Flatten a list: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 2,243: Line 2,243:


=={{header|Joy}}==
=={{header|Joy}}==
<lang Joy>
<syntaxhighlight lang=Joy>
"seqlib" libload.
"seqlib" libload.


Line 2,249: Line 2,249:


(* output: [1 2 3 4 5 6 7 8] *)
(* output: [1 2 3 4 5 6 7 8] *)
</syntaxhighlight>
</lang>


=={{header|jq}}==
=={{header|jq}}==

Revision as of 10:09, 27 August 2022

Task
Flatten a list
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Write a function to flatten the nesting in an arbitrary list of values.

Your program should work on the equivalent of this list:

  [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]

Where the correct result would be the list:

   [1, 2, 3, 4, 5, 6, 7, 8]
Related task



8th

<lang forth> \ take a list (array) and flatten it:

(flatten) \ a -- a

( \ is it a number? dup >kind ns:n n:= if \ yes. so add to the list r> swap a:push >r else \ it is not, so flatten it (flatten) then drop ) a:each drop ;

flatten \ a -- a

[] >r (flatten) r> ;

[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] dup . cr flatten . cr bye </lang>

Output:

[[1],2,[[3,4],5],[[[]]],[[[6]]],7,8,[]]
[1,2,3,4,5,6,7,8]

ACL2

<lang Lisp>(defun flatten (tr)

  (cond ((null tr) nil)
        ((atom tr) (list tr))
        (t (append (flatten (first tr))
                   (flatten (rest tr))))))</lang>

ActionScript

<lang ActionScript>function flatten(input:Array):Array { var output:Array = new Array(); for (var i:uint = 0; i < input.length; i++) {

               //typeof returns "object" when applied to arrays. This line recursively evaluates nested arrays,
               // although it may break if the array contains objects that are not arrays.

if (typeof input[i]=="object") { output=output.concat(flatten(input[i])); } else { output.push(input[i]); } } return output; } </lang>

Ada

nestable_lists.ads: <lang Ada>generic

  type Element_Type is private;
  with function To_String (E : Element_Type) return String is <>;

package Nestable_Lists is

  type Node_Kind is (Data_Node, List_Node);
  
  type Node (Kind : Node_Kind);
  
  type List is access Node;
  
  type Node (Kind : Node_Kind) is record
     Next : List;
     case Kind is
        when Data_Node =>
           Data    : Element_Type;
        when List_Node =>
           Sublist : List;
     end case;
  end record;
  
  procedure Append (L : in out List; E : Element_Type);
  procedure Append (L : in out List; N : List);
  
  function Flatten (L : List) return List;
  function New_List (E : Element_Type) return List;
  function New_List (N : List) return List;
  
  function To_String (L : List) return String;
  

end Nestable_Lists;</lang> nestable_lists.adb: <lang Ada>with Ada.Strings.Unbounded;

package body Nestable_Lists is

  procedure Append (L : in out List; E : Element_Type) is
  begin
     if L = null then
        L := new Node (Kind => Data_Node);
        L.Data := E;
     else
        Append (L.Next, E);
     end if;
  end Append;
  procedure Append (L : in out List; N : List) is
  begin
     if L = null then
        L := new Node (Kind => List_Node);
        L.Sublist := N;
     else
        Append (L.Next, N);
     end if;
  end Append;
  function Flatten (L : List) return List is
     Result  : List;
     Current : List := L;
     Temp    : List;
  begin
     while Current /= null loop
        case Current.Kind is
           when Data_Node =>
              Append (Result, Current.Data);
           when List_Node =>
              Temp := Flatten (Current.Sublist);
              while Temp /= null loop
                 Append (Result, Temp.Data);
                 Temp := Temp.Next;
              end loop;
        end case;
        Current := Current.Next;
     end loop;
     return Result;
  end Flatten;
  
  function New_List (E : Element_Type) return List is
  begin
     return  new Node'(Kind => Data_Node, Data => E, Next => null);
  end New_List;
  function New_List (N : List) return List is
  begin
     return new Node'(Kind => List_Node, Sublist => N, Next => null);
  end New_List;
  function To_String (L : List) return String is
     Current : List := L;
     Result  : Ada.Strings.Unbounded.Unbounded_String;
  begin
     Ada.Strings.Unbounded.Append (Result, "[");
     while Current /= null loop
        case Current.Kind is
           when Data_Node =>
              Ada.Strings.Unbounded.Append
                (Result, To_String (Current.Data));
           when List_Node =>
              Ada.Strings.Unbounded.Append
                (Result, To_String (Current.Sublist));
        end case;
        if Current.Next /= null then
           Ada.Strings.Unbounded.Append (Result, ", ");
        end if;
        Current := Current.Next;
     end loop;
     Ada.Strings.Unbounded.Append (Result, "]");
     return Ada.Strings.Unbounded.To_String (Result);
  end To_String;

end Nestable_Lists;</lang> example usage: <lang Ada>with Ada.Text_IO; with Nestable_Lists;

procedure Flatten_A_List is

  package Int_List is new Nestable_Lists
    (Element_Type => Integer,
     To_String    => Integer'Image);
  List : Int_List.List := null;

begin

  Int_List.Append (List, Int_List.New_List (1));
  Int_List.Append (List, 2);
  Int_List.Append (List, Int_List.New_List (Int_List.New_List (3)));
  Int_List.Append (List.Next.Next.Sublist.Sublist, 4);
  Int_List.Append (List.Next.Next.Sublist, 5);
  Int_List.Append (List, Int_List.New_List (Int_List.New_List (null)));
  Int_List.Append (List, Int_List.New_List (Int_List.New_List
                   (Int_List.New_List (6))));
  Int_List.Append (List, 7);
  Int_List.Append (List, 8);
  Int_List.Append (List, null);
  
  declare
     Flattened : constant Int_List.List := Int_List.Flatten (List);
  begin
     Ada.Text_IO.Put_Line (Int_List.To_String (List));
     Ada.Text_IO.Put_Line (Int_List.To_String (Flattened));
  end;

end Flatten_A_List;</lang> Output:

[[ 1],  2, [[ 3,  4],  5], [[[]]], [[[ 6]]],  7,  8, []]
[ 1,  2,  3,  4,  5,  6,  7,  8]

Aikido

<lang aikido> function flatten (list, result) {

   foreach item list {
       if (typeof(item) == "vector") {
           flatten (item, result)
       } else {
           result.append (item)
       }
   }

}

var l = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] var newl = [] flatten (l, newl)

// print out the nicely formatted result list print ('[') var comma = "" foreach item newl {

   print (comma + item)
   comma = ", "

} println("]")

</lang>

Output:
 [1, 2, 3, 4, 5, 6, 7, 8]

Aime

<lang aime>void show_list(list l) {

   integer i, k;
   o_text("[");
   i = 0;
   while (i < ~l) {
       o_text(i ? ", " : "");
       if (l_j_integer(k, l, i)) {
           o_integer(k);
       } else {
           show_list(l[i]);
       }
       i += 1;
   }
   o_text("]");

}

list flatten(list c, object o) {

   if (__id(o) == INTEGER_ID) {
       c.append(o);
   } else {
       l_ucall(o, flatten, 1, c);
   }
   c;

}

integer main(void) {

   list l;
   l = list(list(1), 2, list(list(3, 4), 5),
            list(list(list())), list(list(list(6))), 7, 8, list());
   show_list(l);
   o_byte('\n');
   show_list(flatten(list(), l));
   o_byte('\n');
   return 0;

}</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d

Flattening is built in to all of Algol68's transput routines. The following example also uses widening, where scalars are converted into arrays.

<lang algol68>main:(

 [][][]INT list = ((1), 2, ((3,4), 5), ((())), (((6))), 7, 8, ());
 print((list, new line))

)</lang>

Output:
         +1         +2         +3         +4         +5         +6         +7         +8


APL

Dyalog APL

Flatten is a primitive in APL, named enlist <lang apl>∊</lang>

Output:
      ∊((1) 2 ((3 4) 5) (((⍬))) (((6))) 7 8 (⍬))
1 2 3 4 5 6 7 8


AppleScript

<lang applescript>my_flatten({{1}, 2, {{3, 4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}})

on my_flatten(aList)

   if class of aList is not list then
       return {aList}
   else if length of aList is 0 then
       return aList
   else
       return my_flatten(first item of aList) & (my_flatten(rest of aList))
   end if

end my_flatten </lang>


Or, to make more productive use of the language (where "efficiency" is a function of the scripter's time, rather than the machine's) we can express this in terms of a generic concatMap:

Translation of: JavaScript

<lang AppleScript>-- flatten :: Tree a -> [a] on flatten(t)

   if class of t is list then
       concatMap(flatten, t)
   else
       t
   end if

end flatten


TEST ---------------------------

on run

   flatten([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []])
   
   --> {1, 2, 3, 4, 5, 6, 7, 8}

end run



GENERIC FUNCTIONS ---------------------

-- concatMap :: (a -> [b]) -> [a] -> [b] on concatMap(f, xs)

   set lst to {}
   set lng to length of xs
   tell mReturn(f)
       repeat with i from 1 to lng
           set lst to (lst & |λ|(item i of xs, i, xs))
       end repeat
   end tell
   return lst

end concatMap

-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)

   if class of f is script then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn</lang>

Output:

<lang AppleScript>{1, 2, 3, 4, 5, 6, 7, 8}</lang>


It can be more efficient to build just one list by appending items to it than to proliferate lists using concatenation:

<lang applescript>on flatten(theList)

   script o
       property flatList : {}
       
       -- Recursive handler dealing with the current (sub)list.
       on flttn(thisList)
           script p
               property l : thisList
           end script
           
           repeat with i from 1 to (count thisList)
               set thisItem to item i of p's l
               if (thisItem's class is list) then
                   flttn(thisItem)
               else
                   set end of my flatList to thisItem
               end if
           end repeat
       end flttn
   end script
   
   if (theList's class is not list) then return theList
   o's flttn(theList)
   return o's flatList

end flatten</lang>

Arturo

<lang rebol>print flatten [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]</lang>

Output:
1 2 3 4 5 6 7 8

AutoHotkey

Works with: AutoHotkey_L

AutoHotkey doesn't have built in list data type. This examples simulates a list in a tree type object and flattens that tree. <lang AutoHotkey>list := object(1, object(1, 1), 2, 2, 3, object(1, object(1, 3, 2, 4) , 2, 5), 4, object(1, object(1, object(1, object()))), 5 , object(1, object(1, 6)), 6, 7, 7, 8, 9, object()) msgbox % objPrint(list) ; (( 1 ) 2 (( 3 4 ) 5 )(((())))(( 6 )) 7 8 ()) msgbox % objPrint(objFlatten(list)) ; ( 1 2 3 4 5 6 7 8 ) return

!r::reload !q::exitapp

objPrint(ast, reserved=0) {

 if !isobject(ast)
   return " " ast " "
 
 if !reserved
   reserved := object("seen" . &ast, 1)  ; to keep track of unique objects within top object
 
 enum := ast._newenum()
 while enum[key, value]
 {
   if reserved["seen" . &value]
     continue  ; don't copy repeat objects (circular references)
string .= key . "
" . objPrint(value, reserved)
   string .= objPrint(value, reserved)
 }
 return "(" string ")"

}


objFlatten(ast) {

 if !isobject(ast)
   return ast
 
 flat := object() ; flat object
 
 enum := ast._newenum()
 while enum[key, value]
 {
   if !isobject(value)
     flat._Insert(value)
   else
   {
     next := objFlatten(value)
     loop % next._MaxIndex()
     flat._Insert(next[A_Index])
     
   }
 }
 return flat

}</lang>

BaCon

BaCon has the concept of delimited strings, which may contain delimited strings within delimited strings etc. Such nested delimited strings must be surrounded by (escaped) double quotes in order to avoid their delimiter messing up operations on higher level delimited strings. However, from functional point of view, a delimited string is the same as a regular list. The special function FLATTEN$ can actually flatten out lists within lists. The last SORT$ in the program below makes sure no empty items remain in the list. <lang qbasic>OPTION COLLAPSE TRUE

lst$ = "\"1\",2,\"\\\"3,4\\\",5\",\"\\\"\\\\\"\\\\\"\\\"\",\"\\\"\\\\\"6\\\\\"\\\"\",7,8,\"\""

PRINT lst$

REPEAT

   lst$ = FLATTEN$(lst$)

UNTIL AMOUNT(lst$, ",") = AMOUNT(FLATTEN$(lst$), ",")

PRINT SORT$(lst$, ",")</lang>

Output:
"1",2,"\"3,4\",5","\"\\"\\"\"","\"\\"6\\"\"",7,8,""
1,2,3,4,5,6,7,8


BASIC256

Translation of: FreeBASIC

<lang BASIC256>sComma = "": sFlatter = "" sString = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]"

For siCount = 1 To Length(sString) If Instr("[] ,", Mid(sString, siCount, 1)) = 0 Then sFlatter = sFlatter & sComma & Mid(sString, siCount, 1) sComma = ", " End If Next siCount

Print "["; sFlatter; "]" End</lang>

Output:
Igual que la entrada de FreeBASIC.


BQN

<lang bqn>Enlist ← {(∾𝕊¨)⍟(1<≡)⥊𝕩}</lang>

Output:
   Enlist ⟨⟨1⟩, 2, ⟨⟨3, 4⟩, 5⟩, ⟨⟨⟨⟩⟩⟩, ⟨⟨⟨6⟩⟩⟩, 7, 8, ⟨⟩⟩
⟨ 1 2 3 4 5 6 7 8 ⟩

Bracmat

A list is automatically flattened during evaluation if the items are separated by either commas, plusses, asterisks or white spaces.

On top of that, lists separated with white space, plusses or asterisks have 'nil'-elements removed when evaluated. (nil-elements are empty strings, 0 and 1 respectively.)

On top of that, lists separated with plusses or asterisks have their elements sorted and, if possible, combined when evaluated.

A list that should not be flattened upon evaluation can be separated with dots.

<lang bracmat> ( (myList = ((1), 2, ((3,4), 5), ((())), (((6))), 7, 8, ())) & put$("Unevaluated:") & lst$myList & !myList:?myList { the expression !myList evaluates myList } & put$("Flattened:") & lst$myList ) </lang>

Brat

<lang brat>array.prototype.flatten = {

 true? my.empty?
   { [] }
   { true? my.first.array?
     { my.first.flatten + my.rest.flatten }
     { [my.first] + my.rest.flatten }
   }

}

list = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] p "List: #{list}" p "Flattened: #{list.flatten}"</lang>

Burlesque

Usually flattening Blocks is done with the Concat command but it only removes one level of nesting therefore it is required to chain Concat calls until the Block does not contain Blocks anymore.

<lang burlesque> blsq ) {{1} 2 {{3 4} 5} {{{}}} {{{6}}} 7 8 {}}{\[}{)to{"Block"==}ay}w! {1 2 3 4 5 6 7 8} </lang>

C

<lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>

typedef struct list_t list_t, *list; struct list_t{ int is_list, ival; /* ival is either the integer value or list length */ list *lst; };

list new_list() { list x = malloc(sizeof(list_t)); x->ival = 0; x->is_list = 1; x->lst = 0; return x; }

void append(list parent, list child) { parent->lst = realloc(parent->lst, sizeof(list) * (parent->ival + 1)); parent->lst[parent->ival++] = child; }

list from_string(char *s, char **e, list parent) { list ret = 0; if (!parent) parent = new_list();

while (*s != '\0') { if (*s == ']') { if (e) *e = s + 1; return parent; } if (*s == '[') { ret = new_list(); ret->is_list = 1; ret->ival = 0; append(parent, ret); from_string(s + 1, &s, ret); continue; } if (*s >= '0' && *s <= '9') { ret = new_list(); ret->is_list = 0; ret->ival = strtol(s, &s, 10); append(parent, ret); continue; } s++; }

if (e) *e = s; return parent; }

void show_list(list l) { int i; if (!l) return; if (!l->is_list) { printf("%d", l->ival); return; }

printf("["); for (i = 0; i < l->ival; i++) { show_list(l->lst[i]); if (i < l->ival - 1) printf(", "); } printf("]"); }

list flatten(list from, list to) { int i; list t;

if (!to) to = new_list(); if (!from->is_list) { t = new_list(); *t = *from; append(to, t); } else for (i = 0; i < from->ival; i++) flatten(from->lst[i], to); return to; }

void delete_list(list l) { int i; if (!l) return; if (l->is_list && l->ival) { for (i = 0; i < l->ival; i++) delete_list(l->lst[i]); free(l->lst); }

free(l); }

int main() { list l = from_string("[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []", 0, 0);

printf("Nested: "); show_list(l); printf("\n");

list flat = flatten(l, 0); printf("Flattened: "); show_list(flat);

/* delete_list(l); delete_list(flat); */ return 0; }</lang>

Output:
Nested: [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
Flattened: [1, 2, 3, 4, 5, 6, 7, 8]

C#

Works with: C# version 3+

Actual Workhorse code <lang csharp> using System; using System.Collections; using System.Linq;

namespace RosettaCodeTasks { static class FlattenList { public static ArrayList Flatten(this ArrayList List) { ArrayList NewList = new ArrayList ( );

NewList.AddRange ( List );

while ( NewList.OfType<ArrayList> ( ).Count ( ) > 0 ) { int index = NewList.IndexOf ( NewList.OfType<ArrayList> ( ).ElementAt ( 0 ) ); ArrayList Temp = (ArrayList)NewList[index]; NewList.RemoveAt ( index ); NewList.InsertRange ( index, Temp ); }

return NewList; } } } </lang>

Method showing population of arraylist and usage of flatten method <lang csharp> using System; using System.Collections;

namespace RosettaCodeTasks { class Program { static void Main ( string[ ] args ) {

ArrayList Parent = new ArrayList ( ); Parent.Add ( new ArrayList ( ) ); ((ArrayList)Parent[0]).Add ( 1 ); Parent.Add ( 2 ); Parent.Add ( new ArrayList ( ) ); ( (ArrayList)Parent[2] ).Add ( new ArrayList ( ) ); ( (ArrayList)( (ArrayList)Parent[2] )[0] ).Add ( 3 ); ( (ArrayList)( (ArrayList)Parent[2] )[0] ).Add ( 4 ); ( (ArrayList)Parent[2] ).Add ( 5 ); Parent.Add ( new ArrayList ( ) ); ( (ArrayList)Parent[3] ).Add ( new ArrayList ( ) ); ( (ArrayList)( (ArrayList)Parent[3] )[0] ).Add ( new ArrayList ( ) ); Parent.Add ( new ArrayList ( ) ); ( (ArrayList)Parent[4] ).Add ( new ArrayList ( ) ); ( (ArrayList)( (ArrayList)Parent[4] )[0] ).Add ( new ArrayList ( ) );

( (ArrayList)( (ArrayList)( (ArrayList)( (ArrayList)Parent[4] )[0] )[0] ) ).Add ( 6 ); Parent.Add ( 7 ); Parent.Add ( 8 ); Parent.Add ( new ArrayList ( ) );


foreach ( Object o in Parent.Flatten ( ) ) { Console.WriteLine ( o.ToString ( ) ); } }

} }

</lang>

Works with: C# version 4+

<lang csharp> public static class Ex { public static List<object> Flatten(this List<object> list) {

var result = new List<object>(); foreach (var item in list) { if (item is List<object>) { result.AddRange(Flatten(item as List<object>)); } else { result.Add(item); } } return result; } public static string Join<T>(this List<T> list, string glue) { return string.Join(glue, list.Select(i => i.ToString()).ToArray()); } }

class Program {

static void Main(string[] args) { var list = new List<object>{new List<object>{1}, 2, new List<object>{new List<object>{3,4}, 5}, new List<object>{new List<object>{new List<object>{}}}, new List<object>{new List<object>{new List<object>{6}}}, 7, 8, new List<object>{}};

Console.WriteLine("[" + list.Flatten().Join(", ") + "]"); Console.ReadLine(); } } </lang>

C++

<lang cpp>#include <list>

  1. include <boost/any.hpp>

typedef std::list<boost::any> anylist;

void flatten(std::list<boost::any>& list) {

 typedef anylist::iterator iterator;
 iterator current = list.begin();
 while (current != list.end())
 {
   if (current->type() == typeid(anylist))
   {
     iterator next = current;
     ++next;
     list.splice(next, boost::any_cast<anylist&>(*current));
     current = list.erase(current);
   }
   else
     ++current;
 }

}</lang>

Use example:

Since C++ currently doesn't have nice syntax for initializing lists, this includes a simple parser to create lists of integers and sublists. Also, there's no standard way to output this type of list, so some output code is added as well. <lang cpp>#include <cctype>

  1. include <iostream>

// ******************* // * the list parser * // *******************

void skipwhite(char const** s) {

 while (**s && std::isspace((unsigned char)**s))
 {
   ++*s;
 }

}

anylist create_anylist_i(char const** s) {

 anylist result;
 skipwhite(s);
 if (**s != '[')
   throw "Not a list";
 ++*s;
 while (true)
 {
   skipwhite(s);
   if (!**s)
     throw "Error";
   else if (**s == ']')
   {
     ++*s;
     return result;
   }
   else if (**s == '[')
     result.push_back(create_anylist_i(s));
   else if (std::isdigit((unsigned char)**s))
   {
     int i = 0;
     while (std::isdigit((unsigned char)**s))
     {
       i = 10*i + (**s - '0');
       ++*s;
     }
     result.push_back(i);
   }
   else
     throw "Error";
   skipwhite(s);
   if (**s != ',' && **s != ']')
     throw "Error";
   if (**s == ',')
     ++*s;
 }

}

anylist create_anylist(char const* i) {

 return create_anylist_i(&i);

}

// ************************* // * printing nested lists * // *************************

void print_list(anylist const& list);

void print_item(boost::any const& a) {

 if (a.type() == typeid(int))
   std::cout << boost::any_cast<int>(a);
 else if (a.type() == typeid(anylist))
   print_list(boost::any_cast<anylist const&>(a));
 else
   std::cout << "???";

}

void print_list(anylist const& list) {

 std::cout << '[';
 anylist::const_iterator iter = list.begin();
 while (iter != list.end())
 {
   print_item(*iter);
   ++iter;
   if (iter != list.end())
     std::cout << ", ";
 }
 std::cout << ']';

}

// *************************** // * The actual test program * // ***************************

int main() {

 anylist list =
   create_anylist("[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]");
 print_list(list);
 std::cout << "\n";
 flatten(list);
 print_list(list);
 std::cout << "\n";

}</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

Ceylon

<lang Ceylon>shared void run() {

   "Lazily flatten nested streams"
   {Anything*} flatten({Anything*} stream)
       =>  stream.flatMap((element)
           =>  switch (element)
               case (is {Anything*}) flatten(element)
               else [element]);
   value list = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []];
   
   print(list);
   print(flatten(list).sequence());

}</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

Clojure

The following returns a lazy sequence of the flattened data structure. <lang lisp>(defn flatten [coll]

 (lazy-seq
   (when-let [s  (seq coll)]
     (if (coll? (first s))
       (concat (flatten (first s)) (flatten (rest s)))
       (cons (first s) (flatten (rest s)))))))</lang>

The built-in flatten is implemented as:

<lang lisp>(defn flatten [x]

 (filter (complement sequential?)
         (rest (tree-seq sequential? seq x))))</lang>

CoffeeScript

<lang coffeescript> flatten = (arr) ->

 arr.reduce ((xs, el) ->
   if Array.isArray el
     xs.concat flatten el
   else
     xs.concat [el]), []
  1. test

list = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] console.log flatten list </lang>

Ouput: <lang> > coffee foo.coffee [ 1, 2, 3, 4, 5, 6, 7, 8 ] </lang>

Common Lisp

<lang lisp>(defun flatten (structure)

 (cond ((null structure) nil)
       ((atom structure) (list structure))
       (t (mapcan #'flatten structure))))</lang>

or, from Paul Graham's OnLisp, <lang lisp> (defun flatten (ls)

 (labels ((mklist (x) (if (listp x) x (list x))))
   (mapcan #'(lambda (x) (if (atom x) (mklist x) (flatten x))) ls)))

</lang>

Note that since, in Common Lisp, the empty list, boolean false and nil are the same thing, a tree of nil values cannot be flattened; they will disappear.

A third version that is recursive, imperative, and reasonably fast. <lang lisp>(defun flatten (obj)

 (let (result)
   (labels ((grep (obj)
              (cond ((null obj) nil)
                    ((atom obj) (push obj result))
                    (t (grep (rest obj))
                       (grep (first obj))))))
     (grep obj)
     result)))</lang>

The following version is tail recursive and functional. <lang lisp>(defun flatten (x &optional stack out)

 (cond ((consp x) (flatten (rest x) (cons (first x) stack) out))
       (x         (flatten (first stack) (rest stack) (cons x out)))
       (stack     (flatten (first stack) (rest stack) out))
       (t out)))</lang>

The next version is imperative, iterative and does not make use of a stack. It is faster than the versions given above. <lang lisp>(defun flatten (obj)

 (do* ((result (list obj))
       (node result))
      ((null node) (delete nil result))
   (cond ((consp (car node))
          (when (cdar node) (push (cdar node) (cdr node)))
          (setf (car node) (caar node)))
         (t (setf node (cdr node))))))</lang>

The above implementations of flatten give the same output on nested proper lists.

Output:
CL-USER> (flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ()))
(1 2 3 4 5 6 7 8)

It should be noted that there are several choices that can be made when implementing flatten in Common Lisp:

-- should it work on dotted pairs?

-- should it work with non-nil atoms, presumably returning the atom or a copy of the atom?

-- when it comes to nil, should it be considered as an empty list and removed, or should it be considered as an atom and preserved?

So there are in fact several slightly different functions that correspond to flatten in common lisp. They may

-- collect all atoms, including nil,

-- collect all atoms in the car of the cons cells,

-- collect all atoms which are not in the cdr of a cell,

-- collect all non-nil atoms.

Which version is suitable for a given problem depends of course on the nature of the problem.

Crystal

<lang Ruby> [[1], 2, [[3, 4], 5], [[[] of Int32]], [[[6]]], 7, 8, [] of Int32].flatten() </lang> <lang Bash> [1, 2, 3, 4, 5, 6, 7, 8] </lang>

D

Instead of a Java-like class-based version, this version minimizes heap activity using a tagged union. <lang d>import std.stdio, std.algorithm, std.conv, std.range;

struct TreeList(T) {

   union { // A tagged union
       TreeList[] arr; // it's a node
       T data; // It's a leaf.
   }
   bool isArray = true; // = Contains an arr on default.
   static TreeList opCall(A...)(A items) pure nothrow {
       TreeList result;
       foreach (i, el; items)
           static if (is(A[i] == T)) {
               TreeList item;
               item.isArray = false;
               item.data = el;
               result.arr ~= item;
           } else
               result.arr ~= el;
       return result;
   }
   string toString() const pure {
       return isArray ? arr.text : data.text;
   }

}

T[] flatten(T)(in TreeList!T t) pure nothrow {

   if (t.isArray)
       return t.arr.map!flatten.join;
   else
       return [t.data];

}

void main() {

   alias TreeList!int L;
   static assert(L.sizeof == 12);
   auto l = L(L(1), 2, L(L(3,4), 5), L(L(L())), L(L(L(6))),7,8,L());
   l.writeln;
   l.flatten.writeln;

}</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

With an Algebraic Data Type

A shorter and more cryptic version. <lang d>import std.stdio, std.variant, std.range, std.algorithm;

alias T = Algebraic!(int, This[]);

int[] flatten(T t) {

   return t.peek!int ? [t.get!int] : t.get!(T[])().map!flatten.join;

}

void main() {

   T([T([ T(1) ]),
      T(2),
      T([ T([ T(3), T(4) ]), T(5) ]),
      T([ T([ T( T[].init ) ]) ]),
      T([ T([ T([ T(6) ]) ]) ]),
      T(7),
      T(8),
      T( T[].init )
     ]).flatten.writeln;

}</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Déjà Vu

<lang dejavu>(flatten): for i in copy: i if = :list type dup: (flatten)

flatten l: [ (flatten) l ]


!. flatten [ [ 1 ] 2 [ [ 3 4 ] 5 ] [ [ [] ] ] [ [ [ 6 ] ] ] 7 8 [] ]</lang>

Output:
[ 1 2 3 4 5 6 7 8 ]

E

<lang e>def flatten(nested) {

   def flat := [].diverge()
   def recur(x) {
       switch (x) {
           match list :List { for elem in list { recur(elem) } }
           match other      { flat.push(other) }
       }
   }
   recur(nested)
   return flat.snapshot()

}</lang>

<lang e>? flatten([[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []])

  1. value: [1, 2, 3, 4, 5, 6, 7, 8]</lang>

EchoLisp

The built-in (flatten list) is defined as follows: <lang lisp> (define (fflatten l) (cond [(null? l) null] [(not (list? l)) (list l)] [else (append (fflatten (first l)) (fflatten (rest l)))]))

(define L' [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []])

(fflatten L) ;; use custom function

→ (1 2 3 4 5 6 7 8)

(flatten L) ;; use built-in

→ (1 2 3 4 5 6 7 8)
Remarks
null is the same as () - the empty list -

(flatten '(null null null))

  → null

(flatten '[ () () () ])

 → null

(flatten null) ❗ error: flatten : expected list : null

The 'reverse' of flatten is group

(group '( 4 5 5 5 6 6 7 8 7 7 7 9))

   → ((4) (5 5 5) (6 6) (7) (8) (7 7 7) (9))

</lang>

Ela

This implementation can flattern any given list:

<lang Ela>xs = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]

flat = flat' []

      where flat' n [] = n
            flat' n (x::xs) 
              | x is List = flat' (flat' n xs) x
              | else = x :: flat' n xs

flat xs</lang>

Output:
[1,2,3,4,5,6,7,8]

An alternative solution:

<lang Ela>flat [] = [] flat (x::xs)

 | x is List = flat x ++ flat xs
 | else = x :: flat xs</lang>

Elixir

<lang elixir> defmodule RC do

 def flatten([]), do: []
 def flatten([h|t]), do: flatten(h) ++ flatten(t)
 def flatten(h), do: [h] 

end

list = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]

  1. Our own implementation

IO.inspect RC.flatten(list)

  1. Library function

IO.inspect List.flatten(list) </lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]

Elm

<lang haskell> import Graphics.Element exposing (show)

type Tree a

 = Leaf a
 | Node (List (Tree a))

flatten : Tree a -> List a flatten tree =

 case tree of
   Leaf a -> [a]
   Node list -> List.concatMap flatten list

-- [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []] tree : Tree Int tree = Node

 [ Node [Leaf 1]
 , Leaf 2
 , Node [Node [Leaf 3, Leaf 4], Leaf 5]
 , Node [Node [Node []]]
 , Node [Node [Node [Leaf 6]]]
 , Leaf 7
 , Leaf 8
 , Node []
 ]

main =

 show (flatten tree)

</lang>

Emacs Lisp

<lang lisp>(defun flatten (mylist)

 (cond
  ((null mylist) nil)
  ((atom mylist) (list mylist))
  (t
   (append (flatten (car mylist)) (flatten (cdr mylist))))))</lang>

Erlang

There's a standard function (lists:flatten/1) that does it more efficiently, but this is the cleanest implementation you could have; <lang Erlang>flatten([]) -> []; flatten([H|T]) -> flatten(H) ++ flatten(T); flatten(H) -> [H].</lang>

Euphoria

Works with: Euphoria version 4.0.0

<lang Euphoria>sequence a = {{1}, 2, {{3, 4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}}

function flatten( object s ) sequence res = {} if sequence( s ) then for i = 1 to length( s ) do sequence c = flatten( s[ i ] ) if length( c ) > 0 then res &= c end if end for else if length( s ) > 0 then res = { s } end if end if return res end function

? a ? flatten(a)</lang>

Output:
{
  {1},
  2,
  {
    {3,4},
    5
  },
  {
    {{}}
  },
  {
    {
      {6}
    }
  },
  7,
  8,
  {}
}
{1,2,3,4,5,6,7,8}

F#

As with Haskell and OCaml we have to define our list as an algebraic data type, to be strongly typed: <lang fsharp>type 'a ll =

   | I of 'a             // leaf Item
   | L of 'a ll list     // ' <- confine the syntax colouring confusion

let rec flatten = function

   | [] -> []
   | (I x)::y -> x :: (flatten y)
   | (L x)::y -> List.append (flatten x) (flatten y)

printfn "%A" (flatten [L([I(1)]); I(2); L([L([I(3);I(4)]); I(5)]); L([L([L([])])]); L([L([L([I(6)])])]); I(7); I(8); L([])])

// -> [1; 2; 3; 4; 5; 6; 7; 8]</lang>

An alternative approach with List.collect and the same data type. Note that flatten operates on all deepLists (ll) and atoms (I) are "flatened" to lists.

<lang fsharp> let rec flatten =

   function
   | I x -> [x]
   | L x -> List.collect flatten x

printfn "%A" (flatten (L [L([I(1)]); I(2); L([L([I(3);I(4)]); I(5)]); L([L([L([])])]); L([L([L([I(6)])])]); I(7); I(8); L([])]))

// -> [1; 2; 3; 4; 5; 6; 7; 8] </lang>

Factor

   USE: sequences.deep
   ( scratchpad ) { { 1 } 2 { { 3 4 } 5 } { { { } } } { { { 6 } } } 7 8 { } } flatten .
   { 1 2 3 4 5 6 7 8 }

Fantom

<lang fantom> class Main {

 // uses recursion to flatten a list
 static List myflatten (List items)
 {
   List result := [,]
   items.each |item|
   {
     if (item is List)
       result.addAll (myflatten(item))
     else
       result.add (item)
   }
   return result
 }
 
 public static Void main ()
 {
   List sample := [[1], 2, [[3,4], 5], [[[,]]], [[[6]]], 7, 8, [,]]
   // there is a built-in flatten method for lists
   echo ("Flattened list 1: " + sample.flatten)
   // or use the function 'myflatten'
   echo ("Flattened list 2: " + myflatten (sample))
 }

} </lang>

Forth

Works with: Forth

Works with any ANS Forth. Needs the FMS-SI (single inheritance) library code located here: http://soton.mpeforth.com/flag/fms/index.html <lang forth>include FMS-SI.f include FMS-SILib.f

flatten {: list1 list2 --  :}
 list1 size: 0 ?do i list1 at: 
                 dup is-a object-list2
                 if list2 recurse else list2 add: then  loop ;

object-list2 list o{ o{ 1 } 2 o{ o{ 3 4 } 5 } o{ o{ o{ } } } o{ o{ o{ 6 } } } 7 8 o{ } } list flatten list p: \ o{ 1 2 3 4 5 6 7 8 } ok</lang>

Fortran

<lang fortran> ! input  : [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []] ! flatten : [1, 2, 3, 4, 5, 6, 7, 8 ]

module flat

 implicit none
 type n
    integer                             :: a
    type(n), dimension(:), pointer      :: p => null()
    logical                             :: empty = .false.
 end type

contains

 recursive subroutine del(this)
 type(n), intent(inout) :: this
 integer                :: i
 if (associated(this%p)) then
   do i = 1, size(this%p)
      call del(this%p(i))
   end do
 end if
 end subroutine
 function join(xs) result (r)
 type(n), dimension(:), target :: xs
 type(n)                       :: r
 integer                       :: i
 if (size(xs)>0) then
   allocate(r%p(size(xs)), source=xs)
   do i = 1, size(xs)
     r%p(i) = xs(i)
   end do
 else
   r%empty = .true.
 end if
 end function
 recursive subroutine flatten1(x,r) 
 integer, dimension (:), allocatable, intent(inout) :: r
 type(n), intent(in)                                :: x
 integer, dimension (:), allocatable                :: tmp
 integer                                            :: i
 if (associated(x%p)) then
   do i = 1, size(x%p)
     call flatten1(x%p(i), r)
   end do
 elseif (.not. x%empty) then
   allocate(tmp(size(r)+1))
   tmp(1:size(r)) = r
   tmp(size(r)+1) = x%a
   call move_alloc(tmp, r)
 end if
 end subroutine
 function flatten(x) result (r)
 type(n), intent(in)                                :: x
 integer, dimension(:), allocatable                 :: r
 allocate(r(0))
 call flatten1(x,r)
 end function
 recursive subroutine show(x)
 type(n)   :: x
 integer   :: i
 if (x%empty) then 
   write (*, "(a)", advance="no") "[]"
 elseif (associated(x%p)) then
   write (*, "(a)", advance="no") "["
   do i = 1, size(x%p)
     call show(x%p(i))
     if (i<size(x%p)) then
       write (*, "(a)", advance="no") ", "
     end if
   end do
   write (*, "(a)", advance="no") "]"
 else
   write (*, "(g0)", advance="no") x%a
 end if
 end subroutine
 function fromString(line) result (r)
 character(len=*)                      :: line
 type (n)                              :: r
 type (n), dimension(:), allocatable   :: buffer, buffer1
 integer, dimension(:), allocatable    :: stack, stack1
 integer                               :: sp,i0,i,j, a, cur, start
 character                             :: c

 if (.not. allocated(buffer)) then
   allocate (buffer(5)) ! will be re-allocated if more is needed
 end if
 if (.not. allocated(stack)) then
   allocate (stack(5))
 end if
 sp = 1; cur = 1; i = 1
 do
   if ( i > len_trim(line) ) exit
   c = line(i:i)
   if (c=="[") then
     if (sp>size(stack)) then 
       allocate(stack1(2*size(stack)))
       stack1(1:size(stack)) = stack
       call move_alloc(stack1, stack)
     end if
     stack(sp) = cur;  sp = sp + 1; i = i+1
   elseif (c=="]") then
     sp = sp - 1; start = stack(sp)
     r = join(buffer(start:cur-1))
     do j = start, cur-1
       call del(buffer(j))
     end do
     buffer(start) = r; cur = start+1; i = i+1
   elseif (index(" ,",c)>0) then
     i = i + 1; continue
   elseif (index("-123456789",c)>0) then
     i0 = i
     do 
       if ((i>len_trim(line)).or. &
           index("1234567890",line(i:i))==0) then
         read(line(i0:i-1),*) a
         if (cur>size(buffer)) then
           allocate(buffer1(2*size(buffer)))
           buffer1(1:size(buffer)) = buffer
           call move_alloc(buffer1, buffer)
         end if
         buffer(cur) = n(a); cur = cur + 1; exit
       else
         i = i+1
       end if
     end do
   else
      stop "input corrupted"
   end if
 end do
 end function

end module

program main

 use flat
 type (n)  :: x
 x = fromString("[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]")
 write(*, "(a)", advance="no") "input   : "
 call show(x)
 print *
 write (*,"(a)", advance="no") "flatten : ["
 write (*, "(*(i0,:,:', '))", advance="no") flatten(x)
 print *, "]"

end program </lang>

Or, older style

Fortran does not offer strings, only CHARACTER variables of some fixed size. Functions can return such types, but, must specify a fixed size. Or, mess about with run-time allocation as above. Since in principle a list is arbitrarily long, the plan here is to crush its content in place, and thereby never have to worry about long-enough work areas. This works because the transformations in mind never replace something by something longer. A subroutine can receive an arbitrary-sized CHARACTER variable, and can change it. No attempt is made to detect improper lists. <lang Fortran>

     SUBROUTINE CRUSH(LIST)	!Changes LIST.

Crushes a list holding multi-level entries within [...] to a list of single-level entries. Null entries are purged. Could escalate to recognising quoted strings as list entries (preserving spaces), not just strings of digits.

      CHARACTER*(*) LIST	!The text manifesting the list.
      INTEGER I,L		!Fingers.
      LOGICAL LIVE		!Scan state.
       L = 1		!Output finger. The starting [ is already in place.
       LIVE = .FALSE.	!A list element is not in progress.
       DO I = 2,LEN(LIST)	!Scan the characters of the list.
         SELECT CASE(LIST(I:I))	!Consider one.
          CASE("[","]",","," ")	!Punctuation or spacing?
           IF (LIVE) THEN		!Yes. If previously in an element,
             L = L + 1			!Advance the finger,
             LIST(L:L) = ","		!And place its terminating comma.
             LIVE = .FALSE.		!Thus the element is finished.
           END IF		!So much for punctuation and empty space.
          CASE DEFAULT		!Everything else is an element's content.
           LIVE = .TRUE.		!So we're in an element.
           L = L + 1			!Advance the finger.
           LIST(L:L) = LIST(I:I)	!And copy the content's character.
         END SELECT		!Either we're in an element, or, we're not.
       END DO			!On to the next character.

Completed the crush. At least one ] must have followed the last character of the last element.

       LIST(L:L) = "]"		!It had provoked a trailing comma. Now it is the ending ].
       LIST(L + 1:) = ""	!Scrub any tail end, just to be neat.
     END		!Trailing spaces are the caller's problem.
     CHARACTER*88 STUFF	!Work area.
     STUFF = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]"	!The example.
     WRITE (6,*) "Original: ",STUFF
     CALL CRUSH(STUFF)		!Can't be a constant, as it will be changed.
     WRITE (6,*) " Crushed: ",STUFF	!Behold!
     END</lang>

Output is

Original: [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]
 Crushed: [1,2,3,4,5,6,7,8]

Note that if you insist on the rather flabby style of having spaces after commas, then there would be trouble. Instead of placing just a comma, a ", " would be required, which is two symbols going out when one symbol has come in: overwriting yet-to-be-scanned input is a bad idea. Either a more complex set of scan states would be required to squeeze in the extra or a separate work area would be needed to hold such output and the issue of "long enough" would arise.

All of this relies on the list being presented as a flat text, which text is then manipulated directly. If the list was manifested in a data structure of some kind with links and suchlike, then tree-traversal of that structure would be needed to reach the leaf entries.


FreeBASIC

Translation of: Gambas

<lang freebasic>Dim As String sComma, sString, sFlatter Dim As Short siCount

sString = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]"

For siCount = 1 To Len(sString)

   If Instr("[] ,", Mid(sString, siCount, 1)) = 0 Then 
       sFlatter += sComma + Mid(sString, siCount, 1)
       sComma = ", "
   End If

Next siCount

Print "["; sFlatter; "]" Sleep</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]


Frink

<lang frink> a = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] println[flatten[a]] </lang>


FutureBasic

Definitely old school. <lang futurebasic>

local fn FlattenList( list as Str255 ) as Str255

 long   i
 Str255 flatStr, commaStr
 
 flatStr = ""
 for i = 1 to len$(list)
   if ( instr$( 0, "[] ,", mid$( list, i, 1 ) ) == 0 )
     flatStr += commaStr + mid$( list, i, 1 )
     commaStr = ", " 
   end if
 next

end fn = flatStr

window 1, @"Flatten a list", ( 0, 0, 350, 150 )

print "["; fn FlattenList( "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]" ); "]"

HandleEvents </lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Modern and a little outside the box. <lang futurebasic> local fn FlattenList( list as CFStringRef, unwantedCharacters as CFStringRef ) as CFStringRef

 NSUInteger i, count
 
 CFCharacterSetRef     set = fn CharacterSetWithCharactersInString( unwantedCharacters )
 CFArrayRef      tempArray = fn StringComponentsSeparatedByCharactersInSet( list, set )
 CFStringRef     flattened = fn ArrayComponentsJoinedByString( tempArray, @"" )
 CFMutableStringRef mutStr = fn MutableStringWithCapacity(0)
 count = len(flattened) - 1
 for i = 0 to count
   CFStringRef tempStr = fn StringSubstringWithRange( flattened, fn CFRangeMake( i, 1 ) )
   if i != count then MutableStringAppendFormat( mutStr, @"%@, ", tempStr ) else MutableStringAppendFormat( mutStr, @"%@", tempStr )
 next

end fn = fn StringWithFormat( @"[%@]", mutStr )

window 1, @"Flatten a list", ( 0, 0, 350, 150 ) print fn FlattenList( @"[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]", @"[], " )

HandleEvents </lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Gambas

Click this link to run this code <lang gambas>'Code 'borrowed' from Run BASIC

Public Sub Main() Dim sComma, sString, sFlatter As String Dim siCount As Short

sString = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]" For siCount = 1 To Len(sString)

If InStr("[] ,", Mid$(sString, siCount, 1)) = 0 Then 
 sFlatter = sFlatter & sComma & Mid(sString, siCount, 1)
 sComma = ","
End If

Next Print "["; sFlatter; "]"

End</lang> Output:

[1,2,3,4,5,6,7,8]



GAP

<lang gap>Flat([[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]);</lang>

GNU APL

Using (monadic) enlist function ε. Sometimes called 'Super Ravel'. <lang APL>

     ⊢list←(2 3ρι6)(2 2ρ(7 8(2 2ρ9 10 11 12)13)) 'ABCD'

┏→━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃┏→━━━━┓ ┏→━━━━━━━━━┓ "ABCD"┃ ┃↓1 2 3┃ ↓ 7 8┃ ┃ ┃┃4 5 6┃ ┃ ┃ ┃ ┃┗━━━━━┛ ┃┏→━━━━┓ 13┃ ┃ ┃ ┃↓ 9 10┃ ┃ ┃ ┃ ┃┃11 12┃ ┃ ┃ ┃ ┃┗━━━━━┛ ┃ ┃ ┃ ┗∊━━━━━━━━━┛ ┃ ┗∊∊━━━━━━━━━━━━━━━━━━━━━━━━━┛

     ∊list

┏→━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃1 2 3 4 5 6 7 8 9 10 11 12 13 'ABCD'┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ </lang>

Go

<lang go>package main

import "fmt"

func list(s ...interface{}) []interface{} {

   return s

}

func main() {

   s := list(list(1),
       2,
       list(list(3, 4), 5),
       list(list(list())),
       list(list(list(6))),
       7,
       8,
       list(),
   )
   fmt.Println(s)
   fmt.Println(flatten(s))

}

func flatten(s []interface{}) (r []int) {

   for _, e := range s {
       switch i := e.(type) {
       case int:
           r = append(r, i)
       case []interface{}:
           r = append(r, flatten(i)...)
       }
   }
   return

}</lang>

Output:
[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
[1 2 3 4 5 6 7 8]

In the code above, flatten uses an easy-to-read type switch to extract ints and return an int slice. The version below is generalized to return a flattened slice of interface{} type, which can of course refer to objects of any type, and not just int. Also, just to show a variation in programming style, a type assertion is used rather than a type switch. <lang go>func flatten(s []interface{}) (r []interface{}) {

   for _, e := range s {
       if i, ok := e.([]interface{}); ok {
           r = append(r, flatten(i)...)
       } else {
           r = append(r, e)
       }
   }
   return

}</lang>

Groovy

List.flatten() is a Groovy built-in that returns a flattened copy of the source list:

<lang groovy>assert [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []].flatten() == [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Haskell

In Haskell we have to interpret this structure as an algebraic data type.

<lang Haskell>import Data.Tree (Tree(..), flatten)

-- [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] -- implemented as multiway tree: -- Data.Tree represents trees where nodes have values too, unlike the trees in our problem. -- so we use a list as that value, where a node will have an empty list value, -- and a leaf will have a one-element list value and no subtrees list :: Tree [Int] list =

 Node
   []
   [ Node [] [Node [1] []]
   , Node [2] []
   , Node [] [Node [] [Node [3] [], Node [4] []], Node [5] []]
   , Node [] [Node [] [Node [] []]]
   , Node [] [Node [] [Node [6] []]]
   , Node [7] []
   , Node [8] []
   , Node [] []
   ]

flattenList :: Tree [a] -> [a] flattenList = concat . flatten

main :: IO () main = print $ flattenList list</lang>

Output:
[1,2,3,4,5,6,7,8]

Alternately: <lang haskell>data Tree a

 = Leaf a
 | Node [Tree a]

flatten :: Tree a -> [a] flatten (Leaf x) = [x] flatten (Node xs) = xs >>= flatten

main :: IO () main =

 (print . flatten) $
 Node
   [ Node [Leaf 1]
   , Leaf 2
   , Node [Node [Leaf 3, Leaf 4], Leaf 5]
   , Node [Node [Node []]]
   , Node [Node [Node [Leaf 6]]]
   , Leaf 7
   , Leaf 8
   , Node []
   ]
   

-- [1,2,3,4,5,6,7,8]</lang>

Yet another choice, custom data structure, efficient lazy flattening:

(This is unnecessary; since Haskell is lazy, the previous solution will only do just as much work as necessary for each element that is requested from the resulting list.)

<lang haskell>data NestedList a

 = NList [NestedList a]
 | Entry a

flatten :: NestedList a -> [a] flatten nl = flatten_ nl []

 where
   flatten_ :: NestedList a -> [a] -> [a]
   flatten_ (Entry a) cont = a : cont
   flatten_ (NList entries) cont = foldr flatten_ cont entries

-- By passing through a list to which the results will be prepended, -- we allow for efficient lazy evaluation example :: NestedList Int example =

 NList
   [ NList [Entry 1]
   , Entry 2
   , NList [NList [Entry 3, Entry 4], Entry 5]
   , NList [NList [NList []]]
   , NList [NList [NList [Entry 6]]]
   , Entry 7
   , Entry 8
   , NList []
   ]

main :: IO () main = print $ flatten example -- output [1,2,3,4,5,6,7,8]</lang>

Hy

<lang clojure>(defn flatten [lst]

 (sum (genexpr (if (isinstance x list)
                   (flatten x)
                   [x])
               [x lst])
      []))

(print (flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]))

[1, 2, 3, 4, 5, 6, 7, 8]</lang>

Icon and Unicon

The following procedure solves the task using a string representation of nested lists and cares not if the list is well formed or not. <lang Icon>link strings # for compress,deletec,pretrim

procedure sflatten(s) # uninteresting string solution return pretrim(trim(compress(deletec(s,'[ ]'),',') ,','),',') end</lang>

The solution uses several procedures from strings in the IPL

This procedure is more in the spirit of the task handling actual lists rather than representations. It uses a recursive approach using some of the built-in list manipulation functions and operators. <lang Icon>procedure flatten(L) # in the spirt of the problem a structure local l,x

l := [] every x := !L do

  if type(x) == "list" then l |||:= flatten(x)
  else put(l,x)

return l end</lang>

Finally a demo routine to drive these and a helper to show how it works. <lang Icon>procedure main() write(sflatten(" [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]")) writelist(flatten( [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []])) end

procedure writelist(L) writes("[") every writes(" ",image(!L)) write(" ]") return end</lang>

Ioke

<lang ioke>iik> [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] flatten [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] flatten +> [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Isabelle

<lang Isabelle>theory Scratch

 imports Main

begin

datatype 'a tree = Leaf 'a ("<_>")

                | Node "'a tree list" ("⟦ _ ⟧")

text‹The datatype introduces special pretty printing:› lemma "Leaf a = <a>" by simp lemma "Node [] = ⟦ [] ⟧" by simp

definition "example ≡ ⟦[ ⟦[<1>]⟧, <2>, ⟦[ ⟦[<3>, <4>]⟧, <5>]⟧, ⟦[⟦[⟦[]⟧]⟧]⟧, ⟦[⟦[⟦[<6>]⟧]⟧]⟧, <7>, <8>, ⟦[]⟧ ]⟧"

lemma "example =

  Node [
    Node [Leaf 1],
    Leaf 2,
    Node [Node [Leaf 3, Leaf 4], Leaf 5],
    Node [Node [ Node []]],
    Node [Node [Node [Leaf 6]]],
    Leaf 7,
    Leaf 8,
    Node []
  ]"
 by(simp add: example_def)

fun flatten :: "'a tree ⇒ 'a list" where

 "flatten (Leaf a) = [a]"

| "flatten (Node xs) = concat (map flatten xs)"

lemma "flatten example = [1, 2, 3, 4, 5, 6, 7, 8]"

 by(simp add: example_def)

end</lang>

J

Solution: <lang j>flatten =: [: ; <S:0</lang>

Example: <lang j> NB. create and display nested noun li

  ]li =.  (<1) ; 2; ((<3; 4); 5) ; ((<a:)) ; ((<(<6))) ; 7; 8; <a:

+---+-+-----------+----+-----+-+-+--+ |+-+|2|+-------+-+|+--+|+---+|7|8|++| ||1|| ||+-----+|5|||++|||+-+|| | |||| |+-+| |||+-+-+|| |||||||||6||| | |++| | | ||||3|4||| |||++|||+-+|| | | | | | |||+-+-+|| ||+--+|+---+| | | | | | ||+-----+| || | | | | | | | |+-------+-+| | | | | | +---+-+-----------+----+-----+-+-+--+

 flatten li

1 2 3 4 5 6 7 8</lang>

Notes: The primitive ; removes one level of nesting.

<S:0 takes an arbitrarily nested list and puts everything one level deep.

[: is glue, here.

We do not use ; by itself because it requires that all of the contents be the same type and nested items have a different type from unnested items.

We do not use ]S:0 (which puts everything zero levels deep) because it assembles its results as items of a list, which means that short items will be padded to be equal to the largest items, and that is not what we would want here (we do not want the empty item to be padded with a fill element).

Alternative Solution:
The previous solution can be generalized to flatten the nesting and shape for a list of arbitrary values that include arrays of any rank: <lang j>flatten2 =: [: ; <@,S:0</lang>

Example: <lang j> ]li2 =. (<1) ; 2; ((<3;4); 5 + i.3 4) ; ((<a:)) ; ((<(<17))) ; 18; 19; <a: +---+-+---------------------+----+------+--+--+--+ |+-+|2|+-------+-----------+|+--+|+----+|18|19|++| ||1|| ||+-----+| 5 6 7 8|||++|||+--+|| | |||| |+-+| |||+-+-+|| 9 10 11 12|||||||||17||| | |++| | | ||||3|4|||13 14 15 16|||++|||+--+|| | | | | | |||+-+-+|| ||+--+|+----+| | | | | | ||+-----+| || | | | | | | | |+-------+-----------+| | | | | | +---+-+---------------------+----+------+--+--+--+

  flatten2 li

1 2 3 4 5 6 7 8

  flatten2 li2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</lang>

Here, we have replaced <S:0 with <@,S:0 so our leaves are flattened before the final step where their boxes are razed.

Java

Works with: Java version 1.5+

The flatten method was overloaded for better separation of concerns. On the first one you can pass any List and get it flat into a LinkedList implementation. On the other one you can pass any List implementation you like for both lists.

Note that both implementations can only put the result into type List<Object>. We cannot type-safely put the result into a generic type List<T> because there is no way to enforce that the original list contains elements of "type T or lists of elements which are T or further lists..."; there is no generic type parameter that will express that restriction. Since we must accept lists of any elements as an argument, we can only safely put them in a List<Object>.

Actual Workhorse code <lang java5>import java.util.LinkedList; import java.util.List;


public final class FlattenUtil {

public static List<Object> flatten(List<?> list) { List<Object> retVal = new LinkedList<Object>(); flatten(list, retVal); return retVal; }

public static void flatten(List<?> fromTreeList, List<Object> toFlatList) { for (Object item : fromTreeList) { if (item instanceof List<?>) { flatten((List<?>) item, toFlatList); } else { toFlatList.add(item); } } } }</lang>

Method showing population of the test List and usage of flatten method. <lang java5>import static java.util.Arrays.asList; import java.util.List;

public final class FlattenTestMain {

public static void main(String[] args) { List<Object> treeList = a(a(1), 2, a(a(3, 4), 5), a(a(a())), a(a(a(6))), 7, 8, a()); List<Object> flatList = FlattenUtil.flatten(treeList); System.out.println(treeList); System.out.println("flatten: " + flatList); }

private static List<Object> a(Object... a) { return asList(a); } }</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
flatten: [1, 2, 3, 4, 5, 6, 7, 8]
Functional version
Works with: Java version 8+

<lang java5>import java.util.List; import java.util.stream.Stream; import java.util.stream.Collectors;

public final class FlattenUtil {

public static Stream<Object> flattenToStream(List<?> list) { return list.stream().flatMap(item -> item instanceof List<?> ? flattenToStream((List<?>)item) : Stream.of(item)); }

public static List<Object> flatten(List<?> list) { return flattenToStream(list).collect(Collectors.toList()); } }</lang>

JavaScript

ES5

<lang javascript>function flatten(list) {

 return list.reduce(function (acc, val) {
   return acc.concat(val.constructor === Array ? flatten(val) : val);
 }, []);

}</lang>


Or, expressed in terms of the more generic concatMap function:

<lang JavaScript>(function () {

   'use strict';
   // flatten :: Tree a -> [a]
   function flatten(t) {
       return (t instanceof Array ? concatMap(flatten, t) : t);
   }
   // concatMap :: (a -> [b]) -> [a] -> [b]
   function concatMap(f, xs) {
       return [].concat.apply([], xs.map(f));
   }
   return flatten(
       [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
   );

})();</lang>


From fusion of flatten with concatMap we can then derive:

<lang JavaScript> // flatten :: Tree a -> [a]

   function flatten(a) {
       return a instanceof Array ? [].concat.apply([], a.map(flatten)) : a;
   }</lang>

For example:

<lang JavaScript>(function () {

   'use strict';
   // flatten :: Tree a -> [a]
   function flatten(a) {
       return a instanceof Array ? [].concat.apply([], a.map(flatten)) : a;
   }
   return flatten(
       [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
   );

})();</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

ES6

Built-in

<lang javascript>// flatten :: NestedList a -> [a] const flatten = nest =>

   nest.flat(Infinity);</lang>

Recursive

<lang javascript>// flatten :: NestedList a -> [a] const flatten = t => {

   const go = x =>
       Array.isArray(x) ? (
           x.flatMap(go)
       ) : x;
   return go(t);

};</lang>

Iterative

<lang javascript>function flatten(list) {

 for (let i = 0; i < list.length; i++) {
   while (true) {
     if (Array.isArray(list[i])) {
     	list.splice(i, 1, ...list[i]);
     } else {
     	break;
     }
   }
 }
 return list;

}</lang>

Or alternatively:

<lang javascript>// flatten :: Nested List a -> a const flatten = t => {

   let xs = t;
   while (xs.some(Array.isArray)) {
       xs = [].concat(...xs);
   }
   return xs;

};</lang>

Result is always:

[1, 2, 3, 4, 5, 6, 7, 8]

Joy

"seqlib" libload.

[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] treeflatten.

(* output: [1 2 3 4 5 6 7 8] *)

jq

Recent (1.4+) versions of jq include the following flatten filter:<lang jq>def flatten:

  reduce .[] as $i
    ([];
    if $i | type == "array" then . + ($i | flatten)
    else . + [$i]
    end);</lang>Example:<lang jq>

[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] | flatten [1,2,3,4,5,6,7,8]</lang>

Jsish

From Javascript entry, with change to test for typeof equal "array".

<lang javascript>/* Flatten list, in Jsish */ function flatten(list) {

 return list.reduce(function (acc, val) {
   return acc.concat(typeof val === "array" ? flatten(val) : val);
 }, []);

}

if (Interp.conf('unitTest')) {

flatten([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]);

}

/*

!EXPECTSTART!

flatten([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]) ==> [ 1, 2, 3, 4, 5, 6, 7, 8 ]

!EXPECTEND!

  • /</lang>
Output:
prompt$ jsish --U flatten.jsi
flatten([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]) ==> [ 1, 2, 3, 4, 5, 6, 7, 8 ]

Julia

(Note that Julia versions prior to 0.5 automatically flattened nested arrays.)

The following version of flatten makes use of the higher order function mapreduce. <lang julia>isflat(x) = isempty(x) || first(x) === x

function flat_mapreduce(arr)

   mapreduce(vcat, arr, init=[]) do x
       isflat(x) ? x : flat(x)
   end

end</lang> An iterative recursive version that uses less memory but is slower: <lang julia>function flat_recursion(arr)

   res = []
   function grep(v)
       for x in v
           if x isa Array 
               grep(x)
           else
               push!(res, x)
           end
       end
   end
   grep(arr)
   res

end</lang> Using the Iterators library from the Julia base: <lang julia>function flat_iterators(arr)

   while any(a -> a isa Array, arr)
       arr = collect(Iterators.flatten(arr))
   end
   arr

end</lang> Benchmarking these three functions using the BenchmarkTools package yields the following results: <lang julia>using BenchmarkTools

arr = [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]

@show flat_mapreduce(arr) @show flat_recursion(arr) @show flat_iterators(arr)

@btime flat_mapreduce($arr) @btime flat_recursion($arr)

@btime flat_iterators($arr)</lang>

Output:
flat_mapreduce(arr) = Any[1, 2, 3, 4, 5, 6, 7, 8]
flat_recursion(arr) = Any[1, 2, 3, 4, 5, 6, 7, 8]
flat_iterators(arr) = [1, 2, 3, 4, 5, 6, 7, 8]
  14.163 μs (131 allocations: 4.27 KiB)
  500.824 ns (4 allocations: 176 bytes)
  28.223 μs (133 allocations: 4.33 KiB)

K

In K, join is: , and reduce/fold (called "over") is: /. With a monadic argument (as ,/ is), over repeats application until reaching a fixed-point.

So to flatten a list of arbitrary depth, you can join-over-over, or reduce a list with a function that reduces a list with a join function: <lang k>,//((1); 2; ((3;4); 5); ((())); (((6))); 7; 8; ())</lang>

Kotlin

<lang scala>// version 1.0.6

@Suppress("UNCHECKED_CAST")

fun flattenList(nestList: List<Any>, flatList: MutableList<Int>) {

   for (e in nestList)
       if (e is Int)
           flatList.add(e)
       else
           // using unchecked cast here as can't check for instance of 'erased' generic type
           flattenList(e as List<Any>, flatList) 

}

fun main(args: Array<String>) {

   val nestList : List<Any> = listOf(
       listOf(1),
       2,
       listOf(listOf(3, 4), 5),
       listOf(listOf(listOf<Int>())),
       listOf(listOf(listOf(6))),
       7,
       8,
       listOf<Int>()
   )
   println("Nested    : " + nestList)
   val flatList = mutableListOf<Int>()
   flattenList(nestList, flatList)
   println("Flattened : " + flatList)    

}</lang>

Or, using a more functional approach:

<lang scala> fun flatten(list: List<*>): List<*> {

   fun flattenElement(elem: Any?): Iterable<*> {
       return if (elem is List<*>)
           if (elem.isEmpty()) elem
           else flattenElement(elem.first()) + flattenElement(elem.drop(1))
       else listOf(elem)
   }
   return list.flatMap { elem -> flattenElement(elem) }

}</lang>

Output:
Nested    : [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
Flattened : [1, 2, 3, 4, 5, 6, 7, 8]

Lambdatalk

Lambdatalk doesn't have a builtin primitive flattening a multidimensionnal array. <lang scheme> 1) Let's create this function

{def A.flatten

{def A.flatten.r
 {lambda {:a}
  {if {A.empty? :a}
   then 
   else {let { {:b {A.first :a}}
             } {if {A.array? :b}
                then {A.flatten.r :b}
                else :b} }
        {A.flatten.r {A.rest :a}} }}}
{lambda {:a}
 {A.new {A.flatten.r :a}}}}

-> A.flatten

and test it

{def list

{A.new
 {A.new 1}
 2
 {A.new {A.new 3 4} 5}
 {A.new {A.new {A.new }}}
 {A.new {A.new {A.new 6}}}
 7
 8
 {A.new}

}} -> [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]

{A.flatten {list}} -> [1,2,3,4,5,6,7,8] </lang>

Lasso

Lasso Delve is a Lasso utility method explicitly for handling embedded arrays. With one array which contain other arrays, delve allows you to treat one array as a single series of elements, thus enabling easy access to an entire tree of values. www.lassosoft.com/lassoDocs/languageReference/obj/delve Lasso reference on Delve

<lang Lasso>local(original = json_deserialize('[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]'))

  1. original

'
' (with item in delve(#original) select #item) -> asstaticarray</lang>

array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array())
staticarray(1, 2, 3, 4, 5, 6, 7, 8)

LFE

<lang lisp> > (: lists flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())) (1 2 3 4 5 6 7 8) </lang>

<lang logo>to flatten :l

 if not list? :l [output :l]
 if empty? :l [output []]
 output sentence flatten first :l flatten butfirst :l

end

using a template iterator (map combining results into a sentence)

to flatten :l

 output map.se [ifelse or not list? ? empty? ? [?] [flatten ?]] :l

end

make "a [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] show flatten :a</lang>

Logtalk

<lang logtalk>flatten(List, Flatted) :-

   flatten(List, [], Flatted).

flatten(Var, Tail, [Var| Tail]) :-

   var(Var),
   !.

flatten([], Flatted, Flatted) :-

   !.

flatten([Head| Tail], List, Flatted) :-

   !,
   flatten(Tail, List, Aux),
   flatten(Head, Aux, Flatted).

flatten(Head, Tail, [Head| Tail]).</lang>

Lua

<lang lua>function flatten(list)

 if type(list) ~= "table" then return {list} end
 local flat_list = {}
 for _, elem in ipairs(list) do
   for _, val in ipairs(flatten(elem)) do
     flat_list[#flat_list + 1] = val
   end
 end
 return flat_list

end

test_list = {{1}, 2, {{3,4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}}

print(table.concat(flatten(test_list), ","))</lang>

Maple

This can be accomplished using the Flatten command from the ListTools, or with a custom recursive procedure.

<lang Maple> L := [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]:

with(ListTools):

Flatten(L); </lang>

Output:
                          [1, 2, 3, 4, 5, 6, 7, 8]

<lang Maple> flatten := proc(x)

 `if`(type(x,'list'),seq(procname(i),i = x),x);

end proc:

L := [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]:

[flatten(L)]; </lang>

Output:
                          [1, 2, 3, 4, 5, 6, 7, 8]

Mathematica / Wolfram Language

<lang Mathematica>Flatten[{{1}, 2, {{3, 4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}}]</lang>

Maxima

<lang maxima>flatten([[[1, 2, 3], 4, [5, [6, 7]], 8], [[9, 10], 11], 12]); /* [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] */</lang>

Mercury

As with Haskell we need to use an algebraic data type. <lang mercury>:- module flatten_a_list.

- interface.
- import_module io.
- pred main(io::di, io::uo) is det.
- implementation.
- import_module list.
- type tree(T)
   --->    leaf(T)
   ;       node(list(tree(T))).
- func flatten(tree(T)) = list(T).

flatten(leaf(X)) = [X]. flatten(node(Xs)) = condense(map(flatten, Xs)).

main(!IO) :-

   List = node([
       node([leaf(1)]),
       leaf(2),
       node([node([leaf(3), leaf(4)]), leaf(5)]),
       node([node([node([])])]),
       node([node([node([leaf(6)])])]),
       leaf(7),
       leaf(8),
       node([])
   ]),
   io.print_line(flatten(List), !IO).
- end_module flatten_a_list.

</lang>

Output:
    [1, 2, 3, 4, 5, 6, 7, 8]

min

Works with: min version 0.19.6

<lang min>(

 =a
 (a 'quotation? any?)
 (a => #a) while a

) :deep-flatten

((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ()) deep-flatten puts!</lang>

Output:
(1 2 3 4 5 6 7 8)

Mirah

<lang mirah>import java.util.ArrayList import java.util.List import java.util.Collection

def flatten(list: Collection)

   flatten(list, ArrayList.new)

end def flatten(source: Collection, result: List)

   source.each do |x|
       if x.kind_of?(Collection) 
           flatten(Collection(x), result)  
       else
           result.add(x)
           result  # if branches must return same type
       end 
   end
   result

end

  1. creating a list-of-list-of-list fails currently, so constructor calls are needed

source = [[1], 2, [[3, 4], 5], ArrayList.new, [[[6]]], 7, 8, ArrayList.new]

puts flatten(source)</lang>

NewLISP

<lang NewLISP>> (flat '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())) (1 2 3 4 5 6 7 8) </lang>

NGS

Note that when kern method is called, the multi-dispatch tries to match kern parameters with given arguments last added F first: if x is an array, the second F kern is invoked, otherwise the first F kern is invoked.

NGS defines flatten as a shallow flatten, hence using flatten_r here.

<lang NGS>F flatten_r(a:Arr) collector { local kern F kern(x) collect(x) F kern(x:Arr) x.each(kern) kern(a) }

echo(flatten_r([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]))</lang>

Output:
[1,2,3,4,5,6,7,8]

Nim

Nim is statically-typed, so we need to use an object variant <lang nim>type

 TreeList[T] = object
   case isLeaf: bool
   of true: data: T
   of false: list: seq[TreeList[T]]

proc L[T](list: varargs[TreeList[T]]): TreeList[T] =

 for x in list:
   result.list.add x

proc N[T](data: T): TreeList[T] =

 TreeList[T](isLeaf: true, data: data)

proc flatten[T](n: TreeList[T]): seq[T] =

 if n.isLeaf: result = @[n.data]
 else:
   for x in n.list:
     result.add flatten x

var x = L(L(N 1), N 2, L(L(N 3, N 4), N 5), L(L(L[int]())), L(L(L(N 6))), N 7, N 8, L[int]()) echo flatten(x)</lang>

Output:
@[1, 2, 3, 4, 5, 6, 7, 8]

Objective-C

Works with: Cocoa

<lang objc2>#import <Foundation/Foundation.h>

@interface NSArray (FlattenExt) @property (nonatomic, readonly) NSArray *flattened; @end

@implementation NSArray (FlattenExt) -(NSArray *) flattened {

   NSMutableArray *flattened = [[NSMutableArray alloc] initWithCapacity:self.count];
   
   for (id object in self) {
       if ([object isKindOfClass:[NSArray class]])
           [flattened addObjectsFromArray:((NSArray *)object).flattened];
       else
           [flattened addObject:object];
   }
   
   return [flattened autorelease];

} @end

int main() {

   @autoreleasepool {
       NSArray *p = @[

@[ @1 ], @2, @[ @[@3, @4], @5], @[ @[ @[ ] ] ], @[ @[ @[ @6 ] ] ], @7, @8, @[ ] ];

       for (id object in unflattened.flattened)
           NSLog(@"%@", object);
   
   }
   
   return 0;

}</lang>

OCaml

<lang ocaml># let flatten = List.concat ;; val flatten : 'a list list -> 'a list = <fun>

  1. let li = [[1]; 2; [[3;4]; 5]; [[[]]]; [[[6]]]; 7; 8; []] ;;
               ^^^

Error: This expression has type int but is here used with type int list

  1. (* use another data which can be accepted by the type system *)
 flatten [[1]; [2; 3; 4]; []; [5; 6]; [7]; [8]] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]</lang>

Since OCaml is statically typed, it is not possible to have a value that could be both a list and a non-list. Instead, we can use an algebraic datatype:

<lang ocaml># type 'a tree = Leaf of 'a | Node of 'a tree list ;; type 'a tree = Leaf of 'a | Node of 'a tree list

  1. let rec flatten = function
    Leaf x -> [x]
  | Node xs -> List.concat (List.map flatten xs) ;;

val flatten : 'a tree -> 'a list = <fun>

  1. flatten (Node [Node [Leaf 1]; Leaf 2; Node [Node [Leaf 3; Leaf 4]; Leaf 5]; Node [Node [Node []]]; Node [Node [Node [Leaf 6]]]; Leaf 7; Leaf 8; Node []]) ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]</lang>

Oforth

<lang Oforth>[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] expand println</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Ol

<lang scheme> (define (flatten x)

  (cond
     ((null? x)
        '())
     ((not (pair? x))
        (list x))
     (else
        (append (flatten (car x))
                (flatten (cdr x))))))

(print

  (flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())))

</lang>

Output:
(1 2 3 4 5 6 7 8)

ooRexx

<lang ooRexx> sub1 = .array~of(1) sub2 = .array~of(3, 4) sub3 = .array~of(sub2, 5) sub4 = .array~of(.array~of(.array~new)) sub5 = .array~of(.array~of(.array~of(6))) sub6 = .array~new

-- final list construction list = .array~of(sub1, 2, sub3, sub4, sub5, 7, 8, sub6)

-- flatten flatlist = flattenList(list)

say "["flatlist~toString("line", ", ")"]"

routine flattenList
 use arg list
 -- we could use a list or queue, but let's just use an array
 accumulator = .array~new
 -- now go to the recursive processing version
 call flattenSublist list, accumulator
 return accumulator
routine flattenSublist
 use arg list, accumulator
 -- ask for the items explicitly, since this will allow
 -- us to flatten indexed collections as well
 do item over list~allItems
     -- if the object is some sort of collection, flatten this out rather
     -- than add to the accumulator
     if item~isA(.collection) then call flattenSublist item, accumulator
     else accumulator~append(item)
 end

</lang>

Oz

Oz has a standard library function "Flatten": <lang oz>{Show {Flatten [[1] 2 [[3 4] 5] nil [[[6]]] 7 8 nil]}}</lang> A simple, non-optimized implementation could look like this: <lang oz>fun {Flatten2 Xs}

  case Xs of nil then nil
  [] X|Xr then
     {Append {Flatten2 X} {Flatten2 Xr}}
  else [Xs]
  end

end </lang>

PARI/GP

<lang parigp>flatten(v)={

 my(u=[]);
 for(i=1,#v,
   u=concat(u,if(type(v[i])=="t_VEC",flatten(v[i]),v[i]))
 );
 u

};</lang>

Perl

<lang perl>sub flatten {

   map { ref eq 'ARRAY' ? flatten(@$_) : $_ } @_

}

my @lst = ([1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []); print flatten(@lst), "\n";</lang>

Phix

standard builtin <lang Phix>?flatten({{1},2,{{3,4},5},{{{}}},{{{6}}},7,8,{}})</lang>

Output:
{1,2,3,4,5,6,7,8}

Phixmonti

<lang Phixmonti>1 2 3 10 20 30 3 tolist 4 5 6 3 tolist 2 tolist 1000 "Hello" 6 tolist dup print nl flatten print</lang>

With syntactic sugar

<lang Phixmonti>include ..\Utilitys.pmt

( 1 2 3 ( ( 10 20 30 ) ( 4 5 6 ) ) 1000 "Hola" ) dup ? flatten ?</lang>

Output:
[1, 2, 3, [[10, 20, 30], [4, 5, 6]], 1000, "Hello"]
[1, 2, 3, 10, 20, 30, 4, 5, 6, 1000, "Hello"]

PHP

Works with: PHP version 4.x only, not 5.x

<lang php>/* Note: This code is only for PHP 4.

  It won't work on PHP 5 due to the change in behavior of array_merge(). */

while (array_filter($lst, 'is_array'))

   $lst = call_user_func_array('array_merge', $lst);</lang>

Explanation: while $lst has any elements which are themselves arrays (i.e. $lst is not flat), we merge the elements all together (in PHP 4, array_merge() treated non-array arguments as if they were 1-element arrays; PHP 5 array_merge() no longer allows non-array arguments.), thus flattening the top level of any embedded arrays. Repeat this process until the array is flat.

Recursive

<lang php><?php function flatten($ary) {

   $result = array();
   foreach ($ary as $x) {
       if (is_array($x))
           // append flatten($x) onto $result
           array_splice($result, count($result), 0, flatten($x));
       else
           $result[] = $x;
   }
   return $result;

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); var_dump(flatten($lst)); ?></lang>

Alternatively:

Works with: PHP version 5.3+

<lang php><?php function flatten($ary) {

   $result = array();
   array_walk_recursive($ary, function($x, $k) use (&$result) { $result[] = $x; });
   return $result;

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); var_dump(flatten($lst)); ?></lang>

<lang php><?php function flatten_helper($x, $k, $obj) {

   $obj->flattened[] = $x;

}

function flatten($ary) {

   $obj = (object)array('flattened' => array());
   array_walk_recursive($ary, 'flatten_helper', $obj);
   return $obj->flattened;

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); var_dump(flatten($lst)); ?></lang>

Using the standard library (warning: objects will also be flattened by this method):

<lang php><?php $lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); $result = iterator_to_array(new RecursiveIteratorIterator(new RecursiveArrayIterator($lst)), false); var_dump($result); ?></lang>

Non-recursive

Function flat is iterative and flattens the array in-place. <lang php><?php function flat(&$ary) { // argument must be by reference or array will just be copied

   for ($i = 0; $i < count($ary); $i++) {
       while (is_array($ary[$i])) {
           array_splice($ary, $i, 1, $ary[$i]);
       }
   }

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); flat($lst); var_dump($lst); ?></lang>

PicoLisp

<lang PicoLisp>(de flatten (X)

  (make                               # Build a list
     (recur (X)                       # recursively over 'X'
        (if (atom X)
           (link X)                   # Put atoms into the result
           (mapc recurse X) ) ) ) )   # or recurse on sub-lists</lang>

or a more succint way using fish:

<lang PicoLisp>(de flatten (X)

  (fish atom X) )</lang>

Pike

There's a built-in function called Array.flatten() which does this, but here's a custom function: <lang pike>array flatten(array a) { array r = ({ });

foreach (a, mixed n) { if (arrayp(n)) r += flatten(n); else r += ({ n }); }

return r; }</lang>

PL/I

The Translate(text,that,this) intrinsic function returns text with any character in text that is found in this (say the third) replaced by the corresponding third character in that. Suppose the availability of a function Replace(text,that,this) which returns text with all occurrences of this (a single text, possibly many characters) replaced by that, possibly zero characters. The Translate function does not change the length of its string, simply translate its characters in place. <lang PL/I> list = translate (list, ' ', '[]' ); /*Produces " 1 , 2, 3,4 , 5 , , 6 , 7, 8, " */ list = Replace(list,,' '); /*Converts spaces to nothing. Same parameter order as Translate.*/ do while index(list,',,') > 0; /*Is there a double comma anywhere?

 list = Replace(list,',',',,');      /*Yes. Convert double commas to single, nullifying empty lists*/

end; /*And search afresh, in case of multiple commas in a row.*/ list = '[' || list || ']'; /*Repackage the list.*/ </lang> This is distinctly crude. A user-written Replace function is confronted by the requirement to specify a maximum size for its returned result, for instance Replace:Procedure(text,that,this) Returns(Character 200 Varying); which is troublesome for general use. The intrinsic function Translate has no such restriction.

An alternative would be to translate the commas into spaces also (thereby the null entry vanishes) then scan along the result.

PostScript

Library: initlib

<lang postscript> /flatten {

   /.f {{type /arraytype eq} {{.f} map aload pop} ift}.
   [exch .f]

}. </lang> <lang> [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] flatten </lang>

PowerShell

<lang PowerShell> function flatten($a) {

   if($a.Count -gt 1) {
       $a | foreach{ $(flatten $_)}
   } else {$a}

} $a = @(@(1), 2, @(@(3,4), 5), @(@(@())), @(@(@(6))), 7, 8, @()) "$(flatten $a)" </lang> Output:

 
1 2 3 4 5 6 7 8

Prolog

<lang Prolog> flatten(List, FlatList) :- flatten(List, [], FlatList).

flatten(Var, T, [Var|T]) :- var(Var), !. flatten([], T, T) :- !. flatten([H|T], TailList, List) :- !, flatten(H, FlatTail, List), flatten(T, TailList, FlatTail).

flatten(NonList, T, [NonList|T]). </lang>

PureBasic

<lang PureBasic>Structure RCList

 Value.i
 List A.RCList()

EndStructure

Procedure Flatten(List A.RCList())

 ResetList(A())
 While NextElement(A())
   With A()
     If \Value
       Continue
     Else
       ResetList(\A())
       While NextElement(\A())
         If \A()\Value: A()\Value=\A()\Value: EndIf
       Wend
     EndIf
     While ListSize(\A()): DeleteElement(\A()): Wend
     If Not \Value: DeleteElement(A()): EndIf
   EndWith
 Wend

EndProcedure</lang> Set up the MD-List & test the Flattening procedure. <lang PureBasic>;- Set up two lists, one multi dimensional and one 1-D. NewList A.RCList()

- Create a deep list

With A()

 AddElement(A()):  AddElement(\A()): AddElement(\A()): \A()\Value=1
 AddElement(A()):                     A()\Value=2
 AddElement(A()):  AddElement(\A()): \A()\Value=3
 AddElement(\A()):                   \A()\Value=4
 AddElement(A()):  AddElement(\A()): \A()\Value=5
 AddElement(A()):  AddElement(\A()): AddElement(\A()): AddElement(\A())
 AddElement(A()):  AddElement(\A()): AddElement(\A()): \A()\Value=6
 AddElement(A()):                     A()\Value=7
 AddElement(A()):                     A()\Value=8
 AddElement(A()):  AddElement(\A()): AddElement(\A())

EndWith

Flatten(A())

- Present the result

If OpenConsole()

 Print("Flatten: [")
 ForEach A()
   Print(Str(A()\Value))
   If ListIndex(A())<(ListSize(A())-1)
     Print(", ")
   Else
     PrintN("]")
   EndIf
 Next
 Print(#CRLF$+"Press ENTER to quit"): Input()

EndIf</lang>

Flatten: [1, 2, 4, 5, 6, 7, 8]

Python

Recursive

<lang python>>>> def flatten(lst): return sum( ([x] if not isinstance(x, list) else flatten(x) for x in lst), [] )

>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>> flatten(lst) [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Recursive, generative and working with any type of iterable object

<lang python>>>> def flatten(itr): >>> for x in itr: >>> try: >>> yield from flatten(x) >>> except: >>> yield x

>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]

>>> list(flatten(lst)) [1, 2, 3, 4, 5, 6, 7, 8]

>>> tuple(flatten(lst)) (1, 2, 3, 4, 5, 6, 7, 8)

>>>for i in flatten(lst): >>> print(i) 1 2 3 4 5 6 7 8</lang>

Non-recursive

Function flat is iterative and flattens the list in-place. It follows the Python idiom of returning None when acting in-place: <lang python>>>> def flat(lst):

   i=0
   while i<len(lst):
       while True:
           try:
               lst[i:i+1] = lst[i]
           except (TypeError, IndexError):
               break
       i += 1
       

>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>> flat(lst) >>> lst [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Generative

This method shows a solution using Python generators.

flatten is a generator that yields the non-list values of its input in order. In this case, the generator is converted back to a list before printing.

<lang python>>>> def flatten(lst):

    for x in lst:
        if isinstance(x, list):
            for x in flatten(x):
                yield x
        else:
            yield x


>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>> print list(flatten(lst)) [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Functional Recursive

And, as the idea of Rosetta Code is to demonstrate how languages are similar as well as different, and to thus to 'aid a person with a grounding in one approach to a problem in learning another', here it is in terms of concatMap, which can be defined in any language, including mathematics, and which can be variously expressed in Python. (The fastest Python implementation of the concat component of the (concat . map) composition seems to be in terms of itertools.chain).

Works with: Python version 3.7

<lang python>Flatten a nested list

from itertools import (chain)


  1. ----------------------- FLATTEN ------------------------
  1. flatten :: NestedList a -> [a]

def flatten(x):

   A list of atomic values resulting from fully
      flattening an arbitrarily nested list.
   
   return concatMap(flatten)(x) if (
       isinstance(x, list)
   ) else [x]


  1. ------------------------- TEST -------------------------

def main():

   Test: flatten an arbitrarily nested list.
   
   print(
       fTable(__doc__ + ':')(showList)(showList)(
           flatten
       )([
           [[[]]],
           1, 2, 3,
           [[1], 2, [[[3, 4]]]],
           [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
       ])
   )


  1. ----------------------- GENERIC ------------------------
  1. compose (<<<) :: (b -> c) -> (a -> b) -> a -> c

def compose(g):

   Right to left function composition.
   return lambda f: lambda x: g(f(x))


  1. concatMap :: (a -> [b]) -> [a] -> [b]

def concatMap(f):

   A concatenated list over which a function has been mapped.
      The list monad can be derived by using a function f which
      wraps its output in a list,
      (using an empty list to represent computational failure).
   
   def go(xs):
       return chain.from_iterable(map(f, xs))
   return go


  1. fTable :: String -> (a -> String) ->
  2. (b -> String) ->
  3. (a -> b) -> [a] -> String

def fTable(s):

   Heading -> x display function ->
                fx display function ->
         f -> value list -> tabular string.
   def go(xShow, fxShow, f, xs):
       w = max(map(compose(len)(xShow), xs))
       return s + '\n' + '\n'.join([
           xShow(x).rjust(w, ' ') + (' -> ') + fxShow(f(x))
           for x in xs
       ])
   return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
       xShow, fxShow, f, xs
   )


  1. showList :: [a] -> String

def showList(xs):

   Stringification of a list.
   return '[' + ','.join(str(x) for x in xs) + ']'


if __name__ == '__main__':

   main()</lang>
Output:
Flatten a nested list:
                                   [[[]]] -> []
                              [[1, 2, 3]] -> [1,2,3]
                   [[1],[[2]],[[[3, 4]]]] -> [1,2,3,4]
[[1],2,[[3, 4], 5],[[[]]],[[[6]]],7,8,[]] -> [1,2,3,4,5,6,7,8]

Functional Non-recursive

And, in contexts where it may be desirable to avoid not just recursion, but also:

  1. mutation of the original list, and
  2. dependence on error-events for evaluation control,


we can again use the universal concat . map composition (see the second recursive example above) by embedding it in a fold / reduction, and using it with a pure, but iteratively-implemented, until function.

( Note that the generic functions in the following example are curried, enabling not only more flexible composition, but also some simplifying reductions – here eliminating the need for two uses of Python's lambda keyword ):

Works with: Python version 3.7

<lang python>Flatten a list

from functools import (reduce) from itertools import (chain)


def flatten(xs):

   A flat list of atomic values derived
      from a nested list.
   
   return reduce(
       lambda a, x: a + list(until(every(notList))(
           concatMap(pureList)
       )([x])),
       xs, []
   )


  1. TEST ----------------------------------------------------

def main():

   From nested list to flattened list
   print(main.__doc__ + ':\n\n')
   xs = [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
   print(
       repr(xs) + ' -> ' + repr(flatten(xs))
   )


  1. GENERIC -------------------------------------------------
  1. concatMap :: (a -> [b]) -> [a] -> [b]

def concatMap(f):

   A concatenated list over which a function has been mapped.
      The list monad can be derived by using a function f which
      wraps its output in a list,
      (using an empty list to represent computational failure).
   
   return lambda xs: list(
       chain.from_iterable(map(f, xs))
   )


  1. every :: (a -> Bool) -> [a] -> Bool

def every(p):

   True if p(x) holds for every x in xs
   def go(p, xs):
       return all(map(p, xs))
   return lambda xs: go(p, xs)


  1. notList :: a -> Bool

def notList(x):

   True if the value x is not a list.
   return not isinstance(x, list)


  1. pureList :: a -> [b]

def pureList(x):

   x if x is a list, othewise [x]
   return x if isinstance(x, list) else [x]


  1. until :: (a -> Bool) -> (a -> a) -> a -> a

def until(p):

   The result of repeatedly applying f until p holds.
      The initial seed value is x.
   def go(f, x):
       v = x
       while not p(v):
           v = f(v)
       return v
   return lambda f: lambda x: go(f, x)


if __name__ == '__main__':

   main()</lang>
Output:
From nested list to flattened list:


[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []] -> [1, 2, 3, 4, 5, 6, 7, 8]

Q

Translation of: K

We repeatedly apply raze until the return value converges to a fixed value. <lang q>(raze/) ((1); 2; ((3;4); 5); ((())); (((6))); 7; 8; ())</lang>

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5

<lang QBasic>sString$ = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]"

FOR siCount = 1 TO LEN(sString$)

   IF INSTR("[] ,", MID$(sString$, siCount, 1)) = 0 THEN
       sFlatter$ = sFlatter$ + sComma$ + MID$(sString$, siCount, 1)
       sComma$ = ", "
   END IF

NEXT siCount

PRINT "["; sFlatter$; "]" END</lang>

Quackery

<lang Quackery>forward is flatten

[ [] swap

 witheach
   [ dup nest?
     if flatten
     join ] ]   resolves flatten ( [ --> [ )</lang>

Output: <lang Quackery>/O> ' [ [ 1 ] 2 [ [ 3 4 ] 5 ] [ [ [ ] ] ] [ [ [ 6 ] ] ] 7 8 [ ] ] flatten ...

Stack: [ 1 2 3 4 5 6 7 8 ]</lang>

R

<lang R>x <- list(list(1), 2, list(list(3, 4), 5), list(list(list())), list(list(list(6))), 7, 8, list())

unlist(x)</lang>

Racket

Racket has a built-in flatten function: <lang Racket>

  1. lang racket

(flatten '(1 (2 (3 4 5) (6 7)) 8 9)) </lang>

Output:
'(1 2 3 4 5 6 7 8 9)

or, writing it explicitly with the same result: <lang Racket>

  1. lang racket

(define (flatten l)

 (cond [(empty? l)      null]
       [(not (list? l)) (list l)]
       [else            (append (flatten (first l)) (flatten (rest l)))]))

(flatten '(1 (2 (3 4 5) (6 7)) 8 9)) </lang>

Raku

(formerly Perl 6)

Works with: Rakudo Star version 2018.03

<lang perl6>my @l = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []];

say .perl given gather @l.deepmap(*.take); # lazy recursive version

  1. Another way to do it is with a recursive function (here actually a Block calling itself with the &?BLOCK dynamic variable):

say { |(@$_ > 1 ?? map(&?BLOCK, @$_) !! $_) }(@l)</lang>

REBOL

<lang rebol> flatten: func [

   "Flatten the block in place."
   block [any-block!]

][

   parse block [
       any [block: any-block! (change/part block first block 1) :block | skip]
   ]
   head block

] </lang>

Sample:

>> flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
== [1 2 3 4 5 6 7 8]

Red

<lang Red> flatten: function [

   "Flatten the block"
   block [any-block!]

][

   load form block

]

red>> flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] == [1 2 3 4 5 6 7 8]

flatten a list to a string

>> blk: [1 2 ["test"] "a" "bb" 3 4 [[[99]]]] >> form blk == "1 2 test a bb 3 4 99"</lang>

REXX

Translation of: PL/I

<lang rexx>/*REXX program (translated from PL/I) flattens a list (the data need not be numeric).*/ list= '[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]' /*the list to be flattened. */ say list /*display the original list. */

c= ','                                                  /*define a literal  (1 comma). */

cc= ',,' /* " " " (2 commas).*/ list= translate(list, , "[]") /*translate brackets to blanks.*/ list= space(list, 0) /*Converts spaces to nulls. */

                     do  while index(list, cc) > 0      /*any double commas ?          */
                     list= changestr(cc, list, c)       /*convert  ,,  to single comma.*/
                     end   /*while*/

list= strip(list, 'T', c) /*strip the last trailing comma*/ list = '['list"]" /*repackage the list. */ say list /*display the flattened list. */</lang>

output:
[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]
[1,2,3,4,5,6,7,8]

Ring

<lang ring> aString = "[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]" bString = "" cString = "" for n=1 to len(aString)

   if ascii(aString[n]) >= 48 and  ascii(aString[n]) <= 57
      bString = bString + ", " + aString[n]
   ok

next cString = substr(bString,3,Len(bString)-2) cString = '"' + cString + '"' see cString + nl </lang>

"1, 2, 3, 4, 5, 6, 7, 8"

Ruby

flatten is a built-in method of Arrays <lang ruby>flat = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []].flatten p flat # => [1, 2, 3, 4, 5, 6, 7, 8]</lang> The flatten method takes an optional argument, which dedicates the amount of levels to be flattened. <lang ruby>p flatten_once = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []].flatten(1)

  1. => [1, 2, [3, 4], 5, [[]], 6, 7, 8]

</lang>

Run BASIC

This example is incorrect. Please fix the code and remove this message.

Details: The task is not in string translation but in list translation.

<lang runbasic>n$ = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]" for i = 1 to len(n$)

if instr("[] ,",mid$(n$,i,1)) = 0 then 
 flatten$ = flatten$ + c$ + mid$(n$,i,1)
 c$ = ","
end if

next i print "[";flatten$;"]"</lang>

Output:
[1,2,3,4,5,6,7,8]

Rust

First we have to create a type that supports arbitrary nesting: <lang rust>use std::{vec, mem, iter};

enum List<T> {

   Node(Vec<List<T>>),
   Leaf(T),

}

impl<T> IntoIterator for List<T> {

   type Item = List<T>;
   type IntoIter = ListIter<T>;
   fn into_iter(self) -> Self::IntoIter {
       match self {
           List::Node(vec) => ListIter::NodeIter(vec.into_iter()),
           leaf @ List::Leaf(_) => ListIter::LeafIter(iter::once(leaf)),
       }
   }

}

enum ListIter<T> {

   NodeIter(vec::IntoIter<List<T>>),
   LeafIter(iter::Once<List<T>>),

}

impl<T> ListIter<T> {

   fn flatten(self) -> Flatten<T> {
       Flatten {
           stack: Vec::new(),
           curr: self,
       }
   }

}

impl<T> Iterator for ListIter<T> {

   type Item = List<T>;
   fn next(&mut self) -> Option<Self::Item> {
       match *self {
           ListIter::NodeIter(ref mut v_iter) => v_iter.next(),
           ListIter::LeafIter(ref mut o_iter) => o_iter.next(),
       }
   }

}

struct Flatten<T> {

   stack: Vec<ListIter<T>>,
   curr: ListIter<T>,

}

// Flatten code is a little messy since we are shoehorning recursion into an Iterator impl<T> Iterator for Flatten<T> {

   type Item = T;
   fn next(&mut self) -> Option<Self::Item> {
       loop {
           match self.curr.next() {
               Some(list) => {
                   match list {
                       node @ List::Node(_) => {
                           self.stack.push(node.into_iter());
                           let len = self.stack.len();
                           mem::swap(&mut self.stack[len - 1], &mut self.curr);
                       }
                       List::Leaf(item) => return Some(item),
                   }
               }
               None => {
                   if let Some(next) = self.stack.pop() {
                       self.curr = next;
                   } else {
                       return None;
                   }
               }
           }
       }
   }

}

use List::*; fn main() {

   let list = Node(vec![Node(vec![Leaf(1)]),
                        Leaf(2),
                        Node(vec![Node(vec![Leaf(3), Leaf(4)]), Leaf(5)]),
                        Node(vec![Node(vec![Node(vec![])])]),
                        Node(vec![Node(vec![Node(vec![Leaf(6)])])]),
                        Leaf(7),
                        Leaf(8),
                        Node(vec![])]);
   for elem in list.into_iter().flatten() {
       print!("{} ", elem);
   }
   println!();

}</lang>

Output:
1 2 3 4 5 6 7 8

S-lang

<lang s-lang>define flatten ();

define flatten (list) {

   variable item,
       retval,
       val;
   if (typeof(list) != List_Type) {
       retval = list;
   } else {
       retval = {};
       foreach item (list) {
           foreach val (flatten(item)) {
               list_append(retval, val);
           }
       }
   }
   return retval;

}</lang>

Sample:

slsh> variable data = {{1}, 2, {{3,4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}},
           result = flatten(data);                                    
slsh> print(result);              
{
1
2
3
4
5
6
7
8
}

Scala

<lang scala>def flatList(l: List[_]): List[Any] = l match {

 case Nil => Nil
 case (head: List[_]) :: tail => flatList(head) ::: flatList(tail)
 case head :: tail => head :: flatList(tail)

}</lang>

Sample:

scala> List(List(1), 2, List(List(3, 4), 5), List(List(List())), List(List(List(6))), 7, 8, List())
res10: List[Any] = List(List(1), 2, List(List(3, 4), 5), List(List(List())), List(List(List(6))), 7, 8, List())

scala> flatList(res10)
res12: List[Any] = List(1, 2, 3, 4, 5, 6, 7, 8)

Scheme

<lang scheme>> (define (flatten x)

   (cond ((null? x) '())
         ((not (pair? x)) (list x))
         (else (append (flatten (car x))
                       (flatten (cdr x))))))

> (flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())) (1 2 3 4 5 6 7 8)</lang>

Shen

<lang Shen> (define flatten [] -> [] [X|Y] -> (append (flatten X) (flatten Y)) X -> [X])

(flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]) </lang>

Output:
[1 2 3 4 5 6 7 8]

Sidef

<lang ruby>func flatten(a) {

   var flat = []
   a.each { |item|
       flat += (item.kind_of(Array) ? flatten(item) : [item])
   }
   return flat

}

var arr = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] say flatten(arr) # used-defined function say arr.flatten # built-in Array method</lang>

Slate

<lang slate>s@(Sequence traits) flatten [

 [| :out | s flattenOn: out] writingAs: s

].

s@(Sequence traits) flattenOn: w@(WriteStream traits) [

 s do: [| :value |
   (value is: s)
     ifTrue: [value flattenOn: w]
     ifFalse: [w nextPut: value]].

].</lang>

Smalltalk

Works with: GNU Smalltalk

<lang smalltalk>OrderedCollection extend [

 flatten [ |f|
   f := OrderedCollection new.
   self do: [ :i |
     i isNumber
       ifTrue: [ f add: i ]
       ifFalse: [ |t|
         t := (OrderedCollection withAll: i) flatten.
         f addAll: t
       ]
   ].
   ^ f
 ]

].


|list| list := OrderedCollection

         withAll: { {1} . 2 . { {3 . 4} . 5 } .
                    {{{}}} . {{{6}}} . 7 . 8 . {} }.

(list flatten) printNl.</lang>

Here is a non-OOP (but functional) version, which uses a block-closure as function (showing higher order features of Smalltalk):

<lang smalltalk> flatDo :=

   [:element :action |
       element isCollection ifTrue:[
           element do:[:el | flatDo value:el value:action]
       ] ifFalse:[
           action value:element
       ].
   ].
   

collection := {

               {1} . 2 . { {3 . 4} . 5 } .
               {{{}}} . {{{6}}} . 7 . 8 . {} 
             }.

newColl := OrderedCollection new. flatDo

   value:collection
   value:[:el | newColl add: el]</lang>

of course, many Smalltalk libraries already provide such functionality.

Works with: Smalltalk/X
Works with: Pharo

<lang smalltalk>collection flatDo:[:el | newColl add:el]</lang>

Standard ML

In Standard ML, list must be homogeneous, but nested lists can be implemented as a tree-like data structure using a datatype statement: <lang sml>datatype 'a nestedList = L of 'a (* leaf *) | N of 'a nestedList list (* node *) </lang> Flattening of this structure is similar to flatten trees: <lang sml>fun flatten (L x) = [x]

 | flatten (N xs) = List.concat (map flatten xs)</lang>
Output:
- flatten (N [ L 1, N [L 2, N []], L 3]);
val it = [1,2,3] : int list

Suneido

<lang suneido>ob = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] ob.Flatten()</lang>

Output:
#(1, 2, 3, 4, 5, 6, 7, 8)

SuperCollider

SuperCollider has the method "flat", which completely flattens nested lists, and the method "flatten(n)" to flatten a certain number of levels. <lang SuperCollider> a = [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]; a.flatten(1); // answers [ 1, 2, [ 3, 4 ], 5, [ [ ] ], [ [ 6 ] ], 7, 8 ] a.flat; // answers [ 1, 2, 3, 4, 5, 6, 7, 8 ] </lang>

Written as a function: <lang SuperCollider> ( f = { |x| var res = res ?? List.new; if(x.isSequenceableCollection) { x.do { |each| res.addAll(f.(each)) } } { res.add(x); }; res }; f.([[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]); )</lang>

Swift

Recursive

<lang swift>func list(s: Any...) -> [Any] {

 return s

}

func flatten<T>(s: [Any]) -> [T] {

 var r = [T]()
 for e in s {
   switch e {
   case let a as [Any]:
     r += flatten(a)
   case let x as T:
     r.append(x)
   default:
     assert(false, "value of wrong type")
   }
 }
 return r

}

let s = list(list(1),

 2,
 list(list(3, 4), 5),
 list(list(list())),
 list(list(list(6))),
 7,
 8,
 list()

) println(s) let result : [Int] = flatten(s) println(result)</lang>

Output:
[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
[1 2 3 4 5 6 7 8]

More functionally:

Works with: Swift version 1.2+

<lang swift>func list(s: Any...) -> [Any] {

 return s

}

func flatten<T>(s: [Any]) -> [T] {

 return s.flatMap {
   switch $0 {
   case let a as [Any]:
     return flatten(a)
   case let x as T:
     return [x]
   default:
     assert(false, "value of wrong type")
   }
 }

}

let s = list(list(1),

 2,
 list(list(3, 4), 5),
 list(list(list())),
 list(list(list(6))),
 7,
 8,
 list()

) println(s) let result : [Int] = flatten(s) println(result)</lang>

Output:
[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
[1 2 3 4 5 6 7 8]

Non-recursive

Works with: Swift version 2.0+

<lang swift>func list(s: Any...) -> [Any] {

   return s

}

func flatten<T>(array: [Any]) -> [T] {

   var result: [T] = []
   var workstack: [(array: [Any], lastIndex: Int)] = [(array, 0)]
   
   workstackLoop: while !workstack.isEmpty
   {
       for element in workstack.last!.array.suffixFrom(workstack.last!.lastIndex)
       {
           workstack[workstack.endIndex - 1].lastIndex++
           
           if let element = element as? [Any]
           {
               workstack.append((element, 0))
               
               continue workstackLoop
           }
           
           result.append(element as! T)
       }
       
       workstack.removeLast()
   }
   
   return result

}

let input = list(list(1),

   2,
   list(list(3, 4), 5),
   list(list(list())),
   list(list(list(6))),
   7,
   8,
   list()

)

print(input)

let result: [Int] = flatten(input)

print(result)</lang>

Output:
[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

Tailspin

<lang tailspin> templates flatten

 [ $ -> # ] !
 when <[]> do
   $... -> #
 otherwise
   $ !

end flatten

[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []] -> flatten -> !OUT::write </lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Tcl

<lang tcl>proc flatten list {

   for {set old {}} {$old ne $list} {} {
       set old $list
       set list [join $list]
   }
   return $list

}

puts [flatten {{1} 2 {{3 4} 5} {{{}}} {{{6}}} 7 8 {}}]

  1. ===> 1 2 3 4 5 6 7 8</lang>

Note that because lists are not syntactically distinct from strings, it is probably a mistake to use this procedure with real (especially non-numeric) data. Also note that there are no parentheses around the outside of the list when printed; this is just a feature of how Tcl regards lists, and the value is a proper list (it can be indexed into with lindex, iterated over with foreach, etc.)

Another implementation that's slightly more terse:

<lang tcl>proc flatten {data} {

   while { $data != [set data [join $data]] } { }
   return $data

} puts [flatten {{1} 2 {{3 4} 5} {{{}}} {{{6}}} 7 8 {}}]

  1. ===> 1 2 3 4 5 6 7 8</lang>

TI-89 BASIC

There is no nesting of lists or other data structures in TI-89 BASIC, short of using variable names as pointers.

Trith

<lang trith>[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] flatten</lang>

True BASIC

<lang qbasic>LET sstring$ = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]" FOR sicount = 1 TO LEN(sstring$)

   IF pos("[] ,",(sstring$)[sicount:sicount+1-1]) = 0 THEN
      LET sflatter$ = sflatter$ & scomma$ & (sstring$)[sicount:sicount+1-1]
      LET scomma$ = ", "
   END IF

NEXT sicount PRINT "["; sflatter$; "]" END</lang>

TXR

An important builtin. <lang txr>@(bind foo ((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())) @(bind bar foo) @(flatten bar)</lang>

Run:

$ txr -a 5 flatten.txr  # show variable bindings in array notation to depth 5
foo[0][0]="1"
foo[1]="2"
foo[2][0][0]="3"
foo[2][0][1]="4"
foo[2][1]="5"
foo[4][0][0][0]="6"
foo[5]="7"
foo[6]="8"
bar[0]="1"
bar[1]="2"
bar[2]="3"
bar[3]="4"
bar[4]="5"
bar[5]="6"
bar[6]="7"
bar[7]="8"

VBScript

Working on embedded arrays as that's about the closest we get to lists.

Implementation

<lang vb> class flattener dim separator

sub class_initialize separator = "," end sub

private function makeflat( a ) dim i dim res for i = lbound( a ) to ubound( a ) if isarray( a( i ) ) then res = res & makeflat( a( i ) ) else res = res & a( i ) & separator end if next makeflat = res end function

public function flatten( a ) dim res res = makeflat( a ) res = left( res, len( res ) - len(separator)) res = split( res, separator ) flatten = res end function

public property let itemSeparator( c ) separator = c end property end class </lang>

Invocation

<lang vb> dim flat set flat = new flattener flat.itemSeparator = "~" wscript.echo join( flat.flatten( array( array( 1 ),2,array(array(3,4),5),array(array(array())),array(array(array(6))),7,8,array())), "!") </lang>

Output:
1!2!3!4!5!6!7!8
Alternative (classless) Version
Works with: Windows Script Host version *

<lang VBScript> ' Flatten the example array... a = FlattenArray(Array(Array(1), 2, Array(Array(3,4), 5), Array(Array(Array())), Array(Array(Array(6))), 7, 8, Array()))

' Print the list, comma-separated... WScript.Echo Join(a, ",")

Function FlattenArray(a) If IsArray(a) Then DoFlatten a, FlattenArray: FlattenArray = Split(Trim(FlattenArray)) End Function

Sub DoFlatten(a, s) For i = 0 To UBound(a) If IsArray(a(i)) Then DoFlatten a(i), s Else s = s & a(i) & " " Next End Sub </lang>

Wart

Here's how Wart implements flatten: <lang python>def (flatten seq acc)

 if no.seq
      acc
    ~list?.seq
      (cons seq acc)
    :else
      (flatten car.seq (flatten cdr.seq acc))</lang>
Output:
(flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ()))
=> (1 2 3 4 5 6 7 8)

WDTE

<lang WDTE>let a => import 'arrays'; let s => import 'stream';

let flatten array =>

 a.stream array
 -> s.flatMap (@ f v => v {
     reflect 'Array' => a.stream v -> s.flatMap f;
   })
 -> s.collect
 ;</lang>

Usage: <lang WDTE>flatten [[1]; 2; [[3; 4]; 5]; [[[]]]; [[[6]]]; 7; 8; []] -- io.writeln io.stdout;</lang>

Output:
[1; 2; 3; 4; 5; 6; 7; 8]

Wren

Library: Wren-seq

A method already exists for this operation in the above module. <lang ecmascript>import "/seq" for Lst

var a = [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []] System.print(Lst.flatten(a))</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]


XBasic

Works with: Windows XBasic

<lang xbasic>PROGRAM "Flatten a list"

DECLARE FUNCTION Entry ()

FUNCTION Entry ()

 n$ = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]"
 FOR i = 1 TO LEN(n$)
   IF INSTR("[] ,",MID$(n$,i,1)) = 0 THEN
     flatten$ = flatten$ + c$ + MID$(n$,i,1)
     c$ = ", "
   END IF
 NEXT i
 PRINT "[";flatten$;"]"

END FUNCTION

END PROGRAM</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Yabasic

Translation of: FreeBASIC

<lang Yabasic>sString$ = "[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]"

For siCount = 1 To Len(sString$) If Instr("[] ,", Mid$(sString$, siCount, 1)) = 0 Then sFlatter$ = sFlatter$ + sComma$ + Mid$(sString$, siCount, 1) sComma$ = ", " End If Next siCount

Print "[", sFlatter$, "]" End</lang>

Output:
Igual que la entrada de FreeBASIC.


zkl

<lang zkl>fcn flatten(list){ list.pump(List,

   fcn(i){ if(List.isType(i)) return(Void.Recurse,i,self.fcn); i}) }

flatten(L(L(1), L(2), L(L(3,4), 5), L(L(L())), L(L(L(6))), 7, 8, L())) //-->L(1,2,3,4,5,6,7,8)</lang> This works by recursively writing the contents of lists to a new list. If a list is recursive or cyclic, it will blow the stack and throw an exception.

ZX Spectrum Basic

This example is incorrect. Please fix the code and remove this message.

Details: The task is not in string translation but in list translation.

<lang zxbasic>10 LET f$="[" 20 LET n$="[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8 []]" 30 FOR i=2 TO (LEN n$)-1 40 IF n$(i)>"/" AND n$(i)<":" THEN LET f$=f$+n$(i): GO TO 60 50 IF n$(i)="," AND f$(LEN f$)<>"," THEN LET f$=f$+"," 60 NEXT i 70 LET f$=f$+"]": PRINT f$</lang>