I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Sequence of non-squares

(Redirected from Sequance of Non-squares)
Sequence of non-squares
You are encouraged to solve this task according to the task description, using any language you may know.

Show that the following remarkable formula gives the sequence of non-square natural numbers:

```            n + floor(1/2 + sqrt(n))
```
• Print out the values for   n   in the range   1   to   22
• Show that no squares occur for   n   less than one million

This is sequence   A000037   in the OEIS database.

## 11l

Translation of: Python
`F non_square(Int n)   R n + Int(floor(1/2 + sqrt(n))) print_elements((1..22).map(non_square)) F is_square(n)   R fract(sqrt(n)) == 0 L(i) 1 .< 10 ^ 6   I is_square(non_square(i))      print(‘Square found ’i)      L.breakL.was_no_break   print(‘No squares found’)`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
No squares found
```

`with Ada.Numerics.Long_Elementary_Functions;with Ada.Text_IO;  use Ada.Text_IO; procedure Sequence_Of_Non_Squares_Test is   use Ada.Numerics.Long_Elementary_Functions;    function Non_Square (N : Positive) return Positive is   begin      return N + Positive (Long_Float'Rounding (Sqrt (Long_Float (N))));   end Non_Square;    I : Positive;begin   for N in 1..22 loop -- First 22 non-squares      Put (Natural'Image (Non_Square (N)));   end loop;   New_Line;   for N in 1..1_000_000 loop -- Check first million of      I := Non_Square (N);      if I = Positive (Sqrt (Long_Float (I)))**2 then         Put_Line ("Found a square:" & Positive'Image (N));      end if;   end loop;end Sequence_Of_Non_Squares_Test;`
Output:
``` 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
```

## ALGOL 68

Translation of: C
Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386
`PROC non square = (INT n)INT: n + ENTIER(0.5 + sqrt(n)); main: (     # first 22 values (as a list) has no squares: #    FOR i TO 22 DO        print((whole(non square(i),-3),space))    OD;    print(new line);     # The following check shows no squares up to one million:  #    FOR i TO 1 000 000 DO        REAL j = sqrt(non square(i));        IF j = ENTIER j THEN            put(stand out, ("Error: number is a square:", j, new line));            stop        FI    OD)`
Output:
``` 2   3   5   6   7   8  10  11  12  13  14  15  17  18  19  20  21  22  23  24  26  27
```

## ALGOL W

`begin    % check values of the function: f(n) = n + floor(1/2 + sqrt(n))    %    % are not squares                                                  %     integer procedure f ( integer value n ) ;        begin            n + entier( 0.5 + sqrt( n ) )        end f ;     logical noSquares;     % first 22 values of f                                             %    for n := 1 until 22 do writeon( i_w := 1, f( n ) );     % check f(n) does not produce a square for n in 1..1 000 000       %    noSquares := true;    for n := 1 until 1000000 do begin        integer fn, rn;        fn := f( n );        rn := round( sqrt( fn ) );        if ( rn * rn ) = fn then begin            write( "Found square at: ", n );            noSquares := false        end if_fn_is_a_square     end for_n ;     if noSquares then write( "f(n) did not produce a square in 1 .. 1 000 000" )                 else write( "f(n) produced a square" ) end.`
Output:
```2  3  5  6  7  8  10  11  12  13  14  15  17  18  19  20  21  22  23  24  26  27
f(n) did not produce a square in 1 .. 1 000 000
```

## APL

Generate the first 22 numbers:

`      NONSQUARE←{(⍳⍵)+⌊0.5+(⍳⍵)*0.5}      NONSQUARE 222 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27`

Show there are no squares in the first million:

`      HOWMANYSQUARES←{+⌿⍵=(⌊⍵*0.5)*2}      HOWMANYSQUARES NONSQUARE 10000000`

## AppleScript

`on task()    set values to {}    set squareCount to 0    repeat with n from 1 to (1000000 - 1)        set v to n + (0.5 + n ^ 0.5) div 1        if (n ≤ 22) then set end of values to v        set sqrt to v ^ 0.5        if (sqrt = sqrt as integer) then set squareCount to squareCount + 1    end repeat    return "Values (n = 1 to 22): " & join(values, ", ") & (linefeed & ¬        "Number of squares (n < 1000000): " & squareCount)end task on join(lst, delim)    set astid to AppleScript's text item delimiters    set AppleScript's text item delimiters to delim    set txt to lst as text    set AppleScript's text item delimiters to astid    return txtend join task() `
Output:
`"Values (n = 1 to 22): 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27Number of squares (n < 1000000): 0"`

## Arturo

`f: function [n]->    n + floor 0.5 + sqrt n loop 1..22 'i ->    print [i "->" f i] i: new 1, nonSquares: new []while [i<1000000][ 'nonSquares ++ f i, inc 'i]squares: map 1..1001 'x -> x ^ 2 if? empty? intersection squares nonSquares -> print "Didn't find any squares!"                                      else -> print "Ooops! Something went wrong!"`
Output:
```1 -> 2
2 -> 3
3 -> 5
4 -> 6
5 -> 7
6 -> 8
7 -> 10
8 -> 11
9 -> 12
10 -> 13
11 -> 14
12 -> 15
13 -> 17
14 -> 18
15 -> 19
16 -> 20
17 -> 21
18 -> 22
19 -> 23
20 -> 24
21 -> 26
22 -> 27
Didn't find any squares!```

## AutoHotkey

ahk forum: discussion

`Loop 22   t .= (A_Index + floor(0.5 + sqrt(A_Index))) "  "MsgBox %t% s := 0Loop 1000000   x := A_Index + floor(0.5 + sqrt(A_Index)), s += x = round(sqrt(x))**2Msgbox Number of bad squares = %s% ; 0`

## AWK

`\$ awk 'func f(n){return(n+int(.5+sqrt(n)))}BEGIN{for(i=1;i<=22;i++)print i,f(i)}'1 22 33 54 65 76 87 108 119 1210 1311 1412 1513 1714 1815 1916 2017 2118 2219 2320 2421 2622 27 \$ awk 'func f(n){return(n+int(.5+sqrt(n)))}BEGIN{for(i=1;i<100000;i++){n=f(i);r=int(sqrt(n));if(r*r==n)print n"is square"}}'\$`

## BASIC

Works with: FreeBASIC
Works with: RapidQ
`DIM i      AS IntegerDIM j      AS DoubleDIM found  AS Integer FUNCTION nonsqr (n AS Integer) AS Integer    nonsqr = n + INT(0.5 + SQR(n))END FUNCTION ' Display first 22 valuesFOR i = 1 TO 22    PRINT nonsqr(i); " ";NEXT iPRINT ' Check for squares up to one millionfound = 0FOR i = 1 TO 1000000     j = SQR(nonsqr(i))     IF j = INT(j) THEN 	 found = 1         PRINT "Found square: "; i         EXIT FOR     END IFNEXT iIF found=0 THEN PRINT "No squares found"`

## BASIC256

`# Display first 22 valuesprint "The first 22 numbers generated by the sequence are : "for i = 1 to 22    print nonSquare(i); " ";next iprint # Check for squares up to one millionfound = falsefor i = 1 to 1e6    j = sqrt(nonSquare(i))    if j = int(j) then        found = true        print i, " square numbers found"        exit for    end ifnext iif not found then print "No squares found"end function nonSquare (n)    return n + int(0.5 + sqrt(n))end function`

## BBC BASIC

`      FOR N% = 1 TO 22        S% = N% + SQR(N%) + 0.5        PRINT S%      NEXT       PRINT '"Checking...."      FOR N% = 1 TO 999999        S% = N% + SQR(N%) + 0.5        R% = SQR(S%)        IF S%/R% = R% STOP      NEXT      PRINT "No squares occur for n < 1000000"`
Output:
```         2
3
5
6
7
8
10
11
12
13
14
15
17
18
19
20
21
22
23
24
26
27

Checking....
No squares occur for n < 1000000
```

## Bc

Since BC is an arbitrary precision calculator, there are no issues in sqrt (it is enough to increase the scale variable upto the desired precision), nor there are limits (but time) to how many non-squares we can compute.

`#! /usr/bin/bc scale = 20 define ceil(x) {    auto intx    intx=int(x)    if (intx<x) intx+=1    return intx} define floor(x) {    return -ceil(-x)} define int(x) {    auto old_scale, ret    old_scale=scale    scale=0    ret=x/1    scale=old_scale    return ret} define round(x) {    if (x<0) x-=.5 else x+=.5    return int(x)}  define nonsqr(n) {  return n + round(sqrt(n))} for(i=1; i < 23; i++) {   print nonsqr(i), "\n"} for(i=1; i < 1000000; i++) {  j = sqrt(nonsqr(i))  if ( j == floor(j) ) {    print i, " square in the seq\n"  }} quit`

The functions int, round, floor, ceil are taken from here (int is slightly modified) (Here he states the license is GPL).

## Burlesque

` 1 [email protected]{?s0.5?+av?+}[m `

## C

`#include <math.h>#include <stdio.h>#include <assert.h> int nonsqr(int n) {    return n + (int)(0.5 + sqrt(n));    /* return n + (int)round(sqrt(n)); in C99 */} int main() {    int i;     /* first 22 values (as a list) has no squares: */    for (i = 1; i < 23; i++)        printf("%d ", nonsqr(i));    printf("\n");     /* The following check shows no squares up to one million: */    for (i = 1; i < 1000000; i++) {        double j = sqrt(nonsqr(i));        assert(j != floor(j));    }    return 0;}`

## C#

`using System;using System.Diagnostics; namespace sons{    class Program    {        static void Main(string[] args)        {            for (int i = 1; i < 23; i++)                            Console.WriteLine(nonsqr(i));                         for (int i = 1; i < 1000000; i++)            {                double j = Math.Sqrt(nonsqr(i));                Debug.Assert(j != Math.Floor(j),"Square");            }                    }         static int nonsqr(int i)        {            return (int)(i + Math.Floor(0.5 + Math.Sqrt(i)));        }    }}`

## C++

`#include <iostream>#include <algorithm>#include <vector>#include <cmath>#include <boost/bind.hpp>#include <iterator> double nextNumber( double number ) {   return number + floor( 0.5 + sqrt( number ) ) ;} int main( ) {   std::vector<double> non_squares ;   typedef std::vector<double>::iterator SVI ;   non_squares.reserve( 1000000 ) ;      //create a vector with a million sequence numbers   for ( double i = 1.0 ; i < 100001.0 ; i += 1 )      non_squares.push_back( nextNumber( i ) ) ;     //copy the first numbers to standard out   std::copy( non_squares.begin( ) , non_squares.begin( ) + 22 ,	 std::ostream_iterator<double>(std::cout, " " ) ) ;        std::cout << '\n' ;   //find if floor of square root equals square root( i. e. it's a square number )   SVI found = std::find_if ( non_squares.begin( ) , non_squares.end( ) ,	 boost::bind( &floor, boost::bind( &sqrt, _1 ) ) == boost::bind( &sqrt, _1 ) ) ;   if ( found != non_squares.end( ) ) {      std::cout << "Found a square number in the sequence!\n" ;      std::cout << "It is " << *found << " !\n" ;   }   else {      std::cout << "Up to 1000000, found no square number in the sequence!\n" ;   }   return 0 ;}`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
Up to 1000000, found no square number in the sequence!
```

## Clojure

`;; provides floor and sqrt, but we use Java's sqrt as it's faster;; (Clojure's is more exact)(use 'clojure.contrib.math)  (defn nonsqr [#^Integer n] (+ n (floor (+ 0.5 (Math/sqrt n)))))(defn square? [#^Double n]  (let [r (floor (Math/sqrt n))]    (= (* r r) n))) (doseq [n (range 1 23)] (printf "%s -> %s\n" n (nonsqr n))) (defn verify [] (not-any? square? (map nonsqr (range 1 1000000))) )`

## CLU

`non_square = proc (n: int) returns (int)    return(n + real\$r2i(0.5 + real\$i2r(n)**0.5))end non_square is_square = proc (n: int) returns (bool)    return(n = real\$r2i(real\$i2r(n)**0.5))end is_square start_up = proc()    po: stream := stream\$primary_output()     for n: int in int\$from_to(1, 22) do        stream\$puts(po, int\$unparse(non_square(n)) || " ")    end     stream\$putl(po, "")     begin        for n: int in int\$from_to(1, 1000000) do            if is_square(non_square(n)) then exit square(n) end        end        stream\$putl(po, "No squares found up to 1000000.")    end    except when square(n: int):        stream\$putl(po, "Found square " || int\$unparse(non_square(n))                    || " at n = " || int\$unparse(n))    endend start_up `
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
No squares found up to 1000000.```

## COBOL

`       IDENTIFICATION DIVISION.       PROGRAM-ID. NONSQR.        DATA DIVISION.       WORKING-STORAGE SECTION.       01 NEWTON.          03 SQR-INP           PIC 9(7)V9(5).          03 SQUARE-ROOT       PIC 9(7)V9(5).          03 FILLER            REDEFINES SQUARE-ROOT.             05 FILLER         PIC 9(7).             05 FILLER         PIC 9(5).                88 SQUARE      VALUE ZERO.          03 SQR-TEMP          PIC 9(7)V9(5).       01 SEQUENCE-VARS.          03 N                 PIC 9(7).          03 SEQ               PIC 9(7).       01 SMALL-FMT.          03 N-O               PIC Z9.          03 FILLER            PIC XX VALUE ": ".            03 SEQ-O             PIC Z9.        PROCEDURE DIVISION.       BEGIN.           DISPLAY "Sequence of non-squares from 1 to 22:"           PERFORM SMALL-NUMS VARYING N FROM 1 BY 1               UNTIL N IS GREATER THAN 22.            DISPLAY SPACES.           DISPLAY "Checking items up to 1 million..."           PERFORM CHECK-NONSQUARE VARYING N FROM 1 BY 1               UNTIL SQUARE OR N IS GREATER THAN 1000000.            IF SQUARE, DISPLAY "Square found at N = " N,           ELSE, DISPLAY "No squares found up to 1 million.".           STOP RUN.        SMALL-NUMS.           PERFORM NONSQUARE.           MOVE N TO N-O.           MOVE SEQ TO SEQ-O.           DISPLAY SMALL-FMT.        CHECK-NONSQUARE.           PERFORM NONSQUARE.           MOVE SEQ TO SQR-INP.           PERFORM SQRT.        NONSQUARE.           MOVE N TO SQR-INP.           PERFORM SQRT.           ADD 0.5, SQUARE-ROOT GIVING SEQ.           ADD N TO SEQ.        SQRT.           MOVE SQR-INP TO SQUARE-ROOT.           COMPUTE SQR-TEMP =                (SQUARE-ROOT + SQR-INP / SQUARE-ROOT) / 2.           PERFORM SQRT-LOOP UNTIL SQUARE-ROOT IS EQUAL TO SQR-TEMP.       SQRT-LOOP.           MOVE SQR-TEMP TO SQUARE-ROOT.           COMPUTE SQR-TEMP =                (SQUARE-ROOT + SQR-INP / SQUARE-ROOT) / 2.`
Output:
``` 1:  2
2:  3
3:  5
4:  6
5:  7
6:  8
7: 10
8: 11
9: 12
10: 13
11: 14
12: 15
13: 17
14: 18
15: 19
16: 20
17: 21
18: 22
19: 23
20: 24
21: 26
22: 27

Checking items up to 1 million...
No squares found up to 1 million.```

## CoffeeScript

` non_square = (n) -> n + Math.floor(1/2 + Math.sqrt(n)) is_square = (n) ->  r = Math.floor(Math.sqrt(n))  r * r is n do ->  first_22_non_squares = (non_square i for i in [1..22])  console.log first_22_non_squares   # test is_square has no false negatives:  for i in [1..10000]    throw Error("is_square broken") unless is_square i*i   # test non_square is valid for first million values of n  for i in [1..1000000]    throw Error("non_square broken") if is_square non_square(i)   console.log "success" `
Output:
```> coffee foo.coffee
[ 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27 ]
success
```

## Common Lisp

Works with: CCL
`(defun non-square-sequence ()  (flet ((non-square (n)	   "Compute the N-th number of the non-square sequence"	   (+ n (floor (+ 1/2 (sqrt n)))))	 (squarep (n)	   "Tests, whether N is a square"	   (let ((r (floor (sqrt n))))	     (= (* r r) n))))    (loop       :for n :upfrom 1 :to 22       :do (format t "~2D -> ~D~%" n (non-square n)))    (loop       :for n :upfrom 1 :to 1000000       :when (squarep (non-square n))       :do (format t "Found a square: ~D -> ~D~%" 		   n (non-square n)))))`

## D

`import std.stdio, std.math, std.algorithm, std.range; int nonSquare(in int n) pure nothrow @safe @nogc {    return n + cast(int)(0.5 + real(n).sqrt);} void main() {    iota(1, 23).map!nonSquare.writeln;     foreach (immutable i; 1 .. 1_000_000) {        immutable ns = i.nonSquare;        assert(ns != (cast(int)real(ns).sqrt) ^^ 2);    }}`
Output:
`[2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27]`

## Delphi

Library: System.Math
Translation of: C sharp

Small variation of C#

` program Sequence_of_non_squares; uses  System.SysUtils, System.Math; function nonsqr(i: Integer): Integer;begin  Result := Trunc(i + Floor(0.5 + Sqrt(i)));end; var  i: Integer;  j: Double; begin   for i := 1 to 22 do    write(nonsqr(i), ' ');  Writeln;   for i := 1 to 999999 do  begin    j := Sqrt(nonsqr(i));    if (j = Floor(j)) then      Writeln(i, 'Is Square');  end;end.`
Output:
`2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27`

## EchoLisp

` (lib 'sequences) (define (a n) (+ n (floor (+ 0.5 (sqrt n)))))(define A000037 (iterator/n a 1)) (take A000037 22)    → (2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27)(filter square? (take A000037 1000000))    → null `

## Eiffel

` class	APPLICATION create	make feature 	make		do			sequence_of_non_squares (22)			io.new_line			sequence_of_non_squares (1000000)		end 	sequence_of_non_squares (n: INTEGER)                        -- Sequence of non-squares up to the n'th member.		require			n_positive: n >= 1		local			non_sq, part: REAL_64			math: DOUBLE_MATH			square: BOOLEAN		do			create math			across				1 |..| (n) as c			loop				part := (0.5 + math.sqrt (c.item.to_double))				non_sq := c.item + part.floor				io.put_string (non_sq.out + "%N")				if math.sqrt (non_sq) - math.sqrt (non_sq).floor = 0 then					square := True				end			end			if square = True then				io.put_string ("There are squares for n equal to " + n.out + ".")			else				io.put_string ("There are no squares for n equal to " + n.out + ".")			end		end end  `
Output:
```2
3
5
6
7
8
10
11
12
13
14
15
17
18
19
20
21
22
23
24
26
27
There are no squares for n equal to 22.

2
3
5
6 ...

1000999
1001000
There are no squares for n equal to 1000000.
```

## Elixir

`f = fn n -> n + trunc(0.5 + :math.sqrt(n)) end IO.inspect for n <- 1..22, do: f.(n) n = 1_000_000non_squares = for i <- 1..n, do: f.(i)m = :math.sqrt(f.(n)) |> Float.ceil |> truncsquares = for  i <- 1..m, do: i*icase Enum.find_value(squares, fn i -> i in non_squares end) do  nil -> IO.puts "No squares found below #{n}"  val -> IO.puts "Error: number is a square: #{val}"end`
Output:
```[2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26,
27]
No squares found below 1000000
```

## Erlang

`% Implemented by Arjun Sunel-module(non_squares).-export([main/0]). main() ->		lists:foreach(fun(X) -> io:format("~p~n",[non_square(X)] ) end, lists:seq(1,22)),  % First 22 non-squares.		lists:foreach(fun(X) -> io:format("~p~n",[non_square(X)] ) end, lists:seq(1,1000000)). % First 1 million non-squares.non_square(N) ->	N+trunc(1/2+ math:sqrt(N)). `

## Euphoria

This is based on the BASIC and Go examples.

`function nonsqr( atom n)    return n + floor( 0.5 + sqrt( n ) )end function puts( 1, "  n  r(n)\n" )puts( 1, "---  ---\n" )for i = 1 to 22 do    printf( 1, "%3d  %3d\n", { i, nonsqr(i) } )end for atom jatom foundfound = 0for i = 1 to 1000000 do    j = sqrt(nonsqr(i))    if integer(j) then        found = 1        printf( 1, "Found square: %d\n", i )        exit    end ifend forif found = 0 then     puts( 1, "No squares found\n" ) end if`

## F#

`open System let SequenceOfNonSquares =    let nonsqr n = n+(int(0.5+Math.Sqrt(float (n))))    let isqrt n = int(Math.Sqrt(float(n)))    let IsSquare n = n = (isqrt n)*(isqrt n)    {1 .. 999999}    |> Seq.map(fun f -> (f, nonsqr f))    |> Seq.filter(fun f -> IsSquare(snd f));;`
Executing the code gives:
` > SequenceOfNonSquares;;val it : seq<int * int> = seq []`

## Factor

`USING: kernel math math.functions math.ranges prettyprintsequences ; : non-sq ( n -- m ) dup sqrt 1/2 + floor + >integer ; : print-first22 ( -- ) 22 [1,b] [ non-sq ] map . ; : check-for-sq ( -- ) 1,000,000 [1,b)    [ non-sq sqrt dup floor = [ "Square found." throw ] when ]    each ; print-first22 check-for-sq`
Output:
```{ 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 }
```

## Fantom

` class Main{  static Float fn (Int n)  {    n + (0.5f + (n * 1.0f).sqrt).floor  }   static Bool isSquare (Float n)  {    n.sqrt.floor == n.sqrt  }   public static Void main ()  {    (1..22).each |n|    {      echo ("\$n is \${fn(n)}")    }    echo ((1..1000000).toList.any |n| { isSquare (fn(n)) } )  }} `

## Forth

`: u>f  0 d>f ;: f>u  f>d drop ; : fn ( n -- n ) dup u>f fsqrt fround f>u + ;: test ( n -- ) 1 do i fn . loop ;23 test    \ 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27  ok : square? ( n -- ? ) u>f fsqrt  fdup fround f-  f0= ;: test ( n -- ) 1 do i fn square? if cr i . ." fn was square" then loop ;1000000 test    \ ok`

## Fortran

Works with: Fortran version 90 and later
`PROGRAM NONSQUARES   IMPLICIT NONE   INTEGER :: m, n, nonsqr   DO n = 1, 22    nonsqr =  n + FLOOR(0.5 + SQRT(REAL(n)))  ! or could use NINT(SQRT(REAL(n)))    WRITE(*,*) nonsqr  END DO   DO n = 1, 1000000    nonsqr =  n + FLOOR(0.5 + SQRT(REAL(n)))    m = INT(SQRT(REAL(nonsqr)))    IF (m*m == nonsqr) THEN      WRITE(*,*) "Square found, n=", n    END IF  END DO END PROGRAM NONSQUARES`

## FreeBASIC

`' FB 1.05.0 Win64 Function nonSquare (n As UInteger) As UInteger  Return CUInt(n + Int(0.5 + Sqr(n)))End Function Function isSquare (n As UInteger) As Boolean  Dim As UInteger r = CUInt(Sqr(n))  Return n = r * rEnd Function Print "The first 22 numbers generated by the sequence are :"For i As Integer = 1 To 22  Print nonSquare(i); " ";Next Print : Print ' Test numbers generated for n less than a million to see if they're squares For i As UInteger = 1 To 999999  If isSquare(nonSquare(i)) Then     Print "The number generated by the sequence for n ="; i; " is square!"    Goto finish  End IfNext Print "None of the numbers generated by the sequence for n < 1000000 are square" finish:PrintPrint "Press any key to quit"Sleep`
Output:
```The first 22 numbers generated by the sequence are :
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27

None of the numbers generated by the sequence for n < 1000000 are square
```

## GAP

`# Here we use generators : the given formula doesn't need one, but the alternate# non-squares function is better done with a generator. # The formula is implemented with exact floor(sqrt(n)), so we use# a trick: multiply by 100 to get the first decimal digit of the# square root of n, then add 5 (that's 1/2 multiplied by 10).# Then just divide by 10 to get floor(1/2 + sqrt(n)) exactly.# It looks weird, but unlike floating point, it will do the job# for any n.NonSquaresGen := function()	local ns, n;	n := 0;	ns := function()		n := n + 1;		return n + QuoInt(5 + RootInt(100*n), 10);	end;	return ns;end; NonSquaresAlt := function()	local ns, n, q, k;	n := 1;	q := 4;	k := 3;	ns := function()		n := n + 1;		if n = q then			n := n + 1;			k := k + 2;			q := q + k;		fi;		return n;	end;	return ns;end; gen := NonSquaresGen();List([1 .. 22] i -> gen());# [ 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27 ] a := NonSquaresGen();b := NonSquaresAlt(); ForAll([1 .. 1000000], i -> a() = b());# true`

## Go

I assume it's obvious that the function monotonically increases, thus it's enough to just watch for the next possible square. If a square is found, the panic will cause an ugly stack trace.

`package main import (    "fmt"    "math") func remarkable(n int) int {    return n + int(.5+math.Sqrt(float64(n)))} func main() {    // task 1    fmt.Println("  n  r(n)")    fmt.Println("---  ---")    for n := 1; n <= 22; n++ {        fmt.Printf("%3d  %3d\n", n, remarkable(n))    }     // task 2    const limit = 1e6    fmt.Println("\nChecking for squares for n <", limit)    next := 2    nextSq := 4    for n := 1; n < limit; n++ {        r := remarkable(n)        switch {        case r == nextSq:            panic(n)        case r > nextSq:            fmt.Println(nextSq, "didn't occur")            next++            nextSq = next * next        }    }    fmt.Println("No squares occur for n <", limit)}`
Output:
```  n  r(n)
---  ---
1    2
2    3
3    5
4    6
5    7
6    8
7   10
8   11
9   12
10   13
11   14
12   15
13   17
14   18
15   19
16   20
17   21
18   22
19   23
20   24
21   26
22   27

Checking for squares for n < 1e+06
4 didn't occur
9 didn't occur
16 didn't occur
...
996004 didn't occur
998001 didn't occur
1000000 didn't occur
No squares occur for n < 1e+06
```

## Groovy

Solution:

` def nonSquare = { long n -> n + ((1/2 + n**0.5) as long) }`

Test Program:

`(1..22).each { println nonSquare(it) }(1..1000000).each { assert ((nonSquare(it)**0.5 as long)**2) != nonSquare(it) }`
Output:
```2
3
5
6
7
8
10
11
12
13
14
15
17
18
19
20
21
22
23
24
26
27```

`nonsqr :: Integral a => a -> anonsqr n = n + round (sqrt (fromIntegral n))`
```> map nonsqr [1..22]
[2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27]

> any (\j -> j == fromIntegral (floor j)) \$ map (sqrt . fromIntegral . nonsqr) [1..1000000]
False
```

Or, in a point-free variation, defining a 'main' for the compiler (rather than interpreter)

`import Control.Monad (join) ----------------------- NON SQUARES ---------------------- notSquare :: Int -> BoolnotSquare = (/=) <*> (join (*) . floor . root) nonSqr :: Int -> IntnonSqr = (+) <*> (round . root) root :: Int -> Floatroot = sqrt . fromIntegral  -------------------------- TESTS -------------------------main :: IO ()main =  mapM_    putStrLn    [ "First 22 members of the series:",      unwords \$ show . nonSqr <\$> [1 .. 22],      "",      "All first 10E6 members non square:",      (show . and) \$        notSquare . nonSqr <\$> [1 .. 1000000]    ]`
Output:
```First 22 members of the series:
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27

All first 10E6 members non square:
True```

## HicEst

`REAL :: n=22, nonSqr(n) nonSqr = \$ + FLOOR(0.5 + \$^0.5)WRITE() nonSqr squares_found = 0DO i = 1, 1E6   non2 = i + FLOOR(0.5 + i^0.5)   root = FLOOR( non2^0.5 )   squares_found =  squares_found + (non2 == root*root)ENDDOWRITE(Name) squares_foundEND`
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
squares_found=0; ```

## Icon and Unicon

`link numbers procedure main() every n := 1 to 22 do  write("nsq(",n,") := ",nsq(n)) every x := sqrt(nsq(n := 1 to 1000000)) do  if x  = floor(x)^2 then write("nsq(",n,") = ",x," is a square.")write("finished.")end procedure nsq(n)   # return non-squaresreturn n + floor(0.5 + sqrt(n))end`

## IDL

`n = lindgen(1000000)+1               ; Take a million numbersf = n+floor(.5+sqrt(n))              ; Apply formulaprint,f[0:21]                        ; Output first 22print,where(sqrt(f) eq fix(sqrt(f))) ; Test for squares`
Output:
```        2        3        5        6        7        8       10       11       12
13       14       15       17       18       19       20       21       22
23       24       26       27

-1
```

## J

`   rf=: + 0.5 <[email protected]+ %:       NB.  Remarkable formula    rf 1+i.22               NB.  Results from 1 to 222 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27    +/ (rf e. *:) 1+i.1e6   NB.  Number of square RFs <= 1e60`

## Java

`public class SeqNonSquares {    public static int nonsqr(int n) {        return n + (int)Math.round(Math.sqrt(n));    }     public static void main(String[] args) {        // first 22 values (as a list) has no squares:        for (int i = 1; i < 23; i++)            System.out.print(nonsqr(i) + " ");        System.out.println();         // The following check shows no squares up to one million:        for (int i = 1; i < 1000000; i++) {            double j = Math.sqrt(nonsqr(i));            assert j != Math.floor(j);        }    }}`

## JavaScript

### ES5

Iterative

`var a = [];for (var i = 1; i < 23; i++) a[i] = i + Math.floor(1/2 + Math.sqrt(i));console.log(a); for (i = 1; i < 1000000; i++) if (Number.isInteger(i + Math.floor(1/2 + Math.sqrt(i))) === false) {    console.log("The ",i,"th element of the sequence is a square");}`

### ES6

By functional composition

`(() => {    'use strict';     // ------------------ OEIS A000037 -------------------     // nonSquare :: Int -> Int    const nonSquare = n =>        // Nth term in the OEIS A000037 series.        n + Math.floor(1 / 2 + Math.sqrt(n));      // isPerfectSquare :: Int -> Bool    const isPerfectSquare = n => {        const root = Math.sqrt(n);        return root === Math.floor(root);    };     // ---------------------- TEST -----------------------    const main = () =>        // First 22 terms, and test of first million.        [            Tuple('First 22 terms:')(                take(22)(                    fmapGen(nonSquare)(                        enumFrom(1)                    )                )            ),            Tuple(                'Any perfect squares in 1st 1E6 terms ?'            )(                Array.from({                    length: 1E6                })                .map(nonSquare)                .some(isPerfectSquare)            )        ]        .map(kv => `\${fst(kv)} -> \${snd(kv)}`)        .join('\n\n');      // --------------------- GENERAL ---------------------     // Tuple (,) :: a -> b -> (a, b)    const Tuple = a =>        b => ({            type: 'Tuple',            '0': a,            '1': b,            length: 2        });     // enumFrom :: Enum a => a -> [a]    function* enumFrom(x) {        // A non-finite succession of enumerable        // values, starting with the value x.        let v = x;        while (true) {            yield v;            v = 1 + v;        }    }     // fmapGen <\$> :: (a -> b) -> Gen [a] -> Gen [b]    const fmapGen = f =>        function* (gen) {            let v = take(1)(gen);            while (0 < v.length) {                yield(f(v));                v = take(1)(gen);            }        };     // fst :: (a, b) -> a    const fst = tpl =>        // First member of a pair.        tpl;      // snd :: (a, b) -> b    const snd = tpl =>        // Second member of a pair.        tpl;      // take :: Int -> [a] -> [a]    // take :: Int -> String -> String    const take = n =>        // The first n elements of a list,        // string of characters, or stream.        xs => 'GeneratorFunction' !== xs        .constructor.constructor.name ? (            xs.slice(0, n)        ) : [].concat.apply([], Array.from({            length: n        }, () => {            const x = xs.next();            return x.done ? [] : [x.value];        }));     return main()})();`
Output:
```First 22 terms: -> 2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27

Any perfect squares in 1st 1E6 terms ? -> false```

## jq

Works with: jq version 1.4
`def A000037: . + (0.5 + sqrt | floor); def is_square: sqrt | . == floor; "For n up to and including 22:", (range(1;23) | A000037),"Check for squares for n up to 1e6:", (range(1;1e6+1) | A000037 | select( is_square ))`
Output:
`\$ jq -n -r -f sequence_of_non-squares.jqFor n up to and including 22:23567810111213141517181920212223242627Check for squares for n up to 1e6:\$`

## Julia

`nonsquare(n::Real) = n + floor(typeof(n), 0.5 + sqrt(n))@show nonsquare.(1:1_000_000) ∩ collect(1:1000) .^ 2`
Output:
`nonsquare.(1:1000000) ∩ collect(1:1000) .^ 2 = Int64[]`

So the set of squares of integers between 1 and 1000 and the first 1000000 terms of the given sequence is empty. Note that the given sequence is increasing and that its last term has a square root slightly less than 1000.5.

## K

`   nonsquare:{x+_.5+%x}   nonsquare[1_!23]`
Output:
`2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27`
`   issquare:{(%x)=_%x}   +/issquare[nonsquare[1_!1000001]]  / Number of squares in first million results`
Output:
`0`

## Kotlin

`// version 1.1 fun f(n: Int) = n + Math.floor(0.5 + Math.sqrt(n.toDouble())).toInt() fun main(args: Array<String>) {    println(" n   f")    val squares = mutableListOf<Int>()    for (n in 1 until 1000000) {        val v1 = f(n)        val v2 = Math.sqrt(v1.toDouble()).toInt()        if (v1 == v2 * v2) squares.add(n)        if (n < 23) println("\${"%2d".format(n)} : \$v1")    }    println()    if (squares.size == 0) println("There are no squares for n less than one million")    else println("Squares are generated for the following values of n: \$squares")}`
Output:
``` n   f
1 : 2
2 : 3
3 : 5
4 : 6
5 : 7
6 : 8
7 : 10
8 : 11
9 : 12
10 : 13
11 : 14
12 : 15
13 : 17
14 : 18
15 : 19
16 : 20
17 : 21
18 : 22
19 : 23
20 : 24
21 : 26
22 : 27

There are no squares for n less than one million
```

## Lambdatalk

` {def nosquare {lambda {:n} {+ :n {floor {+ 0.5 {sqrt :n}}}}}}-> nosquare{def issquare {lambda {:n} {= {sqrt :n} {round {sqrt :n}}}}}-> issquare {S.map nosquare {S.serie 1 22}}-> 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 {S.replace false by in  {S.map issquare _   {S.map nosquare    {S.serie 1 1000000}}}}-> true `

## Liberty BASIC

` for i = 1 to 22    print nonsqr( i); " ";next iprint found = 0for i = 1 to 1000000     j = ( nonsqr( i))^0.5     if j = int( j) then        found = 1        print "Found square: "; i        exit for     end ifnext iif found =0 then print "No squares found" end function nonsqr( n)    nonsqr = n +int( 0.5 +n^0.5)end function `
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
No squares found
```

## Logo

`repeat 22 [print sum # round sqrt #]`

## Lua

`function nonSquare (n)    return n + math.floor(1/2 + math.sqrt(n))end for n = 1, 22 do    io.write(nonSquare(n) .. " ")endprint()local srfor n = 1, 10^6 do    sr = math.sqrt(nonSquare(n))    if sr == math.floor(sr) then        print("Result for n = " .. n .. " is square!")        os.exit()    endendprint("No squares found")`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
No squares found```

`            NORMAL MODE IS INTEGER            BOOLEAN FOUND            FOUND = 0B           R SEQUENCE OF NON-SQUARES FORMULA          R FLOOR IS AUTOMATIC DUE TO INTEGER MATH            INTERNAL FUNCTION NONSQR.(N) = N+(.5+SQRT.(N))           R PRINT VALUES FOR 1..N..22                        THROUGH SHOW, FOR N=1, 1, N.G.22SHOW        PRINT FORMAT OUTFMT,N,NONSQR.(N)            VECTOR VALUES OUTFMT = \$I2,2H: ,I2*\$           R CHECK FOR NO SQUARES UP TO ONE MILLION            THROUGH CHECK, FOR N=1, 1, N.GE.1000000            X=NONSQR.(N)            Y=SQRT.(X)            WHENEVER Y*Y.E.X                PRINT FORMAT FINDSQ,N,X                FOUND = 1B CHECK       END OF CONDITIONAL            WHENEVER .NOT. FOUND, PRINT FORMAT NOSQ             VECTOR VALUES FINDSQ = \$5HELEM ,I5,2H, ,I5,11H, IS SQUARE*\$             VECTOR VALUES NOSQ = \$16HNO SQUARES FOUND*\$            END OF PROGRAM`
Output:
``` 1:  2
2:  3
3:  5
4:  6
5:  7
6:  8
7: 10
8: 11
9: 12
10: 13
11: 14
12: 15
13: 17
14: 18
15: 19
16: 20
17: 21
18: 22
19: 23
20: 24
21: 26
22: 27
NO SQUARES FOUND```

## Maple

` with(NumberTheory): nonSquareSequence := proc(n::integer) return n + floor(1 / 2 + sqrt(n));end proc: seq(nonSquareSequence(i), i = 1..22); for number from 1 to 10^6 while not issqr(nonSquareSequence(number)) do end; number; `
Output:
```
2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26,

27

1000001

```

## Mathematica/Wolfram Language

`nonsq = (# + Floor[0.5 + Sqrt[#]]) &;[email protected]If[! Or @@ (IntegerQ /@ Sqrt /@ [email protected][10^6]),  Print["No squares for n <= ", 10^6] ]`
Output:
```{2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27}
No squares for n <= 1000000```

## MATLAB

`function nonSquares(i)     for n = (1:i)         generatedNumber = n + floor(1/2 + sqrt(n));         if mod(sqrt(generatedNumber),1)==0 %Check to see if the sqrt of the generated number is an integer            fprintf('\n%d generates a square number: %d\n', [n,generatedNumber]);            return        else %If it isn't then the generated number is a square number            if n<=22                fprintf('%d ',generatedNumber);            end        end    end     fprintf('\nNo square numbers were generated for n <= %d\n',i); end`

Solution:

`>> nonSquares(1000000)2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 No square numbers were generated for n <= 1000000`

## Maxima

`nonsquare(n) := n + quotient(isqrt(100 * n) + 5, 10);makelist(nonsquare(n), n, 1, 20);[2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24] not_square(n) := isqrt(n)^2 # n\$ m: 10^6\$u: makelist(i, i, 1, m)\$is(sublist(u, not_square) = sublist(map(nonsquare, u), lambda([x], x <= m)));true`

## min

Works with: min version 0.19.3
`(dup sqrt 0.5 + int +) :non-sq(sqrt dup floor - 0 ==) :sq?(:n =q 1 'dup q concat 'succ concat n times pop) :upto (non-sq print! " " print!) 22 upto newline"Squares for n below one million:" puts!(non-sq 'sq? 'puts when pop) 999999 upto`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
Squares for n below one million:
```

## МК-61/52

`1	П4	ИП4	0	,	5	ИП4	КвКор	+	[x]+	С/П	КИП4	БП	02`

## MMIX

`	LOC	Data_Segment	GREG	@buf	OCTA	0,0 	GREG	@NL	BYTE	#a,0errh	BYTE	"Sorry, number ",0errt	BYTE	"is a quare.",0prtOk	BYTE	"No squares found below 1000000.",0 i	IS	\$1		% loop var.x	IS	\$2		% computationsy	IS	\$3		%   ..z	IS	\$4		%   ..t	IS	\$5		% tempJa	IS	\$127		% return address 	LOC	#100		% locate program	GREG	@// print integer of max. 7 digits to StdOut// primarily used to show the first 22 non squares// in advance the end of the buffer is filled with ' 0 '// reg x contains int to be printedbp	IS	\$710H	GREG	#0000000000203020 prtInt	STO	0B,buf		% initialize buffer	LDA	bp,buf+7	% points after LSD 				% REPEAT1H	SUB	bp,bp,1		%  move buffer pointer	DIV	x,x,10		%  divmod (x,10)	GET	t,rR		%  get remainder	INCL	t,'0'		%  make char digit	STB	t,bp		%  store digit	PBNZ	x,1B		% UNTIL no more digits	LDA	\$255,bp	TRAP	0,Fputs,StdOut	% print integer	GO	Ja,Ja,0		% 'return'// function calculates non square// x = RF ( i )RF	FLOT	x,i		% convert i to float	FSQRT	x,0,x		% x = floor ( 0.5 + sqrt i )	FIX	x,x		% convert float to int	ADD	x,x,i		% x = i + floor ( 0.5 + sqrt i )	GO	Ja,Ja,0		% 'return'				% main (argc, argv) {// generate the first 22 non squares Main	SET	i,1		%  for ( i=1; i<=22; i++){1H	GO	Ja,RF		%   x =  RF (i)	GO	Ja,prtInt	%   print non square	INCL	i,1		%   i++	CMP	t,i,22		%   i<=22 ?	PBNP	t,1B		%  }	LDA	\$255,NL	TRAP	0,Fputs,StdOut// check if RF (i) is a square for 0 < i < 1000000	SET	i,1000	MUL	i,i,i	SUB	i,i,1		% for ( i = 999999; i>0; i--)3H	GO	Ja,RF		%  x = RF ( i )// square test	FLOT	y,x		%  convert int x to float	FSQRT	z,3,y		%  z = floor ( sqrt ( int (x) ) ) 	FIX	z,z		%  z = cint z	MUL	z,z,z		%  z = z^2	CMP	t,x,z		%  x != (int sqrt x)^2 ?	PBNZ	t,2F		%  if yes then continue // it should not happen, but if a square is found	LDA	\$255,errh	%  else print err-message	TRAP	0,Fputs,StdOut	GO	Ja,prtInt	%  show trespasser	LDA	\$255,errt	TRAP	0,Fputs,StdOut	LDA	\$255,NL	TRAP	0,Fputs,StdOut	TRAP	0,Halt,0 2H	SUB	i,i,1		%  i--	PBNZ	i,3B		%  i>0? }	LDA	\$255,prtOk	% 	TRAP	0,Fputs,StdOut	LDA	\$255,NL	TRAP	0,Fputs,StdOut	TRAP	0,Halt,0	% }`
Output:
```~/MIX/MMIX/Rosetta> mmix SoNS
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
No squares found below 1000000.```

## Modula-3

`MODULE NonSquare EXPORTS Main; IMPORT IO, Fmt, Math; VAR i: INTEGER; PROCEDURE NonSquare(n: INTEGER): INTEGER =  BEGIN    RETURN n + FLOOR(0.5D0 + Math.sqrt(FLOAT(n, LONGREAL)));  END NonSquare; BEGIN  FOR n := 1 TO 22 DO    IO.Put(Fmt.Int(NonSquare(n)) & " ");  END;  IO.Put("\n");  FOR n := 1 TO 1000000 DO    i := NonSquare(n);    IF i = FLOOR(Math.sqrt(FLOAT(i, LONGREAL))) THEN      IO.Put("Found square: " & Fmt.Int(n) & "\n");    END;  END;END NonSquare.`
Output:
`2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27`

## Nim

`import math, strutils func nosqr(n: int): seq[int] =  result = newSeq[int](n)  for i in 1..n:    result[i - 1] = i + i.float.sqrt.toInt func issqr(n: int): bool =  sqrt(float(n)).splitDecimal().floatpart < 1e-7  echo "Sequence for n = 22:"echo nosqr(22).join(" ") for i in nosqr(1_000_000 - 1):  assert not issqr(i)echo "\nNo squares were found for n less than 1_000_000."`
Output:
```Sequence for n = 22:
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27

No squares were found for n less than 1_000_000.```

## OCaml

`# let nonsqr n = n + truncate (0.5 +. sqrt (float n));;val nonsqr : int -> int = <fun># (* first 22 values (as a list) has no squares: *)  for i = 1 to 22 do    Printf.printf "%d " (nonsqr i)  done;  print_newline ();;2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27- : unit = ()# (* The following check shows no squares up to one million: *)  for i = 1 to 1_000_000 do    let j = sqrt (float (nonsqr i)) in      assert (j <> floor j)  done;;- : unit = ()`

## Oforth

`22 seq map(#[ dup sqrt 0.5 + floor + ]) println 1000000 seq map(#[ dup sqrt 0.5 + floor + ]) conform(#[ sqrt dup floor <>]) println`
Output:
```[2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27]
1
```

## Ol

` (import (lib math)) (print   ; sequence for 1 .. 22   (map (lambda (n)         (+ n (floor (+ 1/2 (exact (sqrt n))))))      (iota 22 1))); ==> (2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27) (print   ; filter out non squares   (filter      (lambda (x)         (let ((s (floor (exact (sqrt x)))))            (= (* s s) x)))      (map (lambda (n)            (+ n (floor (+ 1/2 (exact (sqrt n))))))         (iota 1000000 1)))); ==> ()  `

## Oz

`declare  fun {NonSqr N}     N + {Float.toInt {Floor 0.5 + {Sqrt {Int.toFloat N}}}}  end   fun {SqrtInt N}     {Float.toInt {Sqrt {Int.toFloat N}}}  end   fun {IsSquare N}     {Pow {SqrtInt N} 2} == N  end   Ns = {Map {List.number 1 999999 1} NonSqr}in  {Show {List.take Ns 22}}  {Show {Some Ns IsSquare}}`

## PARI/GP

`[vector(22,n,n + floor(1/2 + sqrt(n))), sum(n=1,1e6,issquare(n + floor(1/2 + sqrt(n))))]`

## Pascal

Library: Math
`Program SequenceOfNonSquares(output); uses  Math; var  m, n, test: longint; begin  for n := 1 to 22 do  begin    test :=  n + floor(0.5 + sqrt(n));    write(test, ' ');  end;  writeln;   for n := 1 to 1000000 do  begin    test :=  n + floor(0.5 + sqrt(n));    m := round(sqrt(test));    if (m*m = test) then      writeln('square found for n = ', n);  end; end.`
Output:
```:> ./SequenceOfNonSquares
2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
```

a little speedup in testing upto 1 billion. 5 secs instead of 21 secs using fpc2.6.4

`program seqNonSq; //sequence of non-squares //n = i + floor(1/2 + sqrt(i)) function NonSquare(i: LongInt): LongInt; Begin   NonSquare := i+trunc(sqrt(i) + 0.5); end;  procedure First22; var  i  : integer; begin   For i := 1 to 21 do     write(NonSquare(i):3,',');   writeln(NonSquare(22):3); end;  procedure OutSquare(i: integer); var   n : LongInt; begin   n := NonSquare(i);   writeln('Square ',n,' found at ',i); end; procedure Test(Limit: LongWord); var  i ,n,sq,sn : LongWord; Begin   sn := 1;   sq := 1;   For i := 1 to Limit do   begin     n := NonSquare(i);     if n >= sq then     begin       if n > sq then       begin         sq := sq+2*sn+1; inc(sn);       end       else         OutSquare(i);     end;   end; end;  Begin   First22;   Test(1000*1000*1000); end.`

## Perl

`sub nonsqr { my \$n = shift;  \$n + int(0.5 + sqrt \$n) } print join(' ', map nonsqr(\$_), 1..22), "\n"; foreach my \$i (1..1_000_000) {  my \$root = sqrt nonsqr(\$i);  die "Oops, nonsqr(\$i) is a square!" if \$root == int \$root;}`
Output:
`2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27`

## Phix

```with javascript_semantics

sequence s = repeat(0,22)
for n=1 to length(s) do
s[n] = n + floor(1/2 + sqrt(n))
end for
printf(1,"%V\n",{s})
integer nxt = 2, snxt = nxt*nxt, k
for n=1 to 1000000 do
k = n + floor(1/2 + sqrt(n))
if k>snxt then
--      printf(1,"%d didn't occur\n",snxt)
nxt += 1
snxt = nxt*nxt
end if
if k=snxt then
puts(1,"error!!\n")
end if
end for
puts(1,"none found ")
?{nxt,snxt}
```
Output:
```{2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27}
none found {1001,1002001}
```

## PHP

`<?php	//First Task	for(\$i=1;\$i<=22;\$i++){		echo(\$i + floor(1/2 + sqrt(\$i)) . "\n");	} 	//Second Task	\$found_square=False;	for(\$i=1;\$i<=1000000;\$i++){		\$non_square=\$i + floor(1/2 + sqrt(\$i));		if(sqrt(\$non_square)==intval(sqrt(\$non_square))){			\$found_square=True;		}	}	echo("\n");	if(\$found_square){		echo("Found a square number, so the formula does not always work.");	} else {		echo("Up to 1000000, found no square number in the sequence!");	}?>`
Output:
```>php nsqrt.php
2
3
5
6
7
8
10
11
12
13
14
15
17
18
19
20
21
22
23
24
26
27

Up to 1000000, found no square number in the sequence!
>```

## Picat

`go =>   println([f(I) : I in 1..22]),  nl,  check(1_000_000),   nl. % The formulaf(N) = N + floor(1/2 + sqrt(N)). check(Limit) =>  Squares = new_map([I*I=1:I in 1..sqrt(Limit)]),  Check = [[I,T] : I in 1..Limit-1, T=f(I), Squares.has_key(T)],  println(check=Check.len).`
Output:
```[2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27]

check = 0```

## PicoLisp

`(de sqfun (N)   (+ N (sqrt N T)) )  # 'sqrt' rounds when called with 'T' (for I 22   (println I (sqfun I)) ) (for I 1000000   (let (N (sqfun I)  R (sqrt N))      (when (= N (* R R))         (prinl N " is square") ) ) )`
Output:
```1 2
2 3
3 5
4 6
5 7
6 8
7 10
8 11
9 12
10 13
11 14
12 15
13 17
14 18
15 19
16 20
17 21
18 22
19 23
20 24
21 26
22 27```

## PL/I

`    put skip edit ((n, n + floor(sqrt(n) + 0.5) do n = 1 to n))      (skip, 2 f(5)); `

Results:

`     1    2    2    3    3    5    4    6    5    7    6    8    7   10    8   11    9   12   10   13   11   14   12   15   13   17   14   18   15   19   16   20   17   21   18   22   19   23   20   24   21   26 `

Test 1,000,000 values:

` test: proc options (main);   declare n fixed (15);    do n = 1 to 1000000;      if perfect_square (n + fixed(sqrt(n) + 0.5, 15)) then         do; put skip list ('formula fails for n = ', n); stop; end;   end; perfect_square: procedure (N) returns (bit (1) aligned);   declare N fixed (15);   declare K fixed (15);    k = sqrt(N)+0.1;   return ( k*k = N );end perfect_square; end test; `

## PostScript

`/nonsquare { dup sqrt .5 add floor add } def/issquare { dup sqrt floor dup mul eq } def 1 1 22 { nonsquare = } for 1 1 1000 {         dup nonsquare issquare {                 (produced a square!) = = exit        } if pop} for  `
Output:
(lack of error message shows none below 1000 produced a square)
```2.0
3.0
5.0
6.0
7.0
8.0
10.0
11.0
12.0
13.0
14.0
15.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
26.0
27.0
```

## PowerShell

Implemented as a filter here, which can be used directly on the pipeline.

`filter Get-NonSquare {    return \$_ + [Math]::Floor(1/2 + [Math]::Sqrt(\$_))}`

Printing out the first 22 values is straightforward, then:

`1..22 | Get-NonSquare`

If there were any squares for n up to one million, they would be printed with the following, but there is no output:

`1..1000000 `    | Get-NonSquare `    | Where-Object {          \$r = [Math]::Sqrt(\$_)          [Math]::Truncate(\$r) -eq \$r      }`

## PureBasic

`OpenConsole()For a = 1 To 22  ; Integer, so no floor needed  tmp = 1 / 2 + Sqr(a)  Print(Str(a + tmp) + ", ")NextPrintN("")PrintN("Starting check till one million")For a = 1 To 1000000  value.d = a + Round((1 / 2 + Sqr(a)), #PB_Round_Down)  root    = Sqr(value)  If value - root*root = 0    found + 1    If found < 20      PrintN("Found a square! " + Str(value))    ElseIf found = 20      PrintN("And more")    EndIf  EndIfNextIf found  PrintN(Str(found) + " Squares found, see above")Else  PrintN("No squares, all ok")EndIf; Wait for enterInput()`

## Python

`>>> from math import floor, sqrt>>> def non_square(n):        return n + floor(1/2 + sqrt(n)) >>> # first 22 values has no squares:>>> print(*map(non_square, range(1, 23)))2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 >>> # The following check shows no squares up to one million:>>> def is_square(n):        return sqrt(n).is_integer() >>> non_squares = map(non_square, range(1, 10 ** 6))>>> next(filter(is_square, non_squares))StopIteration                             Traceback (most recent call last)<ipython-input-45-f32645fc1c0a> in <module>()      1 non_squares = map(non_square, range(1, 10 ** 6))----> 2 next(filter(is_square, non_squares)) StopIteration: `

Or, defining OEIS A000037 as a non-finite series:

Works with: Python version 3.7
`'''Sequence of non-squares''' from itertools import count, islicefrom math import floor, sqrt  # A000037 :: [Int]def A000037():    '''A non-finite series of integers.'''    return map(nonSquare, count(1))  # nonSquare :: Int -> Intdef nonSquare(n):    '''Nth term in the OEIS A000037 series.'''    return n + floor(1 / 2 + sqrt(n))  # --------------------------TEST---------------------------# main :: IO ()def main():    '''OEIS A000037'''     def first22():        '''First 22 terms'''        return take(22)(A000037())     def squareInFirstMillion():        '''True if any of the first 10^6 terms are perfect squares'''        return any(map(            isPerfectSquare,            take(10 ** 6)(A000037())        ))     print(        fTable(main.__doc__)(            lambda f: '\n' + f.__doc__        )(lambda x: '    ' + showList(x))(            lambda f: f()        )([first22, squareInFirstMillion])    )  # -------------------------DISPLAY------------------------- # fTable :: String -> (a -> String) -># (b -> String) -> (a -> b) -> [a] -> Stringdef fTable(s):    '''Heading -> x display function -> fx display function ->       f -> xs -> tabular string.    '''    def go(xShow, fxShow, f, xs):        ys = [xShow(x) for x in xs]        return s + '\n' + '\n'.join(map(            lambda x, y: y + ':\n' + fxShow(f(x)),            xs, ys        ))    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(        xShow, fxShow, f, xs    )  # -------------------------GENERAL------------------------- # isPerfectSquare :: Int -> Booldef isPerfectSquare(n):    '''True if n is a perfect square.'''    return sqrt(n).is_integer()  # showList :: [a] -> Stringdef showList(xs):    '''Compact stringification of any list value.'''    return '[' + ','.join(repr(x) for x in xs) + ']' if (        isinstance(xs, list)    ) else repr(xs)  # take :: Int -> [a] -> [a]def take(n):    '''The prefix of xs of length n,       or xs itself if n > length xs.    '''    return lambda xs: list(islice(xs, n))  # MAIN ---if __name__ == '__main__':    main()`
Output:
```OEIS A000037

First 22 terms:
[2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27]

True if any of the first 10^6 terms are perfect squares:
False```

## Quackery

`  \$ "bigrat.qky" loadfile   [ dup n->v 2 vsqrt    drop 1 2 v+ / + ] is nonsquare ( n --> n )   [ sqrt nip 0 = ]    is squarenum ( n --> b )    say "Non-squares: "  22 times [ i^ 1+ nonsquare echo sp ]  cr cr  0   999999 times     [ i^ 1+ nonsquare      squarenum if 1+ ]   echo say " square numbers found"`
Output:
```Non-squares: 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27

0 square numbers found
```

## R

Printing the first 22 nonsquares.

`nonsqr <- function(n) n + floor(1/2 + sqrt(n))nonsqr(1:22)`
```  2  3  5  6  7  8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
```

Testing the first million nonsquares.

`is.square <- function(x) {   sqrx <- sqrt(x)   err <- abs(sqrx - round(sqrx))   err < 100*.Machine\$double.eps}any(is.square(nonsqr(1:1e6)))`
``` FALSE
```

## Racket

` #lang racket (define (non-square n)  (+ n (exact-floor (+ 1/2 (sqrt n))))) (map non-square (range 1 23)) (define (square? n) (integer? (sqrt n))) (for/or ([n (in-range 1 1000001)])  (square? (non-square n))) `
Output:
```'(2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27)
#f
```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2016.07
`sub nth-term (Int \$n) { \$n + round sqrt \$n } # Print the first 22 values of the sequencesay (nth-term \$_ for 1 .. 22); # Check that the first million values of the sequence are indeed non-squarefor 1 .. 1_000_000 -> \$i {    say "Oops, nth-term(\$i) is square!" if (sqrt nth-term \$i) %% 1;}`
Output:
`(2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27)`

## Red

`Red ["Sequence of non-squares"] repeat i 999'999 [    n: i + round/floor 0.5 + sqrt i    if i < 23 [prin [to-integer n ""]]    if equal? round/floor n sqrt n [        print "Square found!"        break    ]]`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
```

## REXX

REXX has no native support for   floor   or   sqrt,   so these subroutines (functionsa) are written in REXX and are included below.

The   iSqrt   is a special integer square root function, it returns the   integer   root   (and uses no floating point).

•   7   =   iSqrt(63)
•   8   =   iSqrt(64)
•   8   =   iSqrt(65)
`/*REXX pgm displays some non─square numbers, & also displays a validation check up to 1M*/parse arg N M .                                  /*obtain optional arguments from the CL*/if N=='' | N==","  then N=      22               /*Not specified?  Then use the default.*/if M=='' | M==","  then M= 1000000               /* "      "         "   "   "     "    */say 'The first '    N    " non─square numbers:"  /*display a header of what's to come.  */say                                              /* [↑]  default for  M  is one million.*/say center('index', 20)        center("non─square numbers", 20)say center(''     , 20, "═")   center(''                  , 20, "═")          do j=1  for N          say  center(j, 20)   center(j +floor(1/2 +sqrt(j)), 20)          end   /*j*/#= 0          do k=1  for M                          /*have it step through a million of 'em*/          \$= k + floor( sqrt(k) + .5 )           /*use the specified formula (algorithm)*/          iRoot= iSqrt(\$)                        /*··· and also use the  ISQRT function.*/          if iRoot * iRoot == \$   then #= # + 1  /*have we found a mistook?    (sic)    */          end   /*k*/say;                     if #==0  then #= 'no'   /*use gooder English for display below.*/say 'Using the formula:  floor[ 1/2 +  sqrt(n) ], '    #    " squares found up to "   M'.'                                                 /* [↑]  display (possible) error count.*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/floor: parse arg floor_;        return trunc( floor_ - (floor_ < 0) )/*──────────────────────────────────────────────────────────────────────────────────────*/iSqrt: procedure; parse arg x;  #=1; r= 0;         do  while # <= x;  #= #*4;  end       do while #>1; #=#%4; _=x-r-#; r=r%2; if _<0 then iterate; x=_; r=r+#; end; return r/*──────────────────────────────────────────────────────────────────────────────────────*/sqrt:  procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6       numeric digits;  parse value format(x,2,1,,0) 'E0'  with  g 'E' _ .;  g=g *.5'e'_%2         do j=0  while h>9;      m.j= h;              h= h % 2  + 1;  end /*j*/         do k=j+5  to 0  by -1;  numeric digits m.k;  g= (g+x/g)*.5;  end /*k*/;  return g`
output:
```The first  22  non─square numbers:

index          non─square numbers
════════════════════ ════════════════════
1                    2
2                    3
3                    5
4                    6
5                    7
6                    8
7                    10
8                    11
9                    12
10                   13
11                   14
12                   15
13                   17
14                   18
15                   19
16                   20
17                   21
18                   22
19                   23
20                   24
21                   26
22                   27

Using the formula:  floor[ 1/2 +  sqrt(n) ],  no  squares found up to  1000000.
```

## Ring

` for n=1 to 22    x = n + floor(1/2 + sqrt(n))      see "" + x + " "nextsee nl `

## Ruby

`def f(n)  n + (0.5 + Math.sqrt(n)).floorend (1..22).each { |n| puts "#{n} #{f(n)}" } non_squares = (1..1_000_000).map { |n| f(n) }squares = (1..1001).map { |n| n**2 } # Note: 1001*1001 = 1_002_001 > 1_001_000 = f(1_000_000)(squares & non_squares).each do |n|  puts "Oops, found a square f(#{non_squares.index(n)}) = #{n}"end`

## Rust

Works with: Rust version 1.1
` fn f(n: i64) -> i64 {    n + (0.5 + (n as f64).sqrt()) as i64} fn is_sqr(n: i64) -> bool {    let a = (n as f64).sqrt() as i64;    n == a * a || n == (a+1) * (a+1) || n == (a-1) * (a-1) } fn main() {    println!( "{:?}", (1..23).map(|n| f(n)).collect::<Vec<i64>>() );    let count = (1..1_000_000).map(|n| f(n)).filter(|&n| is_sqr(n)).count();    println!("{} unexpected squares found", count);} `

## Scala

`def nonsqr(n:Int)=n+math.round(math.sqrt(n)).toInt for(n<-1 to 22) println(n + "  "+ nonsqr(n)) val test=(1 to 1000000).exists{n =>   val j=math.sqrt(nonsqr(n))   j==math.floor(j)}println("squares up to one million="+test)`

## Scheme

`(define non-squares  (lambda (index)    (+ index (inexact->exact (floor (+ (/ 1 2) (sqrt index))))))) (define sequence  (lambda (function)    (lambda (start)      (lambda (stop)        (if (> start stop)            (list)            (cons (function start)                  (((sequence function) (+ start 1)) stop))))))) (define square?  (lambda (number)    ((lambda (root)       (= (* root root) number))     (floor (sqrt number))))) (define any?  (lambda (predicate?)    (lambda (list)      (and (not (null? list))           (or (predicate? (car list))               ((any? predicate?) (cdr list))))))) (display (((sequence non-squares) 1) 22))(newline) (display ((any? square?) (((sequence non-squares) 1) 999999)))(newline)`
Output:
```(2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27)
#f
```

## Seed7

`\$ include "seed7_05.s7i";  include "float.s7i";  include "math.s7i"; const func integer: nonsqr (in integer: n) is  return n + trunc(0.5 + sqrt(flt(n))); const proc: main is func  local    var integer: i is 0;    var float: j is 0.0;  begin    # First 22 values (as a list) has no squares:    for i range 1 to 22 do      write(nonsqr(i) <& " ");    end for;    writeln;     # The following check shows no squares up to one million:    for i range 1 to 1000000 do      j := sqrt(flt(nonsqr(i)));      if j = floor(j) then        writeln("Found square for nonsqr(" <& i <& ")");      end if;    end for;  end func;`

## Sidef

`func nonsqr(n) { 0.5 + n.sqrt -> floor + n }{|i| nonsqr(i) }.map(1..22).join(' ').say { |i|  if (nonsqr(i).is_sqr) {     die "Found a square in the sequence: #{i}"  }} << 1..1e6`

## Smalltalk

`| nonSquare isSquare squaresFound |nonSquare := [:n |    n + (n sqrt) rounded].isSquare := [:n |    n = (((n sqrt) asInteger) raisedTo: 2)].Transcript show: 'The first few non-squares:'; cr.1 to: 22 do: [:n |    Transcript show: (nonSquare value: n) asString; cr].squaresFound := 0.1 to: 1000000 do: [:n |    (isSquare value: (nonSquare value: n)) ifTrue: [        squaresFound := squaresFound + 1    ]].Transcript show: 'Squares found for values up to 1,000,000: ';show: squaresFound asString; cr`

## Standard ML

`- fun nonsqr n = n + round (Math.sqrt (real n));val nonsqr = fn : int -> int- List.tabulate (23, nonsqr);val it = [0,2,3,5,6,7,8,10,11,12,13,14,...] : int list- let fun loop i = if i = 1000000 then true                                  else let val j = Math.sqrt (real (nonsqr i)) in                                         Real.!= (j, Real.realFloor j) andalso                                           loop (i+1)                                       end in    loop 1  end;val it = true : bool`

## Tcl

`package require Tcl 8.5 set f {n {expr {\$n + floor(0.5 + sqrt(\$n))}}} for {set x 1} {\$x <= 22} {incr x} {    puts [format "%d\t%s" \$x [apply \$f \$x]]} puts "looking for a square..."for {set x 1} {\$x <= 1000000} {incr x} {    set y [apply \$f \$x]    set s [expr {sqrt(\$y)}]    if {\$s == int(\$s)} {        error "found a square in the sequence: \$x -> \$y"    }}puts "done"`
Output:
```1	2.0
2	3.0
3	5.0
4	6.0
5	7.0
6	8.0
7	10.0
8	11.0
9	12.0
10	13.0
11	14.0
12	15.0
13	17.0
14	18.0
15	19.0
16	20.0
17	21.0
18	22.0
19	23.0
20	24.0
21	26.0
22	27.0
looking for a square...
done```

## TI-89 BASIC

Definition and 1 to 22, interactively:

`■ n+floor(1/2+√(n)) → f(n)    Done■ seq(f(n),n,1,22)    {2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27}`

Program testing up to one million:

`test()Prgm  Local i, ns  For i, 1, 10^6    f(i) → ns    If (floor(√(ns)))^2 = ns Then      Disp "Oops: " & string(ns)    EndIf  EndFor  Disp "Done"EndPrgm`

(This program has not been run to completion.)

## Transd

`#lang transd MainModule: {    nonsqr: (λ i Int()    	(ret (+ i (to-Int (floor (+ 0.5 (sqrt i))))))),     _start: (lambda locals: d Double()        (for i in Range(1 23) do            (textout (nonsqr i) " "))         (for i in Range(1 1000001) do            (= d (sqrt (nonsqr i)))            (if (eq d (floor d))                 (throw String("Square: " i))))         (textout "\n\nUp to 1 000 000 - no squares found.")    )}`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27

Up to 1 000 000 - no squares found.
```

## True BASIC

`FUNCTION nonSquare (n)    LET nonSquare = n + INT(0.5 + SQR(n))END FUNCTION ! Display first 22 valuesPRINT "The first 22 numbers generated by the sequence are : "FOR i = 1 TO 22    PRINT nonSquare(i); " ";NEXT iPRINT ! Check FOR squares up TO one millionLET found = 0FOR i = 1 TO 1e6    LET j = SQR(nonSquare(i))    IF j = INT(j) THEN       LET found = 1       PRINT i, " square numbers found"       EXIT FOR    END IFNEXT iIF found = 0 THEN PRINT "No squares found"END`

## Ursala

`#import nat#import flo nth_non_square = float; plus^/~& math..trunc+ plus/0.5+ sqrtis_square      = sqrt; ^E/~& math..trunc #show+ examples = %neALP ^(~&,nth_non_square)*t iota23check    = (is_square*~+nth_non_square*t; ~&i&& %eLP)||-[no squares found]-! iota 1000000`
Output:
```<
1: 2.000000e+00,
2: 3.000000e+00,
3: 5.000000e+00,
4: 6.000000e+00,
5: 7.000000e+00,
6: 8.000000e+00,
7: 1.000000e+01,
8: 1.100000e+01,
9: 1.200000e+01,
10: 1.300000e+01,
11: 1.400000e+01,
12: 1.500000e+01,
13: 1.700000e+01,
14: 1.800000e+01,
15: 1.900000e+01,
16: 2.000000e+01,
17: 2.100000e+01,
18: 2.200000e+01,
19: 2.300000e+01,
20: 2.400000e+01,
21: 2.600000e+01,
22: 2.700000e+01>
no squares found
```

## VBA

` Sub Main()Dim i&, c&, j#, s\$Const N& = 1000000   s = "values for n in the range 1 to 22 : "   For i = 1 To 22      s = s & ns(i) & ", "   Next   For i = 1 To N      j = Sqr(ns(i))      If j = CInt(j) Then c = c + 1   Next    Debug.Print s   Debug.Print c & " squares less than " & NEnd Sub Private Function ns(l As Long) As Long   ns = l + Int(1 / 2 + Sqr(l))End Function`
Output:
```values for n in the range 1 to 22 : 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27,
0 squares less than 1000000```

## Wren

Library: Wren-fmt
`import "/fmt" for Fmt System.print("The first 22 numbers in the sequence are:")System.print("  n  term")for (n in 1...1e6) {    var s = n + (0.5 + n.sqrt).floor    var ss = s.sqrt.round    if (ss * ss == s) {        Fmt.print("The \$r number in the sequence \$d = \$d x \$d is a square.", n, s, ss, ss)        return    }    if (n <= 22) Fmt.print(" \$2d   \$2d", n, s)}System.print("\nNo squares were found in the first 999,999 terms.")`
Output:
```The first 22 numbers in the sequence are:
n  term
1    2
2    3
3    5
4    6
5    7
6    8
7   10
8   11
9   12
10   13
11   14
12   15
13   17
14   18
15   19
16   20
17   21
18   22
19   23
20   24
21   26
22   27

No squares were found in the first 999,999 terms.
```

## XLISP

`(defun non-square (n)    (+ n (floor (+ 0.5 (sqrt n))))) (defun range (x y)    (if (< x y)        (cons x (range (+ x 1) y)))) (defun squarep (x)    (= x (expt (floor (sqrt x)) 2))) (defun count-squares (x y)    (define squares 0)    (if (squarep (non-square x))        (define squares (+ squares 1)))    (if (= x y)        squares        (count-squares (+ x 1) y))) (print (mapcar non-square (range 1 23))) (print `(number of squares for values less than 1000000 = ,(count-squares 1 1000000)))`
Output:
```(2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27)
(NUMBER OF SQUARES FOR VALUES LESS THAN 1000000 = 0)```

## XPL0

`include c:\cxpl\codes;          \intrinsic 'code' declarations func real Floor(X);             \Truncate X toward - infinityreal X;return float(fix(X-0.5)); func PerfectSq(N);              \Return 'true' if N is a perfect squareint N;return sqrt(N)*sqrt(N) = N; int N, M, M0;[for N:= 1 to 22 do        [IntOut(0, fix(float(N) + Floor(0.5 + sqrt(float(N)))));  ChOut(0,^ )];CrLf(0);M0:= 1;for N:= 1 to 999_999 do        [M:= fix(float(N) + Floor(0.5 + sqrt(float(N))));        if PerfectSq(M) then [IntOut(0, M);  Crlf(0)];  \error: have square        if M#M0+1 and not PerfectSq(M0+1) then          \error: not sequential                [IntOut(0, M);  Crlf(0)];        M0:= M;        ];]`
Output:
```2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27
```

## Yabasic

`// Display first 22 valuesprint "The first 22 numbers generated by the sequence are : "for i = 1 to 22    print nonSquare(i), " ";next iprint // Check for squares up to one millionfound = falsefor i = 1 to 1e6    j = sqrt(nonSquare(i))    if j = int(j) then         found = true        print i, " square numbers found"    //print "Found square: ", i        break    end ifnext iif not found  print "No squares found"end sub nonSquare (n)    return n + int(0.5 + sqrt(n))end sub`

## zkl

`fcn seq(n){n + (0.5+n.toFloat().sqrt()).floor()}[1..22].apply(seq).toString(*).println(); fcn isSquare(n){n.toFloat().sqrt().modf()==0.0}isSquare(25)  //-->TrueisSquare(26)  //-->False[2..0d1_000_000].filter(fcn(n){isSquare(seq(n))}).println();`

modf returns the integer and fractional parts of a float

Output:
```L(2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27)
L()
```