Visualize a tree

From Rosetta Code
Task
Visualize a tree
You are encouraged to solve this task according to the task description, using any language you may know.

A tree structure   (i.e. a rooted, connected acyclic graph)   is often used in programming.

It's often helpful to visually examine such a structure.

There are many ways to represent trees to a reader, such as:

  •   indented text   (à la unix tree command)
  •   nested HTML tables
  •   hierarchical GUI widgets
  •   2D   or   3D   images
  •   etc.
Task

Write a program to produce a visual representation of some tree.

The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.

Make do with the vague term "friendly" the best you can.

11l[edit]

Translation of: D
T Node
String value
Node? left
Node? right
 
F (value, Node? left = N, Node? right = N)
.value = String(value)
.left = left
.right = right
 
F tree_indent() -> [String]
V tr = I .right != N {.right.tree_indent()} E [‘-- (null)’]
R [‘--’(.value)] [+] (I .left != N {.left.tree_indent()} E [‘-- (null)’]).map(a -> ‘ |’a)
[+] [‘ `’tr[0]] + tr[1..].map(a -> ‘ ’a)
 
V tree = Node(1, Node(2, Node(4, Node(7)), Node(5)), Node(3, Node(6, Node(8), Node(9))))
print(tree.tree_indent().join("\n"))

Ada[edit]

Prints a tree of the current directory.

with Ada.Text_IO, Ada.Directories; 
 
procedure Directory_Tree is
 
procedure Print_Tree(Current: String; Indention: Natural := 0) is
 
function Spaces(N: Natural) return String is
(if N= 0 then "" else " " & Spaces(N-1));
 
use Ada.Directories;
Search: Search_Type;
Found: Directory_Entry_Type;
 
begin
Start_Search(Search, Current, "");
while More_Entries(Search) loop
Get_Next_Entry(Search, Found);
declare
Name: String := Simple_Name(Found);
Dir: Boolean := Kind(Found) = Directory;
begin
if Name(Name'First) /= '.' then
-- skip all files who's names start with ".", namely "." and ".."
Ada.Text_IO.Put_Line(Spaces(2*Indention) & Simple_Name(Found)
& (if Dir then " (dir)" else ""));
if Dir then
Print_Tree(Full_Name(Found), Indention + 1);
end if;
end if;
end;
end loop;
end Print_Tree;
 
begin
Print_Tree(Ada.Directories.Current_Directory);
end Directory_Tree;
Output:
outer (dir)
  inner (dir)
    innermost (dir)
      file
      another
file
some

ALGOL 68[edit]

# outputs nested html tables to visualise a tree #
 
# mode representing nodes of the tree #
MODE NODE = STRUCT( STRING value, REF NODE child, REF NODE sibling );
REF NODE nil node = NIL;
 
# tags etc. #
STRING table = "<table border=""1"" cellspacing=""4"">"
, elbat = "</table>"
, tr = "<tr>"
, rt = "</tr>"
, td = "<td style=""text-align: center; vertical-align: top; """
, dt = "</td>"
, nbsp = "&nbsp;"
;
CHAR nl = REPR 10;
 
# returns the number of child elements of tree #
OP CHILDCOUNT = ( REF NODE tree )INT:
BEGIN
INT result := 0;
REF NODE child := child OF tree;
WHILE REF NODE( child ) ISNT nil node
DO
result +:= 1;
child := sibling OF child
OD;
result
END # CHILDCOUNT # ;
 
# generates nested HTML tables from the tree #
OP TOHTML = ( REF NODE tree )STRING:
IF tree IS nil node
THEN
# no node #
""
ELSE
# hae at least one node #
STRING result := "";
INT child count = CHILDCOUNT tree;
result +:= table + nl
+ tr + nl
+ td + " colspan="""
+ whole( IF child count < 1 THEN 1 ELSE child count FI, 0 )
+ """>" + nbsp + value OF tree + nbsp
+ dt + nl
+ rt + nl
;
IF child count > 0
THEN
# the node has branches #
REF NODE child := child OF tree;
INT child number := 1;
INT mid child = ( child count + 1 ) OVER 2;
child := child OF tree;
result +:= tr + nl;
WHILE child ISNT nil node
DO
result +:= td + ">" + nl
+ IF CHILDCOUNT child < 1 THEN nbsp + value OF child + nbsp ELSE TOHTML child FI
+ dt + nl;
child := sibling OF child
OD;
result +:= rt + nl
FI;
result +:= elbat + nl
FI # TOHTML # ;
 
# test the tree visualisation #
 
# returns a new node with the specified value and no child or siblings #
PROC new node = ( STRING value )REF NODE: HEAP NODE := NODE( value, nil node, nil node );
# appends a sibling node to the node n, returns the sibling #
OP +:= = ( REF NODE n, REF NODE sibling node )REF NODE:
BEGIN
REF NODE sibling := n;
WHILE REF NODE( sibling OF sibling ) ISNT nil node
DO
sibling := sibling OF sibling
OD;
sibling OF sibling := sibling node
END # +:= # ;
# appends a new sibling node to the node n, returns the sibling #
OP +:= = ( REF NODE n, STRING sibling value )REF NODE: n +:= new node( sibling value );
# adds a child node to the node n, returns the child #
OP /:= = ( REF NODE n, REF NODE child node )REF NODE: child OF n := child node;
# adda a new child node to the node n, returns the child #
OP /:= = ( REF NODE n, STRING child value )REF NODE: n /:= new node( child value );
 
NODE animals := new node( "animals" );
NODE fish := new node( "fish" );
NODE reptiles := new node( "reptiles" );
NODE mammals := new node( "mammals" );
NODE primates := new node( "primates" );
NODE sharks := new node( "sharks" );
sharks /:= "great-white" +:= "hammer-head";
fish /:= "cod" +:= sharks +:= "piranha";
reptiles /:= "iguana" +:= "brontosaurus";
primates /:= "gorilla" +:= "lemur";
mammals /:= "sloth" +:= "horse" +:= "bison" +:= primates;
animals /:= fish +:= reptiles +:= mammals;
 
print( ( TOHTML animals ) )
Output:
 animals 
 fish 
 cod 
 sharks 
 great-white   hammer-head 
 piranha 
 reptiles 
 iguana   brontosaurus 
 mammals 
 sloth   horse   bison 
 primates 
 gorilla   lemur 

AppleScript[edit]

Using UTF8 box-drawing characters in a monospaced font, with options for (1.) compacted vs vertically centered display, and (2.) retaining or pruning out nodeless lines of text.

Translation of: Python
Translation of: JavaScript
-- Vertically centered textual tree using UTF8 monospaced
-- box-drawing characters, with options for compacting
-- and pruning.
 
-- ┌── Gamma
-- ┌─ Beta ┼── Delta
-- │ └ Epsilon
-- Alpha ┼─ Zeta ───── Eta
-- │ ┌─── Iota
-- └ Theta ┼── Kappa
-- └─ Lambda
 
-- TESTS --------------------------------------------------
on run
set tree to Node(1, ¬
{Node(2, ¬
{Node(4, {Node(7, {})}), ¬
Node(5, {})}), ¬
Node(3, ¬
{Node(6, ¬
{Node(8, {}), Node(9, {})})})})
 
set tree2 to Node("Alpha", ¬
{Node("Beta", ¬
{Node("Gamma", {}), ¬
Node("Delta", {}), ¬
Node("Epsilon", {})}), ¬
Node("Zeta", {Node("Eta", {})}), ¬
Node("Theta", ¬
{Node("Iota", {}), Node("Kappa", {}), ¬
Node("Lambda", {})})})
 
set strTrees to unlines({"(NB – view in mono-spaced font)\n\n", ¬
"Compacted (not all parents vertically centered):\n", ¬
drawTree2(true, false, tree), ¬
"\nFully expanded and vertically centered:\n", ¬
drawTree2(false, false, tree2), ¬
"\nVertically centered, with nodeless lines pruned out:\n", ¬
drawTree2(false, true, tree2)})
set the clipboard to strTrees
strTrees
end run
 
 
-- drawTree2 :: Bool -> Bool -> Tree String -> String
on drawTree2(blnCompressed, blnPruned, tree)
-- Tree design and algorithm inspired by the Haskell snippet at:
-- https://doisinkidney.com/snippets/drawing-trees.html
script measured
on |λ|(t)
script go
on |λ|(x)
set s to " " & x & " "
Tuple(length of s, s)
end |λ|
end script
fmapTree(go, t)
end |λ|
end script
set measuredTree to |λ|(tree) of measured
 
script levelMax
on |λ|(a, level)
a & maximum(map(my fst, level))
end |λ|
end script
set levelWidths to foldl(levelMax, {}, ¬
init(levels(measuredTree)))
 
-- Lefts, Mid, Rights
script lmrFromStrings
on |λ|(xs)
set {ls, rs} to items 2 thru -2 of ¬
(splitAt((length of xs) div 2, xs) as list)
Tuple3(ls, item 1 of rs, rest of rs)
end |λ|
end script
 
script stringsFromLMR
on |λ|(lmr)
script add
on |λ|(a, x)
a & x
end |λ|
end script
foldl(add, {}, items 2 thru -2 of (lmr as list))
end |λ|
end script
 
script fghOverLMR
on |λ|(f, g, h)
script
property mg : mReturn(g)
on |λ|(lmr)
set {ls, m, rs} to items 2 thru -2 of (lmr as list)
Tuple3(map(f, ls), |λ|(m) of mg, map(h, rs))
end |λ|
end script
end |λ|
end script
 
script lmrBuild
on leftPad(n)
script
on |λ|(s)
replicateString(n, space) & s
end |λ|
end script
end leftPad
 
-- lmrBuild main
on |λ|(w, f)
script
property mf : mReturn(f)
on |λ|(wsTree)
set xs to nest of wsTree
set lng to length of xs
set {nChars, x} to items 2 thru -2 of ¬
((root of wsTree) as list)
set _x to replicateString(w - nChars, "─") & x
 
-- LEAF NODE ------------------------------------
if 0 = lng then
Tuple3({}, _x, {})
 
else if 1 = lng then
-- NODE WITH SINGLE CHILD ---------------------
set indented to leftPad(1 + w)
script lineLinked
on |λ|(z)
_x & "─" & z
end |λ|
end script
|λ|(|λ|(item 1 of xs) of mf) of ¬
(|λ|(indented, lineLinked, indented) of ¬
fghOverLMR)
else
-- NODE WITH CHILDREN -------------------------
script treeFix
on cFix(x)
script
on |λ|(xs)
x & xs
end |λ|
end script
end cFix
 
on |λ|(l, m, r)
compose(stringsFromLMR, ¬
|λ|(cFix(l), cFix(m), cFix(r)) of ¬
fghOverLMR)
end |λ|
end script
 
script linked
on |λ|(s)
set c to text 1 of s
set t to tail(s)
if "┌" = c then
_x & "┬" & t
else if "│" = c then
_x & "┤" & t
else if "├" = c then
_x & "┼" & t
else
_x & "┴" & t
end if
end |λ|
end script
 
set indented to leftPad(w)
set lmrs to map(f, xs)
if blnCompressed then
set sep to {}
else
set sep to {"│"}
end if
 
tell lmrFromStrings
set tupleLMR to |λ|(intercalate(sep, ¬
{|λ|(item 1 of lmrs) of ¬
(|λ|(" ", "┌", "│") of treeFix)} & ¬
map(|λ|("│", "├", "│") of treeFix, ¬
init(tail(lmrs))) & ¬
{|λ|(item -1 of lmrs) of ¬
(|λ|("│", "└", " ") of treeFix)}))
end tell
 
|λ|(tupleLMR) of ¬
(|λ|(indented, linked, indented) of fghOverLMR)
end if
end |λ|
end script
end |λ|
end script
 
set treeLines to |λ|(|λ|(measuredTree) of ¬
foldr(lmrBuild, 0, levelWidths)) of stringsFromLMR
if blnPruned then
script notEmpty
on |λ|(s)
script isData
on |λ|(c)
"│ " does not contain c
end |λ|
end script
any(isData, characters of s)
end |λ|
end script
set xs to filter(notEmpty, treeLines)
else
set xs to treeLines
end if
unlines(xs)
end drawTree2
 
 
-- GENERIC ------------------------------------------------
 
-- Node :: a -> [Tree a] -> Tree a
on Node(v, xs)
{type:"Node", root:v, nest:xs}
end Node
 
-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
-- Constructor for a pair of values, possibly of two different types.
{type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple
 
-- Tuple3 (,,) :: a -> b -> c -> (a, b, c)
on Tuple3(x, y, z)
{type:"Tuple3", |1|:x, |2|:y, |3|:z, length:3}
end Tuple3
 
-- Applied to a predicate and a list,
-- |any| returns true if at least one element of the
-- list satisfies the predicate.
-- any :: (a -> Bool) -> [a] -> Bool
on any(f, xs)
tell mReturn(f)
set lng to length of xs
repeat with i from 1 to lng
if |λ|(item i of xs) then return true
end repeat
false
end tell
end any
 
-- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
on compose(f, g)
script
property mf : mReturn(f)
property mg : mReturn(g)
on |λ|(x)
|λ|(|λ|(x) of mg) of mf
end |λ|
end script
end compose
 
-- concat :: [[a]] -> [a]
-- concat :: [String] -> String
on concat(xs)
set lng to length of xs
if 0 < lng and string is class of (item 1 of xs) then
set acc to ""
else
set acc to {}
end if
repeat with i from 1 to lng
set acc to acc & item i of xs
end repeat
acc
end concat
 
-- concatMap :: (a -> [b]) -> [a] -> [b]
on concatMap(f, xs)
set lng to length of xs
set acc to {}
tell mReturn(f)
repeat with i from 1 to lng
set acc to acc & (|λ|(item i of xs, i, xs))
end repeat
end tell
return acc
end concatMap
 
-- filter :: (a -> Bool) -> [a] -> [a]
on filter(f, xs)
tell mReturn(f)
set lst to {}
set lng to length of xs
repeat with i from 1 to lng
set v to item i of xs
if |λ|(v, i, xs) then set end of lst to v
end repeat
return lst
end tell
end filter
 
-- fmapTree :: (a -> b) -> Tree a -> Tree b
on fmapTree(f, tree)
script go
property g : |λ| of mReturn(f)
on |λ|(x)
set xs to nest of x
if xs ≠ {} then
set ys to map(go, xs)
else
set ys to xs
end if
Node(g(root of x), ys)
end |λ|
end script
|λ|(tree) of go
end fmapTree
 
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
 
-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(item i of xs, v, i, xs)
end repeat
return v
end tell
end foldr
 
-- fst :: (a, b) -> a
on fst(tpl)
if class of tpl is record then
|1| of tpl
else
item 1 of tpl
end if
end fst
 
-- identity :: a -> a
on identity(x)
-- The argument unchanged.
x
end identity
 
-- init :: [a] -> [a]
-- init :: [String] -> [String]
on init(xs)
set blnString to class of xs = string
set lng to length of xs
 
if lng > 1 then
if blnString then
text 1 thru -2 of xs
else
items 1 thru -2 of xs
end if
else if lng > 0 then
if blnString then
""
else
{}
end if
else
missing value
end if
end init
 
-- intercalate :: [a] -> [[a]] -> [a]
-- intercalate :: String -> [String] -> String
on intercalate(sep, xs)
concat(intersperse(sep, xs))
end intercalate
 
-- intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3]
-- intersperse :: a -> [a] -> [a]
-- intersperse :: Char -> String -> String
on intersperse(sep, xs)
set lng to length of xs
if lng > 1 then
set acc to {item 1 of xs}
repeat with i from 2 to lng
set acc to acc & {sep, item i of xs}
end repeat
if class of xs is string then
concat(acc)
else
acc
end if
else
xs
end if
end intersperse
 
-- isNull :: [a] -> Bool
-- isNull :: String -> Bool
on isNull(xs)
if class of xs is string then
"" = xs
else
{} = xs
end if
end isNull
 
-- iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
on iterateUntil(p, f, x)
script
property mp : mReturn(p)'s |λ|
property mf : mReturn(f)'s |λ|
property lst : {x}
on |λ|(v)
repeat until mp(v)
set v to mf(v)
set end of lst to v
end repeat
return lst
end |λ|
end script
|λ|(x) of result
end iterateUntil
 
-- levels :: Tree a -> [[a]]
on levels(tree)
script nextLayer
on |λ|(xs)
script
on |λ|(x)
nest of x
end |λ|
end script
concatMap(result, xs)
end |λ|
end script
 
script roots
on |λ|(xs)
script
on |λ|(x)
root of x
end |λ|
end script
map(result, xs)
end |λ|
end script
 
map(roots, iterateUntil(my isNull, nextLayer, {tree}))
end levels
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
 
-- maximum :: Ord a => [a] -> a
on maximum(xs)
script
on |λ|(a, b)
if a is missing value or b > a then
b
else
a
end if
end |λ|
end script
foldl(result, missing value, xs)
end maximum
 
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
 
-- replicateString :: Int -> String -> String
on replicateString(n, s)
set out to ""
if n < 1 then return out
set dbl to s
 
repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicateString
 
-- snd :: (a, b) -> b
on snd(tpl)
if class of tpl is record then
|2| of tpl
else
item 2 of tpl
end if
end snd
 
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
Tuple(items 1 thru n of xs as text, items (n + 1) thru -1 of xs as text)
else
Tuple(items 1 thru n of xs, items (n + 1) thru -1 of xs)
end if
else
if n < 1 then
Tuple({}, xs)
else
Tuple(xs, {})
end if
end if
end splitAt
 
-- tail :: [a] -> [a]
on tail(xs)
set blnText to text is class of xs
if blnText then
set unit to ""
else
set unit to {}
end if
set lng to length of xs
if 1 > lng then
missing value
else if 2 > lng then
unit
else
if blnText then
text 2 thru -1 of xs
else
rest of xs
end if
end if
end tail
 
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines
Output:
(NB – view in mono-spaced font)


Compacted (not all parents vertically centered):

       ┌ 4 ─ 7 
   ┌ 2 ┴ 5 
 1 ┤       ┌ 8 
   └ 3 ─ 6 ┴ 9 

Fully expanded and vertically centered:

               ┌── Gamma 
               │
       ┌─ Beta ┼── Delta 
       │       │
       │       └ Epsilon 
       │
 Alpha ┼─ Zeta ───── Eta 
       │
       │       ┌─── Iota 
       │       │
       └ Theta ┼── Kappa 
               │
               └─ Lambda 

Vertically centered, with nodeless lines pruned out:

               ┌── Gamma 
       ┌─ Beta ┼── Delta 
       │       └ Epsilon 
 Alpha ┼─ Zeta ───── Eta 
       │       ┌─── Iota 
       └ Theta ┼── Kappa 
               └─ Lambda 

Batch File[edit]

Displays a tree of the current directory.

@tree %cd%


BBC BASIC[edit]

This creates a native Windows Tree View control:

      INSTALL @lib$+"WINLIB5"
ON ERROR SYS "MessageBox", @hwnd%, REPORT$, 0, 0 : QUIT
 
REM!WC Windows constants:
TVI_SORT = -65533
TVIF_TEXT = 1
TVM_INSERTITEM = 4352
TVS_HASBUTTONS = 1
TVS_HASLINES = 2
TVS_LINESATROOT = 4
 
REM. TV_INSERTSTRUCT
DIM tvi{hParent%, \
\ hInsertAfter%, \
\ mask%, \
\ hItem%, \
\ state%, \
\ stateMask%, \
\ pszText%, \
\ cchTextMax%, \
\ iImage%, \
\ iSelectedImage%,\
\ cChildren%, \
\ lParam% \
\ }
 
SYS "InitCommonControls"
hTree% = FN_createwindow("SysTreeView32", "", 0, 0, @vdu.tr%, @vdu.tb%, 0, \
\ TVS_HASLINES OR TVS_HASBUTTONS OR TVS_LINESATROOT, 0)
hroot% = FNinsertnode(0, "Root")
hchild1% = FNinsertnode(hroot%, "Child 1")
hchild2% = FNinsertnode(hroot%, "Child 2")
hchild11% = FNinsertnode(hchild1%, "Grandchild 1")
hchild12% = FNinsertnode(hchild1%, "Grandchild 2")
hchild21% = FNinsertnode(hchild2%, "Grandchild 3")
hchild22% = FNinsertnode(hchild2%, "Grandchild 4")
 
REPEAT
WAIT 1
UNTIL FALSE
END
 
DEF FNinsertnode(hparent%, text$)
LOCAL hnode%
text$ += CHR$0
 
tvi.hParent% = hparent%
tvi.hInsertAfter% = TVI_SORT
tvi.mask% = TVIF_TEXT
tvi.pszText% = !^text$
 
SYS "SendMessage", hTree%, TVM_INSERTITEM, 0, tvi{} TO hnode%
IF hnode% = 0 ERROR 100, "TVM_INSERTITEM failed"
SYS "InvalidateRect", hTree%, 0, 0
= hnode%

Visualize tree bbc.gif

C[edit]

Print a simple tree to standard output:

#include <stdio.h>
#include <stdlib.h>
 
typedef struct stem_t *stem;
struct stem_t { const char *str; stem next; };
 
void tree(int root, stem head)
{
static const char *sdown = " |", *slast = " `", *snone = " ";
struct stem_t col = {0, 0}, *tail;
 
for (tail = head; tail; tail = tail->next) {
printf("%s", tail->str);
if (!tail->next) break;
}
 
printf("--%d\n", root);
 
if (root <= 1) return;
 
if (tail && tail->str == slast)
tail->str = snone;
 
if (!tail) tail = head = &col;
else tail->next = &col;
 
while (root) { // make a tree by doing something random
int r = 1 + (rand() % root);
root -= r;
col.str = root ? sdown : slast;
 
tree(r, head);
}
 
tail->next = 0;
}
 
int main(int c, char**v)
{
int n;
if (c < 2 || (n = atoi(v[1])) < 0) n = 8;
 
tree(n, 0);
return 0;
}
Output:
--8
  `--8
     |--7
     |  |--3
     |  |  |--2
     |  |  |  `--2
     |  |  |     `--2
     |  |  |        |--1
     |  |  |        `--1
     |  |  `--1
     |  |--2
     |  |  |--1
     |  |  `--1
     |  |--1
     |  `--1
     `--1

Clojure[edit]

(use 'vijual)
 
(draw-tree [[:A] [:B] [:C [:D [:E] [:F]] [:G]]])
 
Output:
+---+ +---+ +---+
| A | | B | | C |
+---+ +---+ +-+-+
              |
        +-----+
        |     |
      +-+-+ +-+-+
      | D | | G |
      +-+-+ +---+
        |
     +--+--+
     |     |
   +-+-+ +-+-+
   | E | | F |
   +---+ +---+

Common Lisp[edit]

(defun visualize (tree)
(labels
((rprint (list)
(mapc #'princ (reverse list)))
(vis-h (tree branches)
(let ((len (length tree)))
(loop
for item in tree
for idx from 1 to len do
(cond
((listp item)
(rprint (cdr branches))
(princ "+---+")
(let ((next (cons "| "
(if (= idx len)
(cons " " (cdr branches))
branches))))
(terpri)
(rprint (if (null item)
(cdr next)
next))
(terpri)
(vis-h item next)))
(t
(rprint (cdr branches))
(princ item)
(terpri)
(rprint (if (= idx len)
(cdr branches)
branches))
(terpri)))))))
(vis-h tree '("| "))))
Output:
CL-USER> (visualize '(a b c ((d (e ((() ()))) f)) (g)))
A
|
B
|
C
|
+---+
| |
| +---+
| |
| D
| |
| +---+
| | |
| | E
| | |
| | +---+
| | |
| | +---+
| | |
| | +---+
| | |
| | +---+
| |
| F
|
+---+
|
G
 
NIL

or

(use-package :iterate)
(defun print-tree (tree value-function children-function)
(labels
((do-print-tree (tree prefix)
(format t "~a~%" (funcall value-function tree))
(iter
(with children = (funcall children-function tree))
(for child = (pop children))
(while child)
 
(if children
(progn (format t "~a├─ " prefix)
(do-print-tree child (format nil "~a│ " prefix)))
(progn (format t "~a└─ " prefix)
(do-print-tree child (format nil "~a " prefix)))))))
(do-print-tree tree "")))
 
Output:
CL-USER>(print-tree '(a
(aa
(aaa
(aaaa)
(aaab
(aaaba)
(aaabb))
(aaac)))
(ab)
(ac
(aca)
(acb)
(acc)))
#'car #'cdr)
A
├─ AA
│ └─ AAA
│ ├─ AAAA
│ ├─ AAAB
│ │ ├─ AAABA
│ │ └─ AAABB
│ └─ AAAC
├─ AB
└─ AC
├─ ACA
├─ ACB
└─ ACC
 

D[edit]

Translation of: Haskell
import std.stdio, std.conv, std.algorithm, std.array;
 
struct Node(T) { T value; Node* left, right; }
 
string[] treeIndent(T)(in Node!T* t) pure nothrow @safe {
if (!t) return ["-- (null)"];
const tr = t.right.treeIndent;
return "--" ~ t.value.text ~
t.left.treeIndent.map!q{" |" ~ a}.array ~
(" `" ~ tr[0]) ~ tr[1 .. $].map!q{" " ~ a}.array;
}
 
void main () {
static N(T)(T v, Node!T* l=null, Node!T* r=null) {
return new Node!T(v, l, r);
}
 
const tree = N(1, N(2, N(4, N(7)), N(5)), N(3, N(6, N(8), N(9))));
writefln("%-(%s\n%)", tree.treeIndent);
}
Output:
--1
  |--2
  |  |--4
  |  |  |--7
  |  |  |  |-- (null)
  |  |  |  `-- (null)
  |  |  `-- (null)
  |  `--5
  |     |-- (null)
  |     `-- (null)
  `--3
     |--6
     |  |--8
     |  |  |-- (null)
     |  |  `-- (null)
     |  `--9
     |     |-- (null)
     |     `-- (null)
     `-- (null)

Elena[edit]

ELENA 4.1 :

/// a program to produce a visual representation of some tree. 
 
import system'routines;
import extensions;
 
class Node
{
string theValue;
Node[] theChildren;
 
constructor new(string value, Node[] children)
{
theValue := value;
 
theChildren := children;
}
 
constructor new(string value)
<= new(value, new Node[](0));
 
constructor new(Node[] children)
<= new(emptyString, children);
 
get() = theValue;
 
Children = theChildren;
}
 
extension treeOp
{
writeTree(node, prefix)
{
var children := node.Children;
var length := children.Length;
 
children.zipForEach(new Range(1, length), (child,index)
{
self.printLine(prefix,"|");
self.printLine(prefix,"+---",child.get());
 
var nodeLine := prefix + (index==length).iif(" ","| ");
 
self.writeTree(child,nodeLine);
});
 
^ self
}
 
writeTree(node)
= self.writeTree(node,"");
}
 
public program()
{
var tree := Node.new(
new Node[]::(
Node.new("a", new Node[]::
(
Node.new("b", new Node[]::(Node.new("c"))),
Node.new("d")
)),
Node.new("e")
));
 
console.writeTree(tree).readChar()
}
Output:
|
+---a
|   |
|   +---b
|   |   |
|   |   +---c
|   |
|   +---d
|
+---b

Erlang[edit]

Until real code shows up, I follow the lead of Python and print tuples with a width of 1.

Output:
9> io:fwrite("~1p", [{1, 2, {30, 40}, {{500, 600}, 70}}]).
{1,
 2,
 {30,
  40},
 {{500,
   600},
  70}}

F#[edit]

type tree =
| T of string * tree list
 
let prefMid = seq { yield "├─"; while true do yield "│ " }
let prefEnd = seq { yield "└─"; while true do yield " " }
let prefNone = seq { while true do yield "" }
 
let c2 x y = Seq.map2 (fun u v -> String.concat "" [u; v]) x y
 
let rec visualize (T(label, children)) pre =
seq {
yield (Seq.head pre) + label
if children <> [] then
let preRest = Seq.skip 1 pre
let last = Seq.last (List.toSeq children)
for e in children do
if e = last then yield! visualize e (c2 preRest prefEnd)
else yield! visualize e (c2 preRest prefMid)
}
 
let example =
T ("root",
[T ("a",
[T ("a1",
[T ("a11", []);
T ("a12", []) ]) ]);
T ("b",
[T ("b1", []) ]) ])
 
visualize example prefNone
|> Seq.iter (printfn "%s")
Output:
root
├─a
│ └─a1
│   ├─a11
│   └─a12
└─b
  └─b1

Factor[edit]

Factor's prettyprinter does this by default with any nested sequences and/or tuples. There are dynamic variables that can be altered to change the prettyprinter's default behavior. The most interesting are tab-size and margin for customizing the look of a tree. For smaller trees, it's best to change margin from its default of 64 to something low, perhaps 10.

USE: literals
 
CONSTANT: mammals { "mammals" { "deer" "gorilla" "dolphin" } }
CONSTANT: reptiles { "reptiles" { "turtle" "lizard" "snake" } }
 
{ "animals" ${ mammals reptiles } } dup . 10 margin set .
Output:
{
    "animals"
    {
        { "mammals" { "deer" "gorilla" "dolphin" } }
        { "reptiles" { "turtle" "lizard" "snake" } }
    }
}
{
    "animals"
    {
        {
            "mammals"
            {
                "deer"
                "gorilla"
                "dolphin"
            }
        }
        {
            "reptiles"
            {
                "turtle"
                "lizard"
                "snake"
            }
        }
    }
}

An example showcasing tuples by displaying an AVL tree:

USE: trees.avl
AVL{ { 1 2 } { 9 19 } { 3 4 } { 5 6 } } .
Output:
T{ avl
    { root
        T{ avl-node
            { key 3 }
            { value 4 }
            { left
                T{ avl-node
                    { key 1 }
                    { value 2 }
                    { balance 0 }
                }
            }
            { right
                T{ avl-node
                    { key 9 }
                    { value 19 }
                    { left
                        T{ avl-node
                            { key 5 }
                            { value 6 }
                            { balance 0 }
                        }
                    }
                    { balance -1 }
                }
            }
            { balance 1 }
        }
    }
    { count 4 }
}

Fōrmulæ[edit]

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

Go[edit]

JSON[edit]

Not the most economical output, but at least json.MarshalIndent is in the Go standard library. Note that the definition of Node has nothing JSON specific about it; it's an ordinary struct.

package main
 
import (
"encoding/json"
"fmt"
"log"
)
 
type Node struct {
Name string
Children []*Node
}
 
func main() {
tree := &Node{"root", []*Node{
&Node{"a", []*Node{
&Node{"d", nil},
&Node{"e", []*Node{
&Node{"f", nil},
}}}},
&Node{"b", nil},
&Node{"c", nil},
}}
b, err := json.MarshalIndent(tree, "", " ")
if err != nil {
log.Fatal(err)
}
fmt.Println(string(b))
}
Output:
{
   "Name": "root",
   "Children": [
      {
         "Name": "a",
         "Children": [
            {
               "Name": "d",
               "Children": null
            },
            {
               "Name": "e",
               "Children": [
                  {
                     "Name": "f",
                     "Children": null
                  }
               ]
            }
         ]
      },
      {
         "Name": "b",
         "Children": null
      },
      {
         "Name": "c",
         "Children": null
      }
   ]
}

TOML[edit]

It works in this case, but TOML wasn't really designed for this and encoders may have trouble with general trees. Empty trees and nils for example might be problematic depending on your data structures and limitations of your TOML encoder. YMMV.

package main
 
import (
"log"
"os"
 
"github.com/BurntSushi/toml"
)
 
type Node struct {
Name string
Children []*Node
}
 
func main() {
tree := &Node{"root", []*Node{
&Node{"a", []*Node{
&Node{"d", nil},
&Node{"e", []*Node{
&Node{"f", nil},
}}}},
&Node{"b", nil},
&Node{"c", nil},
}}
enc := toml.NewEncoder(os.Stdout)
enc.Indent = " "
err := enc.Encode(tree)
if err != nil {
log.Fatal(err)
}
}
Output:
Name = "root"

[[Children]]
   Name = "a"

   [[Children.Children]]
      Name = "d"


   [[Children.Children]]
      Name = "e"

      [[Children.Children.Children]]
         Name = "f"


[[Children]]
   Name = "b"


[[Children]]
   Name = "c"

Unicode[edit]

A non-library solution, more like a number of other solutions on this page, and with more compact output. The tree representation here uses integer indexes rather than pointers, which is efficient for representation and computation. A serialization format like JSON or TOML wouldn't see it as a hierarchical structure, but the code here knows to interpret the child ints as node indexes.

package main
 
import "fmt"
 
type tree []node
 
type node struct {
label string
children []int // indexes into tree
}
 
func main() {
vis(tree{
0: node{"root", []int{1, 2, 3}},
1: node{"ei", []int{4, 5}},
2: node{"bee", nil},
3: node{"si", nil},
4: node{"dee", nil},
5: node{"y", []int{6}},
6: node{"eff", nil},
})
}
 
func vis(t tree) {
if len(t) == 0 {
fmt.Println("<empty>")
return
}
var f func(int, string)
f = func(n int, pre string) {
ch := t[n].children
if len(ch) == 0 {
fmt.Println("╴", t[n].label)
return
}
fmt.Println("┐", t[n].label)
last := len(ch) - 1
for _, ch := range ch[:last] {
fmt.Print(pre, "├─")
f(ch, pre+"│ ")
}
fmt.Print(pre, "└─")
f(ch[last], pre+" ")
}
f(0, "")
}
Output:
┐ root
├─┐ ei
│ ├─╴ dee
│ └─┐ y
│   └─╴ eff
├─╴ bee
└─╴ si

Haskell[edit]

Tree borrowed from Tree traversal:

data Tree a = Empty | Node { value :: a, left :: Tree a, right :: Tree a }
deriving (Show, Eq)
 
tree = Node 1 (Node 2 (Node 4 (Node 7 Empty Empty) Empty)
(Node 5 Empty Empty)) (Node 3 (Node 6 (Node 8 Empty Empty)
(Node 9 Empty Empty)) Empty)
 
treeIndent Empty = ["-- (nil)"]
treeIndent t = ["--" ++ show (value t)]
++ map (" |"++) ls ++ (" `" ++ r):map (" "++) rs
where
(r:rs) = treeIndent$right t
ls = treeIndent$left t
 
main = mapM_ putStrLn $ treeIndent tree
Output:
--1
  |--2
  |  |--4
  |  |  |--7
  |  |  |  |-- (nil)
  |  |  |  `-- (nil)
  |  |  `-- (nil)
  |  `--5
  |     |-- (nil)
  |     `-- (nil)
  `--3
     |--6
     |  |--8
     |  |  |-- (nil)
     |  |  `-- (nil)
     |  `--9
     |     |-- (nil)
     |     `-- (nil)
     `-- (nil)


The Data.Tree module in the standard (GHC) libraries also includes a drawTree function for multiway (rose) trees of strings. We can fmap show over our tree of integers to derive a tree of strings, and apply `drawTree` to that.

import Data.Tree (Tree(..), drawTree)
 
tree :: Tree Int
tree =
Node
1
[ Node 2 [Node 4 [Node 7 []], Node 5 []]
, Node 3 [Node 6 [Node 8 [], Node 9 []]]
]
 
main :: IO ()
main = (putStrLn . drawTree . fmap show) tree
Output:
1
|
+- 2
|  |
|  +- 4
|  |  |
|  |  `- 7
|  |
|  `- 5
|
`- 3
   |
   `- 6
      |
      +- 8
      |
      `- 9

Icon and Unicon[edit]

The following works in both languages.

procedure main(A)
showTree("", " -", [1, [2,[3],[4,[5],[6]],[7,[11]]], [8,[9,[10]]] ])
write()
showTree("", " -", [1, [2,[3,[4]]], [5,[6],[7,[8],[9]],[10]] ])
end
 
procedure showTree(prefix, lastc, A)
write(prefix, lastc, "--", A[1])
if *A > 1 then {
prefix ||:= if prefix[-1] == "|" then " " else " "
every showTree(prefix||"|", "-", !A[2:2 < *A])
showTree(prefix, "`-", A[*A])
}
end

Output:

->tree
 ---1
    |---2
    |   |---3
    |   |---4
    |   |   |---5
    |   |   `---6
    |   `---7
    |       `---11
    `---8
        `---9
            `---10

 ---1
    |---2
    |   `---3
    |       `---4
    `---5
        |---6
        |---7
        |   |---8
        |   `---9
        `---10
->

J[edit]

See: j:Essays/Tree Display for tree represented as label pairs.

Or, adapted to the parent index representation of a tree (which allows different nodes to share labels and may also be more convenient for other reasons):

BOXC=: 9!:6 ''    NB. box drawing characters
EW =: {: BOXC NB. east-west
 
showtree=: 4 : 0
NB. y is parent index for each node (non-indices for root nodes)
NB. x is label for each node
t=. (<EW,' ') ,@<@,:@,&":&.> x NB. tree fragments
c=. |:(#~ e./@|:);(~.,"0&.>(</. [email protected]#)) y
while. +./ b=. ({.c)*.//.-.e.~/c do.
i=. b#~.{.c NB. parents whose children are leaves
j=. </./(({.c)e.i)#"1 c NB. leaves grouped by parents
t=. a: (;j)}t i}~ (i{t) subtree&.> j{&.><t
c=. (-.({.c)e.i)#"1 c NB. prune edges to leaves
end.
 ;([: ,.&.>/ extend&.>)&> t -. a:
)
 
subtree=: 4 : 0
p=. EW={."1 s=. >{.t=. graft y
(<(>{.x) root p),(<(connect p),.s),}.t
)
 
graft=: 3 : 0
n=. (-~ >./) #&> y
f=. [email protected](,&0)@#&.>@{.&.> y
,&.>/ y ,&> n$&.>f
)
 
connect=: 3 : 0
b=. (+./\ *. +./\.) y
c=. (b+2*y){' ',9 3 3{BOXC NB. │ NS ├ E
c=. (0{BOXC) (b i. 1)}c NB. ┌ NW
c=. (6{BOXC) (b i: 1)}c NB. └ SW
j=. (b i. 1)+<.-:+/b
EW&(j})^:(1=+/b) c j}~ ((0 3 6 9{BOXC)i.j{c){1 4 7 5{BOXC
)
 
root=: 4 : 0
j=. k+<.-:1+(y i: 1)-k=. y i. 1
(-j)|.(#y){.x,.,:' ',EW
)
 
extend=: 3 : '(+./\"1 (y=EW) *. *./\."1 y e.'' '',EW)}y,:EW'
 

Example use:

   (i.10) showtree _,}.p:inv i.10
┌─ 6
┌─ 1 ─── 3 ─┴─ 7
│ ┌─ 8
0 ─┤ ┌─ 4 ─┴─ 9
└─ 2 ─┴─ 5

Java[edit]

Minimalist BST that can do nothing except print itself to stdout.

public class VisualizeTree {
public static void main(String[] args) {
BinarySearchTree tree = new BinarySearchTree();
 
tree.insert(100);
for (int i = 0; i < 20; i++)
tree.insert((int) (Math.random() * 200));
tree.display();
}
}
 
class BinarySearchTree {
private Node root;
 
private class Node {
private int key;
private Node left, right;
 
Node(int k) {
key = k;
}
}
 
public boolean insert(int key) {
if (root == null)
root = new Node(key);
else {
Node n = root;
Node parent;
while (true) {
if (n.key == key)
return false;
 
parent = n;
 
boolean goLeft = key < n.key;
n = goLeft ? n.left : n.right;
 
if (n == null) {
if (goLeft) {
parent.left = new Node(key);
} else {
parent.right = new Node(key);
}
break;
}
}
}
return true;
}
 
public void display() {
final int height = 5, width = 64;
 
int len = width * height * 2 + 2;
StringBuilder sb = new StringBuilder(len);
for (int i = 1; i <= len; i++)
sb.append(i < len - 2 && i % width == 0 ? "\n" : ' ');
 
displayR(sb, width / 2, 1, width / 4, width, root, " ");
System.out.println(sb);
}
 
private void displayR(StringBuilder sb, int c, int r, int d, int w, Node n,
String edge) {
if (n != null) {
displayR(sb, c - d, r + 2, d / 2, w, n.left, " /");
 
String s = String.valueOf(n.key);
int idx1 = r * w + c - (s.length() + 1) / 2;
int idx2 = idx1 + s.length();
int idx3 = idx1 - w;
if (idx2 < sb.length())
sb.replace(idx1, idx2, s).replace(idx3, idx3 + 2, edge);
 
displayR(sb, c + d, r + 2, d / 2, w, n.right, "\\ ");
}
}
}
                             100                              
                /                              \               
               49                              106             
        /              \                /              \       
       44              94              105             152     
    /      \        /                               /      \   
   26      47      61                              109     178 
  /  \            /  \                               \    /    
 12  33          51  88                              119 159

JavaScript[edit]

HTML[edit]

Javascript wrapped in HTML5 document. Should work in modern browsers.

<!doctype html>
<html id="doc">
<head><meta charset="utf-8"/>
<title>Stuff</title>
<script type="application/javascript">
function gid(id) { return document.getElementById(id); }
 
function ce(tag, cls, parent_node) {
var e = document.createElement(tag);
e.className = cls;
if (parent_node) parent_node.appendChild(e);
return e;
}
 
function dom_tree(id) {
gid('tree').textContent = "";
gid('tree').appendChild(mktree(gid(id), null));
}
 
function mktree(e, p) {
var t = ce("div", "tree", p);
var tog = ce("span", "toggle", t);
var h = ce("span", "tag", t);
 
if (e.tagName === undefined) {
h.textContent = "#Text";
var txt = e.textContent;
if (txt.length > 0 && txt.match(/\S/)) {
h = ce("div", "txt", t);
h.textContent = txt;
}
return t;
}
 
tog.textContent = "−";
tog.onclick = function () { clicked(tog); }
h.textContent = e.nodeName;
 
var l = e.childNodes;
for (var i = 0; i != l.length; i++)
mktree(l[i], t);
return t;
}
 
function clicked(e) {
var is_on = e.textContent == "−";
e.textContent = is_on ? "+" : "−";
e.parentNode.className = is_on ? "tree-hide" : "tree";
}
</script>
<style>
#tree { white-space: pre; font-family: monospace; border: 1px solid }
.tree > .tree-hide, .tree > .tree
{ margin-left: 2em; border-left: 1px dotted rgba(0,0,0,.2)}
.tree-hide > .tree, .tree-hide > .tree-hide { display: none }
.tag { color: navy }
.tree-hide > .tag { color: maroon }
.txt { color: gray; padding: 0 .5em; margin: 0 .5em 0 2em; border: 1px dotted rgba(0,0,0,.1) }
.toggle { display: inline-block; width: 2em; text-align: center }
</style>
</head>
<body>
<article>
<section>
<h1>Headline</h1>
Blah blah
</section>
<section>
<h1>More headline</h1>
<blockquote>Something something</blockquote>
<section><h2>Nested section</h2>
Somethin somethin list:
<ul>
<li>Apples</li>
<li>Oranges</li>
<li>Cetera Fruits</li>
</ul>
</section>
</section>
</article>
<div id="tree"><a href="javascript:dom_tree('doc')">click me</a></div>
</body>
</html>

Plain text[edit]

Vertically centered tree[edit]

Translation of: Python
(Functional version)
(() => {
'use strict';
 
// UTF8 character-drawn tree, with options for compacting vs
// centering parents, and for pruning out nodeless lines.
 
const example = `
┌ Epsilon
┌─ Beta ┼─── Zeta
│ └──── Eta
Alpha ┼ Gamma ─── Theta
│ ┌─── Iota
└ Delta ┼── Kappa
└─ Lambda`
 
// drawTree2 :: Bool -> Bool -> Tree String -> String
const drawTree2 = blnCompact => blnPruned => tree => {
// Tree design and algorithm inspired by the Haskell snippet at:
// https://doisinkidney.com/snippets/drawing-trees.html
const
// Lefts, Middle, Rights
lmrFromStrings = xs => {
const [ls, rs] = Array.from(splitAt(
Math.floor(xs.length / 2),
xs
));
return Tuple3(ls, rs[0], rs.slice(1));
},
stringsFromLMR = lmr =>
Array.from(lmr).reduce((a, x) => a.concat(x), []),
fghOverLMR = (f, g, h) => lmr => {
const [ls, m, rs] = Array.from(lmr);
return Tuple3(ls.map(f), g(m), rs.map(h));
};
 
const lmrBuild = (f, w) => wsTree => {
const
leftPad = n => s => ' '.repeat(n) + s,
xs = wsTree.nest,
lng = xs.length,
[nChars, x] = Array.from(wsTree.root);
 
// LEAF NODE --------------------------------------
return 0 === lng ? (
Tuple3([], '─'.repeat(w - nChars) + x, [])
 
// NODE WITH SINGLE CHILD -------------------------
) : 1 === lng ? (() => {
const indented = leftPad(1 + w);
return fghOverLMR(
indented,
z => '─'.repeat(w - nChars) + x + '─' + z,
indented
)(f(xs[0]));
 
// NODE WITH CHILDREN -----------------------------
})() : (() => {
const
cFix = x => xs => x + xs,
treeFix = (l, m, r) => compose(
stringsFromLMR,
fghOverLMR(cFix(l), cFix(m), cFix(r))
),
_x = '─'.repeat(w - nChars) + x,
indented = leftPad(w),
lmrs = xs.map(f);
return fghOverLMR(
indented,
s => _x + ({
'┌': '┬',
'├': '┼',
'│': '┤',
'└': '┴'
})[s[0]] + s.slice(1),
indented
)(lmrFromStrings(
intercalate(
blnCompact ? [] : ['│'],
[treeFix(' ', '┌', '│')(lmrs[0])]
.concat(init(lmrs.slice(1)).map(
treeFix('│', '├', '│')
))
.concat([treeFix('│', '└', ' ')(
lmrs[lmrs.length - 1]
)])
)
));
})();
};
const
measuredTree = fmapTree(
v => {
const s = ' ' + v + ' ';
return Tuple(s.length, s)
}, tree
),
levelWidths = init(levels(measuredTree))
.reduce(
(a, level) => a.concat(maximum(level.map(fst))),
[]
),
treeLines = stringsFromLMR(
levelWidths.reduceRight(
lmrBuild, x => x
)(measuredTree)
);
return unlines(
blnPruned ? (
treeLines.filter(
s => s.split('')
.some(c => !' │'.includes(c))
)
) : treeLines
);
};
 
// TESTS ----------------------------------------------
const main = () => {
 
// tree :: Tree String
const tree = Node(
'Alpha', [
Node('Beta', [
Node('Epsilon', []),
Node('Zeta', []),
Node('Eta', [])
]),
Node('Gamma', [Node('Theta', [])]),
Node('Delta', [
Node('Iota', []),
Node('Kappa', []),
Node('Lambda', [])
])
]);
 
// tree2 :: Tree Int
const tree2 = Node(
1,
[
Node(2, [
Node(4, []),
Node(5, [Node(7, [])])
]),
Node(3, [
Node(6, [
Node(8, []),
Node(9, [])
])
])
]
);
 
// strTrees :: String
const strTrees = ([
'Compacted (parents not all vertically centered):',
drawTree2(true)(false)(tree2),
'Fully expanded, with vertical centering:',
drawTree2(false)(false)(tree),
'Vertically centered, with nodeless lines pruned out:',
drawTree2(false)(true)(tree),
].join('\n\n'));
 
return (
console.log(strTrees),
strTrees
);
};
 
// GENERIC FUNCTIONS ----------------------------------
 
// Node :: a -> [Tree a] -> Tree a
const Node = (v, xs) => ({
type: 'Node',
root: v, // any type of value (consistent across tree)
nest: xs || []
});
 
// Tuple (,) :: a -> b -> (a, b)
const Tuple = (a, b) => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
 
// Tuple3 (,,) :: a -> b -> c -> (a, b, c)
const Tuple3 = (a, b, c) => ({
type: 'Tuple3',
'0': a,
'1': b,
'2': c,
length: 3
});
 
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (f, g) => x => f(g(x));
 
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs =>
0 < xs.length ? (() => {
const unit = 'string' !== typeof xs[0] ? (
[]
) : '';
return unit.concat.apply(unit, xs);
})() : [];
 
// fmapTree :: (a -> b) -> Tree a -> Tree b
const fmapTree = (f, tree) => {
const go = node => Node(
f(node.root),
node.nest.map(go)
);
return go(tree);
};
 
// fst :: (a, b) -> a
const fst = tpl => tpl[0];
 
// identity :: a -> a
const identity = x => x;
 
// init :: [a] -> [a]
const init = xs =>
0 < xs.length ? (
xs.slice(0, -1)
) : undefined;
 
// intercalate :: [a] -> [[a]] -> [a]
// intercalate :: String -> [String] -> String
const intercalate = (sep, xs) =>
0 < xs.length && 'string' === typeof sep &&
'string' === typeof xs[0] ? (
xs.join(sep)
) : concat(intersperse(sep, xs));
 
// intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3]
 
// intersperse :: a -> [a] -> [a]
// intersperse :: Char -> String -> String
const intersperse = (sep, xs) => {
const bln = 'string' === typeof xs;
return xs.length > 1 ? (
(bln ? concat : x => x)(
(bln ? (
xs.split('')
) : xs)
.slice(1)
.reduce((a, x) => a.concat([sep, x]), [xs[0]])
)) : xs;
};
 
// iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
const iterateUntil = (p, f, x) => {
const vs = [x];
let h = x;
while (!p(h))(h = f(h), vs.push(h));
return vs;
};
 
// Returns Infinity over objects without finite length.
// This enables zip and zipWith to choose the shorter
// argument when one is non-finite, like cycle, repeat etc
 
// length :: [a] -> Int
const length = xs =>
(Array.isArray(xs) || 'string' === typeof xs) ? (
xs.length
) : Infinity;
 
// levels :: Tree a -> [[a]]
const levels = tree =>
iterateUntil(
xs => 1 > xs.length,
ys => [].concat(...ys.map(nest)),
[tree]
).map(xs => xs.map(root));
 
// maximum :: Ord a => [a] -> a
const maximum = xs =>
0 < xs.length ? (
xs.slice(1).reduce((a, x) => x > a ? x : a, xs[0])
) : undefined;
 
// nest :: Tree a -> [a]
const nest = tree => tree.nest;
 
// root :: Tree a -> a
const root = tree => tree.root;
 
// splitAt :: Int -> [a] -> ([a], [a])
const splitAt = (n, xs) =>
Tuple(xs.slice(0, n), xs.slice(n));
 
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
 
// MAIN ---
return main();
})();
Output:
Compacted (parents not all vertically centered):

       ┌ 4 
   ┌ 2 ┴ 5 ─ 7 
 1 ┤       ┌ 8 
   └ 3 ─ 6 ┴ 9 

Fully expanded, with vertical centering:

               ┌ Epsilon 
               │
       ┌─ Beta ┼─── Zeta 
       │       │
       │       └──── Eta 
       │
 Alpha ┼ Gamma ─── Theta 
       │
       │       ┌─── Iota 
       │       │
       └ Delta ┼── Kappa 
               │
               └─ Lambda 

Vertically centered, with nodeless lines pruned out:

               ┌ Epsilon 
       ┌─ Beta ┼─── Zeta 
       │       └──── Eta 
 Alpha ┼ Gamma ─── Theta 
       │       ┌─── Iota 
       └ Delta ┼── Kappa 
               └─ Lambda

Decorated outline[edit]

(() => {
'use strict';
 
// drawTree :: Bool -> Tree String -> String
const drawTree = blnCompact => tree => {
// Simple decorated-outline style of ascii tree drawing,
// with nodeless lines pruned out if blnCompact is True.
const xs = draw(tree);
return unlines(
blnCompact ? (
xs.filter(
s => s.split('')
.some(c => !' │'.includes(c))
)
) : xs
);
};
 
// draw :: Tree String -> [String]
const draw = node => {
// shift :: String -> String -> [String] -> [String]
const shift = (first, other, xs) =>
zipWith(
append,
cons(first, replicate(xs.length - 1, other)),
xs
);
// drawSubTrees :: [Tree String] -> [String]
const drawSubTrees = xs => {
const lng = xs.length;
return 0 < lng ? (
1 < lng ? append(
cons(
'│',
shift('├─ ', '│ ', draw(xs[0]))
),
drawSubTrees(xs.slice(1))
) : cons('│', shift('└─ ', ' ', draw(xs[0])))
) : [];
};
return append(
lines(node.root.toString()),
drawSubTrees(node.nest)
);
};
 
// TEST -----------------------------------------------
const main = () => {
const tree = Node(
'Alpha', [
Node('Beta', [
Node('Epsilon', []),
Node('Zeta', []),
Node('Eta', [])
]),
Node('Gamma', [Node('Theta', [])]),
Node('Delta', [
Node('Iota', []),
Node('Kappa', []),
Node('Lambda', [])
])
]);
 
return [true, false]
.map(blnCompact => drawTree(blnCompact)(tree))
.join('\n\n');
};
 
// GENERIC FUNCTIONS ----------------------------------
 
// Node :: a -> [Tree a] -> Tree a
const Node = (v, xs) => ({
type: 'Node',
root: v, // any type of value (consistent across tree)
nest: xs || []
});
 
// append (++) :: [a] -> [a] -> [a]
// append (++) :: String -> String -> String
const append = (xs, ys) => xs.concat(ys);
 
// chars :: String -> [Char]
const chars = s => s.split('');
 
// cons :: a -> [a] -> [a]
const cons = (x, xs) => [x].concat(xs);
 
// Returns Infinity over objects without finite length.
// This enables zip and zipWith to choose the shorter
// argument when one is non-finite, like cycle, repeat etc
 
// length :: [a] -> Int
const length = xs =>
(Array.isArray(xs) || 'string' === typeof xs) ? (
xs.length
) : Infinity;
 
// lines :: String -> [String]
const lines = s => s.split(/[\r\n]/);
 
// replicate :: Int -> a -> [a]
const replicate = (n, x) =>
Array.from({
length: n
}, () => x);
 
// take :: Int -> [a] -> [a]
const take = (n, xs) =>
xs.slice(0, n);
 
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
 
// Use of `take` and `length` here allows zipping with non-finite lists
// i.e. generators like cycle, repeat, iterate.
 
// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = (f, xs, ys) => {
const
lng = Math.min(length(xs), length(ys)),
as = take(lng, xs),
bs = take(lng, ys);
return Array.from({
length: lng
}, (_, i) => f(as[i], bs[i], i));
};
 
// MAIN ---
return main();
})();
Output:
Alpha
├─ Beta
│  ├─ Epsilon
│  ├─ Zeta
│  └─ Eta
├─ Gamma
│  └─ Theta
└─ Delta
   ├─ Iota
   ├─ Kappa
   └─ Lambda

Alpha
│
├─ Beta
│  │
│  ├─ Epsilon
│  │
│  ├─ Zeta
│  │
│  └─ Eta
│
├─ Gamma
│  │
│  └─ Theta
│
└─ Delta
   │
   ├─ Iota
   │
   ├─ Kappa
   │
   └─ Lambda

Julia[edit]

Run from Julia REPL.

using Gadfly, LightGraphs, GraphPlot
 
gx = kronecker(5, 12, 0.57, 0.19, 0.19)
gplot(gx)
 

Kotlin[edit]

Translation of: C
// version 1.2.0
 
import java.util.Random
 
class Stem(var str: String? = null, var next: Stem? = null)
 
const val SDOWN = " |"
const val SLAST = " `"
const val SNONE = " "
 
val rand = Random()
 
fun tree(root: Int, head: Stem?) {
val col = Stem()
var head2 = head
var tail = head
while (tail != null) {
print(tail.str)
if (tail.next == null) break
tail = tail.next
}
println("--$root")
if (root <= 1) return
if (tail != null && tail.str == SLAST) tail.str = SNONE
if (tail == null) {
head2 = col
tail = head2
}
else {
tail.next = col
}
var root2 = root
while (root2 != 0) { // make a tree by doing something random
val r = 1 + rand.nextInt(root2)
root2 -= r
col.str = if (root2 != 0) SDOWN else SLAST
tree(r, head2)
}
tail.next = null
}
 
fun main(args: Array<String>) {
val n = 8
tree(n, null)
}

Sample output (unlike the C entry, should be different each time it's run):

--8
  |--7
  |  |--6
  |  |  |--5
  |  |  |  |--3
  |  |  |  |  |--2
  |  |  |  |  |  |--1
  |  |  |  |  |  `--1
  |  |  |  |  `--1
  |  |  |  `--2
  |  |  |     `--2
  |  |  |        |--1
  |  |  |        `--1
  |  |  `--1
  |  `--1
  `--1

Lingo[edit]

-- parent script "TreeItem"
-- (minimal implementation with direct property access)
 
property name
property children
 
on new (me, itemName)
me.name = itemName
me.children = []
return me
end
 
on addChild (me, child)
me.children.add(child)
end
 
-- print a tree
on printTree (me, treeItem, indent)
if voidP(treeItem) then treeItem = me
if voidP(indent) then indent = ""
put indent&treeItem.name
repeat with c in treeItem.children
me.printTree(c, indent&" ")
end repeat
end

Usage:

-- create a tree
root = script("TreeItem").new("root")
a = script("TreeItem").new("a")
root.addChild(a)
b = script("TreeItem").new("b")
root.addChild(b)
a1 = script("TreeItem").new("a1")
a.addChild(a1)
a11 = script("TreeItem").new("a11")
a1.addChild(a11)
a12 = script("TreeItem").new("a12")
a1.addChild(a12)
b1 = script("TreeItem").new("b1")
b.addChild(b1)
 
-- print the tree
root.printTree()
Output:
-- "root"
-- "  a"
-- "    a1"
-- "      a11"
-- "      a12"
-- "  b"
-- "    b1"

Maple[edit]

T := GraphTheory:-Graph([1, 2, 3, 4, 5], {{1, 2}, {2, 3}, {2, 4}, {4, 5}}):
GraphTheory:-DrawGraph(T, style = tree);

Mathematica[edit]

Tree graph[edit]

Make a tree graph. In Mathematica, \[DirectedEdge] will appear as an arrow in the code.

edges = {1 \[DirectedEdge] 2, 1 \[DirectedEdge] 3, 2 \[DirectedEdge] 4, 2 \[DirectedEdge] 5, 
3 \[DirectedEdge] 6, 4 \[DirectedEdge] 7};
t = TreeGraph[edges, GraphStyle -> "VintageDiagram"]
Tree.jpg

Show the syntactical structure of the above code. Defer is added to impede TreeGraph from becoming a graphical object.

TreeForm[[email protected]
TreeGraph[{1 \[DirectedEdge] 2, 1 \[DirectedEdge] 3, 2 \[DirectedEdge] 4, 2 \[DirectedEdge] 5,
3 \[DirectedEdge] 6, 4 \[DirectedEdge] 7}, VertexLabels -> "Name"]]

Syntax.jpg

Opener view[edit]

Here's another way to display a tree. The triangles open/close when clicked on.

OpenerView[{1, [email protected]{OpenerView[{2, [email protected]{OpenerView[{4, 7}, True], 5}}, True],
OpenerView[{3, OpenerView[{TraditionalForm[Cos[x]], Plot[Cos[x], {x, 0, 10}, ImageSize -> 150]},
True]}, True]}}, True]

Opener.jpg

Maxima[edit]

load(graphs)$
 
g: random_tree(10)$
 
is_tree(g);
true
 
draw_graph(g)$

Nim[edit]

Translation of: Haskell
import strutils
 
type
Node[T] = ref TNode[T]
TNode[T] = object
data: T
left, right: Node[T]
 
proc n[T](data: T; left, right: Node[T] = nil): Node[T] =
Node[T](data: data, left: left, right: right)
 
proc indent[T](n: Node[T]): seq[string] =
if n == nil: return @["-- (null)"]
 
result = @["--" & $n.data]
 
for a in indent n.left: result.add " |" & a
 
let r = indent n.right
result.add " `" & r[0]
for a in r[1..r.high]: result.add " " & a
 
let tree = 1.n(2.n(4.n(7.n),5.n),3.n(6.n(8.n,9.n)))
 
echo tree.indent.join("\n")

Perl[edit]

#!/usr/bin/perl
use warnings;
use strict;
use utf8;
use open OUT => ':utf8', ':std';
 
sub parse {
my ($tree) = shift;
if (my ($root, $children) = $tree =~ /^(.+?)\((.*)\)$/) {
 
my $depth = 0;
for my $pos (0 .. length($children) - 1) {
my $char = \substr $children, $pos, 1;
if (0 == $depth and ',' eq $$char) {
$$char = "\x0";
} elsif ('(' eq $$char) {
$depth++;
} elsif (')' eq $$char) {
$depth--;
}
}
return($root, [map parse($_), split /\x0/, $children]);
 
} else { # Leaf.
return $tree;
}
}
 
sub output {
my ($parsed, $prefix) = @_;
my $is_root = not defined $prefix;
$prefix //= ' ';
while (my $member = shift @$parsed) {
my $last = !@$parsed || (1 == @$parsed and ref $parsed->[0]);
unless ($is_root) {
substr $prefix, -3, 1, ' ';
substr($prefix, -4, 1) =~ s/├/│/;
substr $prefix, -2, 1, ref $member ? ' ' : '└' if $last;
}
 
if (ref $member) {
output($member, $prefix . '├─');
} else {
print $prefix, $member, "\n";
}
}
}
 
my $tree = 'a(b0(c1,c2(d(ef,gh)),c3(i1,i2,i3(jj),i4(kk,m))),b1(C1,C2(D1(E),D2,D3),C3))';
my $parsed = [parse($tree)];
output($parsed);
Output:
 a
 ├─b0
 │ ├─c1
 │ ├─c2
 │ │ └─d
 │ │   ├─ef
 │ │   └─gh
 │ └─c3
 │   ├─i1
 │   ├─i2
 │   ├─i3
 │   │ └─jj
 │   └─i4
 │     ├─kk
 │     └─m
 └─b1
   ├─C1
   ├─C2
   │ ├─D1
   │ │ └─E
   │ ├─D2
   │ └─D3
   └─C3

Perl 6[edit]

sub visualize-tree($tree, &label, &children,
:$indent = '',
:@mid = ('├─', '│ '),
:@end = ('└─', ' '),
) {
sub visit($node, *@pre) {
| gather {
take @pre[0] ~ label($node);
my @children := children($node);
my $end = @children.end;
for @children.kv -> $_, $child {
when $end { take visit($child, (@pre[1] X~ @end)) }
default { take visit($child, (@pre[1] X~ @mid)) }
}
}
}
visit($tree, $indent xx 2);
}
 
# example tree built up of pairs
my $tree = root=>[a=>[a1=>[a11=>[]]],b=>[b1=>[b11=>[]],b2=>[],b3=>[]]];
 
.map({.join("\n")}).join("\n").say for visualize-tree($tree, *.key, *.value.list);
Output:
root
├─a
│ └─a1
│   └─a11
└─b
  ├─b1
  │ └─b11
  ├─b2
  └─b3

Phix[edit]

function rand_tree(integer low, integer high)
for i=1 to 2 do
integer v = rand(high-low+1)-1+low
if v!=low
and v!=high then
return {v,rand_tree(low,v),rand_tree(v,high)}
end if
end for
return 0
end function
 
object tree = rand_tree(0,20) -- (can be 0, ~1% chance)
 
constant Horizontal = #C4,
Horizontals = "\#C4",
TopLeft = #DA,
Vertical = #B3,
BtmLeft = #C0
 
procedure visualise_tree(object tree, string root=Horizontals)
if atom(tree) then
puts(1,"<empty>\n")
else
object {v,l,r} = tree
integer g = root[$]
if sequence(l) then
root[$] = iff(g=TopLeft or g=Horizontal?' ':Vertical)
visualise_tree(l,root&TopLeft)
end if
root[$] = g
puts(1,root)
 ?v
if sequence(r) then
root[$] = iff(g=TopLeft?Vertical:' ')
visualise_tree(r,root&BtmLeft)
end if
end if
end procedure
 
visualise_tree(tree)
Output:
   ┌3
   │└4
   │ └5
  ┌7
 ┌9
 │└10
 │ └11
─12
 │ ┌13
 │┌14
 └15
  │ ┌16
  │┌17
  ││└18
  └19

A much simpler but less aesthetically pleasing way is just

pp(tree,{pp_Nest,10})
Output:
{1,
 0,
 {5,
  0,
  {9,
   {8,
    {6,
     0,
     0},
    0},
   0}}}

PicoLisp[edit]

'view' is a built-in function in PicoLisp.

(view '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13))))

Output:

+-- 1
|
+---+-- 2
|   |
|   +---+-- 3
|   |   |
|   |   +---+-- 4
|   |   |
|   |   +---+-- 5
|   |   |
|   |   +---+-- 6
|   |       |
|   |       +---+-- 7
|   |
|   +---+-- 8
|   |   |
|   |   +---+-- 9
|   |
|   +---+-- 10
|
+---+-- 11
    |
    +---+-- 12
    |
    +---+-- 13

Prolog[edit]

XPCE[edit]

XPCE is the SWI-Prolog native GUI library.

% direction may be horizontal/vertical/list
display_tree(Direction) :-
sformat(A, 'Display tree ~w', [Direction]),
new(D, window(A)),
send(D, size, size(350,200)),
new(T, tree(text('Root'))),
send(T, neighbour_gap, 10),
new(S1, node(text('Child1'))),
new(S2, node(text('Child2'))),
send_list(T, son,[S1,S2]),
new(S11, node(text('Grandchild1'))),
new(S12, node(text('Grandchild2'))),
send_list(S1, son, [S11, S12]),
new(S21, node(text('Grandchild3'))),
new(S22, node(text('Grandchild4'))),
send_list(S2, son, [S21, S22]),
send(T, direction, Direction),
send(D, display, T),
send(D, open).
 

Display tree.png

Python[edit]

Library module[edit]

Python has the pprint module for pretty-printing data.

If you set the presumed width of the output to 1 then pprint will print each level of a nested tuple (which is Pythons obvious method of creating a tree), on a separate line:

Python 3.2.3 (default, May  3 2012, 15:54:42) 
[GCC 4.6.3] on linux2
Type "copyright", "credits" or "license()" for more information.
>>> help('pprint.pprint')
Help on function pprint in pprint:
 
pprint.pprint = pprint(object, stream=None, indent=1, width=80, depth=None)
Pretty-print a Python object to a stream [default is sys.stdout].
 
>>> from pprint import pprint
>>> for tree in [ (1, 2, 3, 4, 5, 6, 7, 8),
(1, (( 2, 3 ), (4, (5, ((6, 7), 8))))),
((((1, 2), 3), 4), 5, 6, 7, 8) ]:
print("\nTree %r can be pprint'd as:" % (tree, ))
pprint(tree, indent=1, width=1)
 
 
 
Tree (1, 2, 3, 4, 5, 6, 7, 8) can be pprint'd as:
(1,
2,
3,
4,
5,
6,
7,
8)
 
Tree (1, ((2, 3), (4, (5, ((6, 7), 8))))) can be pprint'
d as:
(1,
((2,
3),
(4,
(5,
((6,
7),
8)))))
 
Tree ((((1, 2), 3), 4), 5, 6, 7, 8) can be pprint'd as:
((((1,
2),
3),
4),
5,
6,
7,
8)
>>>

pprint (and print), prints Pythons standard container types in a format that is valid python so Python could parse its output:

>>> tree = "a",("b0",("c1","c2",("d",("ef","gh")),"c3",("i1","i2","i3",("jj"),"i4",("kk","m"))),"b1",("C1","C2",("D1",("E"),"D2","D3"),"C3"))
>>> pprint(tree, width=1)
('a',
('b0',
('c1',
'c2',
('d',
('ef',
'gh')),
'c3',
('i1',
'i2',
'i3',
'jj',
'i4',
('kk',
'm'))),
'b1',
('C1',
'C2',
('D1',
'E',
'D2',
'D3'),
'C3')))
>>> copypasteoutput = ('a',
... ('b0',
... ('c1',
... 'c2',
... ('d',
... ('ef',
... 'gh')),
... 'c3',
... ('i1',
... 'i2',
... 'i3',
... 'jj',
... 'i4',
... ('kk',
... 'm'))),
... 'b1',
... ('C1',
... 'C2',
... ('D1',
... 'E',
... 'D2',
... 'D3'),
... 'C3')))
>>> tree == copypasteoutput
True
>>>

pprints width parameter allows it to fold some structure to better fit the page:

>>> pprint(tree, width=60)
('a',
('b0',
('c1',
'c2',
('d', ('ef', 'gh')),
'c3',
('i1', 'i2', 'i3', 'jj', 'i4', ('kk', 'm'))),
'b1',
('C1', 'C2', ('D1', 'E', 'D2', 'D3'), 'C3')))
>>>

pprint works with with a mix of nested container types. Here we create a tree from both lists and tuples:

>>> mixedtree = ['a', ('b0', ('c1', 'c2', ['d', ('ef', 'gh')], 'c3', ('i1', 'i2', 
... 'i3', 'jj', 'i4', ['kk', 'm'])), 'b1', ('C1', 'C2', ('D1', 'E',
... 'D2', 'D3'), 'C3'))]
>>> pprint(mixedtree, width=1)
['a',
('b0',
('c1',
'c2',
['d',
('ef',
'gh')],
'c3',
('i1',
'i2',
'i3',
'jj',
'i4',
['kk',
'm'])),
'b1',
('C1',
'C2',
('D1',
'E',
'D2',
'D3'),
'C3'))]
>>> pprint(mixedtree, width=60)
['a',
('b0',
('c1',
'c2',
['d', ('ef', 'gh')],
'c3',
('i1', 'i2', 'i3', 'jj', 'i4', ['kk', 'm'])),
'b1',
('C1', 'C2', ('D1', 'E', 'D2', 'D3'), 'C3'))]
>>>


Functional composition[edit]

Vertically centered parents[edit]

Using the same tree structure (including tree node constructor and accessors) as in the Tree Traversal task, and centering parent nodes vertically:

Works with: Python version 3
'''Textually visualized tree, with vertically-centered parent nodes'''
 
from functools import reduce
from itertools import (chain, takewhile)
 
'''
┌ Epsilon
├─── Zeta
┌─ Beta ┼──── Eta
│ │ ┌───── Mu
│ └── Theta ┤
Alpha ┤ └───── Nu
├ Gamma ────── Xi ─ Omicron
│ ┌─── Iota
└ Delta ┼── Kappa
└─ Lambda
'''

# Tree style and algorithm inspired by the Haskell snippet at:
# https://doisinkidney.com/snippets/drawing-trees.html
 
 
# drawTree2 :: Bool -> Bool -> Tree a -> String
def drawTree2(blnCompact):
'''Monospaced UTF8 left-to-right text tree in a
compact or expanded format, with any lines
containing no nodes optionally pruned out.
'''

def go(blnPruned, tree):
# measured :: a -> (Int, String)
def measured(x):
'''Value of a tree node
tupled with string length.
'''

s = ' ' + str(x) + ' '
return len(s), s
 
# lmrFromStrings :: [String] -> ([String], String, [String])
def lmrFromStrings(xs):
'''Lefts, Mid, Rights.'''
i = len(xs) // 2
ls, rs = xs[0:i], xs[i:]
return ls, rs[0], rs[1:]
 
# stringsFromLMR :: ([String], String, [String]) -> [String]
def stringsFromLMR(lmr):
ls, m, rs = lmr
return ls + [m] + rs
 
# fghOverLMR
# :: (String -> String)
# -> (String -> String)
# -> (String -> String)
# -> ([String], String, [String])
# -> ([String], String, [String])
def fghOverLMR(f, g, h):
def go(lmr):
ls, m, rs = lmr
return (
[f(x) for x in ls],
g(m),
[h(x) for x in rs]
)
return lambda lmr: go(lmr)
 
# leftPad :: Int -> String -> String
def leftPad(n):
return lambda s: (' ' * n) + s
 
# treeFix :: (Char, Char, Char) -> ([String], String, [String])
# -> [String]
def treeFix(l, m, r):
def cfix(x):
return lambda xs: x + xs
return compose(stringsFromLMR)(
fghOverLMR(cfix(l), cfix(m), cfix(r))
)
 
def lmrBuild(w, f):
def go(wsTree):
nChars, x = wsTree['root']
_x = ('─' * (w - nChars)) + x
xs = wsTree['nest']
lng = len(xs)
 
# linked :: String -> String
def linked(s):
c = s[0]
t = s[1:]
return _x + '┬' + t if '┌' == c else (
_x + '┤' + t if '│' == c else (
_x + '┼' + t if '├' == c else (
_x + '┴' + t
)
)
)
 
# LEAF ------------------------------------
if 0 == lng:
return ([], _x, [])
 
# SINGLE CHILD ----------------------------
elif 1 == lng:
def lineLinked(z):
return _x + '─' + z
rightAligned = leftPad(1 + w)
return fghOverLMR(
rightAligned,
lineLinked,
rightAligned
)(f(xs[0]))
 
# CHILDREN --------------------------------
else:
rightAligned = leftPad(w)
lmrs = [f(x) for x in xs]
return fghOverLMR(
rightAligned,
linked,
rightAligned
)(
lmrFromStrings(
intercalate([] if blnCompact else ['│'])(
[treeFix(' ', '┌', '│')(lmrs[0])] + [
treeFix('│', '├', '│')(x) for x
in lmrs[1:-1]
] + [treeFix('│', '└', ' ')(lmrs[-1])]
)
)
)
return lambda wsTree: go(wsTree)
 
measuredTree = fmapTree(measured)(tree)
levelWidths = reduce(
lambda a, xs: a + [max(x[0] for x in xs)],
levels(measuredTree),
[]
)
treeLines = stringsFromLMR(
foldr(lmrBuild)(None)(levelWidths)(
measuredTree
)
)
return [
s for s in treeLines
if any(c not in '│ ' for c in s)
] if (not blnCompact and blnPruned) else treeLines
 
return lambda blnPruned: (
lambda tree: '\n'.join(go(blnPruned, tree))
)
 
 
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Trees drawn in varying formats'''
 
# tree1 :: Tree Int
tree1 = Node(1)([
Node(2)([
Node(4)([
Node(7)([])
]),
Node(5)([])
]),
Node(3)([
Node(6)([
Node(8)([]),
Node(9)([])
])
])
])
 
# tree :: Tree String
tree2 = Node('Alpha')([
Node('Beta')([
Node('Epsilon')([]),
Node('Zeta')([]),
Node('Eta')([]),
Node('Theta')([
Node('Mu')([]),
Node('Nu')([])
])
]),
Node('Gamma')([
Node('Xi')([Node('Omicron')([])])
]),
Node('Delta')([
Node('Iota')([]),
Node('Kappa')([]),
Node('Lambda')([])
])
])
 
print(
'\n\n'.join([
'Fully compacted (parents not all centered):',
drawTree2(True)(False)(
tree1
),
'Expanded with vertically centered parents:',
drawTree2(False)(False)(
tree2
),
'Centered parents with nodeless lines pruned out:',
drawTree2(False)(True)(
tree2
)
])
)
 
 
# GENERIC -------------------------------------------------
 
# Node :: a -> [Tree a] -> Tree a
def Node(v):
'''Contructor for a Tree node which connects a
value of some kind to a list of zero or
more child trees.
'''

return lambda xs: {'type': 'Tree', 'root': v, 'nest': xs}
 
 
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
 
 
# concatMap :: (a -> [b]) -> [a] -> [b]
def concatMap(f):
'''A concatenated list over which a function has been mapped.
The list monad can be derived by using a function f which
wraps its output in a list,
(using an empty list to represent computational failure).
'''

return lambda xs: list(
chain.from_iterable(map(f, xs))
)
 
 
# fmapTree :: (a -> b) -> Tree a -> Tree b
def fmapTree(f):
'''A new tree holding the results of
applying f to each root in
the existing tree.
'''

def go(x):
return Node(f(x['root']))(
[go(v) for v in x['nest']]
)
return lambda tree: go(tree)
 
 
# foldr :: (a -> b -> b) -> b -> [a] -> b
def foldr(f):
'''Right to left reduction of a list,
using the binary operator f, and
starting with an initial accumulator value.
'''

def g(x, a):
return f(a, x)
return lambda acc: lambda xs: reduce(
g, xs[::-1], acc
)
 
 
# intercalate :: [a] -> [[a]] -> [a]
# intercalate :: String -> [String] -> String
def intercalate(x):
'''The concatenation of xs
interspersed with copies of x.
'''

return lambda xs: x.join(xs) if isinstance(x, str) else list(
chain.from_iterable(
reduce(lambda a, v: a + [x, v], xs[1:], [xs[0]])
)
) if xs else []
 
 
# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
'''An infinite list of repeated
applications of f to x.
'''

def go(x):
v = x
while True:
yield v
v = f(v)
return lambda x: go(x)
 
 
# levels :: Tree a -> [[a]]
def levels(tree):
'''A list of the nodes at each level of the tree.'''
return list(
map_(map_(root))(
takewhile(
bool,
iterate(concatMap(nest))(
[tree]
)
)
)
)
 
 
# map :: (a -> b) -> [a] -> [b]
def map_(f):
'''The list obtained by applying f
to each element of xs.
'''

return lambda xs: list(map(f, xs))
 
 
# nest :: Tree a -> [Tree a]
def nest(t):
'''Accessor function for children of tree node.'''
return t['nest'] if 'nest' in t else None
 
 
# root :: Tree a -> a
def root(t):
'''Accessor function for data of tree node.'''
return t['root'] if 'root' in t else None
 
 
# MAIN ---
if __name__ == '__main__':
main()
Output:
Fully compacted (parents not all centered):

       ┌ 4 ─ 7 
   ┌ 2 ┴ 5 
 1 ┤       ┌ 8 
   └ 3 ─ 6 ┴ 9 

Expanded with vertically centered parents:

               ┌ Epsilon 
               │
               ├─── Zeta 
               │
       ┌─ Beta ┼──── Eta 
       │       │
       │       │         ┌───── Mu 
       │       └── Theta ┤
 Alpha ┤                 └───── Nu 
       │
       ├ Gamma ────── Xi ─ Omicron 
       │
       │       ┌─── Iota 
       │       │
       └ Delta ┼── Kappa 
               │
               └─ Lambda 

Centered parents with nodeless lines pruned out:

               ┌ Epsilon 
               ├─── Zeta 
       ┌─ Beta ┼──── Eta 
       │       │         ┌───── Mu 
       │       └── Theta ┤
 Alpha ┤                 └───── Nu 
       ├ Gamma ────── Xi ─ Omicron 
       │       ┌─── Iota 
       └ Delta ┼── Kappa 
               └─ Lambda 

Simple decorated-outline tree[edit]

Works with: Python version 3
'''Visualize a tree'''
 
from itertools import (repeat, starmap)
from operator import (add)
 
 
# drawTree :: Tree a -> String
def drawTree(tree):
'''ASCII diagram of a tree.'''
return '\n'.join(draw(tree))
 
 
# draw :: Tree a -> [String]
def draw(node):
'''List of the lines of an ASCII
diagram of a tree.'''

def shift(first, other, xs):
return list(starmap(
add,
zip(
[first] + list(
repeat(other, len(xs) - 1)
),
xs
)
))
 
def drawSubTrees(xs):
return (
(
['│'] + shift(
'├─ ', '│ ', draw(xs[0])
) + drawSubTrees(xs[1:])
) if 1 < len(xs) else ['│'] + shift(
'└─ ', ' ', draw(xs[0])
)
) if xs else []
 
return (str(root(node))).splitlines() + (
drawSubTrees(nest(node))
)
 
 
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Test'''
 
# tree :: Tree Int
tree = Node(1)([
Node(2)([
Node(4)([
Node(7)([])
]),
Node(5)([])
]),
Node(3)([
Node(6)([
Node(8)([]),
Node(9)([])
])
])
])
 
print(drawTree(tree))
 
 
# GENERIC -------------------------------------------------
 
 
# Node :: a -> [Tree a] -> Tree a
def Node(v):
'''Contructor for a Tree node which connects a
value of some kind to a list of zero or
more child trees.'''

return lambda xs: {'type': 'Node', 'root': v, 'nest': xs}
 
 
# nest :: Tree a -> [Tree a]
def nest(tree):
'''Accessor function for children of tree node.'''
return tree['nest'] if 'nest' in tree else None
 
 
# root :: Dict -> a
def root(dct):
'''Accessor function for data of tree node.'''
return dct['root'] if 'root' in dct else None
 
 
# MAIN ---
if __name__ == '__main__':
main()
Output:
1
│
├─ 2
│  │
│  ├─ 4
│  │  │
│  │  └─ 7
│  │
│  └─ 5
│
└─ 3
   │
   └─ 6
      │
      ├─ 8
      │
      └─ 9

Racket[edit]

 
#lang racket/base
 
(define (visualize t0)
(let loop ([t t0] [last? #t] [indent '()])
(define (I mid last) (cond [(eq? t t0) ""] [last? mid] [else last]))
(for-each display (reverse indent))
(unless (eq? t t0) (printf "|\n"))
(for-each display (reverse indent))
(printf "~a~a\n" (I "\\-" "+-") (car t))
(for ([s (cdr t)] [n (in-range (- (length t) 2) -1 -1)])
(loop s (zero? n) (cons (I " " "| ") indent)))))
 
(visualize '(1 (2 (3 (4) (5) (6 (7))) (8 (9)) (10)) (11 (12) (13))))
 

Output:

1
|
+-2
| |
| +-3
| | |
| | +-4
| | |
| | +-5
| | |
| | \-6
| |   |
| |   \-7
| |
| +-8
| | |
| | \-9
| |
| \-10
|
\-11
  |
  +-12
  |
  \-13

REXX[edit]

/* REXX ***************************************************************
* 10.05.2014 Walter Pachl using the tree and the output format of C
**********************************************************************/

Call mktree
Say node.1.0name
Call tt 1,''
Exit
 
tt: Procedure Expose node.
/**********************************************************************
* show a subtree (recursively)
**********************************************************************/

Parse Arg k,st
Do i=1 To node.k.0
If i=node.k.0 Then
s='`--'
Else
s='|--'
c=node.k.i
If st<>'' Then
st=left(st,length(st)-2)' '
st=changestr('` ',st,' ')
Say st||s||node.c.0name
Call tt c,st||s
End
Return
Exit
 
mktree: Procedure Expose node. root
/**********************************************************************
* build the tree according to the task
**********************************************************************/

node.=0
r=mknode('R');
a=mknode('A'); Call attchild a,r
b=mknode('B'); Call attchild b,a
c=mknode('C'); Call attchild c,a
d=mknode('D'); Call attchild d,b
e=mknode('E'); Call attchild e,b
f=mknode('F'); Call attchild f,b
g=mknode('G'); Call attchild g,b
h=mknode('H'); Call attchild h,d
i=mknode('I'); Call attchild i,h
j=mknode('J'); Call attchild j,i
k=mknode('K'); Call attchild k,j
l=mknode('L'); Call attchild l,j
m=mknode('M'); Call attchild m,e
n=mknode('N'); Call attchild n,e
Return
 
mknode: Procedure Expose node.
/**********************************************************************
* create a new node
**********************************************************************/

Parse Arg name
z=node.0+1
node.z.0name=name
node.0=z
Return z /* number of the node just created */
 
attchild: Procedure Expose node.
/**********************************************************************
* make a the next child of father
**********************************************************************/

Parse Arg a,father
node.a.0father=father
z=node.father.0+1
node.father.z=a
node.father.0=z
node.a.0level=node.father.0level+1
Return
 
Output:
R
`--A
   |--B
   |  |--D
   |  |  `--H
   |  |     `--I
   |  |        `--J
   |  |           |--K
   |  |           `--L
   |  |--E
   |  |  |--M
   |  |  `--N
   |  |--F
   |  `--G
   `--C

Ruby[edit]

Modifying Tree_traversal#Ruby by adding somewhere after the line

 
root = BinaryTreeNode.from_array [1, [2, [4, 7], [5]], [3, [6, [8], [9]]]]
 

the lines

 
require 'pp'
pp root
 

will produce:

Output:
  #<BinaryTreeNode:0x804f854
   @left=
    #<BinaryTreeNode:0x804fad8
     @left=#<BinaryTreeNode:0x804fc28 @left=nil, @right=nil, @value=7>,
     @right=nil,
     @value=4>,
   @right=#<BinaryTreeNode:0x804f9c0 @left=nil, @right=nil, @value=5>,
   @value=2>,
 @right=
  #<BinaryTreeNode:0x804f074
   @left=
    #<BinaryTreeNode:0x804f218
     @left=#<BinaryTreeNode:0x804f544 @left=nil, @right=nil, @value=8>,
     @right=#<BinaryTreeNode:0x804f384 @left=nil, @right=nil, @value=9>,
     @value=6>,
   @right=nil,
   @value=3>,
 @value=1>
 
def ptree(tree,indent=" ")
case tree
when Array
head,*tail=tree
ptree(head,indent)
s=tail.size-1
tail.each_with_index { |tree1,i| ptree(tree1,"#{indent}#{((i==s) ? ' ':'|')} ") }
else
puts(indent.gsub(/\s\s$/,"--").gsub(/ --$/,"\\--")+tree.to_s)
end
end
ptree [1,2,3,[4,5,6,[7,8,9]],3,[22,33]]
 

will produce:

Output:
--1
  |--2
  |--3
  |--4
  |  |--5
  |  |--6
  |  \--7
  |     |--8
  |     \--9
  |--3
  \--22
     \--33

Rust[edit]

Console visualization of binary trees translated from parts of the C AVL tree solution.

 
extern crate rustc_serialize;
extern crate term_painter;
 
use rustc_serialize::json;
use std::fmt::{Debug, Display, Formatter, Result};
use term_painter::ToStyle;
use term_painter::Color::*;
 
type NodePtr = Option<usize>;
 
#[derive(Debug, PartialEq, Clone, Copy)]
enum Side {
Left,
Right,
Up,
}
 
#[derive(Debug, PartialEq, Clone, Copy)]
enum DisplayElement {
TrunkSpace,
SpaceLeft,
SpaceRight,
SpaceSpace,
Root,
}
 
impl DisplayElement {
fn string(&self) -> String {
match *self {
DisplayElement::TrunkSpace => " │ ".to_string(),
DisplayElement::SpaceRight => " ┌───".to_string(),
DisplayElement::SpaceLeft => " └───".to_string(),
DisplayElement::SpaceSpace => " ".to_string(),
DisplayElement::Root => "├──".to_string(),
}
}
}
 
#[derive(Debug, Clone, Copy, RustcDecodable, RustcEncodable)]
struct Node<K, V> {
key: K,
value: V,
left: NodePtr,
right: NodePtr,
up: NodePtr,
}
 
impl<K: Ord + Copy, V: Copy> Node<K, V> {
pub fn get_ptr(&self, side: Side) -> NodePtr {
match side {
Side::Up => self.up,
Side::Left => self.left,
_ => self.right,
}
}
}
 
#[derive(Debug, RustcDecodable, RustcEncodable)]
struct Tree<K, V> {
root: NodePtr,
store: Vec<Node<K, V>>,
}
 
impl<K: Ord + Copy + Debug + Display, V: Debug + Copy + Display> Tree<K, V> {
pub fn get_node(&self, np: NodePtr) -> Node<K, V> {
assert!(np.is_some());
self.store[np.unwrap()]
}
 
pub fn get_pointer(&self, np: NodePtr, side: Side) -> NodePtr {
assert!(np.is_some());
self.store[np.unwrap()].get_ptr(side)
}
 
// Prints the tree with root p. The idea is to do an in-order traversal
// (reverse in-order in this case, where right is on top), and print nodes as they
// are visited, one per line. Each invocation of display() gets its own copy
// of the display element vector e, which is grown with either whitespace or
// a trunk element, then modified in its last and possibly second-to-last
// characters in context.
fn display(&self, p: NodePtr, side: Side, e: &Vec<DisplayElement>, f: &mut Formatter) {
if p.is_none() {
return;
}
 
let mut elems = e.clone();
let node = self.get_node(p);
let mut tail = DisplayElement::SpaceSpace;
if node.up != self.root {
// If the direction is switching, I need the trunk element to appear in the lines
// printed before that node is visited.
if side == Side::Left && node.right.is_some() {
elems.push(DisplayElement::TrunkSpace);
} else {
elems.push(DisplayElement::SpaceSpace);
}
}
let hindex = elems.len() - 1;
self.display(node.right, Side::Right, &elems, f);
 
if p == self.root {
elems[hindex] = DisplayElement::Root;
tail = DisplayElement::TrunkSpace;
} else if side == Side::Right {
// Right subtree finished
elems[hindex] = DisplayElement::SpaceRight;
// Prepare trunk element in case there is a left subtree
tail = DisplayElement::TrunkSpace;
} else if side == Side::Left {
elems[hindex] = DisplayElement::SpaceLeft;
let parent = self.get_node(node.up);
if parent.up.is_some() && self.get_pointer(parent.up, Side::Right) == node.up {
// Direction switched, need trunk element starting with this node/line
elems[hindex - 1] = DisplayElement::TrunkSpace;
}
}
 
// Visit node => print accumulated elements. Each node gets a line and each line gets a
// node.
for e in elems.clone() {
let _ = write!(f, "{}", e.string());
}
let _ = write!(f,
"{key:>width$} ",
key = Green.bold().paint(node.key),
width = 2);
let _ = write!(f,
"{value:>width$}\n",
value = Blue.bold().paint(format!("{:.*}", 2, node.value)),
width = 4);
 
// Overwrite last element before continuing traversal
elems[hindex] = tail;
 
self.display(node.left, Side::Left, &elems, f);
}
}
 
impl<K: Ord + Copy + Debug + Display, V: Debug + Copy + Display> Display for Tree<K, V> {
fn fmt(&self, f: &mut Formatter) -> Result {
if self.root.is_none() {
write!(f, "[empty]")
} else {
let mut v: Vec<DisplayElement> = Vec::new();
self.display(self.root, Side::Up, &mut v, f);
Ok(())
}
}
}
 
/// Decodes and prints a previously generated tree.
fn main() {
let encoded = r#"{"root":0,"store":[{"key":0,"value":0.45,"left":1,"right":3,
"up":null},{"key":-8,"value":-0.94,"left":7,"right":2,"up":0}, {"key":-1,
"value":0.15,"left":8,"right":null,"up":1},{"key":7, "value":-0.29,"left":4,
"right":9,"up":0},{"key":5,"value":0.80,"left":5,"right":null,"up":3},
{"key":4,"value":-0.85,"left":6,"right":null,"up":4},{"key":3,"value":-0.46,
"left":null,"right":null,"up":5},{"key":-10,"value":-0.85,"left":null,
"right":13,"up":1},{"key":-6,"value":-0.42,"left":null,"right":10,"up":2},
{"key":9,"value":0.63,"left":12,"right":null,"up":3},{"key":-3,"value":-0.83,
"left":null,"right":11,"up":8},{"key":-2,"value":0.75,"left":null,"right":null,
"up":10},{"key":8,"value":-0.48,"left":null,"right":null,"up":9},{"key":-9,
"value":0.53,"left":null,"right":null,"up":7}]}"#;
let tree: Tree<i32, f32> = json::decode(&encoded).unwrap();
println!("{}", tree);
}
 
Output:

Visualize a tree-rust-1.png

Sidef[edit]

Translation of: Perl 6
func visualize_tree(tree, label, children,
indent = '',
mids = ['├─', '│ '],
ends = ['└─', ' '],
) {
func visit(node, pre) {
gather {
take(pre[0] + label(node))
var chldn = children(node)
var end = chldn.end
chldn.each_kv { |i, child|
if (i == end) { take(visit(child, [pre[1]] ~X+ ends)) }
else { take(visit(child, [pre[1]] ~X+ mids)) }
}
}
}
visit(tree, [indent] * 2)
}
 
var tree = 'root':['a':['a1':['a11':[]]],'b':['b1':['b11':[]],'b2':[],'b3':[]]]
say visualize_tree(tree, { .first }, { .second }).flatten.join("\n")
Output:
root
├─a
│ └─a1
│   └─a11
└─b
  ├─b1
  │ └─b11
  ├─b2
  └─b3

Tcl[edit]

Library: Tcllib (Package: struct::tree)
package require struct::tree
 
proc visualize_tree {tree {nameattr name}} {
set path {}
$tree walk [$tree rootname] -order both {mode node} {
if {$mode eq "enter"} {
set s ""
foreach p $path {
append s [expr {[$tree next $p] eq "" ? " " : "\u2502 "}]
}
lappend path $node
append s [expr {
[$tree next $node] eq "" ? "\u2514\u2500" : "\u251c\u2500"
}]
if {[$tree keyexists $node $nameattr]} {
set name [$tree get $node $nameattr]
} else {
# No node name attribute; use the raw name
set name $node
}
puts "$s$name"
} else {
set path [lrange $path 0 end-1]
}
}
}

Demonstrating:

# Sample tree to demonstrate with
struct::tree t deserialize {root {} {} a 0 {} d 3 {} e 3 {} f 9 {} b 0 {} c 0 {}}
visualize_tree t
Output:
└─root
  ├─a
  │ ├─d
  │ └─e
  │   └─f
  ├─b
  └─c

Yabasic[edit]

clear screen
 
dim colore$(1)
 
maxCol = token("white yellow cyan green red", colore$())
 
showTree(0, "[1[2[3][4[5][6]][7]][8[9]]]")
print "\n\n\n"
showTree(0, "[1[2[3[4]]][5[6][7[8][9]]]]")
 
sub showTree(n, A$)
local i, c$
static co
 
c$ = left$(A$, 1)
 
if c$ = "" return
 
switch c$
case "[": co = co + 1 : showTree(n + 1, right$(A$, len(A$) - 1))
break
case "]": co = co - 1 : showTree(n - 1, right$(A$, len(A$) - 1))
break
default: for i = 2 to n
print " ";
next i
co = max(min(co, maxCol), 1)
print color(colore$(co)) "\xc0-", c$
showTree(n, right$(A$, len(A$) - 1))
break
end switch
end sub
 

zkl[edit]

In zkl, the Vault is a global object store object (aka thread safe dictionary). Basically a tiny file system for objects. It has a "dir" method to display the contents

Output:
:Vault.dir()
...
Compiler
   Asm
   Compiler
Dictionary
Exception
Test
   UnitTester
   foo
      bar
...

It does this with data that looks like: L("Network.TCPServerSocket","File","ZKLShell.Granny","Int","startup","Utils.Inspector","Thread.Straw","Ref","Utils.Argh" ...)

fcn vaultDir(out=Console){
const INDENT=" ";
space:=""; lastPath:=L();
foreach fullname in (TheVault.BaseClass.contents.sort()){
path:=fullname.split("."); name:=path.pop();
if(lastPath==path) out.writeln(space,name);
else{
n:=0; p:=path.copy();
try{
while(path[0]==lastPath[0])
{ n+=1; path.pop(0); lastPath.pop(0); }
}catch{}
space=INDENT*n;
foreach dir in (path){ out.writeln(space,dir); space+=INDENT; }
out.writeln(space,name);
lastPath=p;
}
}
"" // so startup has something to display
}