       var child:   Node? = root
       while (child != null) {
           parent = n
           n = child
           child = if (delKey >= n.key) n.right else n.left
           if (delKey == n.key) delNode = n
       }
       if (delNode != null) {
           delNode.key = n!!.key
           child = if (n.left != null) n.left else n.right
           if (0 == root!!.key.compareTo(delKey)) {
               root = child
               if (null != root) {
                   root!!.parent = null
               }
           } else {
               if (parent!!.left == n)
                   parent.left = child
               else
                   parent.right = child
               if (null != child) {
                   child.parent = parent
               }
               rebalance(parent)
           }
   }
   private fun rebalance(n: Node) {
       setBalance(n)
       var nn = n
       if (nn.balance == -2)
           if (height(nn.left!!.left) >= height(nn.left!!.right))
               nn = rotateRight(nn)
           else
               nn = rotateLeftThenRight(nn)
       else if (nn.balance == 2)
           if (height(nn.right!!.right) >= height(nn.right!!.left))
               nn = rotateLeft(nn)
           else
               nn = rotateRightThenLeft(nn)
       if (nn.parent != null) rebalance(nn.parent!!)
       else root = nn
   }
   private fun rotateLeft(a: Node): Node {
       val b: Node? = a.right
       b!!.parent = a.parent
       a.right = b.left
       if (a.right != null) a.right!!.parent = a
       b.left = a
       a.parent = b
       if (b.parent != null) {
           if (b.parent!!.right == a)
               b.parent!!.right = b
           else
               b.parent!!.left = b
       }
       setBalance(a, b)
       return b
   }
   private fun rotateRight(a: Node): Node {
       val b: Node? = a.left
       b!!.parent = a.parent
       a.left = b.right
       if (a.left != null) a.left!!.parent = a
       b.right = a
       a.parent = b
       if (b.parent != null) {
           if (b.parent!!.right == a)
               b.parent!!.right = b
           else
               b.parent!!.left = b
       }
       setBalance(a, b)
       return b
   }
   private fun rotateLeftThenRight(n: Node): Node {
       n.left = rotateLeft(n.left!!)
       return rotateRight(n)
   }
   private fun rotateRightThenLeft(n: Node): Node {
       n.right = rotateRight(n.right!!)
       return rotateLeft(n)
   }
   private fun height(n: Node?): Int {
       if (n == null) return -1
       return 1 + Math.max(height(n.left), height(n.right))
   }
   private fun setBalance(vararg nodes: Node) {
       for (n in nodes) n.balance = height(n.right) - height(n.left)
   }
   fun printKey() {
       printKey(root)
       println()
   }
   private fun printKey(n: Node?) {
       if (n != null) {
           printKey(n.left)
           print("${n.key} ")
           printKey(n.right)
       }
   }
   fun printBalance() {
       printBalance(root)
       println()
   }
   private fun printBalance(n: Node?) {
       if (n != null) {
           printBalance(n.left)
           print("${n.balance} ")
           printBalance(n.right)
       }
   }

}

fun main(args: Array<String>) {

   val tree = AvlTree()
   println("Inserting values 1 to 10")
   for (i in 1..10) tree.insert(i)
   print("Printing key     : ")
   tree.printKey()
   print("Printing balance : ")
   tree.printBalance()

}</lang>

Output:
Inserting values 1 to 10
Printing key     : 1 2 3 4 5 6 7 8 9 10
Printing balance : 0 0 0 1 0 0 0 0 1 0

Lua

<lang Lua>AVL={balance=0} AVL.__mt={__index = AVL}


function AVL:new(list)

 local o={}  
 setmetatable(o, AVL.__mt)
 for _,v in ipairs(list or {}) do
   o=o:insert(v)
 end
 return o

end

function AVL:rebalance()

 local rotated=false
 if self.balance>1 then
   if self.right.balance<0 then
     self.right, self.right.left.right, self.right.left = self.right.left, self.right, self.right.left.right
     self.right.right.balance=self.right.balance>-1 and 0 or 1
     self.right.balance=self.right.balance>0 and 2 or 1
   end
   self, self.right.left, self.right = self.right, self, self.right.left
   self.left.balance=1-self.balance
   self.balance=self.balance==0 and -1 or 0
   rotated=true
 elseif self.balance<-1 then
   if self.left.balance>0 then
     self.left, self.left.right.left, self.left.right = self.left.right, self.left, self.left.right.left
     self.left.left.balance=self.left.balance<1 and 0 or -1
     self.left.balance=self.left.balance<0 and -2 or -1
   end
   self, self.left.right, self.left = self.left, self, self.left.right
   self.right.balance=-1-self.balance
   self.balance=self.balance==0 and 1 or 0
   rotated=true
 end
 return self,rotated

end

function AVL:insert(v)

 if not self.value then 
   self.value=v
   self.balance=0
   return self,1
 end
 local grow
 if v==self.value then
   return self,0
 elseif v<self.value then
   if not self.left then self.left=self:new() end
   self.left,grow=self.left:insert(v)
   self.balance=self.balance-grow
 else
   if not self.right then self.right=self:new() end
   self.right,grow=self.right:insert(v)
   self.balance=self.balance+grow
 end
 self,rotated=self:rebalance()
 return self, (rotated or self.balance==0) and 0 or grow 

end

function AVL:delete_move(dir,other,mul)

 if self[dir] then
   local sb2,v
   self[dir], sb2, v=self[dir]:delete_move(dir,other,mul)
   self.balance=self.balance+sb2*mul
   self,sb2=self:rebalance()
   return self,(sb2 or self.balance==0) and -1 or 0,v
 else
   return self[other],-1,self.value
 end

end

function AVL:delete(v,isSubtree)

 local grow=0
 if v==self.value then
   local v
   if self.balance>0 then
     self.right,grow,v=self.right:delete_move("left","right",-1)
   elseif self.left then
     self.left,grow,v=self.left:delete_move("right","left",1)
     grow=-grow
   else
     return not isSubtree and AVL:new(),-1
   end
   self.value=v
   self.balance=self.balance+grow
 elseif v<self.value and self.left then
   self.left,grow=self.left:delete(v,true)
   self.balance=self.balance-grow
 elseif v>self.value and self.right then
   self.right,grow=self.right:delete(v,true)
   self.balance=self.balance+grow
 else
   return self,0
 end
 self,rotated=self:rebalance()
 return self, grow~=0 and (rotated or self.balance==0) and -1 or 0

end

-- output functions

function AVL:toList(list)

 if not self.value then return {} end
 list=list or {}
 if self.left then self.left:toList(list) end
 list[#list+1]=self.value
 if self.right then self.right:toList(list) end
 return list

end

function AVL:dump(depth)

 if not self.value then return end
 depth=depth or 0
 if self.right then self.right:dump(depth+1) end
 print(string.rep("    ",depth)..self.value.." ("..self.balance..")")
 if self.left then self.left:dump(depth+1) end

end

-- test

local test=AVL:new{1,10,5,15,20,3,5,14,7,13,2,8,3,4,5,10,9,8,7}

test:dump() print("\ninsert 17:") test=test:insert(17) test:dump() print("\ndelete 10:") test=test:delete(10) test:dump() print("\nlist:") print(unpack(test:toList())) </lang>

Output:
            20 (0)
        15 (1)
    14 (1)
        13 (0)
10 (-1)
            9 (0)
        8 (0)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

insert 17:
            20 (0)
        17 (0)
            15 (0)
    14 (1)
        13 (0)
10 (-1)
            9 (0)
        8 (0)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

delete 10:
            20 (0)
        17 (0)
            15 (0)
    14 (1)
        13 (0)
9 (-1)
        8 (-1)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

list:
1       2       3       4       5       7       8       9       13      14      15      17      20


Objeck

Translation of: Java

<lang objeck>class AVLNode {

 @key : Int;
 @balance : Int;
 @height : Int;
 @left : AVLNode;
 @right : AVLNode;
 @above : AVLNode;
 
 New(key : Int, above : AVLNode) {
   @key := key;
   @above := above;
 }
 method : public : GetKey() ~ Int {
   return @key;
 }
 method : public : GetLeft() ~ AVLNode {
   return @left;
 }
 method : public : GetRight() ~ AVLNode {
   return @right;
 }
 method : public : GetAbove() ~ AVLNode {
   return @above;
 }
 method : public : GetBalance() ~ Int {
   return @balance;
 }
 method : public : GetHeight() ~ Int {
   return @height;
 }
 method : public : SetBalance(balance : Int) ~ Nil {
   @balance := balance;
 }
 method : public : SetHeight(height : Int) ~ Nil {
   @height := height;
 }
 method : public : SetAbove(above : AVLNode) ~ Nil {
   @above := above;
 }
 method : public : SetLeft(left : AVLNode) ~ Nil {
   @left := left;
 }
 method : public : SetRight(right : AVLNode) ~ Nil {
   @right := right;
 }
 method : public : SetKey(key : Int) ~ Nil {
   @key := key;
 }

}

class AVLTree {

 @root : AVLNode;
 New() {}
 method : public : Insert(key : Int) ~ Bool {
   if(@root = Nil) {
     @root := AVLNode->New( key, Nil);
     return true;
   };

   n := @root;
   while(true) {
     if(n->GetKey() = key) {
       return false;
     };
     
     parent := n;
     goLeft := n->GetKey() > key;
     n := goLeft ? n->GetLeft() : n->GetRight();

     if(n = Nil) {
       if(goLeft) {
         parent->SetLeft(AVLNode->New( key, parent));
       } else {
         parent->SetRight(AVLNode->New( key, parent));
       };
       Rebalance(parent);
       break;
     };
   };
   return true;
 }
 method : Delete(node : AVLNode) ~ Nil {
   if (node->GetLeft() = Nil & node->GetRight() = Nil) {
     if (node ->GetAbove() = Nil) {
       @root := Nil;
     } else {
       parent := node ->GetAbove();
       if (parent->GetLeft() = node) {
         parent->SetLeft(Nil);
       } else {
         parent->SetRight(Nil);
       };
       Rebalance(parent);
     };
     return;
   };

   if (node->GetLeft() <> Nil) {
     child := node->GetLeft();
     while (child->GetRight() <> Nil) {
       child := child->GetRight();
     };
     node->SetKey(child->GetKey());
     Delete(child);
   } else {
     child := node->GetRight();
     while (child->GetLeft() <> Nil) {
       child := child->GetLeft();
     };
     node->SetKey(child->GetKey());
     Delete(child);
   };
 }
 method : public : Delete(delKey : Int) ~ Nil {
   if (@root = Nil) {
     return;
   };

   child := @root;
   while (child <> Nil) {
     node := child;
     child := delKey >= node->GetKey() ? node->GetRight() : node->GetLeft();
     if (delKey = node->GetKey()) {
       Delete(node);
       return;
     };
   };
 }
 method : Rebalance(n : AVLNode) ~ Nil {
   SetBalance(n);

   if (n->GetBalance() = -2) {
     if (Height(n->GetLeft()->GetLeft()) >= Height(n->GetLeft()->GetRight())) {
       n := RotateRight(n);
     }
     else {
       n := RotateLeftThenRight(n);
     };
    
   } else if (n->GetBalance() = 2) {
     if(Height(n->GetRight()->GetRight()) >= Height(n->GetRight()->GetLeft())) {
       n := RotateLeft(n);
     }
     else {
       n := RotateRightThenLeft(n);
     };
   };

   if(n->GetAbove() <> Nil) {
     Rebalance(n->GetAbove());
   } else {
     @root := n;
   };
 }
 method : RotateLeft(a : AVLNode) ~ AVLNode {
   b := a->GetRight();
   b->SetAbove(a->GetAbove());

   a->SetRight(b->GetLeft());

   if(a->GetRight() <> Nil) {
     a->GetRight()->SetAbove(a);
   };
   
   b->SetLeft(a);
   a->SetAbove(b);
   
   if (b->GetAbove() <> Nil) {
     if (b->GetAbove()->GetRight() = a) {
       b->GetAbove()->SetRight(b);
     } else {
       b->GetAbove()->SetLeft(b);
     };
   };

   SetBalance(a);
   SetBalance(b);

   return b;
 }
 
 method : RotateRight(a : AVLNode) ~ AVLNode {
   b := a->GetLeft();
   b->SetAbove(a->GetAbove());

   a->SetLeft(b->GetRight());
   
   if (a->GetLeft() <> Nil) {
     a->GetLeft()->SetAbove(a);
   };
   
   b->SetRight(a);
   a->SetAbove(b);

   if (b->GetAbove() <> Nil) {
     if (b->GetAbove()->GetRight() = a) {
       b->GetAbove()->SetRight(b);
     } else {
       b->GetAbove()->SetLeft(b);
     };
   };
   
   SetBalance(a);
   SetBalance(b);
   return b;
 }
 method : RotateLeftThenRight(n : AVLNode) ~ AVLNode {
   n->SetLeft(RotateLeft(n->GetLeft()));
   return RotateRight(n);
 }

 method : RotateRightThenLeft(n : AVLNode) ~ AVLNode {
   n->SetRight(RotateRight(n->GetRight()));
   return RotateLeft(n);
 }
 method : SetBalance(n : AVLNode) ~ Nil {
   Reheight(n);
   n->SetBalance(Height(n->GetRight()) - Height(n->GetLeft()));
 }
 method : Reheight(node : AVLNode) ~ Nil {
   if(node <> Nil) {
     node->SetHeight(1 + Int->Max(Height(node->GetLeft()), Height(node->GetRight())));
   };
 }
 method : Height(n : AVLNode) ~ Int {
   if(n = Nil) {
     return -1;
   };
   return n->GetHeight();
 }
 method : public : PrintBalance() ~ Nil {
   PrintBalance(@root);
 }

 method : PrintBalance(n : AVLNode) ~ Nil {
   if (n <> Nil) {
     PrintBalance(n->GetLeft());
     balance := n->GetBalance();
     "{$balance} "->Print();
     PrintBalance(n->GetRight());
   };
 }

}

class Test {

 function : Main(args : String[]) ~ Nil {
   tree := AVLTree->New();

   "Inserting values 1 to 10"->PrintLine();
   for(i := 1; i < 10; i+=1;) {
     tree->Insert(i);
   };

   "Printing balance: "->Print();
   tree->PrintBalance();
 }

} </lang>

Output:
Inserting values 1 to 10
Printing balance: 0 0 0 1 0 1 0 0 0

Objective-C

Translation of: Java
This example is incomplete. It is missing an @interface for AVLTree and also missing any @interface or @implementation for AVLTreeNode. Please ensure that it meets all task requirements and remove this message.

<lang Objective-C> @implementation AVLTree

-(BOOL)insertWithKey:(NSInteger)key {

   if (self.root == nil) {
       self.root = [[AVLTreeNode alloc]initWithKey:key andParent:nil];
   } else {
       
       AVLTreeNode *n = self.root;
       AVLTreeNode *parent;
       
       while (true) {
           
           if (n.key == key) {
               return false;
           }
           
           parent = n;
           
           BOOL goLeft = n.key > key;
           n = goLeft ? n.left : n.right;
           
           if (n == nil) {
               
               if (goLeft) {
                   parent.left = [[AVLTreeNode alloc]initWithKey:key andParent:parent];
               } else {
                   parent.right = [[AVLTreeNode alloc]initWithKey:key andParent:parent];
               }
               [self rebalanceStartingAtNode:parent];
               break;
           }
       }
   }
   
   return true;

}

-(void)rebalanceStartingAtNode:(AVLTreeNode*)n {

   [self setBalance:@[n]];
   
   if (n.balance == -2) {
       if ([self height:(n.left.left)] >= [self height:n.left.right]) {
           n = [self rotateRight:n];
       } else {
           n = [self rotateLeftThenRight:n];
       }
   } else if (n.balance == 2) {
       if ([self height:n.right.right] >= [self height:n.right.left]) {
           n = [self rotateLeft:n];
       } else {
           n = [self rotateRightThenLeft:n];
       }
   }
   
   if (n.parent != nil) {
       [self rebalanceStartingAtNode:n.parent];
   } else {
       self.root = n;
   }

}


-(AVLTreeNode*)rotateRight:(AVLTreeNode*)a {

   AVLTreeNode *b = a.left;
   b.parent = a.parent;
   
   a.left = b.right;
   
   if (a.left != nil) {
       a.left.parent = a;
   }
   
   b.right = a;
   a.parent = b;
   
   if (b.parent != nil) {
       if (b.parent.right == a) {
           b.parent.right = b;
       } else {
           b.parent.left = b;
       }
   }
   
   [self setBalance:@[a,b]];
   return b;
   

}

-(AVLTreeNode*)rotateLeftThenRight:(AVLTreeNode*)n {

   n.left = [self rotateLeft:n.left];
   return [self rotateRight:n];
   

}

-(AVLTreeNode*)rotateRightThenLeft:(AVLTreeNode*)n {

   n.right = [self rotateRight:n.right];
   return [self rotateLeft:n];

}

-(AVLTreeNode*)rotateLeft:(AVLTreeNode*)a {

   //set a's right node as b
   AVLTreeNode* b = a.right;
   //set b's parent as a's parent (which could be nil)
   b.parent = a.parent;
   //in case b had a left child transfer it to a
   a.right = b.left;
   
   // after changing a's reference to the right child, make sure the parent is set too
   if (a.right != nil) {
       a.right.parent = a;
   }
   
   // switch a over to the left to be b's left child
   b.left = a;
   a.parent = b;
   
   if (b.parent != nil) {
       if (b.parent.right == a) {
           b.parent.right = b;
       } else {
           b.parent.right = b;
       }
   }
   
   [self setBalance:@[a,b]];
   
   return b;
   

}


-(void) setBalance:(NSArray*)nodesArray {

   for (AVLTreeNode* n in nodesArray) {
       
       n.balance = [self height:n.right] - [self height:n.left];
   }
   

}

-(int)height:(AVLTreeNode*)n {

   if (n == nil) {
       return -1;
   }
   
   return 1 + MAX([self height:n.left], [self height:n.right]);

}

-(void)printKey:(AVLTreeNode*)n {

   if (n != nil) {
       [self printKey:n.left];
       NSLog(@"%ld", n.key);
       [self printKey:n.right];
   }

}

-(void)printBalance:(AVLTreeNode*)n {

   if (n != nil) {
       [self printBalance:n.left];
       NSLog(@"%ld", n.balance);
       [self printBalance:n.right];
   }

} @end -- test

int main(int argc, const char * argv[]) {

   @autoreleasepool {
       AVLTree *tree = [AVLTree new];
       NSLog(@"inserting values 1 to 6");
       [tree insertWithKey:1];
       [tree insertWithKey:2];
       [tree insertWithKey:3];
       [tree insertWithKey:4];
       [tree insertWithKey:5];
       [tree insertWithKey:6];
       
       NSLog(@"printing balance: ");
       [tree printBalance:tree.root];
       
       NSLog(@"printing key: ");
       [tree printKey:tree.root];
   }
   return 0;

}

</lang>

Output:
inserting values 1 to 6
printing balance:
0
0
0
0
1
0

printing key:
1
2
3
4
5
6

Phix

Translated from the C version at http://www.geeksforgeeks.org/avl-tree-set-2-deletion
The standard distribution includes demo\rosetta\AVL_tree.exw, which contains a slightly longer but perhaps more readable version, with a command line equivalent of https://www.cs.usfca.edu/~galles/visualization/AVLtree.html as well as a simple tree structure display routine and additional verification code (both modelled on the C version found on this page) <lang Phix>enum KEY = 0,

    LEFT,
    HEIGHT,    -- (NB +/-1 gives LEFT or RIGHT)
    RIGHT

sequence tree = {} integer freelist = 0

function newNode(object key) integer node

   if freelist=0 then
       node = length(tree)+1
       tree &= {key,NULL,1,NULL}
   else
       node = freelist
       freelist = tree[freelist]
       tree[node+KEY..node+RIGHT] = {key,NULL,1,NULL}
   end if
   return node

end function

function height(integer node)

   return iff(node=NULL?0:tree[node+HEIGHT])

end function

procedure setHeight(integer node)

   tree[node+HEIGHT] = max(height(tree[node+LEFT]), height(tree[node+RIGHT]))+1

end procedure

function rotate(integer node, integer direction) integer idirection = LEFT+RIGHT-direction integer pivot = tree[node+idirection]

   {tree[pivot+direction],tree[node+idirection]} = {node,tree[pivot+direction]}
   setHeight(node)
   setHeight(pivot)
   return pivot

end function

function getBalance(integer N)

   return iff(N==NULL ? 0 : height(tree[N+LEFT])-height(tree[N+RIGHT]))

end function

function insertNode(integer node, object key)

   if node==NULL then
       return newNode(key)
   end if
   integer c = compare(key,tree[node+KEY])
   if c!=0 then
       integer direction = HEIGHT+c    -- LEFT or RIGHT
       tree[node+direction] = insertNode(tree[node+direction], key)
       setHeight(node)
       integer balance = trunc(getBalance(node)/2) -- +/-1 (or 0)
       if balance then
           direction = HEIGHT-balance  -- LEFT or RIGHT
           c = compare(key,tree[tree[node+direction]+KEY])
           if c=balance then
               tree[node+direction] = rotate(tree[node+direction],direction)
           end if
           if c!=0 then
               node = rotate(node,LEFT+RIGHT-direction)
           end if
       end if
   end if
   return node

end function

function minValueNode(integer node)

   while 1 do
       integer next = tree[node+LEFT]
       if next=NULL then exit end if
       node = next
   end while
   return node

end function

function deleteNode(integer root, object key) integer c

   if root=NULL then return root end if
   c = compare(key,tree[root+KEY])
   if c=-1 then
       tree[root+LEFT] = deleteNode(tree[root+LEFT], key)
   elsif c=+1 then
       tree[root+RIGHT] = deleteNode(tree[root+RIGHT], key)
   elsif tree[root+LEFT]==NULL
      or tree[root+RIGHT]==NULL then
       integer temp = iff(tree[root+LEFT] ? tree[root+LEFT] : tree[root+RIGHT])
       if temp==NULL then  -- No child case
           {temp,root} = {root,NULL}
       else                -- One child case
           tree[root+KEY..root+RIGHT] = tree[temp+KEY..temp+RIGHT]
       end if
       tree[temp+KEY] = freelist
       freelist = temp
   else                    -- Two child case
       integer temp = minValueNode(tree[root+RIGHT])
       tree[root+KEY] = tree[temp+KEY]
       tree[root+RIGHT] = deleteNode(tree[root+RIGHT], tree[temp+KEY])
   end if
   if root=NULL then return root end if
   setHeight(root)
   integer balance = trunc(getBalance(root)/2)
   if balance then
       integer direction = HEIGHT-balance
       c = compare(getBalance(tree[root+direction]),0)
       if c=-balance then
           tree[root+direction] = rotate(tree[root+direction],direction)
       end if
       root = rotate(root,LEFT+RIGHT-direction)
   end if
   return root

end function

procedure inOrder(integer node)

   if node!=NULL then
       inOrder(tree[node+LEFT])
       printf(1, "%d ", tree[node+KEY])
       inOrder(tree[node+RIGHT])
   end if

end procedure

integer root = NULL sequence test = shuffle(tagset(50003))

   for i=1 to length(test) do
       root = insertNode(root,test[i])
   end for
   test = shuffle(tagset(50000))
   for i=1 to length(test) do
       root = deleteNode(root,test[i])
   end for
   inOrder(root)</lang>
Output:
50001 50002 50003

Python

<lang python> """

Python AVL tree example based on

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lec06_code.zip

Simplified for Rosetta Code example.

See also:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/MIT6_006F11_lec06_orig.pdf

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-6-avl-trees-avl-sort/

"""

class AVLNode(object):

   """A node in the AVL tree."""
   
   def __init__(self, parent, k):
       """Creates a node.
       
       Args:
           parent: The node's parent.
           k: key of the node.
       """
       self.key = k
       self.parent = parent
       self.left = None
       self.right = None
 
   def _str(self):
       """Internal method for ASCII art."""
       label = str(self.key)
       if self.left is None:
           left_lines, left_pos, left_width = [], 0, 0
       else:
           left_lines, left_pos, left_width = self.left._str()
       if self.right is None:
           right_lines, right_pos, right_width = [], 0, 0
       else:
           right_lines, right_pos, right_width = self.right._str()
       middle = max(right_pos + left_width - left_pos + 1, len(label), 2)
       pos = left_pos + middle // 2
       width = left_pos + middle + right_width - right_pos
       while len(left_lines) < len(right_lines):
           left_lines.append(' ' * left_width)
       while len(right_lines) < len(left_lines):
           right_lines.append(' ' * right_width)
       if (middle - len(label)) % 2 == 1 and self.parent is not None and \
          self is self.parent.left and len(label) < middle:
           label += '.'
       label = label.center(middle, '.')
       if label[0] == '.': label = ' ' + label[1:]
       if label[-1] == '.': label = label[:-1] + ' '
       lines = [' ' * left_pos + label + ' ' * (right_width - right_pos),
                ' ' * left_pos + '/' + ' ' * (middle-2) +
                '\\' + ' ' * (right_width - right_pos)] + \
         [left_line + ' ' * (width - left_width - right_width) + right_line
          for left_line, right_line in zip(left_lines, right_lines)]
       return lines, pos, width
       
   def __str__(self):
       return '\n'.join(self._str()[0])
   def find(self, k):
       """Finds and returns the node with key k from the subtree rooted at this 
       node.
       
       Args:
           k: The key of the node we want to find.
       
       Returns:
           The node with key k.
       """
       if k == self.key:
           return self
       elif k < self.key:
           if self.left is None:
               return None
           else:
               return self.left.find(k)
       else:
           if self.right is None:  
               return None
           else:
               return self.right.find(k)
   
   def find_min(self):
       """Finds the node with the minimum key in the subtree rooted at this 
       node.
       
       Returns:
           The node with the minimum key.
       """
       current = self
       while current.left is not None:
           current = current.left
       return current
      
   def next_larger(self):
       """Returns the node with the next larger key (the successor) in the BST.
       """
       if self.right is not None:
           return self.right.find_min()
       current = self
       while current.parent is not None and current is current.parent.right:
           current = current.parent
       return current.parent
   def insert(self, node):
       """Inserts a node into the subtree rooted at this node.
       
       Args:
           node: The node to be inserted.
       """
       if node is None:
           return
       if node.key < self.key:
           if self.left is None:
               node.parent = self
               self.left = node
           else:
               self.left.insert(node)
       else:
           if self.right is None:
               node.parent = self
               self.right = node
           else:
               self.right.insert(node)
 
   def delete(self):
       """Deletes and returns this node from the tree."""
       if self.left is None or self.right is None:
           if self is self.parent.left:
               self.parent.left = self.left or self.right
               if self.parent.left is not None:
                   self.parent.left.parent = self.parent
           else:
               self.parent.right = self.left or self.right
               if self.parent.right is not None:
                   self.parent.right.parent = self.parent
           return self
       else:
           s = self.next_larger()
           self.key, s.key = s.key, self.key
           return s.delete()

def height(node):

   if node is None:
       return -1
   else:
       return node.height

def update_height(node):

   node.height = max(height(node.left), height(node.right)) + 1

class AVL(object):

   """
   AVL binary search tree implementation.
   """
   
   def __init__(self):
       """ empty tree """
       self.root = None
   
   def __str__(self):
       if self.root is None: return '<empty tree>'
       return str(self.root)
   def find(self, k):
       """Finds and returns the node with key k from the subtree rooted at this 
       node.
       
       Args:
           k: The key of the node we want to find.
       
       Returns:
           The node with key k or None if the tree is empty.
       """
       return self.root and self.root.find(k)
               
   def find_min(self):
       """Returns the minimum node of this BST."""
       
       return self.root and self.root.find_min()
   
   def next_larger(self, k):
       """Returns the node that contains the next larger (the successor) key in
       the BST in relation to the node with key k.
       
       Args:
           k: The key of the node of which the successor is to be found.
           
       Returns:
           The successor node.
       """
       node = self.find(k)
       return node and node.next_larger()   
   def left_rotate(self, x):
       y = x.right
       y.parent = x.parent
       if y.parent is None:
           self.root = y
       else:
           if y.parent.left is x:
               y.parent.left = y
           elif y.parent.right is x:
               y.parent.right = y
       x.right = y.left
       if x.right is not None:
           x.right.parent = x
       y.left = x
       x.parent = y
       update_height(x)
       update_height(y)
   def right_rotate(self, x):
       y = x.left
       y.parent = x.parent
       if y.parent is None:
           self.root = y
       else:
           if y.parent.left is x:
               y.parent.left = y
           elif y.parent.right is x:
               y.parent.right = y
       x.left = y.right
       if x.left is not None:
           x.left.parent = x
       y.right = x
       x.parent = y
       update_height(x)
       update_height(y)
   def rebalance(self, node):
       while node is not None:
           update_height(node)
           if height(node.left) >= 2 + height(node.right):
               if height(node.left.left) >= height(node.left.right):
                   self.right_rotate(node)
               else:
                   self.left_rotate(node.left)
                   self.right_rotate(node)
           elif height(node.right) >= 2 + height(node.left):
               if height(node.right.right) >= height(node.right.left):
                   self.left_rotate(node)
               else:
                   self.right_rotate(node.right)
                   self.left_rotate(node)
           node = node.parent
   def insert(self, k):
       """Inserts a node with key k into the subtree rooted at this node.
       This AVL version guarantees the balance property: h = O(lg n).
       
       Args:
           k: The key of the node to be inserted.
       """
       node = AVLNode(None, k)
       if self.root is None:
           # The root's parent is None.
           self.root = node
       else:
           self.root.insert(node)
       self.rebalance(node)
   def delete(self, k):
       """Deletes and returns a node with key k if it exists from the BST.
       This AVL version guarantees the balance property: h = O(lg n).
       
       Args:
           k: The key of the node that we want to delete.
           
       Returns:
           The deleted node with key k.
       """
       node = self.find(k)
       if node is None:
           return None
       if node is self.root:
           pseudoroot = AVLNode(None, 0)
           pseudoroot.left = self.root
           self.root.parent = pseudoroot
           deleted = self.root.delete()
           self.root = pseudoroot.left
           if self.root is not None:
               self.root.parent = None
       else:
           deleted = node.delete()   
       ## node.parent is actually the old parent of the node,
       ## which is the first potentially out-of-balance node.
       self.rebalance(deleted.parent)

def test(args=None):

   import random, sys
   if not args:
       args = sys.argv[1:]
   if not args:
       print('usage: %s <number-of-random-items | item item item ...>' % \
             sys.argv[0])
       sys.exit()
   elif len(args) == 1:
       items = (random.randrange(100) for i in range(int(args[0])))
   else:
       items = [int(i) for i in args]
   tree = AVL()
   print(tree)
   for item in items:
       tree.insert(item)
       print()
       print(tree)

if __name__ == '__main__': test() </lang>

Output:
python avlrc.py 1 2 3 4 5 6 7 8 9 10

... only showing last tree ...

   ..4...
  /      \
  2      .8.
 / \    /   \
1  3    6   9
/\ /\  / \  /\
      5  7   10
      /\ /\  /\

Rust

See AVL tree/Rust.

Scala

<lang scala>import scala.collection.mutable

class AVLTree[A](implicit val ordering: Ordering[A]) extends mutable.SortedSet[A] {

 if (ordering eq null) throw new NullPointerException("ordering must not be null")
 private var _root: AVLNode = _
 private var _size = 0
 override def size: Int = _size
 override def foreach[U](f: A => U): Unit = {
   val stack = mutable.Stack[AVLNode]()
   var current = root
   var done = false
   while (!done) {
     if (current != null) {
       stack.push(current)
       current = current.left
     } else if (stack.nonEmpty) {
       current = stack.pop()
       f.apply(current.key)
       current = current.right
     } else {
       done = true
     }
   }
 }
 def root: AVLNode = _root
 override def isEmpty: Boolean = root == null
 override def min[B >: A](implicit cmp: Ordering[B]): A = minNode().key
 def minNode(): AVLNode = {
   if (root == null) throw new UnsupportedOperationException("empty tree")
   var node = root
   while (node.left != null) node = node.left
   node
 }
 override def max[B >: A](implicit cmp: Ordering[B]): A = maxNode().key
 def maxNode(): AVLNode = {
   if (root == null) throw new UnsupportedOperationException("empty tree")
   var node = root
   while (node.right != null) node = node.right
   node
 }
 def next(node: AVLNode): Option[AVLNode] = {
   var successor = node
   if (successor != null) {
     if (successor.right != null) {
       successor = successor.right
       while (successor != null && successor.left != null) {
         successor = successor.left
       }
     } else {
       successor = node.parent
       var n = node
       while (successor != null && successor.right == n) {
         n = successor
         successor = successor.parent
       }
     }
   }
   Option(successor)
 }
 def prev(node: AVLNode): Option[AVLNode] = {
   var predecessor = node
   if (predecessor != null) {
     if (predecessor.left != null) {
       predecessor = predecessor.left
       while (predecessor != null && predecessor.right != null) {
         predecessor = predecessor.right
       }
     } else {
       predecessor = node.parent
       var n = node
       while (predecessor != null && predecessor.left == n) {
         n = predecessor
         predecessor = predecessor.parent
       }
     }
   }
   Option(predecessor)
 }
 override def rangeImpl(from: Option[A], until: Option[A]): mutable.SortedSet[A] = ???
 override def +=(key: A): AVLTree.this.type = {
   insert(key)
   this
 }
 def insert(key: A): AVLNode = {
   if (root == null) {
     _root = new AVLNode(key)
     _size += 1
     return root
   }
   var node = root
   var parent: AVLNode = null
   var cmp = 0
   while (node != null) {
     parent = node
     cmp = ordering.compare(key, node.key)
     if (cmp == 0) return node // duplicate
     node = node.matchNextChild(cmp)
   }
   val newNode = new AVLNode(key, parent)
   if (cmp <= 0) parent._left = newNode
   else parent._right = newNode
   while (parent != null) {
     cmp = ordering.compare(parent.key, key)
     if (cmp < 0) parent.balanceFactor -= 1
     else parent.balanceFactor += 1
     parent = parent.balanceFactor match {
       case -1 | 1 => parent.parent
       case x if x < -1 =>
         if (parent.right.balanceFactor == 1) rotateRight(parent.right)
         val newRoot = rotateLeft(parent)
         if (parent == root) _root = newRoot
         null
       case x if x > 1 =>
         if (parent.left.balanceFactor == -1) rotateLeft(parent.left)
         val newRoot = rotateRight(parent)
         if (parent == root) _root = newRoot
         null
       case _ => null
     }
   }
   _size += 1
   newNode
 }
 override def -=(key: A): AVLTree.this.type = {
   remove(key)
   this
 }
 override def remove(key: A): Boolean = {
   var node = findNode(key).orNull
   if (node == null) return false
   if (node.left != null) {
     var max = node.left
     while (max.left != null || max.right != null) {
       while (max.right != null) max = max.right
       node._key = max.key
       if (max.left != null) {
         node = max
         max = max.left
       }
     }
     node._key = max.key
     node = max
   }
   if (node.right != null) {
     var min = node.right
     while (min.left != null || min.right != null) {
       while (min.left != null) min = min.left
       node._key = min.key
       if (min.right != null) {
         node = min
         min = min.right
       }
     }
     node._key = min.key
     node = min
   }
   var current = node
   var parent = node.parent
   while (parent != null) {
     parent.balanceFactor += (if (parent.left == current) -1 else 1)
     current = parent.balanceFactor match {
       case x if x < -1 =>
         if (parent.right.balanceFactor == 1) rotateRight(parent.right)
         val newRoot = rotateLeft(parent)
         if (parent == root) _root = newRoot
         newRoot
       case x if x > 1 =>
         if (parent.left.balanceFactor == -1) rotateLeft(parent.left)
         val newRoot = rotateRight(parent)
         if (parent == root) _root = newRoot
         newRoot
       case _ => parent
     }
     parent = current.balanceFactor match {
       case -1 | 1 => null
       case _ => current.parent
     }
   }
   if (node.parent != null) {
     if (node.parent.left == node) {
       node.parent._left = null
     } else {
       node.parent._right = null
     }
   }
   if (node == root) _root = null
   _size -= 1
   true
 }
 def findNode(key: A): Option[AVLNode] = {
   var node = root
   while (node != null) {
     val cmp = ordering.compare(key, node.key)
     if (cmp == 0) return Some(node)
     node = node.matchNextChild(cmp)
   }
   None
 }
 private def rotateLeft(node: AVLNode): AVLNode = {
   val rightNode = node.right
   node._right = rightNode.left
   if (node.right != null) node.right._parent = node
   rightNode._parent = node.parent
   if (rightNode.parent != null) {
     if (rightNode.parent.left == node) {
       rightNode.parent._left = rightNode
     } else {
       rightNode.parent._right = rightNode
     }
   }
   node._parent = rightNode
   rightNode._left = node
   node.balanceFactor += 1
   if (rightNode.balanceFactor < 0) {
     node.balanceFactor -= rightNode.balanceFactor
   }
   rightNode.balanceFactor += 1
   if (node.balanceFactor > 0) {
     rightNode.balanceFactor += node.balanceFactor
   }
   rightNode
 }
 private def rotateRight(node: AVLNode): AVLNode = {
   val leftNode = node.left
   node._left = leftNode.right
   if (node.left != null) node.left._parent = node
   leftNode._parent = node.parent
   if (leftNode.parent != null) {
     if (leftNode.parent.left == node) {
       leftNode.parent._left = leftNode
     } else {
       leftNode.parent._right = leftNode
     }
   }
   node._parent = leftNode
   leftNode._right = node
   node.balanceFactor -= 1
   if (leftNode.balanceFactor > 0) {
     node.balanceFactor -= leftNode.balanceFactor
   }
   leftNode.balanceFactor -= 1
   if (node.balanceFactor < 0) {
     leftNode.balanceFactor += node.balanceFactor
   }
   leftNode
 }
 override def contains(elem: A): Boolean = findNode(elem).isDefined
 override def iterator: Iterator[A] = ???
 override def keysIteratorFrom(start: A): Iterator[A] = ???
 class AVLNode private[AVLTree](k: A, p: AVLNode = null) {
   private[AVLTree] var _key: A = k
   private[AVLTree] var _parent: AVLNode = p
   private[AVLTree] var _left: AVLNode = _
   private[AVLTree] var _right: AVLNode = _
   private[AVLTree] var balanceFactor: Int = 0
   def parent: AVLNode = _parent
   private[AVLTree] def selectNextChild(key: A): AVLNode = matchNextChild(ordering.compare(key, this.key))
   def key: A = _key
   private[AVLTree] def matchNextChild(cmp: Int): AVLNode = cmp match {
     case x if x < 0 => left
     case x if x > 0 => right
     case _ => null
   }
   def left: AVLNode = _left
   def right: AVLNode = _right
 }

}</lang>

Sidef

Translation of: D

<lang ruby>class AVLtree {

   has root = nil
   struct Node {
       Number key,
       Number balance = 0,
       Node left = nil,
       Node right = nil,
       Node parent = nil,
   }
   method insert(key) {
       if (root == nil) {
           root = Node(key)
           return true
       }
       var n = root
       var parent = nil
       loop {
           if (n.key == key) {
               return false
           }
           parent = n
           var goLeft = (n.key > key)
           n = (goLeft ? n.left : n.right)
           if (n == nil) {
               var tn = Node(key, parent: parent)
               if (goLeft) {
                   parent.left = tn
               }
               else {
                   parent.right = tn
               }
               self.rebalance(parent)
               break
           }
       }
       return true
   }
   method delete_key(delKey) {
       if (root == nil) { return nil }
       var n = root
       var parent = root
       var delNode = nil
       var child = root
       while (child != nil) {
           parent = n
           n = child
           child = (delKey >= n.key ? n.right : n.left)
           if (delKey == n.key) {
               delNode = n
           }
       }
       if (delNode != nil) {
           delNode.key = n.key
           child = (n.left != nil ? n.left : n.right)
           if (root.key == delKey) {
               root = child
           }
           else {
               if (parent.left == n) {
                   parent.left = child
               }
               else {
                   parent.right = child
               }
               self.rebalance(parent)
           }
       }
   }
   method rebalance(n) {
       if (n == nil) { return nil }
       self.setBalance(n)
       given (n.balance) {
           when (-2) {
               if (self.height(n.left.left) >= self.height(n.left.right)) {
                   n = self.rotate(n, :right)
               }
               else {
                   n = self.rotate_twice(n, :left, :right)
               }
           }
           when (2) {
               if (self.height(n.right.right) >= self.height(n.right.left)) {
                   n = self.rotate(n, :left)
               }
               else {
                   n = self.rotate_twice(n, :right, :left)
               }
           }
       }
       if (n.parent != nil) {
           self.rebalance(n.parent)
       }
       else {
           root = n
       }
   }
   method rotate(a, dir) {
       var b = (dir == :left ? a.right : a.left)
       b.parent = a.parent
       (dir == :left) ? (a.right = b.left)
                      : (a.left  = b.right)
       if (a.right != nil) {
           a.right.parent = a
       }
       b.$dir = a
       a.parent = b
       if (b.parent != nil) {
           if (b.parent.right == a) {
               b.parent.right = b
           }
           else {
               b.parent.left = b
           }
       }
       self.setBalance(a, b)
       return b
   }
   method rotate_twice(n, dir1, dir2) {
       n.left = self.rotate(n.left, dir1)
       self.rotate(n, dir2)
   }
   method height(n) {
       if (n == nil) { return -1 }
       1 + Math.max(self.height(n.left), self.height(n.right))
   }
   method setBalance(*nodes) {
       nodes.each { |n|
           n.balance = (self.height(n.right) - self.height(n.left))
       }
   }
   method printBalance {
       self.printBalance(root)
   }
   method printBalance(n) {
       if (n != nil) {
           self.printBalance(n.left)
           print(n.balance, ' ')
           self.printBalance(n.right)
       }
   }

}

var tree = AVLtree()

say "Inserting values 1 to 10"

print "Printing balance: " tree.printBalance</lang>
Output:
Inserting values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0

Simula

<lang simula>CLASS AVL; BEGIN

AVL TREE ADAPTED FROM JULIENNE WALKER'S PRESENTATION AT ; HTTP://ETERNALLYCONFUZZLED.COM/TUTS/DATASTRUCTURES/JSW_TUT_AVL.ASPX. ; THIS PORT USES SIMILAR INDENTIFIER NAMES. ; THE KEY INTERFACE MUST BE SUPPORTED BY DATA STORED IN THE AVL TREE. ;
   CLASS KEY;
   VIRTUAL:
       PROCEDURE LESS  IS BOOLEAN PROCEDURE LESS (K); REF(KEY) K;;
       PROCEDURE EQUAL IS BOOLEAN PROCEDURE EQUAL(K); REF(KEY) K;;
   BEGIN
   END KEY;
    
NODE IS A NODE IN AN AVL TREE. ;
   CLASS NODE(DATA); REF(KEY) DATA;  ! ANYTHING COMPARABLE WITH LESS AND EQUAL. ;
   BEGIN
       INTEGER  BALANCE;             ! BALANCE FACTOR ;
       REF(NODE) ARRAY LINK(0:1);    ! CHILDREN, INDEXED BY "DIRECTION", 0 OR 1. ;
   END NODE;
    
A LITTLE READABILITY FUNCTION FOR RETURNING THE OPPOSITE OF A DIRECTION, ; WHERE A DIRECTION IS 0 OR 1. ; WHERE JW WRITES !DIR, THIS CODE HAS OPP(DIR). ;
   INTEGER PROCEDURE OPP(DIR); INTEGER DIR;
   BEGIN
       OPP := 1 - DIR;
   END OPP;
    
SINGLE ROTATION ;
   REF(NODE) PROCEDURE SINGLE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN
       REF(NODE) SAVE;
       SAVE :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE.LINK(DIR);
       SAVE.LINK(DIR) :- ROOT;
       SINGLE :- SAVE;
   END SINGLE;
    
DOUBLE ROTATION ;
   REF(NODE) PROCEDURE DOUBLE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN
       REF(NODE) SAVE;
       SAVE :- ROOT.LINK(OPP(DIR)).LINK(DIR);
    
       ROOT.LINK(OPP(DIR)).LINK(DIR) :- SAVE.LINK(OPP(DIR));
       SAVE.LINK(OPP(DIR)) :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE;
    
       SAVE :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE.LINK(DIR);
       SAVE.LINK(DIR) :- ROOT;
       DOUBLE :- SAVE;
   END DOUBLE;
    
ADJUST BALANCE FACTORS AFTER DOUBLE ROTATION ;
   PROCEDURE ADJUSTBALANCE(ROOT, DIR, BAL); REF(NODE) ROOT; INTEGER DIR, BAL;
   BEGIN
       REF(NODE) N, NN;
       N :- ROOT.LINK(DIR);
       NN :- N.LINK(OPP(DIR));
       IF NN.BALANCE = 0   THEN BEGIN ROOT.BALANCE := 0;    N.BALANCE := 0;   END ELSE
       IF NN.BALANCE = BAL THEN BEGIN ROOT.BALANCE := -BAL; N.BALANCE := 0;   END
                           ELSE BEGIN ROOT.BALANCE := 0;    N.BALANCE := BAL; END;
       NN.BALANCE := 0;
   END ADJUSTBALANCE;
    
   REF(NODE) PROCEDURE INSERTBALANCE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN REF(NODE) N;  INTEGER BAL;
       N :- ROOT.LINK(DIR);
       BAL := 2*DIR - 1;
       IF N.BALANCE = BAL THEN
       BEGIN
           ROOT.BALANCE := 0;
           N.BALANCE := 0;
           INSERTBALANCE :- SINGLE(ROOT, OPP(DIR));
       END ELSE
       BEGIN
           ADJUSTBALANCE(ROOT, DIR, BAL);
           INSERTBALANCE :- DOUBLE(ROOT, OPP(DIR));
       END;
   END INSERTBALANCE;
   
   CLASS TUPLE(N,B); REF(NODE) N; BOOLEAN B;;
    
   REF(TUPLE) PROCEDURE INSERTR(ROOT, DATA); REF(NODE) ROOT; REF(KEY) DATA;
   BEGIN
       IF ROOT == NONE THEN
           INSERTR :- NEW TUPLE(NEW NODE(DATA), FALSE)
       ELSE
       BEGIN
           REF(TUPLE) T;  BOOLEAN DONE;  INTEGER DIR;
           DIR := 0;
           IF ROOT.DATA.LESS(DATA) THEN
               DIR := 1;
           T :- INSERTR(ROOT.LINK(DIR), DATA);
           ROOT.LINK(DIR) :- T.N;
           DONE := T.B;
           IF DONE THEN INSERTR :- NEW TUPLE(ROOT, TRUE) ELSE
           BEGIN
               ROOT.BALANCE := ROOT.BALANCE + 2*DIR - 1;
               IF ROOT.BALANCE = 0 THEN
                   INSERTR :- NEW TUPLE(ROOT, TRUE) ELSE
               IF ROOT.BALANCE = 1 OR ROOT.BALANCE = -1 THEN
                   INSERTR :- NEW TUPLE(ROOT, FALSE)
               ELSE
                   INSERTR :- NEW TUPLE(INSERTBALANCE(ROOT, DIR), TRUE);
           END;
       END;
   END INSERTR;
    
INSERT A NODE INTO THE AVL TREE. ; DATA IS INSERTED EVEN IF OTHER DATA WITH THE SAME KEY ALREADY EXISTS. ;
   PROCEDURE INSERT(TREE, DATA); NAME TREE; REF(NODE) TREE; REF(KEY) DATA;
   BEGIN
       REF(TUPLE) T;
       T :- INSERTR(TREE, DATA);
       TREE :- T.N;
   END INSERT;
    
   REF(TUPLE) PROCEDURE REMOVEBALANCE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN REF(NODE) N;  INTEGER BAL;
       N :- ROOT.LINK(OPP(DIR));
       BAL := 2*DIR - 1;
   
       IF N.BALANCE = -BAL THEN
       BEGIN ROOT.BALANCE := 0; N.BALANCE := 0;
           REMOVEBALANCE :- NEW TUPLE(SINGLE(ROOT, DIR), FALSE);
       END ELSE
   
       IF N.BALANCE = BAL THEN
       BEGIN ADJUSTBALANCE(ROOT, OPP(DIR), -BAL);
           REMOVEBALANCE :- NEW TUPLE(DOUBLE(ROOT, DIR), FALSE);
       END ELSE
   
       BEGIN ROOT.BALANCE := -BAL; N.BALANCE := BAL;
           REMOVEBALANCE :- NEW TUPLE(SINGLE(ROOT, DIR), TRUE);
       END
   END REMOVEBALANCE;
    
   REF(TUPLE) PROCEDURE REMOVER(ROOT, DATA); REF(NODE) ROOT; REF(KEY) DATA;
   BEGIN INTEGER DIR; BOOLEAN DONE; REF(TUPLE) T;
       IF ROOT == NONE THEN
           REMOVER :- NEW TUPLE(NONE, FALSE)
       ELSE
       IF ROOT.DATA.EQUAL(DATA) THEN
       BEGIN
           IF ROOT.LINK(0) == NONE THEN
           BEGIN
               REMOVER :- NEW TUPLE(ROOT.LINK(1), FALSE);
               GOTO L;
           END
   
           ELSE IF ROOT.LINK(1) == NONE THEN
           BEGIN
               REMOVER :- NEW TUPLE(ROOT.LINK(0), FALSE);
               GOTO L;
           END
   
           ELSE
           BEGIN REF(NODE) HEIR;
               HEIR :- ROOT.LINK(0);
               WHILE HEIR.LINK(1) =/= NONE DO
                   HEIR :- HEIR.LINK(1);
               ROOT.DATA :- HEIR.DATA;
               DATA :- HEIR.DATA;
           END;
       END;
       DIR := 0;
       IF ROOT.DATA.LESS(DATA) THEN
           DIR := 1;
       T :- REMOVER(ROOT.LINK(DIR), DATA); ROOT.LINK(DIR) :- T.N; DONE := T.B;
       IF DONE THEN
       BEGIN
           REMOVER :- NEW TUPLE(ROOT, TRUE);
           GOTO L;
       END;
       ROOT.BALANCE := ROOT.BALANCE + 1 - 2*DIR;
       IF ROOT.BALANCE = 1 OR ROOT.BALANCE = -1 THEN
           REMOVER :- NEW TUPLE(ROOT, TRUE)
   
       ELSE IF ROOT.BALANCE = 0 THEN
           REMOVER :- NEW TUPLE(ROOT, FALSE)
   
       ELSE
           REMOVER :- REMOVEBALANCE(ROOT, DIR);
   L:
   END REMOVER;
    
REMOVE A SINGLE ITEM FROM AN AVL TREE. ; IF KEY DOES NOT EXIST, FUNCTION HAS NO EFFECT. ;
   PROCEDURE REMOVE(TREE, DATA); NAME TREE; REF(NODE) TREE; REF(KEY) DATA;
   BEGIN REF(TUPLE) T;
       T :- REMOVER(TREE, DATA);
       TREE :- T.N;
   END REMOVEM;

END.</lang> A demonstration program: <lang simula>EXTERNAL CLASS AVL;

AVL BEGIN

   KEY CLASS INTEGERKEY(I); INTEGER I;
   BEGIN
       BOOLEAN PROCEDURE LESS (K); REF(KEY) K; LESS  := I < K QUA INTEGERKEY.I;
       BOOLEAN PROCEDURE EQUAL(K); REF(KEY) K; EQUAL := I = K QUA INTEGERKEY.I;
   END INTEGERKEY;
   PROCEDURE DUMP(ROOT); REF(NODE) ROOT;
   BEGIN
       IF ROOT =/= NONE THEN
       BEGIN
           DUMP(ROOT.LINK(0));
           OUTINT(ROOT.DATA QUA INTEGERKEY.I, 0); OUTTEXT(" ");
           DUMP(ROOT.LINK(1));
       END
   END DUMP;
   INTEGER I;
   REF(NODE) TREE;
   OUTTEXT("Empty tree: "); DUMP(TREE); OUTIMAGE;

   FOR I := 3, 1, 4, 1, 5 DO
   BEGIN OUTTEXT("Insert "); OUTINT(I, 0); OUTTEXT(": ");
         INSERT(TREE, NEW INTEGERKEY(I)); DUMP(TREE); OUTIMAGE;
   END;

   FOR I := 3, 1 DO
   BEGIN OUTTEXT("Remove "); OUTINT(I, 0); OUTTEXT(": ");
         REMOVE(TREE, NEW INTEGERKEY(I)); DUMP(TREE); OUTIMAGE;
   END;

END.</lang>

Output:
Empty tree:
Insert 3: 3
Insert 1: 1 3
Insert 4: 1 3 4
Insert 1: 1 1 3 4
Insert 5: 1 1 3 4 5
Remove 3: 1 1 4 5
Remove 1: 1 4 5

Tcl

Note that in general, you would not normally write a tree directly in Tcl when writing code that required an  =  map, but would rather use either an array variable or a dictionary value (which are internally implemented using a high-performance hash table engine).

Works with: Tcl version 8.6

<lang tcl>package require TclOO

namespace eval AVL {

   # Class for the overall tree; manages real public API
   oo::class create Tree {

variable root nil class constructor Template:NodeClass AVL::Node { set class [oo::class create Node [list superclass $nodeClass]]

# Create a nil instance to act as a leaf sentinel set nil [my NewNode ""] set root [$nil ref]

# Make nil be special oo::objdefine $nil { method height {} {return 0} method key {} {error "no key possible"} method value {} {error "no value possible"} method destroy {} { # Do nothing (doesn't prohibit destruction entirely) } method print {indent increment} { # Do nothing } } }

# How to actually manufacture a new node method NewNode {key} { if {![info exists nil]} {set nil ""} $class new $key $nil [list [namespace current]::my NewNode] }

# Create a new node in the tree and return it method insert {key} { set node [my NewNode $key] if {$root eq $nil} { set root $node } else { $root insert $node } return $node }

# Find the node for a particular key method lookup {key} { for {set node $root} {$node ne $nil} {} { if {[$node key] == $key} { return $node } elseif {[$node key] > $key} { set node [$node left] } else { set node [$node right] } } error "no such node" }

# Print a tree out, one node per line method print {{indent 0} {increment 1}} { $root print $indent $increment return }

   }
   # Class of an individual node; may be subclassed
   oo::class create Node {

variable key value left right 0 refcount newNode constructor {n nil instanceFactory} { set newNode $instanceFactory set 0 [expr {$nil eq "" ? [self] : $nil}] set key $n set value {} set left [set right $0] set refcount 0 } method ref {} { incr refcount return [self] } method destroy {} { if {[incr refcount -1] < 1} next } method New {key value} { set n [{*}$newNode $key] $n setValue $value return $n }

# Getters method key {} {return $key} method value {} {return $value} method left {} {return $left} method right {args} {return $right}

# Setters method setValue {newValue} { set value $newValue } method setLeft {node} { # Non-trivial because of reference management $node ref $left destroy set left $node return } method setRight {node} { # Non-trivial because of reference management $node ref $right destroy set right $node return }

# Print a node and its descendents method print {indent increment} { puts [format "%s%s => %s" [string repeat " " $indent] $key $value] incr indent $increment $left print $indent $increment $right print $indent $increment }

method height {} { return [expr {max([$left height], [$right height]) + 1}] } method balanceFactor {} { expr {[$left height] - [$right height]} }

method insert {node} { # Simple insertion if {$key > [$node key]} { if {$left eq $0} { my setLeft $node } else { $left insert $node } } else { if {$right eq $0} { my setRight $node } else { $right insert $node } }

# Rebalance this node if {[my balanceFactor] > 1} { if {[$left balanceFactor] < 0} { $left rotateLeft } my rotateRight } elseif {[my balanceFactor] < -1} { if {[$right balanceFactor] > 0} { $right rotateRight } my rotateLeft } }

# AVL Rotations method rotateLeft {} { set new [my New $key $value] set key [$right key] set value [$right value] $new setLeft $left $new setRight [$right left] my setLeft $new my setRight [$right right] }

method rotateRight {} { set new [my New $key $value] set key [$left key] set value [$left value] $new setLeft [$left right] $new setRight $right my setLeft [$left left] my setRight $new }

   }

}</lang> Demonstrating: <lang tcl># Create an AVL tree AVL::Tree create tree

  1. Populate it with some semi-random data

for {set i 33} {$i < 127} {incr i} {

   [tree insert $i] setValue \

[string repeat [format %c $i] [expr {1+int(rand()*5)}]] }

  1. Print it out

tree print

  1. Look up a few values in the tree

for {set i 0} {$i < 10} {incr i} {

   set k [expr {33+int((127-33)*rand())}]
   puts $k=>[[tree lookup $k] value]

}

  1. Destroy the tree and all its nodes

tree destroy</lang>

Output:
64 => @@@
 48 => 000
  40 => (((((
   36 => $
    34 => """
     33 => !!
     35 => #####
    38 => &&&
     37 => %
     39 => ''''
   44 => ,
    42 => **
     41 => )))
     43 => +++++
    46 => .
     45 => --
     47 => ////
  56 => 888
   52 => 444
    50 => 22222
     49 => 1111
     51 => 333
    54 => 6
     53 => 555
     55 => 77
   60 => <<<<
    58 => ::::
     57 => 99999
     59 => ;
    62 => >>>
     61 => ===
     63 => ??
 96 => ``
  80 => PPPPP
   72 => HHHH
    68 => DDD
     66 => BBBB
      65 => A
      67 => CCC
     70 => FFF
      69 => EEEE
      71 => GGG
    76 => LL
     74 => JJ
      73 => III
      75 => KKKK
     78 => N
      77 => MMMMM
      79 => OOOOO
   88 => XXX
    84 => TTTT
     82 => R
      81 => QQQQ
      83 => SSSS
     86 => V
      85 => UUU
      87 => WWW
    92 => \\\
     90 => Z
      89 => YYYYY
      91 => [
     94 => ^^^^^
      93 => ]]]]
      95 => _____
  112 => pppp
   104 => hh
    100 => d
     98 => bb
      97 => aaa
      99 => cccc
     102 => ff
      101 => eeee
      103 => gggg
    108 => lll
     106 => j
      105 => iii
      107 => kkkkk
     110 => nn
      109 => m
      111 => o
   120 => x
    116 => ttt
     114 => rrrrr
      113 => qqqqq
      115 => s
     118 => vvv
      117 => uuuu
      119 => wwww
    124 => ||||
     122 => zzzz
      121 => y
      123 => {{{
     125 => }}}}
      126 => ~~~~
53=>555
55=>77
60=><<<<
100=>d
99=>cccc
93=>]]]]
57=>99999
56=>888
47=>////
39=>''''

TypeScript

Translation of: Java

For use within a project, consider adding "export default" to AVLtree class declaration. <lang JavaScript>/** A single node in an AVL tree */ class AVLnode <T> {

   balance: number
   left: AVLnode<T>
   right: AVLnode<T>
   constructor(public key: T, public parent: AVLnode<T> = null) {
       this.balance = 0
       this.left = null
       this.right = null
   }

}

/** The balanced AVL tree */ class AVLtree <T> {

   // public members organized here
   constructor() {
       this.root = null
   }
   insert(key: T): boolean {
       if (this.root === null) {
           this.root = new AVLnode<T>(key)
       } else {
           let n: AVLnode<T> = this.root,
               parent: AVLnode<T> = null
           while (true) {
               if(n.key === key) {
                   return false
               }
               parent = n
               let goLeft: boolean = n.key > key
               n = goLeft ? n.left : n.right
               if (n === null) {
                   if (goLeft) {
                       parent.left = new AVLnode<T>(key, parent)
                   } else {
                       parent.right = new AVLnode<T>(key, parent)
                   }
                   this.rebalance(parent)
                   break
               }
           }
       }
       return true
   }
   deleteKey(delKey: T): void {
       if (this.root === null) {
           return
       }
       let n: AVLnode<T> = this.root,
           parent: AVLnode<T> = this.root,
           delNode: AVLnode<T> = null,
           child: AVLnode<T> = this.root
       
       while (child !== null) {
           parent = n
           n = child
           child = delKey >= n.key ? n.right : n.left
           if (delKey === n.key) {
               delNode = n
           }
       }
       if (delNode !== null) {
           delNode.key = n.key
           child = n.left !== null ? n.left : n.right
           if (this.root.key === delKey) {
               this.root = child
           } else {
               if (parent.left === n) {
                   parent.left = child
               } else {
                   parent.right = child
               }
               this.rebalance(parent)
           }
       }
   }
   treeBalanceString(n: AVLnode<T> = this.root): string {
       if (n !== null) {
           return `${this.treeBalanceString(n.left)} ${n.balance} ${this.treeBalanceString(n.right)}`
       }
       return ""
   }
   toString(n: AVLnode<T> = this.root): string {
       if (n !== null) {
           return `${this.toString(n.left)} ${n.key} ${this.toString(n.right)}`
       }
       return ""
   }


   // private members organized here
   private root: AVLnode<T>
   private rotateLeft(a: AVLnode<T>): AVLnode<T> {
       let b: AVLnode<T> = a.right
       b.parent = a.parent
       a.right = b.left
       if (a.right !== null) {
           a.right.parent = a
       }
       b.left = a
       a.parent = b
       if (b.parent !== null) {
           if (b.parent.right === a) {
               b.parent.right = b
           } else {
               b.parent.left = b
           }
       }
       this.setBalance(a)
       this.setBalance(b)
       return b
   }
   private rotateRight(a: AVLnode<T>): AVLnode<T> {
       let b: AVLnode<T> = a.left
       b.parent = a.parent
       a.left = b.right
       if (a.left !== null) {
           a.left.parent = a
       }
       b.right = a
       a.parent = b
       if (b.parent !== null) {
           if (b.parent.right === a) {
               b.parent.right = b
           } else {
               b.parent.left = b
           }
       }
       this.setBalance(a)
       this.setBalance(b)
       return b
   }
   private rotateLeftThenRight(n: AVLnode<T>): AVLnode<T> {
       n.left = this.rotateLeft(n.left)
       return this.rotateRight(n)
   }
   private rotateRightThenLeft(n: AVLnode<T>): AVLnode<T> {
       n.right = this.rotateRight(n.right)
       return this.rotateLeft(n)
   }
   private rebalance(n: AVLnode<T>): void {
       this.setBalance(n)
       if (n.balance === -2) {
           if(this.height(n.left.left) >= this.height(n.left.right)) {
               n = this.rotateRight(n)
           } else {
               n = this.rotateLeftThenRight(n)
           }
       } else if (n.balance === 2) {
           if(this.height(n.right.right) >= this.height(n.right.left)) {
               n = this.rotateLeft(n)
           } else {
               n = this.rotateRightThenLeft(n)
           }
       }
       if (n.parent !== null) {
           this.rebalance(n.parent)
       } else {
           this.root = n
       }
   }
   private height(n: AVLnode<T>): number {
       if (n === null) {
           return -1
       }
       return 1 + Math.max(this.height(n.left), this.height(n.right))
   }
   private setBalance(n: AVLnode<T>): void {
       n.balance = this.height(n.right) - this.height(n.left)
   }
   
   public showNodeBalance(n: AVLnode<T>): string {
       if (n !== null) {
           return `${this.showNodeBalance(n.left)} ${n.balance} ${this.showNodeBalance(n.right)}`
       }
       return ""
   }

} </lang>