# Inheritance/Single

Inheritance/Single
You are encouraged to solve this task according to the task description, using any language you may know.

Inheritance is an operation of type algebra that creates a new type from one or several parent types. The obtained type is called derived type. It inherits some of the properties of its parent types. Usually inherited properties are:

• methods
• components
• parts of the representation

The class of the new type is a subclass of the classes rooted in the parent types. When all (in certain sense) properties of the parents are preserved by the derived type, it is said to be a Liskov subtype. When properties are preserved then the derived type is substitutable for its parents in all contexts. Usually full substitutability is achievable only in some contexts.

Inheritance is

• single, when only one parent is allowed
• multiple, otherwise

Some single inheritance languages usually allow multiple inheritance for certain abstract types, interfaces in particular.

Inheritance can be considered as a relation parent-child. Parent types are sometimes called supertype, the derived ones are subtype. This relation is transitive and reflexive. Types bound by the relation form a wp:Directed_acyclic_graph directed acyclic graph (ignoring reflexivity). With single inheritance it becomes a tree.

Task: Show a tree of types which inherit from each other. The top of the tree should be a class called Animal. The second level should have Dog and Cat. Under Dog should be Lab and Collie. None of the classes need to have any functions, the only thing they need to do is inherit from the specified superclasses (overriding functions should be shown in Polymorphism). The tree should look like this:

```    Animal
/\
/  \
/    \
Dog   Cat
/\
/  \
/    \
Lab   Collie```

## ActionScript

`public class Animal {    // ...}`
`public class Cat extends Animal {    // ...}`
`public class Dog extends Animal {    // ...}`
`public class Lab extends Dog {    // ...}`
`public class Collie extends Dog {    // ...}`

`package Inheritance is   type Animal is tagged private;   type Dog is new Animal with private;   type Cat is new Animal with private;   type Lab is new Dog with private;   type Collie is new Dog with private;private   type Animal is tagged null record;   type Dog is new Animal with null record;   type Cat is new Animal with null record;   type Lab is new Dog with null record;   type Collie is new Dog with null record;end Inheritance;`

## Aikido

`class Animal{   //functions go here...}`
`class Dog extends Animal {   //functions go here...}`
`class Cat extends Animal {   //functions go here...}`
`class Lab extends Dog {   //functions go here...}`
`class Collie extends Dog {   //functions go here...}`

## AmigaE

` OBJECT animalENDOBJECT OBJECT dog OF animalENDOBJECT OBJECT cat OF animalENDOBJECT OBJECT lab OF dogENDOBJECT OBJECT collie OF dogENDOBJECT `

## AutoHotkey

Works with: AutoHotkey_L

AutoHotkey_L is prototype-based. However, for convenience, class-syntax may be used to create a base object.

`dog := new CollieMsgBox, % "A " dog.__Class " is a " dog.base.base.__Class " and is part of the " dog.kingdom " kingdom." class Animal {   static kingdom := "Animalia" ; Class variable}class Dog extends Animal {}class Cat extends Animal {}class Lab extends Dog {}class Collie extends Dog {}`

## BBC BASIC

`      INSTALL @lib\$+"CLASSLIB"       DIM Animal{method}      PROC_class(Animal{})       DIM Cat{method}      PROC_inherit(Cat{}, Animal{})      PROC_class(Cat{})       DIM Dog{method}      PROC_inherit(Dog{}, Animal{})      PROC_class(Dog{})       DIM Labrador{method}      PROC_inherit(Labrador{}, Dog{})      PROC_class(Labrador{})       DIM Collie{method}      PROC_inherit(Collie{}, Dog{})      PROC_class(Collie{})`

## ChucK

`public class Drums{   //functions go here...}`
`public class LatinKit extends Drums{   //functions go here...}`
`public class ElectronicKit extends Drums{   //functions go here...}`
`public class Congas extends LatinKit{   //functions go here...}`
`public class TechnoDrums extends ElectronicKit{   //functions go here...}`

## C++

`class Animal{  // ... }; class Dog: public Animal{  // ... }; class Lab: public Dog{  // ...}; class Collie: public Dog{  // ...}; class Cat: public Animal{  // ...};`

## C#

`class Animal{   /* ... */   // ...} class Dog : Animal{   /* ... */   // ...} class Lab : Dog{   /* ... */   // ...} class Collie : Dog{   /* ... */  // ... } class Cat : Animal{   /* ... */  // ... }`

## Clojure

This is not very useful in clojure

`(gen-class :name Animal)(gen-class :name Dog :extends Animal)(gen-class :name Cat :extends Animal)(gen-class :name Lab :extends Dog)(gen-class :name Collie :extends Dog)`

More useful:

`(derive ::dog ::animal)(derive ::cat ::animal)(derive ::lab ::dog)(derive ::collie ::dog)`

use:

`user> (isa? ::dog ::animal)trueuser> (isa? ::dog ::cat)falseuser> (isa? ::collie ::animal)true`

## COBOL

`       CLASS-ID. Animal.           *> ...       END CLASS Animal.        CLASS-ID. Dog INHERITS Animal.       ENVIRONMENT DIVISION.       CONFIGURATION SECTION.       REPOSITORY.           CLASS Animal.            *> ...       END CLASS Dog.        CLASS-ID. Cat INHERITS Animal.        ENVIRONMENT DIVISION.       CONFIGURATION SECTION.       REPOSITORY.           CLASS Animal.             *> ...       END CLASS Cat.        CLASS-ID. Lab INHERITS Dog.       ENVIRONMENT DIVISION.       CONFIGURATION SECTION.       REPOSITORY.           CLASS Dog.            *> ...       END CLASS Lab.        CLASS-ID. Collie INHERITS Dog.       ENVIRONMENT DIVISION.       CONFIGURATION SECTION.       REPOSITORY.           CLASS Dog.            *> ...       END CLASS Collie.`

## Coco

`class Animalclass Cat extends Animalclass Dog extends Animalclass Lab extends Dogclass Collie extends Dog`

On the subject of inheritance, it is worth noting that Coco's `super` works differently from CoffeeScript's. In particular, the constructor of a subclass should generally say `super ...`, not just `super`. Here is a translation of the example from the CoffeeScript documentation:

`class Animal   (@name) ->   move: (meters) ->    alert @name + " moved #{meters}m." class Snake extends Animal   -> super ...   move: ->    alert 'Slithering...'    super 5 class Horse extends Animal   -> super ...   move: ->    alert 'Galloping...'    super 45 sam = new Snake 'Sammy the Python'tom = new Horse 'Tommy the Palomino' sam.move!tom.move!`

## Comal

Works with: UniComal
Works with: AmiComal
`       STRUC Animal           DIM Species\$ OF 20       ENDSTRUC Animal        STRUC Dog               INHERIT Animal              DIM Race\$ OF 20              FUNC New CONSTRUCTOR                     Species\$="Dog"              ENDFUNC New       ENDSTRUC Dog        STRUC Cat              INHERIT Animal              DIM Race\$ OF 20              FUNC New CONSTRUCTOR                     Species\$="Cat"              ENDFUNC New       ENDSTRUC Cat        STRUC Lab              INHERIT Dog              FUNC New CONSTRUCTOR                     Race\$:="Lab"              ENDFUNC New       ENDSTRUC Lab        STRUC Collie              INHERIT Dog              FUNC New CONSTRUCTOR                     Race\$:="Collie"              ENDFUNC New       ENDSTRUC Collie`

## Common Lisp

Using CLOS classes, we have the following:

`(defclass animal ()       ())(defclass dog    (animal) ())(defclass lab    (dog)    ())(defclass collie (dog)    ())(defclass cat    (animal) ())`

Alternatively, since there is no multiple inheritance in the task requirement, structures could also be used:

`(defstruct animal)(defstruct (dog    (:include animal)))(defstruct (lab    (:include dog)))(defstruct (collie (:include dog)))(defstruct (cat    (:include animal)))`

(Structures are less flexible than CLOS objects but often somewhat more efficiently implemented, due to those restrictions.)

Inheritance is not required for object-oriented programming in Lisp. It is used for code reuse, because it allows common utilities and protocol conventions to be factored out into base class methods. However, a class doesn't have to inherit from a base class just so that some existing methods can work with instances of that class.

Furthermore, all of the "basic types" also have a class, so methods can be readily specialized to lists, integers, strings, symbols, et cetera. This is done without having to modify any class definitions.

` ;;; ASN.1 serialization logic specialized for animal class(defmethod serialize-to-asn-1 ((a animal))  #| ... |#  )  ;;; casually introduce the method over strings too; no relation to animal(defmethod serialize-to-asn-1 ((s string))  #| ... #|  )`

These classes do not have to inherit from some interface or base class which provides a prototype for the serialize-to-asn-1 method. Such a requirement has more to do with static typing than object oriented programming. Usually in languages which require such inheritance, there are also statically typed references. A class must conform to some "ASNEncodable" class so that its instances can be passed to functions which expect references to an ASN1Encodable type, which is verified at compile time.

## Component Pascal

` 	TYPE		Animal = ABSTRACT RECORD (*  *) END;		Cat = RECORD (Animal)  (*  *) END; (* final record (cannot be extended) - by default *)		Dog = EXTENSIBLE RECORD (Animal)  (*  *) END; (* extensible record *)		Lab = RECORD (Dog)  (*  *) END;		Collie = RECORD (Dog)  (*  *) END; `

## D

`class Animal {    // ...} class Dog: Animal {    // ...} class Lab: Dog {    // ...} class Collie: Dog {    // ...} class Cat: Animal {    // ...} void main() {}`

## Delphi

`type  Animal = class(TObject)  private    // private functions/variables  public    // public functions/variables  end;   Dog = class(Animal);  Cat = class(Animal);  Collie = class(Dog);  Lab = class(Dog);`

## DWScript

`type  Animal = class(TObject)  private    // private functions/variables  public    // public functions/variables  end; type Dog = class(Animal) end;type Cat = class(Animal) end;type Collie = class(Dog) end;type Lab = class(Dog) end;`

## E

Outside of interactions with the host platform's objects, E does not generally deal in complex type hierarchies; the focus is more on "what guarantees does this object provide", and composition rather than inheritance. However, it is possible to set up a type hierarchy scheme with just a bit of code.

In E, a guard accepts, or coerces, certain objects and rejects others; its range constitutes a type. An auditor examines the implementation of an object and marks it approved; a stamp is an auditor which does no actual checking. Here, we create a guard/stamp pair; the guard accepts every stamped object. The stamp also asks for each supertype's stamp on the objects it audits.

`def makeType(label, superstamps) {    def stamp {        to audit(audition) {            for s in superstamps { audition.ask(s) }            return true        }    }    def guard {        to coerce(specimen, ejector) {            if (__auditedBy(stamp, specimen)) {                return specimen            } else {                throw.eject(ejector, `\$specimen is not a \$label`)            }        }    }    return [guard, stamp]}`

Setting up the task's specified tree:

`def [Animal, AnimalStamp] := makeType("Animal", []) def [Cat, CatStamp] := makeType("Cat", [AnimalStamp])def [Dog, DogStamp] := makeType("Dog", [AnimalStamp]) def [Lab, LabStamp] := makeType("Lab", [DogStamp])def [Collie, CollieStamp] := makeType("Collie", [DogStamp])`

Some example objects:

`def fido implements LabStamp {}def tom implements CatStamp {}def brick {} # not an animal`

Testing against the types:

`? fido :Animal# value: <fido> ? fido :Cat# problem: <fido> is not a Cat ? fido :Lab# value: <fido> ? tom :Animal# value: <tom> ? tom :Cat# value: <tom> ? brick :Animal# problem: <brick> is not a Animal`

## Eiffel

`class    ANIMALend`
`class    DOGinherit    ANIMALend`
`class    CATinherit    ANIMALend`
`class    LABinherit    DOGend`
`class    COLLIEinherit    DOGend`

## Elena

ELENA 4.x :

`class Animal{   // ...} class Dog : Animal{   // ...} class Lab : Dog{   // ...} class Collie : Dog{   // ... } class Cat : Animal{   // ... }`

## Factor

`TUPLE: animal ;TUPLE: dog < animal ;TUPLE: cat < animal ;TUPLE: lab < dog ;TUPLE: collie < dog ;`

## Fancy

`class Animal {  # ...} class Dog : Animal {  # ...} class Cat : Animal {  # ...} class Lab : Dog {  # ...} class Collie : Dog {  # ...}`

## Fantom

`class Animal {} class Dog : Animal {} class Cat : Animal {} class Lab : Dog {} class Collie : Dog {}`

## Forth

Works with: 4tH version 3.61.5

There are numerous, mutually incompatible object oriented frameworks for Forth. This one works with the FOOS preprocessor extension of 4tH.

`include 4pp/lib/foos.4pp :: Animal class end-class {} ;:: Dog extends    Animal end-extends {} ;:: Cat extends    Animal end-extends {} ;:: Lab extends    Dog    end-extends {} ;:: Collie extends Dog    end-extends {} ;`

Works with any ANS Forth

Needs the FMS-SI (single inheritance) library code located here: http://soton.mpeforth.com/flag/fms/index.html

`include FMS-SI.f :class Animal  ;class:class Dog    <super Animal ;class:class Cat    <super Animal ;class:class Lab    <super Dog    ;class:class Collie <super Dog    ;class`

## Fortran

OO has been part of the Fortran standard since 2003 but the compilers are still playing catchup. This example builds with the Intel 11.1.069 compiler (free for personal use on linux).

`module anim   type animal  end type animal   type, extends(animal) :: dog  end type dog   type, extends(animal) :: cat  end type cat   type, extends(dog) :: lab  end type lab   type, extends(dog) :: collie  end type collie end module anim`

## FreeBASIC

`' FB 1.05.0 Win64 Type Animal Extends Object ' to enable virtual methods etc. if needed  ' ...End Type Type Dog Extends Animal  ' ...End Type Type Cat Extends Animal  ' ...End Type Type Lab Extends Dog  ' ...End Type Type Collie Extends Dog  ' ...End Type`

## F#

The `()` behind the class names indicates a public default constructor; you need some type of public constructor to derive from a class.

`type Animal() =  class  // explicit syntax needed for empty class  end type Dog() =  inherit Animal() type Lab() =  inherit Dog() type Collie() =  inherit Dog() type Cat() =  inherit Animal()`

## Go

Go eschews most trappings of inheritance, yet it's anonymous field feature allows building one struct type upon another and accessing fields of "embedded" types without extra synax.

`package main type animal struct {    alive bool} type dog struct {    animal    obedienceTrained bool} type cat struct {    animal    litterBoxTrained bool} type lab struct {    dog    color string} type collie struct {    dog    catchesFrisbee bool} func main() {    var pet lab    pet.alive = true    pet.obedienceTrained = false    pet.color = "yellow"} `

## Groovy

`class Animal{   //contents go here...}`
`class Dog extends Animal{   //contents go here...}`
`class Cat extends Animal{   //contents go here...}`
`class Lab extends Dog{   //contents go here...}`
`class Collie extends Dog{   //contents go here...}`

A type can't inherit properties from other types, but it can belong to any number of type classes, which may themselves be subclasses of other type classes.

`class Animal aclass Animal a => Cat aclass Animal a => Dog aclass Dog a => Lab aclass Dog a => Collie a`

## Haxe

`class Animal {    // ...}`
`class Cat extends Animal {    // ...}`
`class Dog extends Animal {    // ...}`
`class Lab extends Dog {    // ...}`
`class Collie extends Dog {    // ...}`

## Icon and Unicon

This example only works in Unicon.

` class Animal ()end class Dog : Animal  ()end class Cat : Animal  ()end class Lab : Dog  ()end class Collie : Dog ()end `

## Inform 7

`An animal is a kind of thing.A cat is a kind of animal.A dog is a kind of animal.A collie is a kind of dog.A lab is a kind of dog.`

"Animal" is actually a predefined kind in Inform 7, so its definition here is redundant (but legal).

## Io

`Animal := Object cloneCat := Animal cloneDog := Animal cloneCollie := Dog cloneLab := Dog clone`

## J

Here is how this would normally be done:

`coclass 'Animal'`
`coclass 'Dog'coinsert 'Animal'`
`coclass 'Cat'coinsert 'Animal'`
`coclass 'Lab'coinsert 'Dog'`
`coclass 'Collie'coinsert 'Dog'`

`coclass` specifies that following definitions will be within the named class, and `coinsert` specifies that the current class will inherit from the named classes (or object -- in J the only difference between a class and an object is its name and how you can create them -- this motivates the "co" prefix on operations which manipulate classes and objects).

That said, some operations in J -- including `coinsert` -- will create classes if they did not already exist. So the above may be simplified to:

`coinsert_Dog_ 'Animal'coinsert_Cat_ 'Animal'coinsert_Lab_ 'Dog'coinsert_Collie_ 'Dog'`

That said, note that classes and objects are not "types" in J. Instead, they are components of names. In general, when we deal with objects and classes we deal with references to the underlying representation, and in J the references are names, so a collection of classes and objects, in J, would be a collection of names which refer to classes and objects. In other words, the "type" (to the degree that there is a type) would be best thought of as "name" (or, more mechanically: boxed list of characters).

## Java

`public class Animal{   //functions go here...}`
`public class Dog extends Animal{   //functions go here...}`
`public class Cat extends Animal{   //functions go here...}`
`public class Lab extends Dog{   //functions go here...}`
`public class Collie extends Dog{   //functions go here...}`

## JavaScript

JavaScript is a class-free, object-oriented language, and as such, it uses prototypal inheritance instead of classical inheritance.

`function Animal() {    // ...}`
`function Dog() {    // ...}Dog.prototype = new Animal();`
`function Cat() {    // ...}Cat.prototype = new Animal();`
`function Collie() {    // ...}Collie.prototype = new Dog();`
`function Lab() {    // ...}Lab.prototype = new Dog();`
`Animal.prototype.speak = function() {print("an animal makes a sound")}; var lab = new Lab();lab.speak();  // shows "an animal makes a sound"`

## Julia

Julia is not really an object-oriented programming language. It support polymorphism and inheriting functionality but not structure. Thus inheritance hierarchies must be made with abstract types. Abstract types can not be instantiated and do not contain any fields. So below Dog is abstract while Collie is concrete type which may contain fields.

` abstract type Animal endabstract type Dog <: Animal endabstract type Cat <: Animal end struct Lab <: Dog endstruct Collie <: Dog end `

## Kite

`class Animal [	#Method goes here]; class Dog from Animal [	#Method goes here	]; class Lab from Dog [	#Method goes here]; class collie from Dog [	#Method goes here]; `

## Kotlin

`// version 1.0.6 open class Animal {    override fun toString() = "animal"} open class Dog : Animal() {    override fun toString() = "dog"} class Cat : Animal() {    override fun toString() = "cat"} class Labrador : Dog() {    override fun toString() = "labrador"} class Collie : Dog() {    override fun toString() = "collie"} fun main(args: Array<String>) {    val felix: Animal = Cat()    val rover: Animal = Dog()    val bella: Dog = Labrador()    val casey: Dog = Collie()    println("Felix is a \$felix")    println("Rover is a \$rover")    println("Bella is a \$bella")    println("Casey is a \$casey")}`
Output:
```Felix is a cat
Rover is a dog
Casey is a collie
```

## Lasso

`define animal => type {	data public gender::string} define dog => type {	parent animal} define cat => type {	parent animal} define collie => type {	parent dog} define lab => type {	parent dog} local(myanimal = lab) #myanimal -> gender = 'Male'#myanimal -> gender`

-> Male

## Lingo

In Lingo Classes are represented by "parent scripts". Instead of using new() as in the code below, child classes can also use rawNew() when creating an instance of their parent classes. rawNew() creates an instance of a class without calling its initialization function 'new' (constructor).

`-- parent script "Animal"-- ...`
`-- parent script "Dog"property ancestor on new (me)  me.ancestor = script("Animal").new()  return meend`
`-- parent script "Cat"property ancestor on new (me)  me.ancestor = script("Animal").new()  return meend`
`-- parent script "Lab"property ancestor on new (me)  me.ancestor = script("Dog").new()  return meend`
`-- parent script "Collie"property ancestor on new (me)  me.ancestor = script("Dog").new()  return meend`

## Lisaac

`Section Header+ name := ANIMAL;// ...`
`Section Header+ name := CAT;Section Inherit- parent : ANIMAL := ANIMAL;// ...`
`Section Header+ name := DOG;Section Inherit- parent : ANIMAL := ANIMAL;// ...`
`Section Header+ name := LAB;Section Inherit- parent : DOG := DOG;// ...`
`Section Header+ name := COLLIE;Section Inherit- parent : DOG := DOG;// ...`

## Logtalk

There is no "class" keyword in Logtalk; an "object" keyword is used instead (Logtalk objects play the role of classes, meta-classes, instances, or prototypes depending on the relations with other objects).

` :- object(thing,    instantiates(thing)).:- end_object. :- object(animal,    specializes(thing)).    ...:- end_object. :- object(dog,    specializes(animal)).    ...:- end_object. :- object(cat,    specializes(animal)).    ...:- end_object. :- object(lab,    specializes(dog)).    ...:- end_object. :- object(collie,    specializes(dog)).    ...:- end_object.`

## M2000 Interpreter

There are two types of Inheritance. This is the type which we merge groups. Class functions are global functions. First a class function make a Group and then call a module, passing arguments if any, with same name as class name. The final group has no reference with any kind of class, it is an object of type Group, without pointer (we see it as a variable). We can make pointers to groups, but here we don't need that. We can place groups in containers, and here we place one in B(5). Using variables like IamAnimal (which is a double with 0 value) and check if exist (using Valid() function) we can check the Inheritance.

In constructor the statement This=Animal() add all members of returned group to This. If a function in This is Final then can't be changed. We can make the "copy" using a third group: M=Animal() : M=This : This= M. First we make M as copy of Animal(), after that we merge This to M, and then we merge M to This. Why to do this? Because we want to leave members in non final stage. So M get the Animal's function, then M take This function and replace animals, and then This take M which have also the IamAnimal member. Check Cat Class.

` Module CheckIt {      Class Animal {            IamAnimal            Function objType\$ {="Animal"}            \\ read only      }      Class Dog {            IamDog            Function Final objType\$ {="Dog"}            Module Dog {                  This=Animal()            }      }      Class Cat {            IamCat            Function objType\$ {="Cat"}            Module Cat {                  \\ Without using Final in function above                  M=Animal()                  M=This                  This=M            }            }      Class Labrador {            IamLabrador            Function Final objType\$ {="Labrador"}            Module Labrador {                  This=Dog()            }      }      Class Collie {            IamCollie            Function Final objType\$ {="Collie"}            Module Collie {                  This=Dog()            }      }      Animal=Animal()      Print Valid(Animal.IamAnimal)=True, Animal.objType\$()="Animal"      A=Collie()      Dim B(0 to 9)      B(5)=Cat()      Print Valid(A.IamAnimal)=True, Valid(B(5).IamAnimal)=True      Print Valid(A.IamDog)=True, Valid(A.IamCollie)=True      Print Valid(B(5).IamCat)=True      Print Valid(B(5).IamDog)=False      Print A.objType\$()="Collie"      Print B(5).objType\$()="Cat"      \\ with @ we tell to interpreter to check A if has same members of Animal among other members      Print Valid(@A as Animal)=True      \\ For expressions, or items from containers we have to use a function      \\ which copies objects before using in Valid(@..)      Def ValidObj(X,Y)=Valid(@X as Y)      Print ValidObj(B(5), Animal)=True }CheckIt `

## Neko

`var Animal = \$new(null); var Dog = \$new(null);\$objsetproto(Dog, Animal); var Cat = \$new(null);\$objsetproto(Cat, Animal); var Lab = \$new(null);\$objsetproto(Lab, Dog); var Collie = \$new(null);\$objsetproto(Collie, Dog);`

## Nemerle

`class Animal {    // ...} class Dog: Animal {    // ...} class Lab: Dog {    // ...} class Collie: Dog {    // ...} class Cat: Animal {    // ...}`

## NetRexx

Class names cosmetically augmented slightly to prevent namespace pollution.

For brevity, all classes are defined within the same source file. Normally classes exist as separate source units.

`/* NetRexx */options replace format comments java crossref symbols binary class RInheritSingle public  method main(args = String[]) public static    animals = [ -      RInheritSingle_Animal(), -      RInheritSingle_Cat(), -      RInheritSingle_Dog(), -      RInheritSingle_Lab(), -      RInheritSingle_Collie() -      ]     say 'Object ID'.left(12) 'Class type'.left(24)  'Superclass type'    say '.'.left(12, '.')    '.'.left(24, '.')      '.'.left(24, '.')    loop animal over animals      parse animal.whatAmI() oid ct st      say oid.left(12) ct.left(24) st      end animal    return class RInheritSingle_Animal private  properties indirect    whatThatIs = String    whatThisIs = String  method RInheritSingle_Animal() public    -- Animal specific set-up    setWhatThatIs(this.getClass().getSuperclass().getSimpleName())    setWhatThisIs(this.getClass().getSimpleName())    return  method hashToString() public    return '@'(Rexx this.hashCode()).d2x().right(8, 0)  method whatAmI() public    iAmText = hashToString() getWhatThisIs() getWhatThatIs()    return iAmText class RInheritSingle_Cat private extends RInheritSingle_Animal  method RInheritSingle_Cat() public    -- Do Cat specific set-up    return class RInheritSingle_Dog private extends RInheritSingle_Animal  method RInheritSingle_Dog() public    -- Do Dog specific set-up    return class RInheritSingle_Lab private extends RInheritSingle_Dog  method RInheritSingle_Lab() public    -- Do Lab specific set-up    return class RInheritSingle_Collie private extends RInheritSingle_Dog  method RInheritSingle_Collie() public    -- Do Collie specific set-up    return `
Output:
```Object ID    Class type               Superclass type
............ ........................ ........................
@3F81D405    RInheritSingle_Animal    Object
@51430296    RInheritSingle_Cat       RInheritSingle_Animal
@065EEF88    RInheritSingle_Dog       RInheritSingle_Animal
@42BFCCFC    RInheritSingle_Lab       RInheritSingle_Dog
```

## Nim

`type  Animal = object of RootObj  Dog    = object of Animal  Cat    = object of Animal  Lab    = object of Dog  Collie = object of Dog`

## Oberon

Tested with OBNC.

`MODULE Animals;    TYPE      Animal = RECORD END;      Dog = RECORD (Animal) END;      Cat = RECORD (Animal) END;      Lab = RECORD (Dog) END;      Collie = RECORD (Dog) END; END Animals. `

## Oberon-2

Works with oo2c Version 2

` MODULE Animals;TYPE  Animal = POINTER TO AnimalDesc;  AnimalDesc = RECORD END;   Cat = POINTER TO CatDesc;  CatDesc = RECORD (AnimalDesc) END;   Dog = POINTER TO DogDesc;  DogDesc = RECORD (AnimalDesc) END;   Lab = POINTER TO LabDesc;  LabDesc = RECORD (DogDesc) END;   Collie = POINTER TO CollieDesc;  CollieDesc = RECORD (DogDesc) END; END Animals. `

## Objeck

`class Animal{ #~ ... ~# } class Dog from Animal{ #~ ... ~# } class Lab from Dog{ #~ ... ~# } class Collie from Dog{ #~ ... ~# } class Cat from Animal{ #~ ... ~# }`

## Objective-C

`@interface Animal : NSObject{  // ... }// ...@end @interface Dog : Animal{  // ... }// ...@end @interface Lab : Dog{  // ... }// ...@end @interface Collie : Dog{  // ... }// ...@end @interface Cat : Animal{  // ... }// ...@end`

## OCaml

`class animal =  object (self)    (*functions go here...*)  end`
`class dog =  object (self)    inherit animal    (*functions go here...*)  end`
`class cat =  object (self)    inherit animal    (*functions go here...*)  end`
`class lab =  object (self)    inherit dog    (*functions go here...*)  end`
`class collie =  object (self)    inherit dog    (*functions go here...*)  end`

## Oforth

`Object Class new: AnimalAnimal Class new: CatAnimal Class new: DogDog Class new: LabDog Class new: Collie`

## ooRexx

` -- subclass of object by default::class animal ::class cat subclass animal ::class dog subclass animal ::class lab subclass dog ::class collie subclass dog `

## OxygenBasic

` class animal  method show() as string  return "Animal "  end methodend Class class dog  from Animal Animal  method show() as string  return animal.show()+"dog "  end methodend Class class cat  from animal animal  method show() as string  return animal.show()+"cat "  end methodend Class class Lab  from dog dog  method show() as string  return dog.show()+"Lab "  end methodend Class class Collie  from dog dog  method show() as string  return dog.show()+"Collie "  end methodend Class  Collie cprint c.show 'result: Animal Dog Collie `

## Oz

`class Animal   %% ...end class Dog from Animal   %% ... end class Lab from Dog   %% ... end class Collie from Dog   %% ... end class Cat from Animal   %% ... end`

See Delphi

## Perl

`package Animal;#functions go here...1;`
`package Dog;use Animal;@ISA = qw( Animal );#functions go here...1;`
`package Cat;use Animal;@ISA = qw( Animal );#functions go here...1;`
`package Lab;use Dog;@ISA = qw( Dog );#functions go here...1;`
`package Collie;use Dog;@ISA = qw( Dog );#functions go here...1;`

The same using the MooseX::Declare module:

`use MooseX::Declare; class Animal {    # methods go here...}class Dog extends Animal {    # methods go here...}class Cat extends Animal {    # methods go here...}class Lab extends Dog {    # methods go here...}class Collie extends Dog {    # methods go here...}`

## Perl 6

Works with: Rakudo version 2015-09-16
`class Animal {}class Dog is Animal {}class Cat is Animal {}class Lab is Dog {}class Collie is Dog {} say Collie.^parents;     # undefined type objectsay Collie.new.^parents; # instantiated object`
Output:
```((Dog) (Animal))
((Dog) (Animal))```

The .^parents notation indicates a method call to the object's metaobject rather than to the object itself.

## PHP

`class Animal {   // functions go here...} class Dog extends Animal {   // functions go here...} class Cat extends Animal {   // functions go here...} class Lab extends Dog {   // functions go here...} class Collie extends Dog {   // functions go here...}`

## PicoLisp

`(class +Animal) (class +Dog +Animal) (class +Cat +Animal) (class +Lab +Dog) (class +Collie +Dog)`
`: (dep '+Animal)+Animal   +Cat   +Dog      +Collie      +Lab`

## PowerShell

Works with: PowerShell version 5
` class Animal {}class Dog : Animal {}class Cat: Animal {}class Lab : Dog {}class Collie : Dog {} `

## PureBasic

Although PureBasic is mostly used for procedural coding it has both the ability to interact with object oriented libraries and code and also the capacity to write it if needed.

### Native version

`Interface Animal  Eat()  Sleep()EndInterface Interface Cat Extends Animal  ChaseMouse()EndInterface Interface Dog Extends Animal  Bark()  WagTail()EndInterface Interface Lab Extends Dog  Swim()EndInterface Interface Collie Extends Dog    HeardSheep()EndInterface`

### Simple OOP Version

Using the open-source precompiler SimpleOOP.

`Class AnimalEndClass Class Dog Extends Animal  Public Method Bark()  EndMethodEndClass Class Cat Extends Animal  Public Method Sleep()  EndMethodEndClass Class Lab Extends Dog  Public Method Swim()  EndMethodEndClass Class Collie Extends Dog  Public Method Fetch()  EndMethodEndClass ;- test the code*Lassie.Collie = NewObject.Collie*Lassie\Bark()*Lassie\Fetch()`

## Python

Unrevised style classes:

`class Animal:  pass #functions go here... class Dog(Animal):  pass #functions go here... class Cat(Animal):  pass #functions go here... class Lab(Dog):  pass #functions go here... class Collie(Dog):  pass #functions go here...`

New style classes:

`import time class Animal(object):    def __init__(self, birth=None, alive=True):        self.birth = birth if birth else time.time()        self.alive = alive    def age(self):        return time.time() - self.birth    def kill(self):        self.alive = False class Dog(Animal):    def __init__(self, bones_collected=0, **kwargs):        self.bone_collected = bones_collected        super(Dog, self).__init__(**kwargs) class Cat(Animal):    max_lives = 9    def __init__(self, lives=max_lives, **kwargs):        self.lives = lives        super(Cat, self).__init__(**kwargs)    def kill(self):        if self.lives>0:            self.lives -= 1            if self.lives == 0:                super(Cat, self).kill()        else:            raise ValueError        return self class Labrador(Dog):    def __init__(self, guide_dog=False, **kwargs):        self.guide_dog=False        super(Labrador, self).__init__(**kwargs) class Collie(Dog):    def __init__(self, sheep_dog=False, **kwargs):        self.sheep_dog=False        super(Collie, self).__init__(**kwargs) lassie = Collie()felix = Cat()felix.kill().kill().kill()mr_winkle = Dog()buddy = Labrador()buddy.kill()print "Felix has",felix.lives, "lives, ","Buddy is %salive!"%("" if buddy.alive else "not ")`
Output:
```Felix has 6 lives,  Buddy is not alive!
```

## R

### S3

Inheritance is implemented by setting the object's class attribute with a character vector.

`aCollie <- "woof"class(aCollie) <- c("Collie", "Dog", "Animal")`

### S4

Inheritance is implemented by using the 'contains' argument in setClass

`setClass("Animal", representation(), prototype())setClass("Dog", representation(), prototype(), contains="Animal")setClass("Cat", representation(), prototype(), contains="Animal")setClass("Collie", representation(), prototype(), contains="Dog")setClass("Lab", representation(), prototype(), contains="Dog")`

## Racket

` #lang racket (define animal% (class object% (super-new)))(define dog%    (class animal% (super-new)))(define cat%    (class animal% (super-new)))(define lab%    (class dog% (super-new)))(define collie% (class dog% (super-new))) ;; unit tests(require rackunit) (check-true (is-a? (new dog%) animal%))(check-false (is-a? (new collie%) cat%)) `

## REBOL

`rebol [	Title: "Inheritance"	URL: http://rosettacode.org/wiki/Inheritance] ; REBOL provides subclassing through its prototype mechanism: Animal: make object! [	legs: 4] Dog: make Animal [	says: "Woof!"]Cat: make Animal [	says: "Meow..."] Lab: make Dog []Collie: make Dog [] ; Demonstrate inherited properties: print ["Cat has" Cat/legs "legs."] print ["Lab says:" Lab/says]`
Output:
```Cat has 4 legs.
Lab says: Woof!```

## Ring

` Class AnimalClass Dog from AnimalClass Cat from AnimalClass Lab from DogClass Collie from Dog `

## Ruby

`inherited` is a method defined on an instance of a `Class` object. It is invoked when a new subclass of the current class is defined (i.e. at the `end` statement of a `class` definition).

`class Animal  #functions go here...  def self.inherited(subclass)    puts "new subclass of #{self}: #{subclass}"  endend class Dog < Animal  #functions go here...end class Cat < Animal  #functions go here...end class Lab < Dog  #functions go here...end class Collie < Dog  #functions go here...end`
Output:
```new subclass of Animal: Dog
new subclass of Dog: Lab
new subclass of Dog: Collie
new subclass of Animal: Cat```

## Rust

A type can't inherit properties from other types, but it can implmement any number of traits, which may themselves be subtraits of other traits.

`trait Animal {}trait Cat: Animal {}trait Dog: Animal {}trait Lab: Dog {}trait Collie: Dog {}`

## Scala

Scala has both classes and traits. Classes can only be singly inherited, but both can inherit a trait multiple times. This inheritance can be declared at the point of instantiation as well, precluding the need to declare a trait or class for the sole purpose of combining traits. For the simple inheritance chain of this task, any (or all) of the `class` keywords below can be replaced with `trait`

`class Animalclass Dog extends Animalclass Cat extends Animalclass Lab extends Dogclass Collie extends Dog`

## Seed7

Seed7 object orientation is based on interface types and implementation types. The example below defines a hierarchy of implementation types.

`\$ include "seed7_05.s7i"; const type: Animal is new struct    # ...   end struct; const type: Dog is sub Animal struct    # ...   end struct; const type: Lab is sub Dog struct    # ...  end struct; const type: Collie is sub Dog struct    # ...  end struct; const type: Cat is sub Animal struct    # ...  end struct;`

## Self

Self is a class-free, object-oriented language, and as such, it uses prototypal inheritance instead of classical inheritance. This is an example of the relevant excerpts from a Self transporter fileout. Normally the object tree would be built and navigated within the graphical Self environment.

`animal = ()`
`dog = (| parent* = animal |)`
`cat = (| parent* = animal |)`
`lab = (| parent* = dog |)`
`collie = (| parent* = dog |)`

## Sidef

`class Animal {};class Dog << Animal {};class Cat << Animal {};class Lab << Dog {};class Collie << Dog {};`

## Simula

`begin     class Animal;        ! instance variables;    begin        ! methods;    end;     Animal class Dog;    begin    end;     Animal class Cat;    begin    end;     Dog class Lab;    begin    end;     Dog class Collie;    begin    end; end`

## Slate

`define: #Animal &parents: {Cloneable}.define: #Dog &parents: {Animal}.define: #Cat &parents: {Animal}.define: #Lab &parents: {Dog}.define: #Collie &parents: {Dog}.`

## Smalltalk

This is an example of the object serialization format used by many varieties of Smalltalk. Normally the class tree would be defined and navigated via a class browser within a graphical Smalltalk environment.

`Object subclass: #Animal  instanceVariableNames: ' ' "* space separated list of names *"  classVariableNames: ' '  poolDictionaries: ' '  category: ' ' ! "* declare methods here, separated with '!' *""* !Animal methodsFor: 'a category'! *""* methodName *""*    method body! !" !Animal subclass: #Dog   "* etc. *" ! !Animal subclass: #Cat  "* etc. *" ! !Dog subclass: #Lab  "* etc. *" ! !Dog subclass: #Collie  "* etc. *" !`

## Swift

`class Animal {  // ... } class Dog : Animal {  // ... } class Lab : Dog {  // ... } class Collie : Dog {  // ... } class Cat : Animal {  // ... }`

## Tcl

Works with: Tcl version 8.6
or
Library: TclOO
`package require TclOOoo::class create Animal {   # ...}oo::class create Dog {   superclass Animal   # ...}oo::class create Cat {   superclass Animal   # ...}oo::class create Collie {   superclass Dog   # ...}oo::class create Lab {   superclass Dog   # ...}`

## TXR

#### Inheritance among symbolic exception tags

`@(defex cat animal)@(defex lab dog animal)@(defex collie dog)`

The second line is a shorthand which defines a lab to be a kind of dog, and at the same time a dog to be a kind of animal.

If we throw an exception of type `lab`, it can be caught in a catch for a `dog` or for an `animal`. Continuing with the query:

`@(try)@  (throw lab "x")@(catch animal (arg))@(end)`
Output:
Test:
```\$ txr dog-cat.txr
arg="x"```

#### OOP Inheritance in TXR Lisp

`(defstruct animal nil  name  (:method get-name (me)    (if me.name me.name (error `get-name: animal @me has no name`)))  (:method speak (me stream)    (error "abstract animal cannot speak"))) (defstruct dog animal  (:method speak (me : (stream *stdout*))    (put-line `@{me.(get-name)}: bark!` stream))) (defstruct cat animal  (:method speak (me : (stream *stdout*))    (put-line `@{me.(get-name)}: meow!` stream))) (defstruct lab dog) (defstruct collie dog) (let ((pet1 (new collie name "Lassie"))      (pet2 (new cat name "Max")))  pet1.(speak)  pet2.(speak))`
Output:
```Lassie: bark!
Max: meow!```

## Visual Basic .NET

`Class Animal  ' ...End Class Class Dog  Inherits Animal  ' ...End Class Class Lab  Inherits Dog  ' ...End Class Class Collie  Inherits Dog  ' ...End Class Class Cat  Inherits Animal  ' ...End Class`

## Vorpal

`pet = new()cat = new(pet)dog = new(pet)fido = new(dog)felix = new(cat)`

## XLISP

`(define-class animal) (define-class dog    (super-class animal)) (define-class cat    (super-class animal)) (define-class collie    (super-class dog)) (define-class lab    (super-class dog))`

A REPL session:

`[1] (cat 'superclass) #<Class:ANIMAL #x57094c8>[2] (collie 'superclass) #<Class:DOG #x57094c8>[3] (animal 'superclass) #<Class:OBJECT #x57094c8>[4] (dog 'show) Object is #<Class:DOG #x57094c8>, Class is #<Class:CLASS #x57094c8>Instance variables:  NAME = DOG  MESSAGES = ()  IVARS = ()  CVARS = #<Environment #x5879788>  SUPERCLASS = #<Class:ANIMAL #x57094c8>  IVARCNT = 0  IVARTOTAL = 0#<Class:DOG #x57094c8>`

## zkl

`class Animal{}class Dog(Animal){} class Cat(Animal){}class Lab(Dog){} class Collie(Dog){}Collie.linearizeParents`
Output:
```L(Class(Collie),Class(Dog),Class(Animal))
```