# Narcissistic decimal number

Narcissistic decimal number
You are encouraged to solve this task according to the task description, using any language you may know.

A   Narcissistic decimal number   is a non-negative integer,   ${\displaystyle n}$,   that is equal to the sum of the   ${\displaystyle m}$-th   powers of each of the digits in the decimal representation of   ${\displaystyle n}$,   where   ${\displaystyle m}$   is the number of digits in the decimal representation of   ${\displaystyle n}$.

Narcissistic (decimal) numbers are sometimes called   Armstrong   numbers, named after Michael F. Armstrong.
They are also known as   Plus Perfect   numbers.

An example
•   if   ${\displaystyle n}$   is   153
•   then   ${\displaystyle m}$,   (the number of decimal digits)   is   3
•   we have   13 + 53 + 33   =   1 + 125 + 27   =   153
•   and so   153   is a narcissistic decimal number

Generate and show here the first   25   narcissistic decimal numbers.

Note:   ${\displaystyle 0^{1}=0}$,   the first in the series.

`with Ada.Text_IO; procedure Narcissistic is    function Is_Narcissistic(N: Natural) return Boolean is      Decimals: Natural := 1;      M: Natural := N;      Sum: Natural := 0;   begin      while M >= 10 loop	 M := M / 10;	 Decimals := Decimals + 1;      end loop;      M := N;      while M >= 1 loop	 Sum := Sum + (M mod 10) ** Decimals;	 M := M/10;      end loop;      return Sum=N;   end Is_Narcissistic;    Count, Current: Natural := 0; begin   while Count < 25 loop      if Is_Narcissistic(Current) then	 Ada.Text_IO.Put(Integer'Image(Current));	 Count := Count + 1;      end if;      Current := Current + 1;   end loop;end Narcissistic;`
Output:
` 0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315`

## Agena

Tested with Agena 2.9.5 Win32

`scope    # print the first 25 narcissistic numbers     local power := reg( 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 );    local count      := 0;    local maxCount   := 25;    local candidate  := 0;    local prevDigits := 0;    local digits     := 1;     for d9 from 0 to 2 while count < maxCount do        if d9 > 0 and digits < 9 then digits := 9 fi;        for d8 from 0 to 9 while count < maxCount do            if d8 > 0 and digits < 8 then digits := 8 fi;            for d7 from 0 to 9 while count < maxCount do                if d7 > 0 and digits < 7 then digits := 7 fi;                for d6 from 0 to 9 while count < maxCount do                    if d6 > 0 and digits < 6 then digits := 6 fi;                    for d5 from 0 to 9 while count < maxCount do                        if d5 > 0 and digits < 5 then digits := 5 fi;                        for d4 from 0 to 9 while count < maxCount do                            if d4 > 0 and digits < 4 then digits := 4 fi;                            for d3 from 0 to 9 while count < maxCount do                                if d3 > 0 and digits < 3 then digits := 3 fi;                                for d2 from 0 to 9 while count < maxCount do                                    if d2 > 0 and digits < 2 then digits := 2 fi;                                    for d1 from 0 to 9 do                                        if prevDigits <> digits then                                            # number of digits has increased - increase the powers                                            prevDigits := digits;                                            for i from 2 to 9 do mul power[ i + 1 ], i od;                                        fi;                                        # sum the digits'th powers of the digits of candidate                                        local sum := power[ d1 + 1 ] + power[ d2 + 1 ] + power[ d3 + 1 ]                                                   + power[ d4 + 1 ] + power[ d5 + 1 ] + power[ d6 + 1 ]                                                   + power[ d7 + 1 ] + power[ d8 + 1 ] + power[ d9 + 1 ]                                                   ;                                        if candidate = sum                                        then                                            # found another narcissistic decimal number                                            io.write( " ", candidate );                                            inc count, 1                                        fi;                                        inc candidate, 1                                    od; # d1                                od; # d2                            od; # d3                        od; # d4                    od; # d5                od; # d6            od; # d7        od; # d8    od; # d9    io.writeline() epocs`
Output:
``` 0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## ALGOL 68

`# find some narcissistic decimal numbers                                      # # returns TRUE if n is narcissitic, FALSE otherwise; n should be >= 0         #PROC is narcissistic = ( INT n )BOOL:     BEGIN        # count the number of digits in n                                     #        INT digits := 0;        INT number := n;        WHILE digits +:= 1;              number OVERAB 10;              number > 0        DO SKIP OD;        # sum the digits'th powers of the digits of n                         #        INT sum := 0;        number  := n;        TO digits DO            sum +:= ( number MOD 10 ) ^ digits;            number OVERAB 10        OD;        # n is narcissistic if n = sum                                        #        n = sum     END # is narcissistic # ; # print the first 25 narcissistic numbers                                     #INT count := 0;FOR n FROM 0 WHILE count < 25 DO    IF is narcissistic( n ) THEN        # found another narcissistic number                                   #        print( ( " ", whole( n, 0 ) ) );        count +:= 1    FIOD;print( ( newline ) )`
Output:
``` 0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## ALGOL W

Translation of: Agena
`begin    % print the first 25 narcissistic numbers                                 %     integer array  power( 0 :: 9 );    integer count, candidate, prevDigits, digits;     power( 0 ) := 0;    for i := 1 until 9 do power( i ) := 1;     count      := 0;    candidate  := 0;    prevDigits := 0;    digits     := 1;     for d9 := 0 until 2 do begin        if d9 > 0 and digits < 9 then digits := 9;        for d8 := 0 until 9 do begin            if d8 > 0 and digits < 8 then digits := 8;            for d7 := 0 until 9 do begin                if d7 > 0 and digits < 7 then digits := 7;                for d6 := 0 until 9 do begin                    if d6 > 0 and digits < 6 then digits := 6;                    for d5 := 0 until 9 do begin                        if d5 > 0 and digits < 5 then digits := 5;                        for d4 := 0 until 9 do begin                            if d4 > 0 and digits < 4 then digits := 4;                            for d3 := 0 until 9 do begin                                if d3 > 0 and digits < 3 then digits := 3;                                for d2 := 0 until 9 do begin                                    if d2 > 0 and digits < 2 then digits := 2;                                    for d1 := 0 until 9 do begin                                        integer number, sum;                                        if prevDigits <> digits then begin                                            % number of digits has increased %                                            % - increase the powers          %                                            prevDigits := digits;                                            for i := 2 until 9 do power( i ) := power( i ) * i;                                        end;                                         % sum the digits'th powers of the    %                                        % digits of candidate                %                                        sum := power( d1 ) + power( d2 ) + power( d3 )                                             + power( d4 ) + power( d5 ) + power( d6 )                                             + power( d7 ) + power( d8 ) + power( d9 )                                             ;                                        if candidate = sum then begin                                            % found another narcissistic    %                                            % decimal number                %                                            writeon( i_w := 1, s_w := 1, candidate );                                            count := count + 1;                                            if count >= 25 then goto done                                        end;                                        candidate := candidate + 1                                    end d1;                                end d2;                            end d3;                        end d4;                    end d5;                end d6;            end d7;        end d8;    end d9;done:    write() end.`
Output:
```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## AppleScript

Translation of: JavaScript

AppleScript is a little out of its depth here, even with an algorithm which restricts the search space (see the JavaScript and Haskell discussions).

The full 7 digit search that finds the 25th number takes nearly 14 minutes on the system here (four seconds to scan the 5 digit combinations, and find the first 20, and 103 seconds to scan the six digit combinations for the first 21 narcissi).

(For comparison, equivalent code in JavaScript returns all 25 numbers in about 120 milliseconds)

`-- NARCISSI ------------------------------------------------------------------- -- isDaffodil :: Int -> Int -> Boolon isDaffodil(e, n)    set ds to digitList(n)    (e = length of ds) and (n = powerSum(e, ds))end isDaffodil -- digitList :: Int -> [Int]on digitList(n)    if n > 0 then        {n mod 10} & digitList(n div 10)    else        {}    end ifend digitList -- powerSum :: Int -> [Int] -> Inton powerSum(e, ns)    script        on |λ|(a, x)            a + x ^ e        end |λ|    end script     foldl(result, 0, ns) as integerend powerSum -- narcissiOfLength :: Int -> [Int]on narcissiOfLength(nDigits)    script nthPower        on |λ|(x)            {x, x ^ nDigits as integer}        end |λ|    end script    set powers to map(nthPower, enumFromTo(0, 9))     script combn        on digitTree(n, parents)            if n > 0 then                if parents ≠ {} then                    script nextLayer                        on |λ|(pair)                            set {digit, intSum} to pair                            script addPower                                on |λ|(dp)                                    set {d, p} to dp                                    {d, p + intSum}                                end |λ|                            end script                             map(addPower, items 1 thru (digit + 1) of powers)                        end |λ|                    end script                     set nodes to concatMap(nextLayer, parents)                else                    set nodes to powers                end if                digitTree(n - 1, nodes)            else                script                    on |λ|(pair)                        isDaffodil(nDigits, item 2 of pair)                    end |λ|                end script                 filter(result, parents)            end if        end digitTree    end script     script snd        on |λ|(ab)            item 2 of ab        end |λ|    end script    map(snd, combn's digitTree(nDigits, {}))end narcissiOfLength  -- TEST -----------------------------------------------------------------------on run     {0} & concatMap(narcissiOfLength, enumFromTo(1, 5))    -- 4 seconds, 20 narcissi     -- {0} & concatMap(narcissiOfLength, enumFromTo(1, 6))     -- 103 seconds, 21 narcissi     -- {0} & concatMap(narcissiOfLength, enumFromTo(1, 7))    -- 13.75 minutes, 25 narcissi end run  -- GENERIC FUNCTIONS ---------------------------------------------------------- -- concatMap :: (a -> [b]) -> [a] -> [b]on concatMap(f, xs)    set lst to {}    set lng to length of xs    tell mReturn(f)        repeat with i from 1 to lng            set lst to (lst & |λ|(item i of xs, i, xs))        end repeat    end tell    return lstend concatMap -- enumFromTo :: Int -> Int -> [Int]on enumFromTo(m, n)    if n < m then        set d to -1    else        set d to 1    end if    set lst to {}    repeat with i from m to n by d        set end of lst to i    end repeat    return lstend enumFromTo -- filter :: (a -> Bool) -> [a] -> [a]on filter(f, xs)    tell mReturn(f)        set lst to {}        set lng to length of xs        repeat with i from 1 to lng            set v to item i of xs            if |λ|(v, i, xs) then set end of lst to v        end repeat        return lst    end tellend filter -- foldl :: (a -> b -> a) -> a -> [b] -> aon foldl(f, startValue, xs)    tell mReturn(f)        set v to startValue        set lng to length of xs        repeat with i from 1 to lng            set v to |λ|(v, item i of xs, i, xs)        end repeat        return v    end tellend foldl -- map :: (a -> b) -> [a] -> [b]on map(f, xs)    tell mReturn(f)        set lng to length of xs        set lst to {}        repeat with i from 1 to lng            set end of lst to |λ|(item i of xs, i, xs)        end repeat        return lst    end tellend map -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Scripton mReturn(f)    if class of f is script then        f    else        script            property |λ| : f        end script    end ifend mReturn`
Output:
`{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315}`

## AutoHotkey

` #NoEnv ; Do not try to use environment variablesSetBatchLines, -1 ; Execute as quickly as you can StartCount := A_TickCountNarc := Narc(25)Elapsed := A_TickCount - StartCount MsgBox, Finished in %Elapsed%ms`n%Narc%return Narc(m){	Found := 0, Lower := 0	Progress, B2	Loop	{		Max := 10 ** Digits:=A_Index		Loop, 10			Index := A_Index-1, Powers%Index% := Index**Digits		While Lower < Max		{			Sum := 0			Loop, Parse, Lower				Sum += Powers%A_LoopField%			Loop, 10			{ 				if (Lower + (Index := A_Index-1) == Sum + Powers%Index%)				{					Out .= Lower+Index . (Mod(++Found,5) ? ", " : "`n")					Progress, % Found/M*100					if (Found >= m)					{						Progress, Off						return Out					}				}			}			Lower += 10		}	}} `
Output:
```Finished in 17690ms
0, 1, 2, 3, 4
5, 6, 7, 8, 9
153, 370, 371, 407, 1634
8208, 9474, 54748, 92727, 93084
548834, 1741725, 4210818, 9800817, 9926315
```

This is a derivative of the python example, but modified for speed reasons.

Instead of summing all the powers of all the numbers at once, we sum the powers for this multiple of 10, then check each number 0 through 9 at once before summing the next multiple of 10. This way, we don't have to calculate the sum of 174172_ for every number 1741720 through 1741729.

## AWK

` # syntax: GAWK -f NARCISSISTIC_DECIMAL_NUMBER.AWKBEGIN {    for (n=0;;n++) {      leng = length(n)      sum = 0      for (i=1; i<=leng; i++) {        c = substr(n,i,1)        sum += c ^ leng      }      if (n == sum) {        printf("%d ",n)        if (++count == 25) { break }      }    }    exit(0)} `

output:

```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## Befunge

This can take several minutes to complete in most interpreters, so it's probably best to use a compiler if you want to see the full sequence.

`p55*\>:>:>:55+%\55+/[email protected]>1>+>^v\_^#!:<p01p00:+1<>\>>#-_>\>20p110g>\20g*\v>1-v|^!p00:-1g00+\$_^#!:<-1<^\.:<`
Output:
`0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315`

## C

For a much longer but faster solution, see Narcissistic decimal number/C.

The following prints the first 25 numbers, though not in order...

`#include <stdio.h>#include <gmp.h> #define MAX_LEN 81 mpz_t power[10];mpz_t dsum[MAX_LEN + 1];int cnt[10], len; void check_perm(void){	char s[MAX_LEN + 1];	int i, c, out[10] = { 0 }; 	mpz_get_str(s, 10, dsum[0]);	for (i = 0; s[i]; i++) {		c = s[i]-'0';		if (++out[c] > cnt[c]) return;	} 	if (i == len)		gmp_printf(" %Zd", dsum[0]);} void narc_(int pos, int d){	if (!pos) {		check_perm();		return;	} 	do {		mpz_add(dsum[pos-1], dsum[pos], power[d]);		++cnt[d];		narc_(pos - 1, d);		--cnt[d];	} while (d--);} void narc(int n){	int i;	len = n;	for (i = 0; i < 10; i++)		mpz_ui_pow_ui(power[i], i, n); 	mpz_init_set_ui(dsum[n], 0); 	printf("length %d:", n);	narc_(n, 9);	putchar('\n');} int main(void){	int i; 	for (i = 0; i <= 10; i++)		mpz_init(power[i]);	for (i = 1; i <= MAX_LEN; i++) narc(i); 	return 0;}`
Output:
```length 1: 9 8 7 6 5 4 3 2 1 0
length 2:
length 3: 407 371 370 153
length 4: 9474 8208 1634
length 5: 93084 92727 54748
length 6: 548834
length 7: 9926315 9800817 4210818 1741725
length 8: 88593477 24678051 24678050
length 9: 912985153 534494836 472335975 146511208
length 10: 4679307774
length 11: 94204591914 82693916578 49388550606 44708635679 42678290603 40028394225 32164049651 32164049650
length 12:
length 13:
length 14: 28116440335967
length 15:
length 16: 4338281769391371 4338281769391370
length 17: 35875699062250035 35641594208964132 21897142587612075
length 18:
^C
```

## C++

` #include <iostream>#include <vector>using namespace std;typedef unsigned int uint; class NarcissisticDecs{public:    void makeList( int mx )    {	uint st = 0, tl; int pwr = 0, len;        while( narc.size() < mx )	{	    len = getDigs( st );	    if( pwr != len )	    {		pwr = len;		fillPower( pwr );	    }            tl = 0;	    for( int i = 1; i < 10; i++ )		tl += static_cast<uint>( powr[i] * digs[i] ); 	    if( tl == st ) narc.push_back( st );	    st++;	}    }     void display()    {	for( vector<uint>::iterator i = narc.begin(); i != narc.end(); i++ )	    cout << *i << " ";	cout << "\n\n";    } private:    int getDigs( uint st )    {	memset( digs, 0, 10 * sizeof( int ) );	int r = 0;	while( st )	{	    digs[st % 10]++;	    st /= 10;	    r++;	}        return r;    }     void fillPower( int z )    {	for( int i = 1; i < 10; i++ )	    powr[i] = pow( static_cast<float>( i ), z );    }     vector<uint> narc;    uint powr[10];    int digs[10];}; int main( int argc, char* argv[] ){    NarcissisticDecs n;    n.makeList( 25 );    n.display();    return system( "pause" );} `
Output:
```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## C#

` using System; namespace Narcissistic{    class Narcissistic    {        public bool isNarcissistic(int z)        {            if (z < 0) return false;            string n = z.ToString();            int t = 0, l = n.Length;            foreach (char c in n)                t += Convert.ToInt32(Math.Pow(Convert.ToDouble(c - 48), l));             return t == z;        }    }     class Program    {        static void Main(string[] args)        {            Narcissistic n = new Narcissistic();            int c = 0, x = 0;            while (c < 25)            {                if (n.isNarcissistic(x))                {                    if (c % 5 == 0) Console.WriteLine();                    Console.Write("{0,7} ", x);                    c++;                }                x++;            }            Console.WriteLine("\n\nPress any key to continue...");            Console.ReadKey();        }    }} `
Output:
```      0       1       2       3       4
5       6       7       8       9
153     370     371     407    1634
8208    9474   54748   92727   93084
548834 1741725 4210818 9800817 9926315
```

### or

` //Narcissistic numbers: Nigel Galloway: February 17th., 2015using System;using System.Collections.Generic;using System.Linq; namespace RC {    public static class NumberEx {        public static IEnumerable<int> Digits(this int n) {            List<int> digits = new List<int>();            while (n > 0) {                digits.Add(n % 10);                n /= 10;            }            return digits.AsEnumerable();        }    }     class Program {        static void Main(string[] args) {            foreach (int N in Enumerable.Range(0, Int32.MaxValue).Where(k => {                var digits = k.Digits();                return digits.Sum(x => Math.Pow(x, digits.Count())) == k;            }).Take(25)) {                System.Console.WriteLine(N);            }        }    }} `
Output:
```0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084
548834
1741725
4210818
9800817
9926315
```

## Clojure

Find N first Narcissistic numbers.

` (ns narcissistic.core  (:require [clojure.math.numeric-tower :as math])) (defn digits [n] ;; digits of a number.  (->> n str (map (comp read-string str)))) (defn narcissistic? [n] ;; True if the number is a Narcissistic one.  (let [d (digits n)        s (count d)]    (= n (reduce + (map #(math/expt % s) d))))) (defn firstNnarc [n] ;;list of the first "n" Narcissistic numbers.  (take n (filter narcissistic? (range)))) `
Output:

by Average-user

```(time (doall (firstNnarc 25)))
"Elapsed time: 186430.429966 msecs"
(0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315)
```

## COBOL

`        PROGRAM-ID. NARCISSIST-NUMS.       DATA DIVISION.       WORKING-STORAGE SECTION.            01 num-length PIC 9(2) value 0.           01 in-sum PIC  9(9) value 0.           01 counter PIC  9(9) value 0.           01 current-number PIC  9(9) value 0.           01 narcissist PIC Z(9).           01 temp PIC  9(9) value 0.           01 modulo PIC  9(9) value 0.           01 answer PIC  9 .        PROCEDURE DIVISION.       MAIN-PROCEDURE.           DISPLAY "the first 20 narcissist numbers:" .            MOVE 20 TO counter.           PERFORM UNTIL counter=0                PERFORM 000-NARCISSIST-PARA                    IF answer = 1                        SUBTRACT 1 from counter                       GIVING counter                       MOVE current-number TO narcissist                       DISPLAY narcissist                   END-IF                    ADD 1 TO current-number                END-PERFORM             STOP RUN.        000-NARCISSIST-PARA.              MOVE ZERO TO in-sum.             MOVE current-number TO temp.             COMPUTE num-length =1+  FUNCTION Log10(temp)              PERFORM  UNTIL temp=0                   DIVIDE temp BY 10 GIVING temp                            REMAINDER  modulo                   COMPUTE modulo=modulo**num-length                  ADD modulo to in-sum GIVING in-sum             END-PERFORM.                IF current-number=in-sum                   MOVE 1 TO answer                   ELSE MOVE 0 TO answer               END-IF.        END PROGRAM NARCISSIST-NUMS.  `
Output:
```the first 20 narcissist numbers:
0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084

```

## Common Lisp

` (defun integer-to-list (n)  (map 'list #'digit-char-p (prin1-to-string n))) (defun narcissisticp (n)  (let* ((lst (integer-to-list n))         (e (length lst)))        (= n	   (reduce #'+ (mapcar (lambda (x) (expt x e)) lst))))) (defun start ()  (loop for c from 0        while (< narcissistic 25)        counting (narcissisticp c) into narcissistic        do (if (narcissisticp c) (print c)))) `
Output:
```CL-USER> (start)

0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084
548834
1741725
4210818
9800817
9926315
NIL
```

## D

### Simple Version

`void main() {    import std.stdio, std.algorithm, std.conv, std.range;     immutable isNarcissistic = (in uint n) pure @safe =>        n.text.map!(d => (d - '0') ^^ n.text.length).sum == n;    writefln("%(%(%d %)\n%)",             uint.max.iota.filter!isNarcissistic.take(25).chunks(5));}`
Output:
```0 1 2 3 4
5 6 7 8 9
153 370 371 407 1634
8208 9474 54748 92727 93084
548834 1741725 4210818 9800817 9926315```

### Fast Version

Translation of: Python
`import std.stdio, std.algorithm, std.range, std.array; uint[] narcissists(in uint m) pure nothrow @safe {    typeof(return) result;     foreach (immutable uint digits; 0 .. 10) {        const digitPowers = 10.iota.map!(i => i ^^ digits).array;         foreach (immutable uint n; 10 ^^ (digits - 1) .. 10 ^^ digits) {            uint digitPSum, div = n;            while (div) {                digitPSum += digitPowers[div % 10];                div /= 10;            }             if (n == digitPSum) {                result ~= n;                if (result.length >= m)                    return result;            }        }    }     assert(0);} void main() {    writefln("%(%(%d %)\n%)", 25.narcissists.chunks(5));}`

With LDC2 compiler prints the same output in less than 0.3 seconds.

### Faster Version

Translation of: C
`import std.stdio, std.bigint, std.conv; struct Narcissistics(TNum, uint maxLen) {    TNum[10] power;    TNum[maxLen + 1] dsum;    uint[10] count;    uint len;     void checkPerm() const {        uint[10] mout;         immutable s = dsum[0].text;        foreach (immutable d; s) {            immutable c = d - '0';            if (++mout[c] > count[c])                return;        }         if (s.length == len)            writef(" %d", dsum[0]);    }     void narc2(in uint pos, uint d) {        if (!pos) {            checkPerm;            return;        }         do {            dsum[pos - 1] = dsum[pos] + power[d];            count[d]++;            narc2(pos - 1, d);            count[d]--;        } while (d--);    }     void show(in uint n) {        len = n;        foreach (immutable i, ref p; power)            p = TNum(i) ^^ n;        dsum[n] = 0;        writef("length %d:", n);        narc2(n, 9);        writeln;    }} void main() {    enum maxLength = 16;    Narcissistics!(ulong, maxLength) narc;    //Narcissistics!(BigInt, maxLength) narc; // For larger numbers.    foreach (immutable i; 1 .. maxLength + 1)        narc.show(i);}`
Output:
```length 1: 9 8 7 6 5 4 3 2 1 0
length 2:
length 3: 407 371 370 153
length 4: 9474 8208 1634
length 5: 93084 92727 54748
length 6: 548834
length 7: 9926315 9800817 4210818 1741725
length 8: 88593477 24678051 24678050
length 9: 912985153 534494836 472335975 146511208
length 10: 4679307774
length 11: 94204591914 82693916578 49388550606 44708635679 42678290603 40028394225 32164049651 32164049650
length 12:
length 13:
length 14: 28116440335967
length 15:
length 16: 4338281769391371 4338281769391370```

With LDC2 compiler and maxLength=16 the run-time is about 0.64 seconds.

## Elixir

Translation of: D
`defmodule RC do  def narcissistic(m) do    Enum.reduce(1..10, [0], fn digits,acc ->      digitPowers = List.to_tuple(for i <- 0..9, do: power(i, digits))      Enum.reduce(power(10, digits-1) .. power(10, digits)-1, acc, fn n,result ->        sum = divsum(n, digitPowers, 0)        if n == sum do          if length(result) == m-1, do: throw Enum.reverse(result, [n])          [n | result]        else          result        end      end)    end)  end   defp divsum(0, _, sum), do: sum  defp divsum(n, digitPowers, sum) do    divsum(div(n,10), digitPowers, sum+elem(digitPowers,rem(n,10)))  end   defp power(n, m), do: power(n, m, 1)   defp power(_, 0, pow), do: pow  defp power(n, m, pow), do: power(n, m-1, pow*n)end try do  RC.narcissistic(25)catch  x -> IO.inspect xend`
Output:
```[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748,
92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315]
```

## ERRE

`PROGRAM NARCISISTIC !\$DOUBLE BEGIN    N=0    LOOP      C\$=MID\$(STR\$(N),2)      LENG=LEN(C\$)      SUM=0      FOR I=1 TO LENG DO        C=VAL(MID\$(C\$,I,1))        SUM+=C^LENG      END FOR      IF N=SUM THEN        PRINT(N;)        COUNT=COUNT+1        EXIT IF COUNT=25      END IF      N=N+1    END LOOPEND PROGRAM`

Output

``` 0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834
1741725 4210818  9800817 9926315
```

## F#

` //Naïve solution of Narcissitic number: Nigel Galloway - Febryary 18th., 2015open Systemlet rec _Digits (n,g) = if n < 10 then n::g else _Digits(n/10,n%10::g) seq{0 .. Int32.MaxValue} |> Seq.filter (fun n ->  let d = _Digits (n, [])  d |> List.fold (fun a l -> a + int ((float l) ** (float (List.length d)))) 0 = n) |> Seq.take(25) |> Seq.iter (printfn "%A") `
Output:
```0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084
548834
1741725
4210818
9800817
9926315
```

## Factor

`USING: io kernel lists lists.lazy math math.functionsmath.text.utils prettyprint sequences ;IN: rosetta-code.narcissistic-decimal-number : digit-count ( n -- count ) log10 floor >integer 1 + ; : narcissist? ( n -- ? ) dup [ 1 digit-groups ]    [ digit-count [ ^ ] curry ] bi map-sum = ; : first25 ( -- seq ) 25 0 lfrom [ narcissist? ] lfilter    ltake list>array ; : main ( -- ) first25 [ pprint bl ] each ; MAIN: main`
Output:
```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## FreeBASIC

### Simple Version

`' normal version: 14-03-2017' compile with: fbc -s console' can go up to 18 digits (ulongint is 64bit), above 18 overflow will occur Dim As Integer n, n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, a, bDim As Integer d()Dim As ULongInt d2pow(0 To 9) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}Dim As ULongInt xDim As String str_x For n = 1 To 7  For n9 = n To 0 Step -1    For n8 = n-n9 To 0 Step -1      For n7 = n-n9-n8 To 0 Step -1        For n6 = n-n9-n8-n7 To 0 Step -1          For n5 = n-n9-n8-n7-n6 To 0 Step -1            For n4 = n-n9-n8-n7-n6-n5 To 0 Step -1              For n3 = n-n9-n8-n7-n6-n5-n4 To 0 Step -1                For n2 = n-n9-n8-n7-n6-n5-n4-n3 To 0 Step -1                  For n1 = n-n9-n8-n7-n6-n5-n4-n3-n2 To 0 Step -1                    n0 = n-n9-n8-n7-n6-n5-n4-n3-n2-n1                     x = n1 + n2*d2pow(2) + n3*d2pow(3) + n4*d2pow(4) + n5*d2pow(5)_                           + n6*d2pow(6) + n7*d2pow(7) + n8*d2pow(8) + n9*d2pow(9)                     str_x = Str(x)                    If Len(str_x) = n Then                       ReDim d(10)                      For a = 0 To n-1                        d(Str_x[a]- Asc("0")) += 1                      Next a                       If n0 = d(0) AndAlso n1 = d(1) AndAlso n2 = d(2) AndAlso n3 = d(3)_                                   AndAlso n4 = d(4) AndAlso n5 = d(5) AndAlso n6 = d(6)_                                   AndAlso n7 = d(7) AndAlso n8 = d(8) AndAlso n9 = d(9) Then                        Print x                      End If                    End If                   Next n1                Next n2              Next n3            Next n4          Next n5        Next n6      Next n7    Next n8  Next n9   For a As Integer = 2 To 9    d2pow(a) = d2pow(a) * a  Next a Next n ' empty keyboard buffer While InKey <> "" : WendPrint : Print "hit any key to end program"SleepEnd`
Output:
```9
8
7
6
5
4
3
2
1
0
407
371
370
153
9474
8208
1634
93084
92727
54748
548834
9926315
9800817
4210818
1741725```

### GMP Version

```It takes about 35 min. to find all 88 numbers (39 digits).
To go all the way it takes about 2 hours.```
`' gmp version: 17-06-2015' uses gmp' compile with: fbc -s console #Include Once "gmp.bi"' change the number after max for the maximum n-digits you want (2 to 61)#Define max 61 Dim As Integer n, n0, n1, n2, n3, n4, n5, n6, n7, n8, n9Dim As Integer i, jDim As UInteger d()Dim As ZString Ptr gmp_strgmp_str = Allocate(100) ' create gmp integer array,Dim d2pow(9, max) As Mpz_ptr' initialize array and set start value,For i = 0 To 9  For j = 0 To max    d2pow(i, j) = Allocate(Len(__mpz_struct)) : Mpz_init(d2pow(i, j))  Next jNext i ' gmp integers for to hold intermediate resultDim As Mpz_ptr x1 = Allocate(Len(__mpz_struct)) : Mpz_init(x1)Dim As Mpz_ptr x2 = Allocate(Len(__mpz_struct)) : Mpz_init(x2)Dim As Mpz_ptr x3 = Allocate(Len(__mpz_struct)) : Mpz_init(x3)Dim As Mpz_ptr x4 = Allocate(Len(__mpz_struct)) : Mpz_init(x4)Dim As Mpz_ptr x5 = Allocate(Len(__mpz_struct)) : Mpz_init(x5)Dim As Mpz_ptr x6 = Allocate(Len(__mpz_struct)) : Mpz_init(x6)Dim As Mpz_ptr x7 = Allocate(Len(__mpz_struct)) : Mpz_init(x7)Dim As Mpz_ptr x8 = Allocate(Len(__mpz_struct)) : Mpz_init(x8) For n = 1 To max   For i = 1 To 9    'Mpz_set_ui(d2pow(i,0), 0)    Mpz_ui_pow_ui(d2pow(i,1), i, n)    For j = 2 To n      Mpz_mul_ui(d2pow(i, j), d2pow(i, 1), j)    Next j  Next i   For n9 = n To 0 Step -1    For n8 = n-n9 To 0 Step -1      Mpz_add(x8, d2pow(9, n9), d2pow(8, n8))      For n7 = n-n9-n8 To 0 Step -1        Mpz_add(x7, x8, d2pow(7, n7))        For n6 = n-n9-n8-n7 To 0 Step -1          Mpz_add(x6, x7, d2pow(6, n6))          For n5 = n-n9-n8-n7-n6 To 0 Step -1            Mpz_add(x5, x6, d2pow(5, n5))            For n4 = n-n9-n8-n7-n6-n5 To 0 Step -1              Mpz_add(x4, x5, d2pow(4, n4))              For n3 = n-n9-n8-n7-n6-n5-n4 To 0 Step -1                Mpz_add(x3, x4, d2pow(3, n3))                For n2 = n-n9-n8-n7-n6-n5-n4-n3 To 0 Step -1                  Mpz_add(x2, x3, d2pow(2, n2))                  For n1 = n-n9-n8-n7-n6-n5-n4-n3-n2 To 0 Step -1                    Mpz_add_ui(x1, x2, n1)                    n0 = n-n9-n8-n7-n6-n5-n4-n3-n2-n1                     Mpz_get_str(gmp_str, 10, x1)                     If Len(*gmp_str) = n Then                      ReDim d(10)                       For i = 0 To n-1                        d(gmp_str[i] - Asc("0")) += 1                      Next i                       If n9 = d(9) AndAlso n8 = d(8) AndAlso n7 = d(7) AndAlso n6 = d(6)_                                   AndAlso n5 = d(5) AndAlso n4 = d(4) AndAlso n3 = d(3)_                                   AndAlso n2 = d(2) AndAlso n1 = d(1) AndAlso n0 = d(0) Then                        Print *gmp_str                      End If                    ElseIf Len(*gmp_str) < n Then                      ' all for next loops have a negative step value                      ' if len(str_x) becomes smaller then n it's time to try the next n value                      ' GoTo label1   ' old school BASIC                      ' prefered FreeBASIC style                      Exit   For, For, For, For, For, For, For, For, For                      ' leave n1,  n2,  n3,  n4,  n5,  n6,  n7,  n8,  n9 loop                      ' and continue's after next n9                    End If                   Next n1                Next n2              Next n3            Next n4          Next n5        Next n6      Next n7    Next n8  Next n9  ' label1:Next n ' empty keyboard buffer While InKey <> "" : WendPrint : Print "hit any key to end program"SleepEnd`
Output:

Left side: program output, right side: sorted on length, value

```9                                                                                            0
8                                                                                            1
7                                                                                            2
6                                                                                            3
5                                                                                            4
4                                                                                            5
3                                                                                            6
2                                                                                            7
1                                                                                            8
0                                                                                            9
407                                                                                        153
371                                                                                        370
370                                                                                        371
153                                                                                        407
9474                                                                                      1634
8208                                                                                      8208
1634                                                                                      9474
93084                                                                                    54748
92727                                                                                    92727
54748                                                                                    93084
548834                                                                                  548834
9926315                                                                                1741725
9800817                                                                                4210818
4210818                                                                                9800817
1741725                                                                                9926315
88593477                                                                              24678050
24678051                                                                              24678051
24678050                                                                              88593477
912985153                                                                            146511208
534494836                                                                            472335975
472335975                                                                            534494836
146511208                                                                            912985153
4679307774                                                                          4679307774
94204591914                                                                        32164049650
82693916578                                                                        32164049651
49388550606                                                                        40028394225
44708635679                                                                        42678290603
42678290603                                                                        44708635679
40028394225                                                                        49388550606
32164049651                                                                        82693916578
32164049650                                                                        94204591914
28116440335967                                                                  28116440335967
4338281769391371                                                              4338281769391370
4338281769391370                                                              4338281769391371
35875699062250035                                                            21897142587612075
35641594208964132                                                            35641594208964132
21897142587612075                                                            35875699062250035
4929273885928088826                                                        1517841543307505039
4498128791164624869                                                        3289582984443187032
3289582984443187032                                                        4498128791164624869
1517841543307505039                                                        4929273885928088826
63105425988599693916                                                      63105425988599693916
449177399146038697307                                                    128468643043731391252
128468643043731391252                                                    449177399146038697307
35452590104031691935943                                                21887696841122916288858
28361281321319229463398                                                27879694893054074471405
27907865009977052567814                                                27907865009977052567814
27879694893054074471405                                                28361281321319229463398
21887696841122916288858                                                35452590104031691935943
239313664430041569350093                                              174088005938065293023722
188451485447897896036875                                              188451485447897896036875
174088005938065293023722                                              239313664430041569350093
4422095118095899619457938                                            1550475334214501539088894
3706907995955475988644381                                            1553242162893771850669378
3706907995955475988644380                                            3706907995955475988644380
1553242162893771850669378                                            3706907995955475988644381
1550475334214501539088894                                            4422095118095899619457938
177265453171792792366489765                                        121204998563613372405438066
174650464499531377631639254                                        121270696006801314328439376
128851796696487777842012787                                        128851796696487777842012787
121270696006801314328439376                                        174650464499531377631639254
121204998563613372405438066                                        177265453171792792366489765
23866716435523975980390369295                                    14607640612971980372614873089
19008174136254279995012734741                                    19008174136254279995012734740
19008174136254279995012734740                                    19008174136254279995012734741
14607640612971980372614873089                                    23866716435523975980390369295
2309092682616190307509695338915                                1145037275765491025924292050346
1927890457142960697580636236639                                1927890457142960697580636236639
1145037275765491025924292050346                                2309092682616190307509695338915
17333509997782249308725103962772                              17333509997782249308725103962772
186709961001538790100634132976991                            186709961001538790100634132976990
186709961001538790100634132976990                            186709961001538790100634132976991
1122763285329372541592822900204593                          1122763285329372541592822900204593
12679937780272278566303885594196922                        12639369517103790328947807201478392
12639369517103790328947807201478392                        12679937780272278566303885594196922
1219167219625434121569735803609966019                    1219167219625434121569735803609966019
12815792078366059955099770545296129367                  12815792078366059955099770545296129367
115132219018763992565095597973971522401                115132219018763992565095597973971522400
115132219018763992565095597973971522400                115132219018763992565095597973971522401```

## FunL

`def narcissistic( start ) =  power = 1  powers = array( 0..9 )   def narc( n ) =    num = n.toString()    m = num.length()     if power != m      power = m      powers( 0..9 ) = [i^m | i <- 0..9]     if n == sum( powers(int(d)) | d <- num )      n # narc( n + 1 )    else      narc( n + 1 )   narc( start ) println( narcissistic(0).take(25) )`
Output:
```[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315]
```

## Go

Nothing fancy as it runs in a fraction of a second as-is.

`package main import "fmt" func narc(n int) []int {	power := [...]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}	limit := 10	result := make([]int, 0, n)	for x := 0; len(result) < n; x++ {		if x >= limit {			for i := range power {				power[i] *= i // i^m			}			limit *= 10		}		sum := 0		for xx := x; xx > 0; xx /= 10 {			sum += power[xx%10]		}		if sum == x {			result = append(result, x)		}	}	return result} func main() {	fmt.Println(narc(25))}`
Output:
```[0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315]
```

## GW-BASIC

Translation of: FreeBASIC

Maximum for N (double) is14 digits, there are no 15 digits numbers

`1 DEFINT A-W : DEFDBL X-Z : DIM D(9) : DIM X2(9) : KEY OFF : CLS2 FOR A = 0 TO 9 : X2(A) = A : NEXT A3 FOR N = 1 TO 74 FOR N9 = N TO 0 STEP -15 FOR N8 = N-N9 TO 0 STEP -16 FOR N7 = N-N9-N8 TO 0 STEP -17 FOR N6 = N-N9-N8-N7 TO 0 STEP -18 FOR N5 = N-N9-N8-N7-N6 TO 0 STEP -19 FOR N4 = N-N9-N8-N7-N6-N5 TO 0 STEP -110 FOR N3 = N-N9-N8-N7-N6-N5-N4 TO 0 STEP -111 FOR N2 = N-N9-N8-N7-N6-N5-N4-N3 TO 0 STEP -112 FOR N1 = N-N9-N8-N7-N6-N5-N4-N3-N2 TO 0 STEP -113 N0 = N-N9-N8-N7-N6-N5-N4-N3-N2-N114 X = N1 + N2*X2(2) + N3*X2(3) + N4*X2(4) + N5*X2(5) + N6*X2(6) + N7*X2(7) + N8*X2(8) + N9*X2(9)15 S\$ = MID\$(STR\$(X),2)16 IF LEN(S\$) < N THEN GOTO 2517 IF LEN(S\$) <> N THEN GOTO 2418 FOR A = 0 TO 9 : D(A) = 0 : NEXT A19 FOR A = 0 TO N-1 20 B = ASC(MID\$(S\$,A+1,1))-4821 D(B) = D(B) + 122 NEXT A23 IF N0 = D(0) AND N1 = D(1) AND N2 = D(2) AND N3 = D(3) AND N4 = D(4) AND N5 = D(5) AND N6 = D(6) AND N7 = D(7) AND N8 = D(8) AND N9 = D(9) THEN PRINT X,24 NEXT N1 : NEXT N2 : NEXT N3 : NEXT N4 : NEXT N5 : NEXT N6 : NEXT N7 : NEXT N8 : NEXT N925 FOR A = 2 TO 926 X2(A) = X2(A) * A27 NEXT A28 NEXT N29 PRINT30 PRINT "done"31 END`
Output:
``` 9             8             7             6             5
4             3             2             1             0
407           371           370           153           9474
8208          1634          93084         92727         54748
548834        9926315       9800817       4210818       1741725```

### Exhaustive search (integer series)

`import Data.Char (digitToInt) isNarcissistic :: Int -> BoolisNarcissistic n = (sum ((^ digitCount) <\$> digits) ==) n  where    digits = digitToInt <\$> show n    digitCount = length digits main :: IO ()main = mapM_ print \$ take 25 (filter isNarcissistic [0 ..])`

### Reduced search (unordered digit combinations)

As summing the nth power of the digits is unaffected by digit order, we can reduce the search space by filtering digit combinations of given length and arbitrary order, rather than filtering a full integer sequence.

In this way we can find the 25th narcissistic number after length \$ concatMap digitPowerSums [1 .. 7] == 19447 tests – an improvement on the exhaustive trawl through 9926315 integers.

`import Control.Arrow (second) isDaffodil :: Int -> Int -> BoolisDaffodil e n =  let ds = digitList n  in e == length ds && n == powerSum e ds powerSum :: Int -> [Int] -> IntpowerSum n = foldr ((+) . (^ n)) 0 digitList :: Int -> [Int]digitList 0 = []digitList n = rem n 10 : digitList (quot n 10) narcissiOfLength :: Int -> [Int]narcissiOfLength nDigits = snd <\$> digitTree nDigits []  where    powers = ((,) <*> (^ nDigits)) <\$> [0 .. 9]    digitTree n parents =      if n > 0        then digitTree -- Power sums for all unordered digit combinations.               (n - 1) -- (Digit order is irrelevant when summing powers)               (if null parents                  then powers                  else concatMap                         (\(d, pwrSum) ->                             (second (pwrSum +) <\$> take (d + 1) powers))                         parents)        else filter (isDaffodil nDigits . snd) parents main :: IO ()main = print \$ 0 : concatMap narcissiOfLength [1 .. 7]`
Output:
`[0,1,2,3,4,5,6,7,8,9,153,370,371,407,1634,8208,9474,54748,92727,93084,548834,1741725,4210818,9800817,9926315]`

## Icon and Unicon

The following is a quick, dirty, and slow solution that works in both languages:

`procedure main(A)    limit := integer(A[1]) | 25    every write(isNarcissitic(seq(0))\limit)end procedure isNarcissitic(n)    sn := string(n)    m := *sn    every (sum := 0) +:= (!sn)^m    return sum = nend`

Sample run:

```->ndn
0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084
548834
1741725
4210818
9800817
9926315
->
```

## J

`getDigits=: "."0@":                  NB. get digits from numberisNarc=: (= +/@(] ^ #)@getDigits)"0  NB. test numbers for Narcissism`

Example Usage

`   (#~ isNarc) i.1e7   NB. display Narcissistic numbers0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315`

## Java

Works with: Java version 1.5+
`public class Narc{	public static boolean isNarc(long x){		if(x < 0) return false; 		String xStr = Long.toString(x);		int m = xStr.length();		long sum = 0; 		for(char c : xStr.toCharArray()){			sum += Math.pow(Character.digit(c, 10), m);		}		return sum == x;	} 	public static void main(String[] args){		for(long x = 0, count = 0; count < 25; x++){			if(isNarc(x)){				System.out.print(x + " ");				count++;			}		}	}}`
Output:
`0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315 `
Works with: Java version 1.8

The statics and the System.exit(0) stem from having first developed a version that is not limited by the amount of narcisstic numbers that are to be calculated. I then read that this is a criterion and thus the implementation is an afterthought and looks awkwardish... but still... works!

` import java.util.stream.IntStream;public class NarcissisticNumbers {    static int numbersToCalculate = 25;    static int numbersCalculated = 0;     public static void main(String[] args) {        IntStream.iterate(0, n -> n + 1).limit(Integer.MAX_VALUE).boxed().forEach(i -> {            int length = i.toString().length();            int addedDigits = 0;             for (int count = 0; count < length; count++) {                int value = Integer.parseInt(String.valueOf(i.toString().charAt(count)));                addedDigits += Math.pow(value, length);            }             if (i == addedDigits) {                numbersCalculated++;                System.out.print(addedDigits + " ");            }             if (numbersCalculated == numbersToCalculate) {                System.exit(0);            }        });    }}`
Output:
`0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315 `

## JavaScript

### ES5

Translation of: Java
`function isNarc(x) {    var str = x.toString(),        i,        sum = 0,        l = str.length;    if (x < 0) {        return false;    } else {        for (i = 0; i < l; i++) {            sum += Math.pow(str.charAt(i), l);        }    }    return sum == x;}function main(){    var n = [];     for (var x = 0, count = 0; count < 25; x++){        if (isNarc(x)){            n.push(x);            count++;        }    }    return n.join(' '); }`
Output:
`"0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315"`

### ES6

#### Exhaustive search (integer series)

`(() => {    'use strict';     // digits :: Int -> [Int]    const digits = n => n.toString()        .split('')        .map(x => parseInt(x, 10));     // pow :: Int -> Int -> Int    const pow = Math.pow;     // isNarc :: Int -> Bool    const isNarc = n => {        const            ds = digits(n),            len = ds.length;         return ds.reduce((a, x) =>            a + pow(x, len), 0) === n;    };     // until :: (a -> Bool) -> (a -> a) -> a -> a    const until = (p, f, x) => {        let v = x;        while (!p(v)) v = f(v);        return v;    };     return until(            x => x.narc.length > 24,            x => ({                n: x.n + 1,                narc: (isNarc(x.n) ? x.narc.concat(x.n) : x.narc)            }), {                n: 0,                narc: []            }        )        .narc})();`
Output:
`[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315]`

#### Reduced search (unordered digit combinations)

As summing the nth power of the digits is unaffected by digit order, we can reduce the search space by filtering digit combinations of given length and arbitrary order, rather than filtering a full integer sequence.

In this way we can find the 25th narcissistic number after length(concatMap(digitPowerSums, enumFromTo(0, 7))) === 19447 tests – an improvement on the exhaustive trawl through 9926315 integers.

(Generating the unordered digit combinations directly as power sums allows faster testing later, and needs less space)

`(() => {    'use strict';     // DAFFODILS --------------------------------------------------------------     // narcissiOfLength :: Int -> [Int]    const narcissiOfLength = n =>        n > 0 ? filter(curry(isDaffodil)(n), digitPowerSums(n)) : [0];     // Do the decimal digits of N, each raised to the power E, sum to N itself ? // isDaffodil :: Int -> Int -> Boolconst isDaffodil = (e, n) => {    const        powerSum = (n, xs) => xs.reduce((a, x) => a + Math.pow(x, n), 0),        digitList = n => (n > 0) ? (            cons((n % 10), digitList(Math.floor(n / 10)))        ) : [],        ds = digitList(n);    return e === ds.length && n === powerSum(e, ds);};     // The subset of integers of n digits that actually need daffodil checking:     // (Flattened leaves of a tree of unique digit combinations, in which    // order is not significant. Digit sequence doesn't affect power summing)     // digitPowerSums :: Int -> [Int]    const digitPowerSums = nDigits => {        const            digitPowers = map(x => [x, pow(x, nDigits)], enumFromTo(0, 9)),            treeGrowth = (n, parentPairs) => (n > 0) ? (                treeGrowth(n - 1,                    isNull(parentPairs) ? (                        digitPowers                    ) : concatMap(([parentDigit, parentSum]) =>                        map(([leafDigit, leafSum]) => //                            [leafDigit, parentSum + leafSum],                            take(parentDigit + 1, digitPowers)                        ),                        parentPairs                    ))            ) : parentPairs;        return map(snd, treeGrowth(nDigits, []));    };     // GENERIC FUNCTIONS ------------------------------------------------------     // enumFromTo :: Int -> Int -> Maybe Int -> [Int]    const enumFromTo = (m, n, step) => {        const d = (step || 1) * (n >= m ? 1 : -1);        return Array.from({            length: Math.floor((n - m) / d) + 1        }, (_, i) => m + (i * d));    };    // concatMap :: (a -> [b]) -> [a] -> [b]    const concatMap = (f, xs) => [].concat.apply([], xs.map(f));     // cons :: a -> [a] -> [a]    const cons = (x, xs) => [x].concat(xs);     // 2 or more arguments    // curry :: Function -> Function    const curry = (f, ...args) => {        const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :            function () {                return go(xs.concat([].slice.apply(arguments)));            };        return go([].slice.call(args, 1));    };     // filter :: (a -> Bool) -> [a] -> [a]    const filter = (f, xs) => xs.filter(f);     // map :: (a -> b) -> [a] -> [b]    const map = curry((f, xs) => xs.map(f));     // isNull :: [a] -> Bool    const isNull = xs => (xs instanceof Array) ? xs.length < 1 : undefined;     // length :: [a] -> Int    const length = xs => xs.length;     // pow :: Int -> Int -> Int    const pow = Math.pow     // take :: Int -> [a] -> [a]    const take = (n, xs) => xs.slice(0, n);     // show ::    // (a -> String) f,  Num n =>    // a -> maybe f -> maybe n -> String    const show = JSON.stringify;     // snd :: (a, b) -> b    const snd = tpl => Array.isArray(tpl) ? tpl[1] : undefined;      // TEST -------------------------------------------------------------------     // return length(concatMap(digitPowerSums, enumFromTo(0, 7)));     return show(        //digitPowerSums(3)        concatMap(narcissiOfLength, enumFromTo(0, 7))    );})();`
Output:

(Tested in Atom editor, using Script package)

```[0,1,2,3,4,5,6,7,8,9,153,370,371,407,1634,8208,9474,54748,92727,93084,548834,1741725,4210818,9800817,9926315]
[Finished in 0.118s]```

## jq

Works with: jq version 1.4

A function for checking whether a given non-negative integer is narcissistic could be implemented in jq as follows:

`def is_narcissistic:  def digits: tostring | explode[] | [.] | implode | tonumber;  def pow(n): . as \$x | reduce range(0;n) as \$i (1; . * \$x);   (tostring | length) as \$len  | . == reduce digits as \$d (0;  . + (\$d | pow(\$len)) )  end;`

In the following, this definition is modified to avoid recomputing (d ^ i). This is accomplished introducing the array [i, [0^i, 1^i, ..., 9^i]]. To update this array for increasing values of i, the function powers(j) is defined as follows:

`# Input:  [i, [0^i, 1^i, 2^i, ..., 9^i]]# Output: [j, [0^j, 1^j, 2^j, ..., 9^j]]# provided j is i or (i+1)def powers(j):  if .[0] == j then .  else .[0] += 1  | reduce range(0;10) as \$k (.; .[1][\$k] *= \$k)  end;`

The function is_narcisstic can now be modified to use powers(j) as follows:

`# Input: [n, [i, [0^i, 1^i, 2^i,...]]] where i is the number of digits in n.def is_narcissistic:  def digits: tostring | explode[] | [.] | implode | tonumber;  .[1][1] as \$powers  | .[0]  | if . < 0 then false    else . == reduce digits as \$d (0;  . + \$powers[\$d] )    end;`

`# If your jq has "while", then feel free to omit the following definition:def while(cond; update):  def _while:  if cond then ., (update | _while) else empty end;   _while; # The first k narcissistic numbers, beginning with 0:def narcissistic(k):  # State: [n, is_narcissistic, count, [len, [0^len, 1^len, ...]]]  # where len is the number of digits in n.  [0, true, 1, [1, [range(0;10)]]]  | while( .[2] <= k;           .[3] as \$powers           | (.[0]+1) as \$n           | (\$n | tostring | length) as \$len	   | (\$powers | powers(\$len)) as \$powersprime	   | if [\$n, \$powersprime] | is_narcissistic	     then [\$n, true, .[2] + 1, \$powersprime]	     else [\$n, false, .[2], \$powersprime ]	     end )  | select(.[1])  | "\(.[2]): \(.[0])" ; narcissistic(25)`
Output:
`jq -r -n -f Narcissitic_decimal_number.jq1: 02: 13: 24: 35: 46: 57: 68: 79: 810: 911: 15312: 37013: 37114: 40715: 163416: 820817: 947418: 5474819: 9272720: 9308421: 54883422: 174172523: 421081824: 980081725: 9926315`

## Julia

This easy to implement brute force technique is plenty fast enough to find the first few Narcissistic decimal numbers.

` function isnarcissist{T<:Integer}(n::T, b::Int=10)    -1 < n || return false    d = digits(n, b)    m = length(d)    n == mapreduce((x)->x^m, +, d)end goal = 25ncnt = 0println("Finding the first ", goal, " Narcissistic numbers:")for i in 0:typemax(1)    isnarcissist(i) || continue    ncnt += 1    println(@sprintf "    %2d %7d" ncnt i)    ncnt < goal || breakend `
Output:
```     1       0
2       1
3       2
4       3
5       4
6       5
7       6
8       7
9       8
10       9
11     153
12     370
13     371
14     407
15    1634
16    8208
17    9474
18   54748
19   92727
20   93084
21  548834
22 1741725
23 4210818
24 9800817
25 9926315
```

## Kotlin

`// version 1.1.0 fun isNarcissistic(n: Int): Boolean {    if (n < 0) throw IllegalArgumentException("Argument must be non-negative")    var nn = n    val digits = mutableListOf<Int>()    val powers = IntArray(10) { 1 }     while (nn > 0) {       digits.add(nn % 10)       for (i in 1..9) powers[i] *= i // no need to calculate powers[0]       nn /= 10    }    val sum = digits.filter { it > 0 }.map { powers[it] }.sum()    return n == sum} fun main(args: Array<String>) {    println("The first 25 narcissistic (or Armstrong) numbers are:")    var i = 0    var count = 0    do {        if (isNarcissistic(i)) {            print("\$i ")            count++        }        i++    }    while (count < 25)    }`
Output:
```The first 25 narcissistic (or Armstrong) numbers are:
0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## Lua

This is a simple/naive/slow method but it still spits out the requisite 25 in less than a minute using LuaJIT on a 2.5 GHz machine.

`function isNarc (n)    local m, sum, digit = string.len(n), 0    for pos = 1, m do        digit = tonumber(string.sub(n, pos, pos))        sum = sum + digit^m    end    return sum == nend local n, count = 0, 0repeat    if isNarc(n) then        io.write(n .. " ")        count = count + 1    end    n = n + 1until count == 25`
Output:
```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
```

## Maple

`  Narc:=proc(i)	local num,len,j,sums:	sums:=0:	num := parse~(StringTools:-Explode((convert(i,string)))):	len:=numelems(num):	for j from 1 to len do		sums:=sums+(num[j]^(len)):	end do;	if sums = i then		return i;	else		return NULL;	end if;end proc: i:=0:NDN:=[]:while numelems(NDN)<25 do	NDN:=[op(NDN),(Narc(i))]:	i:=i+1:end do:NDN; `

## Mathematica

`narc[1] = 0;narc[n_] :=   narc[n] =    NestWhile[# + 1 &, narc[n - 1] + 1,     Plus @@ (IntegerDigits[#]^IntegerLength[#]) != # &];narc /@ Range[25]`
Output:
`{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315}`

## MATLAB

`function testNarcissism    x = 0;    c = 0;    while c < 25        if isNarcissistic(x)            fprintf('%d ', x)            c = c+1;        end        x = x+1;    end    fprintf('\n')end function tf = isNarcissistic(n)    dig = sprintf('%d', n) - '0';    tf = n == sum(dig.^length(dig));end`
Output:
`0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315`

## Oforth

`: isNarcissistic(n)| i m |   n 0 while( n ) [ n 10 /mod ->n swap 1 + ] ->m   0 m loop: i [ swap m pow + ] == ; : genNarcissistic(n)| l |   ListBuffer new dup ->l   0 while(l size n <>) [ dup isNarcissistic ifTrue: [ dup l add ] 1 + ] drop ; `
Output:
```>genNarcissistic(25) .
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084,
548834, 1741725, 4210818, 9800817, 9926315] ok
```

## PARI/GP

Naive code, could be improved by splitting the digits in half and meeting in the middle.

`isNarcissistic(n)=my(v=digits(n)); sum(i=1, #v, v[i]^#v)==nv=List();for(n=1,1e9,if(isNarcissistic(n),listput(v,n);if(#v>24, return(Vec(v)))))`
Output:
`%1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050]`

## Pascal

Works with: Free Pascal

A recursive version starting at the highest digit and recurses to digit 0. Bad runtime. One more digit-> 10x runtime runtime ~ 10^(count of Digits).

` program NdN;//Narcissistic decimal numberconst  Base = 10;  MaxDigits = 16;type  tDigit = 0..Base-1;  tcntDgt= 0..MaxDigits-1;var  powDgt   : array[tDigit]  of NativeUint;  PotdgtPos: array[tcntDgt] of NativeUint;  UpperSum : array[tcntDgt] of NativeUint;   tmpSum,  tmpN,  actPot  : NativeUint; procedure InitPowDig;var  i,j : NativeUint;Begin  j := 1;  For i := 0 to High(tDigit) do  Begin    powDgt[i] := i;    PotdgtPos[i] := j;    j := j*Base;  end;  actPot := 0;end; procedure NextPowDig;var  i,j : NativeUint;Begin  // Next power of digit =  i ^ actPot,always 0 = 0 , 1 = 1  For i := 2 to High(tDigit) do    powDgt[i] := powDgt[i]*i;  // number of digits times 9 ^(max number of digits)  j := powDgt[High(tDigit)];  For i := 0 to High(UpperSum) do    UpperSum[i] := (i+1)*j;  inc(actPot);end;procedure OutPutNdN(n:NativeUint);Begin  write(n,' ');end; procedure NextDgtSum(dgtPos,i,sumPowDgt,n:NativeUint);begin  //unable to reach sum  IF (sumPowDgt+UpperSum[dgtPos]) < n then    EXIT;  repeat    tmpN   := n+PotdgtPos[dgtPos]*i;    tmpSum := sumPowDgt+powDgt[i];    //unable to get smaller    if tmpSum > tmpN then      EXIT;    IF tmpSum = tmpN then      OutPutNdN(tmpSum);    IF dgtPos>0 then      NextDgtSum(dgtPos-1,0,tmpSum,tmpN);    inc(i);  until i >= Base;end; var  i : NativeUint;Begin  InitPowDig;  For i := 1 to 9 do  Begin    write(' length ',actPot+1:2,': ');    //start with 1 in front, else you got i-times 0 in front    NextDgtSum(actPot,1,0,0);    writeln;    NextPowDig;  end;end.`
output
``` time ./NdN
length  1: 1 2 3 4 5 6 7 8 9
length  2:
length  3: 153 370 370 371 407
length  4: 1634 8208 9474
length  5: 54748 92727 93084
length  6: 548834
length  7: 1741725 4210818 9800817 9926315
length  8: 24678050 24678050 24678051 88593477
length  9: 146511208 472335975 534494836 912985153

real	0m1.000s```

## Perl

Simple version using a naive predicate. About 15 seconds.

`sub is_narcissistic {  my \$n = shift;  my(\$k,\$sum) = (length(\$n),0);  \$sum += \$_**\$k for split(//,\$n);  \$n == \$sum;}my \$i = 0;for (1..25) {  \$i++ while !is_narcissistic(\$i);  say \$i++;}`

## Perl 6

Here is a straightforward, naive implementation. It works but takes ages.

`sub is-narcissistic(Int \$n) { \$n == [+] \$n.comb »**» \$n.chars } for 0 .. * {    if .&is-narcissistic {	.say;	last if ++state\$ >= 25;    }}`
Output:
```0
1
2
3
4
5
6
7
8
9
153
370
371
407
Ctrl-C```

Here the program was interrupted but if you're patient enough you'll see all the 25 numbers.

Here's a faster version that precalculates the values for base 1000 digits:

`sub kigits(\$n) {    my int \$i = \$n;    my int \$b = 1000;    gather while \$i {        take \$i % \$b;        \$i = \$i div \$b;    }} for (1..*) -> \$d {    my @t = 0..9 X** \$d;    my @table = @t X+ @t X+ @t;    sub is-narcissistic(\n) { n == [+] @table[kigits(n)] };    state \$l = 2;    FIRST say "1\t0";    say \$l++, "\t", \$_ if .&is-narcissistic for 10**(\$d-1) ..^ 10**\$d;    last if \$l > 25};`
Output:
```1	0
2	1
3	2
4	3
5	4
6	5
7	6
8	7
9	8
10	9
11	153
12	370
13	371
14	407
15	1634
16	8208
17	9474
18	54748
19	92727
20	93084
21	548834
22	1741725
23	4210818
24	9800817
25	9926315```

## Phix

`function narcissistic(integer n)    string d = sprintf("%d",n)    integer l = length(d)    integer sumn = 0    for i=1 to l do        sumn += power(d[i]-'0',l)    end for    return sumn=nend function sequence s = {}integer n = 0while length(s)<25 do    if narcissistic(n) then s &= n end if    n += 1end while?s`
Output:
```{0,1,2,3,4,5,6,7,8,9,153,370,371,407,1634,8208,9474,54748,92727,93084,548834,1741725,4210818,9800817,9926315}
```

## PicoLisp

`(let (C 25 N 0 L 1)   (loop      (when          (=            N            (sum ** (mapcar format (chop N)) (need L L)) )         (println N)         (dec 'C) )      (inc 'N)         (setq L (length N))      (T (=0 C) 'done) ) ) (bye)`

## PL/I

### version 1

Translation of: REXX
` narn: Proc Options(main); Dcl (j,k,l,nn,n,sum) Dec Fixed(15)init(0); Dcl s Char(15) Var; Dcl p(15) Pic'9' Based(addr(s)); Dcl (ms,msa,ela) Dec Fixed(15); Dcl tim Char(12); n=30; ms=milliseconds(); Do j=0 By 1 Until(nn=n);   s=dec2str(j);   l=length(s);   sum=left(s,1)**l;   Do k=2 To l;     sum=sum+substr(s,k,1)**l;     If sum>j Then Leave;     End;   If sum=j Then Do     nn=nn+1;     msa=milliseconds();     ela=msa-ms;     /*Put Skip Data(ms,msa,ela);*/     ms=msa;                            /*yyyymmddhhmissmis*/     tim=translate('ij:kl:mn.opq',datetime(),'abcdefghijklmnopq');     Put Edit(nn,' narcissistic:',j,ela,tim)             (Skip,f(9),a,f(12),f(15),x(2),a(12));     End;   End; dec2str: Proc(x) Returns(char(16) var); Dcl x Dec Fixed(15); Dcl ds Pic'(14)z9'; ds=x; Return(trim(ds)); End; milliseconds: Proc Returns(Dec Fixed(15)); Dcl c17 Char(17); dcl 1 * Def C17,      2 * char(8),      2 hh Pic'99',      2 mm Pic'99',      2 ss Pic'99',      2 ms Pic'999'; Dcl result Dec Fixed(15); c17=datetime(); result=(((hh*60+mm)*60)+ss)*1000+ms; /* Put Edit(translate('ij:kl:mn.opq',datetime(),'abcdefghijklmnopq'),          result)         (Skip,a(12),F(15)); */ Return(result); End End;`
Output:
```       1 narcissistic:           0              0  16:10:17.586
2 narcissistic:           1              0  16:10:17.586
3 narcissistic:           2              0  16:10:17.586
4 narcissistic:           3              0  16:10:17.586
5 narcissistic:           4              0  16:10:17.586
6 narcissistic:           5              0  16:10:17.586
7 narcissistic:           6              0  16:10:17.586
8 narcissistic:           7              0  16:10:17.586
9 narcissistic:           8              0  16:10:17.586
10 narcissistic:           9              0  16:10:17.586
11 narcissistic:         153              0  16:10:17.586
12 narcissistic:         370              0  16:10:17.586
13 narcissistic:         371              0  16:10:17.586
14 narcissistic:         407              0  16:10:17.586
15 narcissistic:        1634             10  16:10:17.596
16 narcissistic:        8208             30  16:10:17.626
17 narcissistic:        9474             10  16:10:17.636
18 narcissistic:       54748            210  16:10:17.846
19 narcissistic:       92727            170  16:10:18.016
20 narcissistic:       93084              0  16:10:18.016
21 narcissistic:      548834           1630  16:10:19.646
22 narcissistic:     1741725           4633  16:10:24.279
23 narcissistic:     4210818          10515  16:10:34.794
24 narcissistic:     9800817          28578  16:11:03.372
25 narcissistic:     9926315            510  16:11:03.882
26 narcissistic:    24678050          73077  16:12:16.959
27 narcissistic:    24678051              0  16:12:16.959
28 narcissistic:    88593477         365838  16:18:22.797
29 narcissistic:   146511208         276228  16:22:59.025
30 narcissistic:   472335975        1682125  16:51:01.150 ```

### version 2

Precompiled powers

`*process source xref attributes or(!); narn3: Proc Options(main); Dcl (i,j,k,l,nn,n,sum) Dec Fixed(15)init(0); Dcl s  Char(15) Var; dcl t  Char(15); Dcl p9(15) Pic'9' Based(addr(t)); Dcl (ms,msa,ela) Dec Fixed(15); Dcl tim Char(12); n=30; Dcl power(0:9,1:9) Dec Fixed(15); Do i=0 To 9;   Do j=1 To 9;     Power(i,j)=i**j;     End;   End; ms=milliseconds(); Do j=0 By 1 Until(nn=n);   s=dec2str(j);   t=s;   l=length(s);   sum=power(p9(1),l);   Do k=2 To l;     sum=sum+power(p9(k),l);     If sum>j Then Leave;     End;   If sum=j Then Do;     nn=nn+1;     msa=milliseconds();     ela=msa-ms;     ms=msa;                                /*yyyymmddhhmissmis*/     tim=translate('ij:kl:mn.opq',datetime(),'abcdefghijklmnopq');     Put Edit(nn,' narcissistic:',j,ela,tim)             (Skip,f(9),a,f(12),f(15),x(2),a(12));     End;   End;  dec2str: Proc(x) Returns(char(15) var); Dcl x Dec Fixed(15); Dcl ds Pic'(14)z9'; ds=x; Return(trim(ds)); End;  milliseconds: Proc Returns(Dec Fixed(15)); Dcl c17 Char(17); dcl 1 * Def C17,      2 * char(8),      2 hh Pic'99',      2 mm Pic'99',      2 ss Pic'99',      2 ms Pic'999'; Dcl result Dec Fixed(15); c17=datetime(); result=(((hh*60+mm)*60)+ss)*1000+ms; Return(result); End; End;`
Output:
```        1 narcissistic:           0              0  00:41:43.632
2 narcissistic:           1              0  00:41:43.632
3 narcissistic:           2              0  00:41:43.632
4 narcissistic:           3              0  00:41:43.632
5 narcissistic:           4              0  00:41:43.632
6 narcissistic:           5              0  00:41:43.632
7 narcissistic:           6              0  00:41:43.632
8 narcissistic:           7              0  00:41:43.632
9 narcissistic:           8              0  00:41:43.632
10 narcissistic:           9              0  00:41:43.632
11 narcissistic:         153              0  00:41:43.632
12 narcissistic:         370              0  00:41:43.632
13 narcissistic:         371              0  00:41:43.632
14 narcissistic:         407              0  00:41:43.632
15 narcissistic:        1634              0  00:41:43.632
16 narcissistic:        8208             20  00:41:43.652
17 narcissistic:        9474             10  00:41:43.662
18 narcissistic:       54748            130  00:41:43.792
19 narcissistic:       92727            120  00:41:43.912
20 narcissistic:       93084              0  00:41:43.912
21 narcissistic:      548834           1310  00:41:45.222
22 narcissistic:     1741725           3642  00:41:48.864
23 narcissistic:     4210818           7488  00:41:56.352
24 narcissistic:     9800817          22789  00:42:19.141
25 narcissistic:     9926315            550  00:42:19.691
26 narcissistic:    24678050          45358  00:43:05.049
27 narcissistic:    24678051              0  00:43:05.049
28 narcissistic:    88593477         237960  00:47:03.009
29 narcissistic:   146511208         199768  00:50:22.777
30 narcissistic:   472335975        1221384  01:10:44.161 ```

## PowerShell

` function Test-Narcissistic ([int]\$Number){    if (\$Number -lt 0) {return \$false}     \$total  = 0    \$digits = \$Number.ToString().ToCharArray()     foreach (\$digit in \$digits)    {        \$total += [Math]::Pow([Char]::GetNumericValue(\$digit), \$digits.Count)    }     \$total -eq \$Number}  [int[]]\$narcissisticNumbers = @()[int]\$i = 0 while (\$narcissisticNumbers.Count -lt 25){    if (Test-Narcissistic -Number \$i)    {        \$narcissisticNumbers += \$i    }     \$i++} \$narcissisticNumbers | Format-Wide {"{0,7}" -f \$_} -Column 5 -Force `
Output:
```      0                     1                     2                    3                    4
5                     6                     7                    8                    9
153                   370                   371                  407                 1634
8208                  9474                 54748                92727                93084
548834               1741725               4210818              9800817              9926315
```

## Python

This solution pre-computes the powers once.

`from __future__ import print_functionfrom itertools import count, islice def narcissists():    for digits in count(0):        digitpowers = [i**digits for i in range(10)]        for n in range(int(10**(digits-1)), 10**digits):            div, digitpsum = n, 0            while div:                div, mod = divmod(div, 10)                digitpsum += digitpowers[mod]            if n == digitpsum:                yield n for i, n in enumerate(islice(narcissists(), 25), 1):    print(n, end=' ')    if i % 5 == 0: print() print()`
Output:
```0 1 2 3 4
5 6 7 8 9
153 370 371 407 1634
8208 9474 54748 92727 93084
548834 1741725 4210818 9800817 9926315```

### Faster Version

Translation of: D
`try:    import psyco    psyco.full()except:    pass class Narcissistics:    def __init__(self, max_len):        self.max_len = max_len        self.power = [0] * 10        self.dsum = [0] * (max_len + 1)        self.count = [0] * 10        self.len = 0        self.ord0 = ord('0')     def check_perm(self, out = [0] * 10):        for i in xrange(10):            out[i] = 0         s = str(self.dsum[0])        for d in s:            c = ord(d) - self.ord0            out[c] += 1            if out[c] > self.count[c]:                return         if len(s) == self.len:            print self.dsum[0],     def narc2(self, pos, d):        if not pos:            self.check_perm()            return         while True:            self.dsum[pos - 1] = self.dsum[pos] + self.power[d]            self.count[d] += 1            self.narc2(pos - 1, d)            self.count[d] -= 1            if d == 0:                break            d -= 1     def show(self, n):        self.len = n        for i in xrange(len(self.power)):            self.power[i] = i ** n        self.dsum[n] = 0        print "length %d:" % n,        self.narc2(n, 9)        print def main():    narc = Narcissistics(14)    for i in xrange(1, narc.max_len + 1):        narc.show(i) main()`
Output:
```length 1: 9 8 7 6 5 4 3 2 1 0
length 2:
length 3: 407 371 370 153
length 4: 9474 8208 1634
length 5: 93084 92727 54748
length 6: 548834
length 7: 9926315 9800817 4210818 1741725
length 8: 88593477 24678051 24678050
length 9: 912985153 534494836 472335975 146511208
length 10: 4679307774
length 11: 94204591914 82693916578 49388550606 44708635679 42678290603 40028394225 32164049651 32164049650
length 12:
length 13:
length 14: 28116440335967```

## Racket

`;; OEIS: A005188 defines these as positive numbers, so I will follow that definition in the function;; definitions.;;;; 0: assuming it is represented as the single digit 0 (and not an empty string, which is not the;;    usual convention for 0 in decimal), is not: sum(0^0), which is 1.  0^0 is a strange one,;;    wolfram alpha calls returns 0^0 as indeterminate -- so I will defer to the brains behind OEIS;;    on the definition here, rather than copy what I'm seeing in some of the results here#lang racket ;; Included for the serious efficientcy gains we get from fxvectors vs. general vectors.;;;; We also use fx+/fx- etc. As it stands, they do a check for fixnumness, for safety.;; We can link them in as "unsafe" operations (see the documentation on racket/fixnum);;; but we get a result from this program quickly enough for my tastes.(require racket/fixnum) ; uses a precalculated (fx)vector of powers -- caller provided, please.(define (sub-narcissitic? N powered-digits)  (let loop ((n N) (target N))    (cond      [(fx> 0 target) #f]      [(fx= 0 target) (fx= 0 n)]      [(fx= 0 n) #f]      [else (loop (fxquotient n 10)                  (fx- target (fxvector-ref powered-digits (fxremainder n 10))))]))) ; Can be used as standalone, since it doesn't require caller to care about things like order of; magnitude etc. However, it *is* slow, since it regenerates the powered-digits vector every time.(define (narcissitic? n) ; n is +ve  (define oom+1 (fx+ 1 (order-of-magnitude n)))  (define powered-digits (for/fxvector ((i 10)) (expt i oom+1)))  (sub-narcissitic? n powered-digits)) ;; next m primes > z(define (next-narcissitics z m) ; naming convention following math/number-theory's next-primes  (let-values      ([(i l)        (for*/fold ((i (fx+ 1 z)) (l empty))          ((oom (in-naturals))           (dgts^oom (in-value (for/fxvector ((i 10)) (expt i (add1 oom)))))           (n (in-range (expt 10 oom) (expt 10 (add1 oom))))           #:when (sub-narcissitic? n dgts^oom)           ; everyone else uses ^C to break...           ; that's a bit of a manual process, don't you think?           #:final (= (fx+ 1 (length l)) m))          (values (+ i 1) (append l (list n))))])    l)) ; we only want the list (module+ main  (next-narcissitics 0 25)  ; here's another list... depending on whether you believe sloane or wolfram :-)  (cons 0 (next-narcissitics 0 25))) (module+ test  (require rackunit)  ; example given at head of task    (check-true (narcissitic? 153))  ; rip off the first 12 (and 0, since Armstrong numbers seem to be postivie) from  ; http://oeis.org/A005188 for testing  (check-equal?   (for/list ((i (in-range 12))              (n (sequence-filter narcissitic? (in-naturals 1)))) n)   '(1 2 3 4 5 6 7 8 9 153 370 371))  (check-equal? (next-narcissitics 0 12) '(1 2 3 4 5 6 7 8 9 153 370 371)))`
Output:
```(1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315 24678050)
(0 1 2 ... 9926315)```

### Faster Version

This version uses lists of digits, rather than numbers themselves.

`#lang racket(define (non-decrementing-digital-sequences L)  (define (inr d l)    (cond      [(<= l 0) '(())]      [(= d 9) (list (make-list l d))]      [else (append (map (curry cons d) (inr d (- l 1))) (inr (+ d 1) l))]))  (inr 0 L)) (define (integer->digits-list n)  (let inr ((n n) (l null)) (if (zero? n) l (inr (quotient n 10) (cons (modulo n 10) l))))) (define (narcissitic-numbers-of-length L)  (define tail-digits (non-decrementing-digital-sequences (sub1 L)))  (define powers-v (for/fxvector #:length 10 ((i 10)) (expt i L)))  (define (powers-sum dgts) (for/sum ((d (in-list dgts))) (fxvector-ref powers-v d)))  (for*/list      ((dgt1 (in-range 1 10))       (dgt... (in-list tail-digits))       (sum-dgt^l (in-value (powers-sum (cons dgt1 dgt...))))       (dgts-sum (in-value (integer->digits-list sum-dgt^l)))       #:when (= (car dgts-sum) dgt1)       ; only now is it worth sorting the digits       #:when (equal? (sort (cdr dgts-sum) <) dgt...))    sum-dgt^l)) (define (narcissitic-numbers-of-length<= L)  (cons 0 ; special!        (apply append (for/list ((l (in-range 1 (+ L 1)))) (narcissitic-numbers-of-length l))))) (module+ main  (define all-narcissitics<10000000    (narcissitic-numbers-of-length<= 7))  ; conveniently, this *is* the list of 25... but I'll be a bit pedantic anyway  (take all-narcissitics<10000000 25)) (module+ test  (require rackunit)  (check-equal? (non-decrementing-digital-sequences 1) '((0) (1) (2) (3) (4) (5) (6) (7) (8) (9)))  (check-equal?   (non-decrementing-digital-sequences 2)   '((0 0) (0 1) (0 2) (0 3) (0 4) (0 5) (0 6) (0 7) (0 8) (0 9)           (1 1) (1 2) (1 3) (1 4) (1 5) (1 6) (1 7) (1 8) (1 9)           (2 2) (2 3) (2 4) (2 5) (2 6) (2 7) (2 8) (2 9)           (3 3) (3 4) (3 5) (3 6) (3 7) (3 8) (3 9)           (4 4) (4 5) (4 6) (4 7) (4 8) (4 9)           (5 5) (5 6) (5 7) (5 8) (5 9) (6 6) (6 7) (6 8) (6 9)           (7 7) (7 8) (7 9) (8 8) (8 9) (9 9)))   (check-equal? (integer->digits-list 0) null)  (check-equal? (integer->digits-list 7) '(7))  (check-equal? (integer->digits-list 10) '(1 0))   (check-equal? (narcissitic-numbers-of-length 1) '(1 2 3 4 5 6 7 8 9))  (check-equal? (narcissitic-numbers-of-length 2) '())  (check-equal? (narcissitic-numbers-of-length 3) '(153 370 371 407))   (check-equal? (narcissitic-numbers-of-length<= 1) '(0 1 2 3 4 5 6 7 8 9))  (check-equal? (narcissitic-numbers-of-length<= 3) '(0 1 2 3 4 5 6 7 8 9 153 370 371 407)))`
Output:
`'(0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 93084 92727 548834 1741725 4210818 9800817 9926315)`

## REXX

### idiomatic

`/*REXX program  generates and displays  a number of  narcissistic (Armstrong)  numbers. */numeric digits 39                                /*be able to handle largest Armstrong #*/parse arg N .                                    /*obtain optional argument from the CL.*/if N=='' | N==","  then N=25                     /*Not specified?  Then use the default.*/N=min(N, 89)                                     /*there are only  89  narcissistic #s. */#=0                                              /*number of narcissistic numbers so far*/     do j=0  until #==N;     L=length(j)         /*get length of the  J  decimal number.*/     \$=left(j, 1) **L                            /*1st digit in  J  raised to the L pow.*/                do k=2  for L-1  until \$>j        /*perform for each decimal digit in  J.*/               \$=\$ + substr(j, k, 1) ** L        /*add digit raised to power to the sum.*/               end   /*k*/                       /* [↑]  calculate the rest of the sum. */      if \$\==j  then iterate                      /*does the sum equal to J?  No, skip it*/     #=# + 1                                     /*bump count of narcissistic numbers.  */     say right(#, 9)     ' narcissistic:'     j  /*display index and narcissistic number*/     end   /*j*/                                 /*stick a fork in it,  we're all done. */`
output   when using the default input:
```        1  narcissistic: 0
2  narcissistic: 1
3  narcissistic: 2
4  narcissistic: 3
5  narcissistic: 4
6  narcissistic: 5
7  narcissistic: 6
8  narcissistic: 7
9  narcissistic: 8
10  narcissistic: 9
11  narcissistic: 153
12  narcissistic: 370
13  narcissistic: 371
14  narcissistic: 407
15  narcissistic: 1634
16  narcissistic: 8208
17  narcissistic: 9474
18  narcissistic: 54748
19  narcissistic: 92727
20  narcissistic: 93084
21  narcissistic: 548834
22  narcissistic: 1741725
23  narcissistic: 4210818
24  narcissistic: 9800817
25  narcissistic: 9926315
```

### optimized

This REXX version is optimized to pre-compute all the ten (single) digits raised to all possible powers (there are
only 39 possible widths/powers of narcissistic numbers).

It is about   77%   faster then 1st REXX version.

`/*REXX program  generates and displays  a number of  narcissistic (Armstrong)  numbers. */numeric digits 39                                /*be able to handle largest Armstrong #*/parse arg N .                                    /*obtain optional argument from the CL.*/if N=='' | N==","  then N=25                     /*Not specified?  Then use the default.*/N=min(N, 89)                                     /*there are only  89  narcissistic #s. */      do     p=1  for 39                          /*generate tables:   digits ^ P power. */         do i=0  for 10;      @.p.i= i**p        /*build table of ten digits ^ P power. */         end   /*i*/     end       /*w*/                             /* [↑]  table is a fixed (limited) size*/#=0                                              /*number of narcissistic numbers so far*/     do j=0  until #==N;      L=length(j)        /*get length of the  J  decimal number.*/     _=left(j, 1)                                /*select the first decimal digit to sum*/     [email protected].L._                                     /*sum of the J dec. digits ^ L (so far)*/               do k=2  for L-1  until \$>j        /*perform for each decimal digit in  J.*/               _=substr(j, k, 1)                 /*select the next decimal digit to sum.*/               \$=\$ + @.L._                       /*add dec. digit raised to power to sum*/               end   /*k*/                       /* [↑]  calculate the rest of the sum. */      if \$\==j  then iterate                      /*does the sum equal to J?  No, skip it*/     #=# + 1                                     /*bump count of narcissistic numbers.  */     say right(#, 9)     ' narcissistic:'     j  /*display index and narcissistic number*/     end   /*j*/                                 /*stick a fork in it,  we're all done. */`
output   is identical to the 1st REXX version.

### optimized, unrolled

This REXX version is further optimized by unrolling part of the   do   loop that sums the decimal digits.

The unrolling also necessitated the special handling of one─ and two─digit narcissistic numbers.

It is about     44%   faster then 2nd REXX version,   and
it is about   154%   faster then 1st REXX version.

`/*REXX program  generates and displays  a number of  narcissistic (Armstrong)  numbers. */numeric digits 39                                /*be able to handle largest Armstrong #*/parse arg N .                                    /*obtain optional argument from the CL.*/if N=='' | N==","  then N=25                     /*Not specified?  Then use the default.*/N=min(N, 89)                                     /*there are only  89  narcissistic #s. */@.=0                                             /*set default for the @ stemmed array. */#=0                                              /*number of narcissistic numbers so far*/     do p=0  for 39+1; if p<10  then call tell p /*display the 1st 1─digit dec. numbers.*/         do i=1  for 9;     @.p.i= i**p          /*build table of ten digits ^ P power. */         end   /*i*/     end       /*p*/                             /* [↑]  table is a fixed (limited) size*/                                                 /* [↓]  skip the 2─digit dec. numbers. */     do j=100;              L=length(j)          /*get length of the  J  decimal number.*/     parse var  j    _1  2  _2  3  m  ''  -1  _R /*get 1st, 2nd, middle, last dec. digit*/     [email protected].L._1  +  @.L._2  +  @.L._R              /*sum of the J decimal digs^L (so far).*/               do k=3  for L-3  until \$>j         /*perform for other decimal digits in J*/              parse var  m    _  +1  m           /*get next dec. dig in J, start at 3rd.*/              \$=\$ + @.L._                        /*add dec. digit raised to pow to sum. */              end   /*k*/                        /* [↑]  calculate the rest of the sum. */      if \$==j  then do;  call tell j              /*does the sum equal to  J?  Show the #*/                        if #==n  then leave      /*does the sum equal to  J?  Show the #*/                   end     end   /*j*/                                 /* [↑]  the  J loop  list starts at 100*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/tell: #=# + 1                                    /*bump the counter for narcissistic #s.*/      say right(#,9)   ' narcissistic:'   arg(1) /*display index and narcissistic number*/      if #==n  &  n<11  then exit                /*finished showing of narcissistic #'s?*/      return                                     /*return to invoker & keep on truckin'.*/`
output   is identical to the 1st REXX version.

### optimized, 3-digit chunks

This REXX version is further optimized by pre-computing the narcissistic sums of all two-digit and three-digit numbers   (and also including those with leading zeros).

It is about     65%   faster then 3rd REXX version,   and
it is about   136%   faster then 2nd REXX version,   and
it is about   317%   faster then 1st REXX version.

`/*REXX program  generates and displays  a number of  narcissistic (Armstrong)  numbers. */numeric digits 39                                /*be able to handle largest Armstrong #*/parse arg N .                                    /*obtain optional argument from the CL.*/if N=='' | N==","  then N=25                     /*Not specified?  Then use the default.*/N=min(N, 89)                                     /*there are only  89  narcissistic #s. */@.=0                                             /*set default for the @ stemmed array. */#=0                                              /*number of narcissistic numbers so far*/     do p=0  for 39+1; if p<10  then call tell p /*display the 1st 1─digit dec. numbers.*/         do i=1  for 9;      @.p.i= i**p         /*build table of ten digits ^ P power. */         zzj= '00'j;       @.p.zzj= @.p.j        /*assign value for a 3-dig number (LZ),*/         end   /*i*/          do j=10  to 99;   parse var j  t 2 u    /*obtain 2 decimal digits of J:    T U */         @.p.j = @.p.t + @.p.u                   /*assign value for a 2─dig number.     */         zj=  '0'j;        @.p.zj = @.p.j        /*   "     "    "  " 3─dig    "   (LZ),*/         end   /*j*/                             /* [↑]  T≡ tens digit;  U≡ units digit.*/          do k=100  to 999; parse var k h 2 t 3 u /*obtain 3 decimal digits of J:  H T U */         @.p.k= @.p.h + @.p.t + @.p.u            /*assign value for a three-digit number*/         end   /*k*/                             /* [↑]  H≡ hundreds digit;  T≡ tens ···*/     end       /*p*/                             /* [↑]  table is a fixed (limited) size*/                                                 /* [↓]  skip the 2─digit dec. numbers. */     do j=100;               L=length(j)         /*get length of the  J  decimal number.*/     parse var  j  _  +3  m                      /*get 1st three decimal digits of  J.  */     [email protected].L._                                     /*sum of the J decimal digs^L (so far).*/                do  while m\==''                 /*do the rest of the dec. digs in  J.  */                parse var  m    _  +3  m         /*get the next 3 decimal digits in  M. */                \$=\$ + @.L._                      /*add dec. digit raised to pow to sum. */                end   /*while*/                  /* [↑]  calculate the rest of the sum. */      if \$==j  then do;  call tell j              /*does the sum equal to  J?  Show the #*/                        if #==n  then leave      /*does the sum equal to  J?  Show the #*/                   end     end   /*j*/                                 /* [↑]  the  J loop  list starts at 100*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/tell: #=# + 1                                    /*bump the counter for narcissistic #s.*/      say right(#,9)   ' narcissistic:'   arg(1) /*display index and narcissistic number*/      if #==n  &  n<11  then exit                /*finished showing of narcissistic #'s?*/      return                                     /*return to invoker & keep on truckin'.*/`
output   is identical to the 1st REXX version.

Further optimization could be utilized by increasing the chunk size to four or five decimal digits, but with an accompanying increase in the size of the pre-computed values.

## Ring

` n = 0count = 0size = 15while count != size      m = isNarc(n)      if m=1 see "" + n + " is narcisstic" + nl          count = count + 1 ok      n = n + 1 end func isNarc n     m = len(string(n))     sum = 0     digit = 0     for pos = 1 to m         digit = number(substr(string(n), pos, 1))         sum = sum + pow(digit,m)     next     nr = (sum = n)     return nr `

## Ruby

`class Integer  def narcissistic?    return false if negative?    digs = self.digits        m    = digs.size    digs.map{|d| d**m}.sum == self  endend puts 0.step.lazy.select(&:narcissistic?).first(25)`
Output:
```0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
54748
92727
93084
548834
1741725
4210818
9800817
9926315
```

## Scala

Works with: Scala version 2.9.x
`object NDN extends App {   val narc: Int => Int = n => (n.toString map (_.asDigit) map (math.pow(_, n.toString.size)) sum) toInt  val isNarc: Int => Boolean = i => i == narc(i)   println((Iterator from 0 filter isNarc take 25 toList) mkString(" ")) }`

Output:

`0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315`

## Sidef

`func is_narcissistic(n) {    n.digits »**» n.len -> sum == n} var count = 0for i in ^Inf {    if (is_narcissistic(i)) {        say "#{++count}\t#{i}"        break if (count == 25)    }}`
Output:
```1	0
2	1
3	2
4	3
5	4
6	5
7	6
8	7
9	8
10	9
11	153
12	370
13	371
14	407
15	1634
16	8208
17	9474
18	54748
19	92727
20	93084
21	548834
22	1741725
23	4210818
24	9800817
25	9926315
```

## Tcl

`proc isNarcissistic {n} {    set m [string length \$n]    for {set t 0; set N \$n} {\$N} {set N [expr {\$N / 10}]} {	incr t [expr {(\$N%10) ** \$m}]    }    return [expr {\$n == \$t}]} proc firstNarcissists {target} {    for {set n 0; set count 0} {\$count < \$target} {incr n} {	if {[isNarcissistic \$n]} {	    incr count	    lappend narcissists \$n	}    }    return \$narcissists} puts [join [firstNarcissists 25] ","]`
Output:
```0,1,2,3,4,5,6,7,8,9,153,370,371,407,1634,8208,9474,54748,92727,93084,548834,1741725,4210818,9800817,9926315
```

## UNIX Shell

Works with: ksh93
`function narcissistic {    integer n=\$1 len=\${#n} sum=0 i    for ((i=0; i<len; i++)); do        (( sum += pow(\${n:i:1}, len) ))    done    (( sum == n ))} nums=()for ((n=0; \${#nums[@]} < 25; n++)); do    narcissistic \$n && nums+=(\$n)doneecho "\${nums[*]}"echo "elapsed: \$SECONDS"`
Output:
```0 1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834 1741725 4210818 9800817 9926315
elapsed: 436.639```

## VBScript

`Function Narcissist(n)	i = 0	j = 0	Do Until j = n		sum = 0		For k = 1 To Len(i)			sum = sum + CInt(Mid(i,k,1)) ^ Len(i)		Next		If i = sum Then			Narcissist = Narcissist & i & ", "			j = j + 1		End If		i = i + 1	LoopEnd Function WScript.StdOut.Write Narcissist(25)`
Output:
`0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315,`

## zkl

`fcn isNarcissistic(n){   ns,m := n.split(), ns.len() - 1;   ns.reduce('wrap(s,d){ z:=d; do(m){z*=d} s+z },0) == n}`

Pre computing the first 15 powers of 0..9 for use as a look up table speeds things up quite a bit but performance is pretty underwhelming.

`var [const] powers=(10).pump(List,'wrap(n){      (1).pump(15,List,'wrap(p){ n.toFloat().pow(p).toInt() }) });fcn isNarcissistic2(n){   m:=(n.numDigits - 1);   n.split().reduce('wrap(s,d){ s + powers[d][m] },0) == n}`

Now stick a filter on a infinite lazy sequence (ie iterator) to create an infinite sequence of narcissistic numbers (iterator.filter(n,f) --> n results of f(i).toBool()==True).

`ns:=[0..].filter.fp1(isNarcissistic);ns(15).println();ns(5).println();ns(5).println();`
Output:
```L(0,1,2,3,4,5,6,7,8,9,153,370,371,407,1634)
L(8208,9474,54748,92727,93084)
L(548834,1741725,4210818,9800817,9926315)
```

## ZX Spectrum Basic

Array index starts at 1. Only 1 character long variable names are allowed for For-Next loops. 8 Digits or higher numbers are displayed as floating point numbers. Needs about 2 hours (3.5Mhz)

` 1 DIM K(10): DIM M(10) 2 FOR Y=0 TO 9: LET M(Y+1)=Y: NEXT Y 3 FOR N=1 TO 7 4 FOR J=N TO 0 STEP -1 5 FOR I=N-J TO 0 STEP -1 6 FOR H=N-J-I TO 0 STEP -1 7 FOR G=N-J-I-H TO 0 STEP -1 8 FOR F=N-J-I-H-G TO 0 STEP -1 9 FOR E=N-J-I-H-G-F TO 0 STEP -110 FOR D=N-J-I-H-G-F-E TO 0 STEP -111 FOR C=N-J-I-H-G-F-E-D TO 0 STEP -112 FOR B=N-J-I-H-G-F-E-D-C TO 0 STEP -113 LET A=N-J-I-H-G-F-E-D-C-B14 LET X=B+C*M(3)+D*M(4)+E*M(5)+F*M(6)+G*M(7)+H*M(8)+I*M(9)+J*M(10)15 LET S\$=STR\$ (X)16 IF LEN (S\$)<N THEN GO TO 3417 IF LEN (S\$)<>N THEN GO TO 3318 FOR Y=1 TO 10: LET K(Y)=0: NEXT Y19 FOR Y=1 TO N20 LET Z= CODE (S\$(Y))-4721 LET K(Z)=K(Z)+122 NEXT Y23 IF A<>K(1) THEN GO TO 3324 IF B<>K(2) THEN GO TO 3325 IF C<>K(3) THEN GO TO 3326 IF D<>K(4) THEN GO TO 3327 IF E<>K(5) THEN GO TO 3328 IF F<>K(6) THEN GO TO 3329 IF G<>K(7) THEN GO TO 3330 IF H<>K(8) THEN GO TO 3331 IF I<>K(9) THEN GO TO 3332 IF J=K(10) THEN PRINT X,33 NEXT B: NEXT C: NEXT D: NEXT E: NEXT F: NEXT G: NEXT H: NEXT I: NEXT J34 FOR Y=2 TO 935 LET M(Y+1)=M(Y+1)*Y36 NEXT Y37 NEXT N38 PRINT39 PRINT "DONE"`
Output:
```9               8
7               6
5               4
3               2
1               0
9               8
7               6
5               4
3               2
1               0
407             371
370             153
9474            8208
1634            93084
92727           54748
548834          9926315
9800817         4210818
1741725```