CloudFlare suffered a massive security issue affecting all of its customers, including Rosetta Code. All passwords not changed since February 19th 2017 have been expired, and session cookie longevity will be reduced until late March.--Michael Mol (talk) 05:15, 25 February 2017 (UTC)

Integer roots

From Rosetta Code
Integer roots is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Create a program that computes an approximation of the principal   Nth   root of   X   as the largest integer less than or equal to   R   for which   RN=X.

──where:

       N  is a positive integer. 
       X  is a non-negative integer. 
       R  (the root)   is a non-negative real number. 

No arbitrary limits should be placed on the magnitudes of the numbers involved.


Example:   With   N=3   and   X=8   you would calculate the number   2   because  

Example:   With   N=3   and   X=9  you would again calculate the number   2   because 2 is the largest integer less than or equal to the root   R.

Example:   With   N=2   and   X=2×1002,000   you would calculate a large integer consisting of the first   2,001   digits (in order) of the square root of two.

Elixir[edit]

Translation of: Ruby
defmodule Integer_roots do
def root(_, b) when b<2, do: b
def root(a, b) do
a1 = a - 1
f = fn x -> (a1 * x + div(b, power(x, a1))) |> div(a) end
c = 1
d = f.(c)
e = f.(d)
until(c, d, e, f)
end
 
defp until(c, d, e, _) when c in [d, e], do: min(d, e)
defp until(_, d, e, f), do: until(d, e, f.(e), f)
 
defp power(_, 0), do: 1
defp power(n, m), do: Enum.reduce(1..m, 1, fn _,acc -> acc*n end)
 
def task do
IO.puts root(3,8)
IO.puts root(3,9)
IO.puts "First 2,001 digits of the square root of two:"
IO.puts root(2, 2 * power(100, 2000))
end
end
 
Integer_roots.task
Output:
2
2
First 2,001 digits of the square root of two:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

Go[edit]

int[edit]

package main
 
import "fmt"
 
func main() {
fmt.Println(root(3, 8))
fmt.Println(root(3, 9))
fmt.Println(root(2, 2e18))
}
 
func root(N, X int) int {
// adapted from https://en.wikipedia.org/wiki/Nth_root_algorithm
for r := 1; ; {
x := X
for i := 1; i < N; i++ {
x /= r
}
x -= r
// A small complication here is that Go performs truncated integer
// division but for negative values of x, Δr in the line below needs
// to be computed as the floor of x / N. The following % test and
// correction completes the floor division operation (for positive N.)
Δr := x / N
if x%N < 0 {
Δr--
}
if Δr == 0 {
return r
}
r += Δr
}
}
Output:
2
2
1414213562

big.Int[edit]

package main
 
import (
"fmt"
"math/big"
)
 
func main() {
fmt.Println(root(3, "8"))
fmt.Println(root(3, "9"))
fmt.Println(root(2, "2000000000000000000"))
fmt.Println(root(2, "200000000000000000000000000000000000000000000000000"))
}
 
var one = big.NewInt(1)
 
func root(N int, X string) *big.Int {
var xx, x, Δr big.Int
xx.SetString(X, 10)
nn := big.NewInt(int64(N))
for r := big.NewInt(1); ; {
x.Set(&xx)
for i := 1; i < N; i++ {
x.Quo(&x, r)
}
// big.Quo performs Go-like truncated division and would allow direct
// translation of the int-based solution, but package big also provides
// Div which performs Euclidean rather than truncated division.
// This gives the desired result for negative x so the int-based
// correction is no longer needed and the code here can more directly
// follow the Wikipedia article.
Δr.Div(x.Sub(&x, r), nn)
if len(Δr.Bits()) == 0 {
return r
}
r.Add(r, &Δr)
}
}
Output:
2
2
1414213562
14142135623730950488016887

Haskell[edit]

Translation of: Python
root :: Integer -> Integer -> Integer
root a b = findAns sequence where
sequence = iterate (\x -> (a1 * x + b `div` (x ^ a1)) `div` a) 1
a1 = a - 1
findAns (x:xs@(y:z:_)) | x == y || x == z = min y z
| otherwise = findAns xs
 
main :: IO ()
main = do
print $ root 3 8
print $ root 3 9
print $ root 2 (2 * 100^2000) -- first 2001 digits of the square root of 2
Output:
2
2
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

J[edit]

<.@%: satisfies this task. Left argument is the task's N, right argument is the task's X:

   9!:37]0 4096 0 222 NB. set display truncation sufficiently high for our results
 
2 <.@%: (2*10x^2*2000)
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008
3 <.@%: (2*10x^2*2000)
27144176165949065715180894696794892048051077694890969572843654428033085563287658494871973768515010449601702702662017016622108188038292129512829222732037939681464769491319263029308919709511736401200395299672806902057959507281705818417585572775465293620106435558459837272246448049135012971629241921717289904494332635356114519208640365765906522454723182775121756558058020787429240528065700321862315922465987881667832001482693220149093231249941256750252873117504822276540899360702266289427386749058832442643990936924594623694605667125995688788028079451303313515777223983018552490248388121970980055977541748894293734175182220013380497630428176870053423294103392285168797917553010332228664978678396929617114885278335650885524410898341213271192520021355449870508579216359067962061031950345530646092202370608763454397416764433915183368398263533906772869972563479248093751375796381425079119097628053496428734814910307755317031117606073779997125797512066497555354285360734633889394275558674944424368960732987910929093583629174893939036518727793282632439102479840614327136348027409016670160346303867705846755103908964945780837562103026771901489757443287280572195601219016859180373403783498753667545621963282035797597576337893795984255961467481252116653755272803423453851317757500585155874395469445425245653837328715044666730082806623655698726925
5 <.@%: (2*10x^2*2000)
114869835499703500679862694677792758944385088909779750551371111849360320625351305681147311301150847391457571782825280872990018972855371267615994917020637676959403854539263226492033301322122190625130645468320078386350285806907949085127708283982797043969640382563667945344431106523789654147255972578315704103326302050272017414235255993151553782375173884359786924137881735354092890268530342009402133755822717151679559278360263800840317501093689917495888199116488588871447782240220513546797235647742625493141141704109917646404017146978939243424915943739448283626010758721504375406023613552985026793701507511351368254645700768390780390334017990233124030682358360249760098999315658413563173197024899154512108923313999675829872581317721346549115423634135836394159076400636688679216398175376716152621781331348
7 <.@%: (2*10x^2*2000)
29619362959451736245702628695019269518064618216015009169507699742781423769947484925822512257735101524178182602734424986961003971858127002794053824818478879396020132662403256874761276690431037137165264232256601651438511207764019815767975124455844526943932927494896013055497926678521360177960529077012650088983239249505488961115547364229473827474458408002500739618874659540108997885564940730803150961523774615079827002013042942440654069714159530336055547627964891459096727426898214883744931710925020592035759639587602673656267343846153343265577563529779031634608306646526796

Perl 6[edit]

Translation of: Python
sub integer_root ( Int $p where * >= 2, Int $n --> Int ) {
my Int $d = $p - 1;
 
my $guess = '1' ~ ( '0' x ($n.chars / $p) );
 
my $iterator = { ( $d * $^x + $n div ($^x ** $d) ) div $p };
 
my $endpoint = { $^x ** $p <= $n
and ($^x + 1) ** $p > $n };
 
return [min] (+$guess, $iterator ... $endpoint)[*-1, *-2];
}
 
say integer_root( 2, 2 * 100 ** 2000 );
Output:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

Python[edit]

def root(a,b):
if b<2:return b
a1=a-1
c=1
d=(a1*c+b//(c**a1))//a
e=(a1*d+b//(d**a1))//a
while c!=d and c!=e:
c,d,e=d,e,(a1*e+b//(e**a1))//a
return min(d,e)
print("First 2,001 digits of the square root of two:\n{}".format(root(2,2*100**2000)))
Output:
First 2,001 digits of the square root of two:
141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884716038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016207584749226572260020855844665214583988939443709265918003113882464681570826301005948587040031864803421948972782906410450726368813137398552561173220402450912277002269411275736272804957381089675040183698683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884720896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558695686859645951555016447245098368960368873231143894155766510408839142923381132060524336294853170499157717562285497414389991880217624309652065642118273167262575395947172559346372386322614827426222086711558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668983299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685405758679996701213722394758214263065851322174088323829472876173936474678374319600015921888073478576172522118674904249773669292073110963697216089337086611567345853348332952546758516447107578486024636008

Racket[edit]

See #Scheme, there’s very little can be done to improve it.

REXX[edit]

No error checking is performed to ensure the root is a non-zero integer.

This version incorporates some optimization when computing square roots   (because   M   is unity,   there is no need to
multiply the guess [G] by unity,   and no need to compute the guess to the 1st power,   bypassing some trivial arithmetic).

integer result only[edit]

/*REXX program calculates the Nth root of a number to a specified number of decimal digs*/
parse arg num root digs . /*obtain the optional arguments from CL*/
if num=='' | num=="," then num= 2 /*Not specified? Then use the default.*/
if root=='' | root=="," then root= 2 /* " " " " " " */
if digs=='' | digs=="," then digs=2001 /* " " " " " " */
numeric digits digs /*utilize this number of decimal digits*/
say 'number=' num /*display the number that will be used.*/
say ' root=' root /* " " root " " " " */
say 'digits=' digs /* " dec. digits " " " " */
say /* " a blank line. */
say 'result:'; say rootI(num, root, digs) /* " what it is; display the root.*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
rootI: procedure; parse arg x,root,p /*obtain the numbers, Y is the root #.*/
numeric digits p*root+length(x) /*double the number of digits + guard.*/
if x<2 then return x /*B is one or zero? Return that value.*/
z=x*(10**root)**p /*calculate the number with appended 0s*/
m=root - 1 /*utilize a diminished (by one) power. */
g=(1 + z) % root /*take a stab at the first root guess. */
old=. /* [↓] When M=1, a fast path for sqrt.*/
if m==1 then do until old==g; old=g; g=(g + z % g )  % root; end
else do until old==g; old=g; g=(g*m + z % (g**m) )  % root; end
return left(g,p) /*return the Nth root of Z to invoker.*/

output   when the defaults are being used:

number= 2
  root= 2
digits= 2001

result:
14142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714
70109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407989687253396546331808829640620615258352395054745750287759961729835575220337531857011354374603408498847
16038689997069900481503054402779031645424782306849293691862158057846311159666871301301561856898723723528850926486124949771542183342042856860601468247207714358548741556570696776537202264854470158588016
20758474922657226002085584466521458398893944370926591800311388246468157082630100594858704003186480342194897278290641045072636881313739855256117322040245091227700226941127573627280495738108967504018369
86836845072579936472906076299694138047565482372899718032680247442062926912485905218100445984215059112024944134172853147810580360337107730918286931471017111168391658172688941975871658215212822951848847
20896946338628915628827659526351405422676532396946175112916024087155101351504553812875600526314680171274026539694702403005174953188629256313851881634780015693691768818523786840522878376293892143006558
69568685964595155501644724509836896036887323114389415576651040883914292338113206052433629485317049915771756228549741438999188021762430965206564211827316726257539594717255934637238632261482742622208671
15583959992652117625269891754098815934864008345708518147223181420407042650905653233339843645786579679651926729239987536661721598257886026336361782749599421940377775368142621773879919455139723127406689
83299898953867288228563786977496625199665835257761989393228453447356947949629521688914854925389047558288345260965240965428893945386466257449275563819644103169798330618520193793849400571563337205480685
40575867999670121372239475821426306585132217408832382947287617393647467837431960001592188807347857617252211867490424977366929207311096369721608933708661156734585334833295254675851644710757848602463600
8

true results[edit]


Negative and complex roots are supported.   The expressed root may have a decimal point.

/*REXX program calculates the Nth root of a number to a specified number of decimal digs*/
parse arg num root digs . /*obtain the optional arguments from CL*/
if num=='' | num=="," then num= 2 /*Not specified? Then use the default.*/
if root=='' | root=="," then root= 2 /* " " " " " " */
if digs=='' | digs=="," then digs=2001 /* " " " " " " */
numeric digits digs /*utilize this number of decimal digits*/
say 'number=' num /*display the number that will be used.*/
say ' root=' root /* " " root " " " " */
say 'digits=' digs /* " dec. digits " " " " */
say /* " a blank line. */
say 'result:'; say iRoot(num, root) /* " what it is; display the root.*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
iRoot: procedure; parse arg x 1 ox, y 1 oy /*obtain the numbers, Y is the root #.*/
i=; x=abs(x); y=abs(y) /*use the absolute values of X and Y. */
if ox<0 & oy//2==0 then do; i='i'; ox=x; end /*if the results will be imaginary ··· */
od=digits() /*the current number of decimal digits.*/
a=od+9 /*bump the decimal digits by nine. */
numeric form /*number will be in exponential form.*/
parse value format(x,2,1,,0) 'E0' with ? 'E' _ . /*obtain exponent so we can do division*/
g=(?/y'E'_ % y) + (x>1) /*this is a best first guess of a root.*/
m=y-1 /*define a (fast) variable for later. */
d=5 /*start with only five decimal digits. */
do until d==a /*keep computing 'til we're at max digs*/
d=min(d+d,a); dm=d-2 /*bump number of (growing) decimal digs*/
numeric digits d /*increase the number of decimal digits*/
o=0 /*set the old value to zero (1st time).*/
do until o=g; o=g /*keep computing as long as G changes.*/
g=format((m*g**y+x)/y/g**m,,dm) /*compute the Yth root of X. */
end /*until o=g*/
end /*until d==a*/
_=g*sign(ox) /*change the sign of the result, maybe.*/
numeric digits od /*set numeric digits to the original.*/
if oy<0 then return (1/_)i /*Is the root negative? Use reciprocal*/
return (_/1)i /*return the Yth root of X to invoker.*/

output   when the defaults are being used:

number= 2
  root= 2
digits= 2001

result:
1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571
47010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140798968725339654633180882964062061525835239505474575028775996172983557522033753185701135437460340849884
71603868999706990048150305440277903164542478230684929369186215805784631115966687130130156185689872372352885092648612494977154218334204285686060146824720771435854874155657069677653720226485447015858801
62075847492265722600208558446652145839889394437092659180031138824646815708263010059485870400318648034219489727829064104507263688131373985525611732204024509122770022694112757362728049573810896750401836
98683684507257993647290607629969413804756548237289971803268024744206292691248590521810044598421505911202494413417285314781058036033710773091828693147101711116839165817268894197587165821521282295184884
72089694633862891562882765952635140542267653239694617511291602408715510135150455381287560052631468017127402653969470240300517495318862925631385188163478001569369176881852378684052287837629389214300655
86956868596459515550164472450983689603688732311438941557665104088391429233811320605243362948531704991577175622854974143899918802176243096520656421182731672625753959471725593463723863226148274262220867
11558395999265211762526989175409881593486400834570851814722318142040704265090565323333984364578657967965192672923998753666172159825788602633636178274959942194037777536814262177387991945513972312740668
98329989895386728822856378697749662519966583525776198939322845344735694794962952168891485492538904755828834526096524096542889394538646625744927556381964410316979833061852019379384940057156333720548068
54057586799967012137223947582142630658513221740883238294728761739364746783743196000159218880734785761725221186749042497736692920731109636972160893370866115673458533483329525467585164471075784860246360
08

output   when using the input of:   -81

number= -81
  root= 2
digits= 2001

result:
9i

output   when using the input of:   4   -2

number= 4
  root= -2
digits= 2001

result:
0.5

Ruby[edit]

Translation of: Python, zkl
def root(a,b)
return b if b<2
a1, c = a-1, 1
f = -> x {(a1*x+b/(x**a1))/a} # a lambda with argument x
d = f[c]
e = f[d]
c, d, e = d, e, f[e] until [d,e].include?(c)
[d,e].min
end
 
puts "First 2,001 digits of the square root of two:"
puts root(2, 2*100**2000)
 
Output:
First 2,001 digits of the square root of two:
14142135623730950488016887242096(...)46758516447107578486024636008

Scheme[edit]

Translation of: Python
(define (root a b)
(define // quotient)
(define (y a a1 b c d e)
(if (or (= c d) (= c e))
(min d e)
(y a a1 b d e (// (+ (* a1 e) (// b (expt e a1))) a))))
(if (< b 2)
b
(let* ((a1 (- a 1))
(c 1)
(d (// (+ (* a1 c) (// b (expt c a1))) a))
(e (// (+ (* a1 d) (// b (expt d a1))) a)))
(y a a1 b c d e))))
 
(display "First 2,001 digits of the cube root of two:\n")
(display (root 3 (* 2 (expt 1000 2000))))
Output:
First 2,001 digits of the cube root of two:
125992104989487316476721060727822835057025146470150798008197511215529967651395948372939656243625509415431025603561566525939902404061373722845911030426935524696064261662500097747452656548030686718540551868924587251676419937370969509838278316139915512931369536618394746344857657030311909589598474110598116290705359081647801147352132548477129788024220858205325797252666220266900566560819947156281764050606648267735726704194862076214429656942050793191724414809204482328401274703219642820812019057141889964599983175038018886895942020559220211547299738488026073636974178877921579846750995396300782609596242034832386601398573634339097371265279959919699683779131681681544288502796515292781076797140020406056748039385612517183570069079849963419762914740448345402697154762285131780206438780476493225790528984670858052862581300054293885607206097472230406313572349364584065759169169167270601244028967000010690810353138529027004150842323362398893864967821941498380270729571768128790014457462271477023483571519055067220848184850092872392092826466067171742477537097370300127429180940544256965920750363575703751896037074739934610144901451576359604711119738452991329657262589048609788561801386773836157730098659836608059757560127871214868562426845564116515581793532280158962912994450040120842541416015752584162988142309735821530604057724253836453253356595511725228557956227724036656284687590154306675351908548451181817520429124123378096317252135754114181146612736604578303605744026513096070968164006888185657231009008428452608641405950336900307918699355691335183428569382625543135589735445023330285314932245513412195545782119650083395771426685063328419619686512109255789558850899686190154670043896878665545309854505763765036008943306510356935777537249548436821370317162162183495809356208726009626785183418345652239744540004476021778894208183802786665306532663261864116007400747475473558527701689502063754132232329694243701742343491617690600723853902227681129777413872079823430391031628546452083111122546828353183047061

Sidef[edit]

Translation of: Ruby
func root(a, b) {
b < 2 && return(b)
var (a1, c) = (a-1, 1)
var f = {|x| (a1*x + b//(x**a1)) // a }
var d = f(c)
var e = f(d)
while (c !~ [d, e]) {
(c, d, e) = (d, e, f(e))
}
[d, e].min
}
 
say "First 2,001 digits of the square root of two:"
say root(2, 2 * 100**2000)
Output:
First 2,001 digits of the square root of two:
14142135623730950488016887242096980[...]32952546758516447107578486024636008

zkl[edit]

Translation of: Python

Uses GNU GMP library

var [const] BN=Import("zklBigNum");
fcn root(n,r){
f:='wrap(z){ (n/z.pow(r-1) + z*(r-1))/r or 1 }; //--> v or 1
c,d,e:=1,f(c),f(d);
while(c!=d and c!=e){ c,d,e=d,e,f(e) }
if(d<e) d else e
}
a:=BN(100).pow(2000)*2;
println("Does GMP agree: ",root(a,3)==a.root(3));
Output:
Does GMP agree: True