CloudFlare suffered a massive security issue affecting all of its customers, including Rosetta Code. All passwords not changed since February 19th 2017 have been expired, and session cookie longevity will be reduced until late March.--Michael Mol (talk) 05:15, 25 February 2017 (UTC)

Doubly-linked list/Definition

From Rosetta Code
Task
Doubly-linked list/Definition
You are encouraged to solve this task according to the task description, using any language you may know.

Define the data structure for a complete Doubly Linked List.

  • The structure should support adding elements to the head, tail and middle of the list.
  • The structure should not allow circular loops


See also



Ada[edit]

Works with: Ada 2005

Examples already in other doubly-linked list tasks: see Doubly-linked list/Element insertion#Ada and Doubly-linked list/Traversal#Ada.

Ada 2005 defines doubly-linked lists in A.18.3 The Package Containers.Doubly_Linked_Lists.

ALGOL 68[edit]

Translation of: C
Works with: ALGOL 68 version Revision 1 - one extension to language used - PRAGMA READ - a non standard feature similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.7
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386
File: prelude/Doubly-linked_list_Link.a68
# -*- coding: utf-8 -*- #
COMMENT REQUIRES:
MODE VALUE = ~;
# For example: #
MODE VALUE = UNION(INT, REAL, COMPL)
END COMMENT
 
MODE LINKNEW = STRUCT (
LINK next, prev,
VALUE value
);
 
MODE LINK = REF LINKNEW;
 
SKIP
File: prelude/Doubly-linked_list_Operator.a68
# -*- coding: utf-8 -*- #
MODE LISTNEW = LINKNEW;
MODE LIST = REF LISTNEW;
 
OP LISTINIT = (LIST self)LIST: (
self := (self, self, ~);
self
);
 
OP ISEMPTY = (LIST self)BOOL:
(LIST(prev OF self) :=: LIST(self)) AND (LIST(self) :=: LIST(next OF self));
 
OP HEAD = (LIST self)LINK: next OF self;
 
OP TAIL = (LIST self)LINK: prev OF self;
 
# insert after #
OP +:= = (LINK cursor, LINK link)LINK: (
next OF link := next OF cursor;
prev OF link := cursor;
next OF cursor := link;
prev OF next OF link := link;
link
);
 
# insert before #
OP +=: = (LINK link, LINK cursor)LINK: prev OF cursor +:= link;
 
# delete current and step forward #
OP -:= = (LIST ignore, LINK link)LINK: (
next OF prev OF link := next OF link;
prev OF next OF link := prev OF link;
next OF link := prev OF link := NIL; # garbage collection hint #
link
);
 
# delete current and step backward #
PRIO -=: = 1;
OP -=: = (LIST link, LIST ignore)LINK: (
ignore -:= link; prev OF link
);
 
PRIO ISIN = 1; # low priority #
 
OP ISIN = (LINK link, LIST self)BOOL:
link ISNT LINK(self);
 
SKIP
File: test/Doubly-linked_list_Operator_Usage.a68
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
MODE VALUE = STRING; # user defined data type #
PR READ "prelude/Doubly-linked_list_Link.a68" PR;
PR READ "prelude/Doubly-linked_list_Operator.a68" PR;
 
main: (
 
[]VALUE sample = ("Was", "it", "a", "cat", "I", "saw");
LIST example list := LISTINIT HEAP LISTNEW;
LINK this;
 
# Add some data to a list #
FOR i TO UPB sample DO
this := HEAP LINKNEW;
value OF this := sample[i];
TAIL example list +:= this
OD;
 
# Iterate throught the list forward #
this := HEAD example list;
print("Iterate forward: ");
WHILE this ISIN example list DO
print((value OF this, " "));
this := next OF this
OD;
print(new line);
 
# Iterate throught the list backward #
this := TAIL example list;
print("Iterate backward: ");
WHILE this ISIN example list DO
print((value OF this, " "));
this := prev OF this
OD;
print(new line);
 
# Finally empty the list #
print("Empty from tail: ");
WHILE NOT ISEMPTY example list DO
this := (example list -:= TAIL example list);
print((value OF this, " "))
OD;
print(new line)
)
Output:
Iterate forward: Was it a cat I saw 
Iterate backward: saw I cat a it Was 
Empty from tail: saw I cat a it Was 

AutoHotkey[edit]

see Doubly-linked list/AutoHotkey

C[edit]

/* double linked list */
#include <stdio.h>
#include <stdlib.h>
 
struct List {
struct MNode *head;
struct MNode *tail;
struct MNode *tail_pred;
};
 
struct MNode {
struct MNode *succ;
struct MNode *pred;
};
 
typedef struct MNode *NODE;
typedef struct List *LIST;
 
/*
** LIST l = newList()
** create (alloc space for) and initialize a list
*/

LIST newList(void);
 
/*
** int isEmpty(LIST l)
** test if a list is empty
*/

int isEmpty(LIST);
 
/*
** NODE n = getTail(LIST l)
** get the tail node of the list, without removing it
*/

NODE getTail(LIST);
 
/*
** NODE n = getHead(LIST l)
** get the head node of the list, without removing it
*/

NODE getHead(LIST);
 
/*
** NODE rn = addTail(LIST l, NODE n)
** add the node n to the tail of the list l, and return it (rn==n)
*/

NODE addTail(LIST, NODE);
 
/*
** NODE rn = addHead(LIST l, NODE n)
** add the node n to the head of the list l, and return it (rn==n)
*/

NODE addHead(LIST, NODE);
 
/*
** NODE n = remHead(LIST l)
** remove the head node of the list and return it
*/

NODE remHead(LIST);
 
/*
** NODE n = remTail(LIST l)
** remove the tail node of the list and return it
*/

NODE remTail(LIST);
 
/*
** NODE rn = insertAfter(LIST l, NODE r, NODE n)
** insert the node n after the node r, in the list l; return n (rn==n)
*/

NODE insertAfter(LIST, NODE, NODE);
 
/*
** NODE rn = removeNode(LIST l, NODE n)
** remove the node n (that must be in the list l) from the list and return it (rn==n)
*/

NODE removeNode(LIST, NODE);
 
 
LIST newList(void)
{
LIST tl = malloc(sizeof(struct List));
if ( tl != NULL )
{
tl->tail_pred = (NODE)&tl->head;
tl->tail = NULL;
tl->head = (NODE)&tl->tail;
return tl;
}
return NULL;
}
 
int isEmpty(LIST l)
{
return (l->head->succ == 0);
}
 
NODE getHead(LIST l)
{
return l->head;
}
 
NODE getTail(LIST l)
{
return l->tail_pred;
}
 
 
NODE addTail(LIST l, NODE n)
{
n->succ = (NODE)&l->tail;
n->pred = l->tail_pred;
l->tail_pred->succ = n;
l->tail_pred = n;
return n;
}
 
NODE addHead(LIST l, NODE n)
{
n->succ = l->head;
n->pred = (NODE)&l->head;
l->head->pred = n;
l->head = n;
return n;
}
 
NODE remHead(LIST l)
{
NODE h;
h = l->head;
l->head = l->head->succ;
l->head->pred = (NODE)&l->head;
return h;
}
 
NODE remTail(LIST l)
{
NODE t;
t = l->tail_pred;
l->tail_pred = l->tail_pred->pred;
l->tail_pred->succ = (NODE)&l->tail;
return t;
}
 
NODE insertAfter(LIST l, NODE r, NODE n)
{
n->pred = r; n->succ = r->succ;
n->succ->pred = n; r->succ = n;
return n;
}
 
NODE removeNode(LIST l, NODE n)
{
n->pred->succ = n->succ;
n->succ->pred = n->pred;
return n;
}

Simple test:

/* basic test */
 
struct IntNode {
struct MNode node;
int data;
};
 
int main()
{
int i;
LIST lista;
struct IntNode *m;
NODE n;
 
lista = newList();
if ( lista != NULL )
{
for(i=0; i < 5; i++)
{
m = malloc(sizeof(struct IntNode));
if ( m != NULL )
{
m->data = rand()%64;
addTail(lista, (NODE)m);
}
}
while( !isEmpty(lista) )
{
m = (struct IntNode *)remTail(lista);
printf("%d\n", m->data);
free(m);
}
free(lista);
}
}

C++[edit]

Works with: C++11
#include <iostream>
#include <list>
 
int main ()
{
std::list<int> numbers {1, 5, 7, 0, 3, 2};
numbers.insert(numbers.begin(), 9); //Insert at the beginning
numbers.insert(numbers.end(), 4); //Insert at the end
auto it = std::next(numbers.begin(), numbers.size() / 2); //Iterator to the middle of the list
numbers.insert(it, 6); //Insert in the middle
for(const auto& i: numbers)
std::cout << i << ' ';
std::cout << '\n';
}
Output:
9 1 5 7 6 0 3 2 4 

C#[edit]

 
using System.Collections.Generic;
namespace Doubly_Linked_List
{
class Program
{
static void Main(string[] args)
{
LinkedList<string> list = new LinkedList<string>();
list.AddFirst(".AddFirst() adds at the head.");
list.AddLast(".AddLast() adds at the tail.");
LinkedListNode<string> head = list.Find(".AddFirst() adds at the head.");
list.AddAfter(head, ".AddAfter() adds after a specified node.");
LinkedListNode<string> tail = list.Find(".AddLast() adds at the tail.");
list.AddBefore(tail, "Betcha can't guess what .AddBefore() does.");
 
System.Console.WriteLine("Forward:");
foreach (string nodeValue in list) { System.Console.WriteLine(nodeValue); }
 
System.Console.WriteLine("\nBackward:");
LinkedListNode<string> current = tail;
while (current != null)
{
System.Console.WriteLine(current.Value);
current = current.Previous;
}
}
}
}
 
/* Output:
Forward:
.AddFirst() adds at the head.
.AddAfter() adds after a specified node.
Betcha can't guess what .AddBefore() does.
.AddLast() adds at the tail.
 
Backward:
.AddLast() adds at the tail.
Betcha can't guess what .AddBefore() does.
.AddAfter() adds after a specified node.
.AddFirst() adds at the head.
*/

 

Clojure[edit]

(ns double-list)
 
(defprotocol PDoubleList
(get-head [this])
(add-head [this x])
(get-tail [this])
(add-tail [this x])
(remove-node [this node])
(add-before [this node x])
(add-after [this node x])
(get-nth [this n]))
 
(defrecord Node [prev next data])
 
(defn make-node
"Create an internal or finalized node"
([prev next data] (Node. prev next data))
([m key] (when-let [node (get m key)]
(assoc node :m m :key key))))
 
(defn get-next [node] (make-node (:m node) (:next node)))
(defn get-prev [node] (make-node (:m node) (:prev node)))
 
(defn- seq* [m start next]
(seq
(for [x (iterate #(get m (next %)) (get m start))
 :while x]
(:data x))))
 
(defmacro when->
([x pred form] `(let [x# ~x] (if ~pred (-> x# ~form) x#)))
([x pred form & more] `(when-> (when-> ~x ~pred ~form) [email protected])))
 
(declare get-nth-key)
 
(deftype DoubleList [m head tail]
Object
(equals [this x]
(and (instance? DoubleList x)
(= m (.m ^DoubleList x))))
(hashCode [this] (hash (or this ())))
clojure.lang.Sequential
clojure.lang.Counted
(count [_] (count m))
clojure.lang.Seqable
(seq [_] (seq* m head :next))
clojure.lang.Reversible
(rseq [_] (seq* m tail :prev))
clojure.lang.IPersistentCollection
(empty [_] (DoubleList. (empty m) nil nil))
(equiv [this x]
(and (sequential? x)
(= (seq x) (seq this))))
(cons [this x] (.add-tail this x))
PDoubleList
(get-head [_] (make-node m head))
(add-head [this x]
(let [new-key (Object.)
m (when-> (assoc m new-key (make-node nil head x))
head (assoc-in [head :prev] new-key))
tail (if tail tail new-key)]
(DoubleList. m new-key tail)))
(get-tail [_] (make-node m tail))
(add-tail [this x]
(if-let [tail (.get-tail this)]
(.add-after this tail x)
(.add-head this x)))
(remove-node [this node]
(if (get m (:key node))
(let [{:keys [prev next key]} node
head (if prev head next)
tail (if next tail prev)
m (when-> (dissoc m key)
prev (assoc-in [prev :next] next)
next (assoc-in [next :prev] prev))]
(DoubleList. m head tail))
this))
(add-after [this node x]
(if (get m (:key node))
(let [{:keys [prev next key]} node
new-key (Object.)
m (when-> (-> (assoc m new-key (make-node key next x))
(assoc-in , [key :next] new-key))
next (assoc-in [next :prev] new-key))
tail (if next tail new-key)]
(DoubleList. m head tail))
this))
(add-before [this node x]
(if (:prev node)
(.add-after this (get-prev node) x)
(.add-head this x)))
(get-nth [this n] (make-node m (get-nth-key this n))))
 
(defn get-nth-key [^DoubleList this n]
(if (< -1 n (.count this))
(let [[start next n] (if (< n (/ (.count this) 2))
[(.head this) :next n]
[(.tail this) :prev (- (.count this) n 1)])]
(nth (iterate #(get-in (.m this) [% next]) start) n))
(throw (IndexOutOfBoundsException.))))
 
(defn double-list
([] (DoubleList. nil nil nil))
([coll] (into (double-list) coll)))
 
(defmethod print-method DoubleList [dl w]
(print-method (interpose '<-> (seq dl)) w))
 
(defmethod print-method Node [n w]
(print-method (symbol "#:double_list.Node") w)
(print-method (into {} (dissoc n :m)) w))

Usage:

(use 'double-list)
;=> nil
(def dl (double-list (range 10)))
;=> #'user/dl
dl
;=> (0 <-> 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9)
(remove-node dl (get-tail dl))
;=> (0 <-> 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8)
dl
;=> (0 <-> 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9)
((juxt seq rseq) dl)
;=> [(0 1 2 3 4 5 6 7 8 9) (9 8 7 6 5 4 3 2 1 0)]
(remove-node dl (get-nth dl 5))
;=> (0 <-> 1 <-> 2 <-> 3 <-> 4 <-> 6 <-> 7 <-> 8 <-> 9)
(add-after *1 (get-nth *1 4) 10)
;=> (0 <-> 1 <-> 2 <-> 3 <-> 4 <-> 10 <-> 6 <-> 7 <-> 8 <-> 9)
(get-head *1)
;=> #:double_list.Node{:prev nil, :next #<Object ...>, :data 0, :key <Object ...>}
(get-next *1)
;=> #:double_list.Node{:prev #<Object ...>, :next #<Object ...>, :data 1, :key #<Object ...>}
(get-prev *1)
;=> #:double_list.Node{:prev #<Object ...>, :next #<Object ...>, :data 1, :key #<Object ...>}

Common Lisp[edit]

(defstruct dlist head tail)
(defstruct dlink content prev next)
 
(defun insert-between (dlist before after data)
"Insert a fresh link containing DATA after existing link BEFORE if not nil and before existing link AFTER if not nil"
(let ((new-link (make-dlink :content data :prev before :next after)))
(if (null before)
(setf (dlist-head dlist) new-link)
(setf (dlink-next before) new-link))
(if (null after)
(setf (dlist-tail dlist) new-link)
(setf (dlink-prev after) new-link))
new-link))
 
(defun insert-before (dlist dlink data)
"Insert a fresh link containing DATA before existing link DLINK"
(insert-between dlist (dlink-prev dlink) dlink data))
 
(defun insert-after (dlist dlink data)
"Insert a fresh link containing DATA after existing link DLINK"
(insert-between dlist dlink (dlink-next dlink) data))
 
(defun insert-head (dlist data)
"Insert a fresh link containing DATA at the head of DLIST"
(insert-between dlist nil (dlist-head dlist) data))
 
(defun insert-tail (dlist data)
"Insert a fresh link containing DATA at the tail of DLIST"
(insert-between dlist (dlist-tail dlist) nil data))
 
(defun remove-link (dlist dlink)
"Remove link DLINK from DLIST and return its content"
(let ((before (dlink-prev dlink))
(after (dlink-next dlink)))
(if (null before)
(setf (dlist-head dlist) after)
(setf (dlink-next before) after))
(if (null after)
(setf (dlist-tail dlist) before)
(setf (dlink-prev after) before))))
 
(defun dlist-elements (dlist)
"Returns the elements of DLIST as a list"
(labels ((extract-values (dlink acc)
(if (null dlink)
acc
(extract-values (dlink-next dlink) (cons (dlink-content dlink) acc)))))
(reverse (extract-values (dlist-head dlist) nil))))

The following produces (1 2 3 4).

(let ((dlist (make-dlist)))
(insert-head dlist 1)
(insert-tail dlist 4)
(insert-after dlist (dlist-head dlist) 2)
(let* ((next-to-last (insert-before dlist (dlist-tail dlist) 3))
(bad-link (insert-before dlist next-to-last 42)))
(remove-link dlist bad-link))
(print (dlist-elements dlist)))

D[edit]

import std.stdio;
 
class LinkedList(T)
{
Node!(T) head, tail;
 
/** Iterate in the forward direction. */
int opApply (int delegate(uint, Node!(T)) dg)
{
uint i = 0;
auto link = head;
int result = 0;
while (link)
{
result = dg (i, link);
if (result) return result;
i++;
link = link.next;
}
return result;
}
 
static LinkedList!(T) fromArray (T[] array)
{
Node!(T) link = null;
auto head = link;
auto self = new LinkedList!(T);
foreach (elem; array)
{
link = new Node!(T)(null, link, elem, self);
if (!head)
head = link;
}
return self;
}
}
 
class Node(T)
{
Node!(T) next;
Node!(T) previous;
LinkedList!(T) parent;
T value;
 
this (Node!(T) next, Node!(T) previous, T value, LinkedList!(T) parent)
in
{
assert (parent !is null);
}
body
{
this.next = next;
if (next)
next.previous = this;
if (previous)
previous.next = this;
this.previous = previous;
this.value = value;
this.parent = parent;
 
if (parent.head == next)
parent.head = this;
if (parent.tail == previous)
parent.tail = this;
}
 
/** Insert an element after this one. */
void insertAfter (T value)
{
new Node!(T)(next, this, value, parent);
}
 
/** Insert an element before this one. */
void insertBefore (T value)
{
new Node!(T)(this, previous, value, parent);
}
 
/** Remove the current node from the list. */
void remove ()
{
if (next)
next.previous = previous;
if (previous)
previous.next = next;
if (parent.tail == this)
parent.tail = previous;
if (parent.head == this)
parent.head = next;
}
}
 
void main ()
{
string[] sample = ["was", "it", "a", "cat", "I", "saw"];
auto list = LinkedList!string.fromArray (sample);
for (auto elem = list.head; elem; elem = elem.next)
{
writef ("%s ", elem.value);
if (elem.value == "it") elem.insertAfter("really");
}
writeln;
for (auto elem = list.tail; elem; elem = elem.previous)
{
writef ("%s ", elem.value);
}
writeln;
}
Output:
Iterate forward: Was it really a cat I saw 
Iterate backward: saw I cat a really it Was 
Empty from tail: saw I cat a really it Was 

E[edit]

def makeDLList() {
def firstINode
def lastINode
 
def makeNode(var value, var prevI, var nextI) {
# To meet the requirement that the client cannot create a loop, the
# inter-node refs are protected: clients only get the external facet
# with invariant-preserving operations.
def iNode
 
def node { # external facet
 
to get() { return value }
to put(new) { value := new }
 
/** Return the value of the element of the list at the specified offset
from this element. */

to get(index :int) {
if (index > 0 && node.hasNext()) {
return nextI.node().get(index - 1)
} else if (index < 0 && node.hasPrev()) {
return prevI.node().get(index + 1)
} else if (index <=> 0) {
return value
} else {
throw("index out of range in dlList")
}
}
to hasPrev() {
return prevI != firstINode && prevI != null
}
to prev() {
if (!node.hasPrev()) {
throw("there is no previous node")
}
return prevI.node()
}
to hasNext() {
return nextI != lastINode && nextI != null
}
to next() {
if (!node.hasNext()) {
throw("there is no next node")
}
return nextI.node()
}
to remove() {
if (prevI == null || nextI == null) { return }
prevI.setNextI(nextI)
nextI.setPrevI(prevI)
prevI := null
nextI := null
}
to insertAfter(newValue) {
def newI := makeNode(newValue, iNode, nextI)
nextI.setPrevI(newI)
nextI := newI
}
to insertBefore(newValue) {
prevI.node().insertAfter(newValue)
}
}
 
bind iNode { # internal facet
to node() { return node }
to nextI() { return nextI }
to prevI() { return prevI }
to setNextI(new) { nextI := new }
to setPrevI(new) { prevI := new }
}
 
return iNode
} # end makeNode
 
bind firstINode := makeNode(null, Ref.broken("no first prev"), lastINode)
bind lastINode := makeNode(null, firstINode, Ref.broken("no last next"))
 
def dlList {
to __printOn(out) {
out.print("<")
var sep := ""
for x in dlList {
out.print(sep)
out.quote(x)
sep := ", "
}
out.print(">")
}
to iterate(f) {
var n := firstINode
while (n.node().hasNext()) {
n := n.nextI()
f(n.node(), n.node()[])
}
}
to atFirst() { return firstINode.nextI().node() }
to atLast() { return lastINode.prevI().node() }
to insertFirst(new) { return firstINode.node().insertAfter(new) }
to push(new) { return lastINode.node().insertBefore(new) }
 
/** Return the node which has the specified value */
to nodeOf(value) {
for node => v ? (v == value) in dlList { return node }
}
}
return dlList
}
? def list := makeDLList()
# value: <>
 
? list.push(1)
? list
# value: <1>
 
? list.push(10)
? list.push(100)
? list
# value: <1, 10, 100>
 
? list.atFirst().insertAfter(5)
? list
# value: <1, 5, 10, 100>
 
? list.insertFirst(0)
? list
# value: <0, 1, 5, 10, 100>
 
? list.atLast().prev().remove()
? list
# value: <0, 1, 5, 100>
 
? list.atLast()[] := 10
? list
# value: <0, 1, 5, 10>
 
? for x in 11..20 { list.push(x) }
? list
# value: <0, 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20>

Erlang[edit]

As with Singly-linked_list/Element_insertion a process is used to get mutability in Erlang's single assignment world.

 
-module( doubly_linked_list ).
 
-export( [append/2, foreach_next/2, foreach_previous/2, free/1, insert/3, new/1, task/0] ).
 
append( New, Start ) -> Start ! {append, New}.
 
foreach_next( Fun, Start ) -> Start ! {foreach_next, Fun}.
 
foreach_previous( Fun, Start ) -> Start ! {foreach_previous, Fun}.
 
free( Element ) -> Element ! {free}.
 
insert( New, After, Start ) -> Start ! {insert, New, After}.
 
new( Data ) -> erlang:spawn( fun() -> loop( Data, noprevious, nonext ) end ).
 
task() ->
A = new( a ),
B = new( b ),
append( B, A ),
C = new( c ),
insert( C, A, A ),
foreach_next( fun(Data) -> io:fwrite("foreach_next ~p~n", [Data]) end, A ),
timer:sleep( 100 ),
foreach_previous( fun(Data) -> io:fwrite("foreach_previous ~p~n", [Data]) end, B ).
 
 
 
loop( Data, Previous, Next ) ->
My_pid = erlang:self(),
receive
{append, New} ->
New_next = loop_append( New, Next, My_pid ),
loop( Data, Previous, New_next );
{foreach_next, Fun} ->
catch Fun( Data ),
loop_foreach_next( Fun, Next ),
loop( Data, Previous, Next );
{foreach_previous, Fun} ->
catch Fun( Data ),
loop_foreach_previous( Fun, Previous ),
loop( Data, Previous, Next );
{free} ->
ok;
{insert, New, My_pid} ->
New ! {previous, My_pid},
loop_append( Next, New, My_pid ),
loop( Data, Previous, New );
{insert, New, After} ->
Next ! {insert, New, After},
loop( Data, Previous, Next );
{previous, New_previous} ->
loop( Data, New_previous, Next )
end.
 
loop_append( New, nonext, My_pid ) ->
New ! {previous, My_pid},
New;
loop_append( New, Next, _My_pid ) ->
Next ! {append, New},
Next.
 
loop_foreach_next( _Fun, nonext ) -> ok;
loop_foreach_next( Fun, Next ) -> Next ! {foreach_next, Fun}.
 
loop_foreach_previous( _Fun, noprevious ) -> ok;
loop_foreach_previous( Fun, Next ) -> Next ! {foreach_previous, Fun}.
 

F#[edit]

type DListAux<'T> = {mutable prev: DListAux<'T> option; data: 'T; mutable next: DListAux<'T> option}
type DList<'T> = {mutable front: DListAux<'T> option; mutable back: DListAux<'T> option} //'
 
let empty() = {front=None; back=None}
 
let addFront dlist elt =
match dlist.front with
| None ->
let e = Some {prev=None; data=elt; next=None}
dlist.front <- e
dlist.back <- e
| Some e2 ->
let e1 = Some {prev=None; data=elt; next=Some e2}
e2.prev <- e1
dlist.front <- e1
 
let addBack dlist elt =
match dlist.back with
| None -> addFront dlist elt
| Some e2 ->
let e1 = Some {prev=Some e2; data=elt; next=None}
e2.next <- e1
dlist.back <- e1
 
let addAfter dlist link elt =
if link.next = dlist.back then addBack dlist elt else
let e = Some {prev=Some link; data=elt; next=link.next}
link.next <- e


Fortran[edit]

Tested with g95 and gfortran v. 4.6.

 
module dlist
implicit none
type node
type(node), pointer :: next => null()
type(node), pointer :: prev => null()
integer :: data
end type node
 
type dll
type(node), pointer :: head => null()
type(node), pointer :: tail => null()
integer :: num_nodes = 0
end type dll
 
public :: node, dll, append, prepend, insert, dump, reverse_dump, tidy
private :: init
 
contains
! Create a new doubly-linked list
elemental type(dll) function new_dll()
new_dll = dll(null(),null(),0)
return
end function new_dll
 
! Append an element to the end of the list
elemental subroutine append(dl2, value)
type(dll), intent(inout) :: dl2
integer, intent(in) :: value
 
type(node), pointer :: np
 
! If the list is empty
if (dl2%num_nodes == 0) then
call init(dl2, value)
return
end if
 
! Add new element to the end
dl2%num_nodes = dl2%num_nodes + 1
np => dl2%tail
allocate(dl2%tail)
dl2%tail%data = value
dl2%tail%prev => np
dl2%tail%prev%next => dl2%tail
end subroutine append
 
! Prepend an element to the beginning of the list
elemental subroutine prepend(dl2, value)
type(dll), intent(inout) :: dl2
integer, intent(in) :: value
 
type(node), pointer :: np
 
if (dl2%num_nodes == 0) then
call init(dl2, value)
return
end if
 
dl2%num_nodes = dl2%num_nodes + 1
np => dl2%head
allocate(dl2%head)
dl2%head%data = value
dl2%head%next => np
dl2%head%next%prev => dl2%head
end subroutine prepend
 
! Insert immediately before the given index
elemental subroutine insert(dl2, index, value)
type(dll), intent(inout) :: dl2
integer, intent(in) :: index
integer, intent(in) :: value
 
type(node), pointer :: element
type(node), pointer :: np1, np2
integer :: i
 
if (dl2%num_nodes == 0) then
call init(dl2, value)
return
end if
 
! If index is beyond the end then append
if (index > dl2%num_nodes) then
call append(dl2, value)
return
end if
 
! If index is less than 1 then prepend
if (index <= 1) then
call prepend(dl2, value)
return
end if
 
! Find the node at position 'index' counting from 1
np1 => dl2%head
do i=1, index-2
np1 => np1%next
end do
np2 => np1%next
 
! Create the new node
allocate(element)
element%data = value
 
! Connect it up
element%prev => np1
element%next => np2
np1%next => element
np2%prev => element
dl2%num_nodes = dl2%num_nodes + 1
end subroutine insert
 
subroutine dump(dl2)
type(dll), intent(in) :: dl2
type(node), pointer :: current
integer :: i
 
write(*,fmt='(a,i0,a)',advance='no') 'Doubly-linked list has ',dl2%num_nodes,' element - fwd = '
current => dl2%head
i = 1
write(*,fmt='(i0,a)',advance='no') current%data,', '
do
current => current%next
if (.not. associated(current)) then
exit
end if
i = i + 1
if (i == dl2%num_nodes) then
write(*,'(i0)') current%data
else
write(*,fmt='(i0,a)',advance='no') current%data,', '
end if
end do
end subroutine dump
 
subroutine reverse_dump(dl2)
type(dll), intent(in) :: dl2
type(node), pointer :: current
integer :: i
 
write(*,fmt='(a,i0,a)',advance='no') 'Doubly-linked list has ',dl2%num_nodes,' element - bwd = '
current => dl2%tail
write(*,fmt='(i0,a)',advance='no') current%data,', '
i = 1
do
current => current%prev
if (.not. associated(current)) then
exit
end if
i = i + 1
if (i == dl2%num_nodes) then
write(*,'(i0)') current%data
else
write(*,fmt='(i0,a)',advance='no') current%data,', '
end if
end do
end subroutine reverse_dump
 
! Deallocate all allocated memory
elemental subroutine tidy(dl2)
type(dll), intent(inout) :: dl2
type(node), pointer :: current, last
 
current => dl2%head
do
last => current
current => current%next
if (associated(last)) then
deallocate(last)
end if
if (associated(current, dl2%tail)) then
deallocate(current)
exit
end if
end do
end subroutine tidy
 
elemental subroutine init(dl2, value)
type(dll), intent(inout) :: dl2
integer, intent(in) :: value
allocate(dl2%head)
dl2%tail => dl2%head
dl2%tail%data = value
dl2%num_nodes = 1
return
end subroutine init
 
end module dlist
 
program dl
use dlist
implicit none
 
type(dll) :: mydll
 
mydll = new_dll()
call append(mydll, 5)
call append(mydll, 7)
call prepend(mydll, 3)
call prepend(mydll, 1)
call insert(mydll, 3, 4)
call dump(mydll)
 
call reverse_dump(mydll)
 
call tidy(mydll)
end program dl
 
Output:
Doubly-linked list has 5 element - fwd = 1, 3, 4, 5, 7
Doubly-linked list has 5 element - bwd = 7, 5, 4, 3, 1

Go[edit]

Go has nothing like an enforced invariant. Responsibility for preventing circular loops must be shared by all code that modifies the list. Given that, the following declaration enables code to do that efficiently.

type dlNode struct {
int
next, prev *dlNode
}
 
// Field 'members' allows loops to be prevented. All nodes
// inserted should be added to members. Code that operates
// on the list can check any pointer against members to
// find out if the pointer is already in the list.
type dlList struct {
members map[*dlNode]int
head, tail **dlNode
}

Or, just use the container/list package:

package main
 
import "fmt"
import "container/list"
 
func main() {
// Create a new list and put some values in it.
l := list.New()
e4 := l.PushBack(4)
e1 := l.PushFront(1)
l.InsertBefore(3, e4)
l.InsertAfter("two", e1)
 
// Iterate through list and print its contents.
for e := l.Front(); e != nil; e = e.Next() {
fmt.Println(e.Value)
}
}

Haskell[edit]

For an efficient implementation, see the Data.FDList module provided by liboleg. But before using doubly linked lists at all, see this discussion on Stack Overflow.

import qualified Data.Map as M
 
type NodeID = Maybe Rational
data Node a = Node
{vNode :: a,
pNode, nNode :: NodeID}
type DLList a = M.Map Rational (Node a)
 
empty = M.empty
 
singleton a = M.singleton 0 $ Node a Nothing Nothing
 
fcons :: a -> DLList a -> DLList a
fcons a list | M.null list = singleton a
| otherwise = M.insert newid new $
M.insert firstid changed list
where (firstid, Node firstval _ secondid) = M.findMin list
newid = firstid - 1
new = Node a Nothing (Just firstid)
changed = Node firstval (Just newid) secondid
 
rcons :: a -> DLList a -> DLList a
rcons a list | M.null list = singleton a
| otherwise = M.insert lastid changed $
M.insert newid new list
where (lastid, Node lastval penultimateid _) = M.findMax list
newid = lastid + 1
changed = Node lastval penultimateid (Just newid)
new = Node a (Just lastid) Nothing
 
mcons :: a -> Node a -> Node a -> DLList a -> DLList a
mcons a n1 n2 = M.insert n1id left .
M.insert midid mid . M.insert n2id right
where Node n1val farleftid (Just n2id) = n1
Node n2val (Just n1id) farrightid = n2
midid = (n1id + n2id) / 2 -- Hence the use of Rationals.
mid = Node a (Just n1id) (Just n2id)
left = Node n1val farleftid (Just midid)
right = Node n2val (Just midid) farrightid
 
firstNode :: DLList a -> Node a
firstNode = snd . M.findMin
 
lastNode :: DLList a -> Node a
lastNode = snd . M.findMax
 
nextNode :: DLList a -> Node a -> Maybe (Node a)
nextNode l n = nNode n >>= flip M.lookup l
 
prevNode :: DLList a -> Node a -> Maybe (Node a)
prevNode l n = pNode n >>= flip M.lookup l
 
fromList = foldr fcons empty
 
toList = map vNode . M.elems

An example of use:

main = putStrLn $ toList l
where l = mcons 'M' n1 n2 x
x = rcons 'Z' $ fcons 'a' $ fcons 'q' $ singleton 'w'
n1 = firstNode x
Just n2 = nextNode x n1

Icon and Unicon[edit]

Uses Unicon's classes.

The DoubleList is made from elements of DoubleLink. Doubly-Linked List (element)#Icon_and_Unicon, Doubly-Linked List (element insertion)#Icon_and_Unicon and Doubly-Linked List (traversal)#Icon_and_Unicon

 
class DoubleList (item)
 
method head ()
node := item
every (node := node.traverse_backwards ()) # move to start of list
return node
end
 
method tail ()
node := item
every (node := node.traverse_forwards ()) # move to end of list
return node
end
 
method insert_at_head (value)
head().insert_before (DoubleLink(value))
end
 
method insert_at_tail (value)
tail().insert_after (DoubleLink (value))
end
 
# insert a node for new_value after that for target_value,
# i.e. in the middle of the list
method insert_after (target_value, new_value)
node := head ()
every node := head().traverse_forwards () do
if (node.value = target_value)
then {
node.insert_after (DoubleLink (new_value))
break
}
end
 
# constructor initiates a list making a node from given value
initially (value)
self.item := DoubleLink (value)
end
 

An insert_before method was added to the DoubleLink class:

 
# insert given node before this one, losing its existing connections
method insert_before (node)
if (\prev_link) then prev_link.next_link := node
node.prev_link := prev_link
node.next_link := self
self.prev_link := node
end
 

To test the double-linked list:

 
procedure main ()
dlist := DoubleList (5)
every i := 4 to 1 by -1 do
dlist.insert_at_head (i)
every i := 6 to 10 do
dlist.insert_at_tail (i)
 
dlist.insert_after (3, 11)
 
every node := dlist.head().traverse_forwards () do
write (node.value)
end
 
Output:
1
2
3
11
4
5
6
7
8
9
10

J[edit]

Doubly linked lists are antithetical to J.

First, J already has a built in list data type which is heavily optimized, and micromanaging issues like list traversal bypasses all of that design and architecture.

Second, an implementation of "doubly linked" conflicts with the "once and only once" character of many good implementations. In a doubly linked list order must be specified redundantly and that redundancy creates maintenance costs which are justified only in rare cases.

So, first, here is a native J list:

  list=: 2 3 5 7 11

To implement a doubly linked list, one could create a list of successor indices and another list of predecessor indices.

First, let us define a different order for our list element, so we can easily show that our doubly linked list is logically distinct from the built in list. If we use "alphabeted order by names of numbers" we would have the list 11 5 7 3 2

  data=:11 5 7 3 2
3 is followed by 2
5 is followed by 7
7 is followed by 3
11 is followed by 5

and

2 is preceded by 3
3 is preceded by 7
5 is preceded by 11
7 is preceded by 5

To represent this in J, we can define additional lists with the successor index and predecessor index for each node:

  successors=:   _ 0 3 1 2
  predecessors=: 1 3 4 2 __

Note that the successor for the end of the list is _ and the successor for the beginning of the list is __

To check for loops, look for repeated indices in either of these ordering lists. To add an element to the doubly linked list, you would add an element to the data list, and then update the successor and predecessor list by appending to the end the index of the item designated as the successor/predecessor of the new item and replacing the previous holder of that value with the newly valid index.

Finally, note that we can remove elements from the doubly linked list without removing them from the data list. We might wish to chain removed elements together to facilitate re-use of their positions. If we want to do this, we will need a place to start:

  garbage=: __

When we delete an item we place the old garbage value as its successor index and we define the garbage variable to be the index we just deleted. And when adding to the list we first check if garbage has a valid index and if so we take over that position in the structure and update garbage with the previous value of the successor.

Needless to say, this approach is expensive and inefficient. (But, granted, there will be cases where the cost is worth the expense.)

That said, note also that while the native J lists do not support cycles or loops, this high-cost substitute is general enough to support them.

JavaScript[edit]

See Doubly-Linked List (element)#JavaScript, Doubly-Linked List (element insertion)#JavaScript and Doubly-Linked List (traversal)#JavaScript

Kotlin[edit]

Rather than use the java.util.LinkedList<E> class, we will write our own simple LinkedList<E> class for this task:

// version 1.1.1
 
class LinkedList<E> {
class Node<E>(var data: E, var prev: Node<E>? = null, var next: Node<E>? = null) {
override fun toString(): String {
val sb = StringBuilder(this.data.toString())
var node = this.next
while (node != null) {
sb.append(" -> ", node.data.toString())
node = node.next
}
return sb.toString()
}
}
 
var first: Node<E>? = null
var last: Node<E>? = null
 
fun addFirst(value: E) {
if (first == null) {
first = Node(value)
last = first
}
else {
val node = first!!
first = Node(value, null, node)
node.prev = first
}
}
 
fun addLast(value: E) {
if (last == null) {
last = Node(value)
first = last
}
else {
val node = last!!
last = Node(value, node, null)
node.next = last
}
}
 
fun insert(after: Node<E>?, value: E) {
if (after == null)
addFirst(value)
else if (after == last)
addLast(value)
else {
val next = after.next
val new = Node(value, after, next)
after.next = new
if (next != null) next.prev = new
}
}
 
override fun toString() = first.toString()
}
 
fun main(args: Array<String>) {
val ll = LinkedList<Int>()
ll.addFirst(1)
ll.addLast(4)
ll.insert(ll.first, 2)
ll.insert(ll.last!!.prev, 3)
println(ll)
}
Output:
1 -> 2 -> 3 -> 4

Nim[edit]

Nim has a doubly linked list already in the lists module of the standard library.

type
List[T] = object
head, tail: Node[T]
 
Node[T] = ref TNode[T]
 
TNode[T] = object
next, prev: Node[T]
data: T
 
proc initList[T](): List[T] = discard
 
proc newNode[T](data: T): Node[T] =
new(result)
result.data = data
 
proc prepend[T](l: var List[T], n: Node[T]) =
n.next = l.head
if l.head != nil: l.head.prev = n
l.head = n
if l.tail == nil: l.tail = n
 
proc append[T](l: var List[T], n: Node[T]) =
n.next = nil
n.prev = l.tail
if l.tail != nil:
l.tail.next = n
l.tail = n
if l.head == nil:
l.head = n
 
proc insertAfter[T](l: var List[T], r, n: Node[T]) =
n.prev = r
n.next = r.next
n.next.prev = n
r.next = n
if r == l.tail: l.tail = n
 
proc remove[T](l: var List[T], n: Node[T]) =
if n == l.tail: l.tail = n.prev
if n == l.head: l.head = n.next
if n.next != nil: n.next.prev = n.prev
if n.prev != nil: n.prev.next = n.next
 
proc `$`[T](l: var List[T]): string =
result = ""
var n = l.head
while n != nil:
if result.len > 0: result.add(" -> ")
result.add($n.data)
n = n.next
 
var l = initList[int]()
var n = newNode(12)
var m = newNode(13)
var i = newNode(14)
var j = newNode(15)
l.append(n)
l.prepend(m)
l.insertAfter(m, i)
l.prepend(j)
l.remove(m)
echo l
 
var l2 = initList[string]()
l2.prepend newNode("hello")
l2.append newNode("world")
echo l2
Output:
15 -> 14 -> 12
hello -> world

Oberon-2[edit]

 
IMPORT Basic;
TYPE
Node* = POINTER TO NodeDesc;
NodeDesc* = (* ABSTRACT *) RECORD
prev-,next-: Node;
END;
 
DLList* = POINTER TO DLListDesc;
DLListDesc* = RECORD
first-,last-: Node;
size-: INTEGER;
END;
 

Objeck[edit]

 
use Collection;
 
class Program {
function : Main(args : String[]) ~ Nil {
list := List->New();
list->AddFront("first");
list->AddBack("last");
list->Insert("middle");
 
list->Forward();
do {
list->Get()->As(String)->PrintLine();
list->Previous();
}
while(list->Get() <> Nil);
}
}

Oforth[edit]

Object Class new: DNode(value, mutable prev, mutable next)
 
DNode method: initialize  := next := prev := value ;
DNode method: value @value ;
DNode method: prev @prev ;
DNode method: next @next ;
DNode method: setPrev := prev ;
DNode method: setNext  := next ;
DNode method: << @value << ;
 
DNode method: insertAfter(node)
node setPrev(self)
node setNext(@next)
@next ifNotNull: [ @next setPrev(node) ]
node := next ;
 
// Double linked list definition
Collection Class new: DList(mutable head, mutable tail)
DList method: head @head ;
DList method: tail @tail ;
 
DList method: insertFront(v)
| p |
@head ->p
DNode new(v, null, p) := head
p ifNotNull: [ p setPrev(@head) ]
@tail ifNull: [ @head := tail ] ;
 
DList method: insertBack(v)
| n |
@tail ->n
DNode new(v, n, null) := tail
n ifNotNull: [ n setNext(@tail) ]
@head ifNull: [ @tail := head ] ;
 
DList method: forEachNext
dup ifNull: [ drop @head ifNull: [ false ] else: [ @head @head true] return ]
next dup ifNull: [ drop false ] else: [ dup true ] ;
 
DList method: forEachPrev
dup ifNull: [ drop @tail ifNull: [ false ] else: [ @tail @tail true] return ]
prev dup ifNull: [ drop false ] else: [ dup true ] ;
 
: test // ( -- aDList )
| dl dn |
DList new ->dl
dl insertFront("A")
dl insertBack("B")
dl head insertAfter(DNode new("C", null , null))
dl ;
Output:
>test .s
[1] (DList) [A, C, B]

Perl 6[edit]

This shows a complete example. (Other entries in the section focus on aspects of this solution.)

role DLElem[::T] {
has DLElem[T] $.prev is rw;
has DLElem[T] $.next is rw;
has T $.payload = T;
 
method pre-insert(T $payload) {
die "Can't insert before beginning" unless $!prev;
my $elem = ::?CLASS.new(:$payload);
$!prev.next = $elem;
$elem.prev = $!prev;
$elem.next = self;
$!prev = $elem;
$elem;
}
 
method post-insert(T $payload) {
die "Can't insert after end" unless $!next;
my $elem = ::?CLASS.new(:$payload);
$!next.prev = $elem;
$elem.next = $!next;
$elem.prev = self;
$!next = $elem;
$elem;
}
 
method delete {
die "Can't delete a sentinel" unless $!prev and $!next;
$!next.prev = $!prev;
$!prev.next = $!next; # conveniently returns next element
}
}
 
role DLList[::DLE] {
has DLE $.first;
has DLE $.last;
 
submethod BUILD {
$!first = DLE.new;
$!last = DLE.new;
$!first.next = $!last;
$!last.prev = $!first;
}
 
method list { ($!first.next, *.next ...^ !*.next).map: *.payload }
method reverse { ($!last.prev, *.prev ...^ !*.prev).map: *.payload }
}
 
class DLElem_Int does DLElem[Int] {}
class DLList_Int does DLList[DLElem_Int] {}
 
my $dll = DLList_Int.new;
 
$dll.first.post-insert(1).post-insert(2).post-insert(3);
$dll.first.post-insert(0);
 
$dll.last.pre-insert(41).pre-insert(40).prev.delete; # (deletes 3)
$dll.last.pre-insert(42);
 
say $dll.list; # 0 1 2 40 41 42
say $dll.reverse; # 42 41 40 2 1 0
Output:
0 1 2 40 41 42
42 41 40 2 1 0

Phix[edit]

See Doubly-linked_list/Traversal for a complete example.

PicoLisp[edit]

For the list of double-cell structures described in Doubly-linked list/Element definition#PicoLisp, we define a header structure, containing one pointer to the start and one to the end of the list.

           +------------> start
           |
        +--+--+-----+
        |  |  |  ---+---> end
        +-----+-----+
# Build a doubly-linked list
(de 2list @
(let Prev NIL
(let L
(make
(while (args)
(setq Prev (chain (list (next) Prev))) ) )
(cons L Prev) ) ) )
 
(setq *DLst (2list 'was 'it 'a 'cat 'I 'saw))

For output of the example data, see Doubly-linked list/Traversal#PicoLisp.

PL/I[edit]

 
define structure
1 Node,
2 value fixed decimal,
2 back_pointer handle(Node),
2 fwd_pointer handle(Node);
 

PowerShell[edit]

Create and populate the list:

 
$list = New-Object -TypeName 'Collections.Generic.LinkedList[PSCustomObject]'
 
for($i=1; $i -lt 10; $i++)
{
$list.AddLast([PSCustomObject]@{ID=$i; X=100+$i;Y=200+$i}) | Out-Null
}
 
$list
 
Output:
ID   X   Y
--   -   -
 1 101 201
 2 102 202
 3 103 203
 4 104 204
 5 105 205
 6 106 206
 7 107 207
 8 108 208
 9 109 209

Insert a value at the head:

 
$list.AddFirst([PSCustomObject]@{ID=123; X=123;Y=123}) | Out-Null
 
$list
 
Output:
 ID   X   Y
 --   -   -
123 123 123
  1 101 201
  2 102 202
  3 103 203
  4 104 204
  5 105 205
  6 106 206
  7 107 207
  8 108 208
  9 109 209

Insert a value in the middle:

 
$current = $list.First
 
while(-not ($current -eq $null))
{
If($current.Value.X -eq 105)
{
$list.AddAfter($current, [PSCustomObject]@{ID=345;X=345;Y=345}) | Out-Null
break
}
 
$current = $current.Next
}
 
$list
 
Output:
 ID   X   Y
 --   -   -
123 123 123
  1 101 201
  2 102 202
  3 103 203
  4 104 204
  5 105 205
345 345 345
  6 106 206
  7 107 207
  8 108 208
  9 109 209

Insert a value at the end:

 
$list.AddLast([PSCustomObject]@{ID=789; X=789;Y=789}) | Out-Null
 
$list
 
Output:
 ID   X   Y
 --   -   -
123 123 123
  1 101 201
  2 102 202
  3 103 203
  4 104 204
  5 105 205
345 345 345
  6 106 206
  7 107 207
  8 108 208
  9 109 209
789 789 789

PureBasic[edit]

DataSection
;the list of words that will be added to the list
words:
Data.s "One", "Two", "Three", "Four", "Five", "Six", "EndOfData"
EndDataSection
 
 
Procedure displayList(List x.s(), title$)
;display all elements from list of strings
Print(title$)
ForEach x()
Print(x() + " ")
Next
PrintN("")
EndProcedure
 
 
OpenConsole()
 
NewList a.s() ;create a new list of strings
 
;add words to the head of list
Restore words
Repeat
Read.s a$
If a$ <> "EndOfData"
ResetList(a()) ;Move to head of list
AddElement(a())
a() = a$
EndIf
Until a$ = "EndOfData"
displayList(a(),"Insertion at Head: ")
 
 
ClearList(a())
;add words to the tail of list
Restore words
LastElement(a()) ;Move to the tail of the list
Repeat
Read.s a$
If a$ <> "EndOfData"
AddElement(a()) ;after insertion the new position is still at the tail
a() = a$
EndIf
Until a$ = "EndOfData"
displayList(a(),"Insertion at Tail: ")
 
 
ClearList(a())
;add words to the middle of list
Restore words
ResetList(a()) ;Move to the tail of the list
Repeat
Read.s a$
If a$ <> "EndOfData"
c = CountList(a())
If c > 1
SelectElement(a(),Random(c - 2)) ;insert after a random element but before tail
Else
FirstElement(a())
EndIf
AddElement(a())
a() = a$
EndIf
Until a$ = "EndOfData"
displayList(a(),"Insertion in Middle: ")
 
Repeat: Until Inkey() <> ""
Output:
Insertion at Head: Six Five Four Three Two One
Insertion at Tail: One Two Three Four Five Six
Insertion at Middle: One Five Six Three Four Two

Python[edit]

In the high level language Python, its list native datatype should be used. It automatically preserves the integrity of the list w.r.t. loops and allows insertion at any point using list.insert() via an integer index into the list rather than a machine-code level pointer to a list element.

Racket[edit]

The following is a port of the Common Lisp solution. The ouput is '(1 2 3 4).

 
#lang racket
(define-struct dlist (head tail) #:mutable #:transparent)
(define-struct dlink (content prev next) #:mutable #:transparent)
 
(define (insert-between dlist before after data)
 ; Insert a fresh link containing DATA after existing link
 ; BEFORE if not nil and before existing link AFTER if not nil
(define new-link (make-dlink data before after))
(if before
(set-dlink-next! before new-link)
(set-dlist-head! dlist new-link))
(if after
(set-dlink-prev! after new-link)
(set-dlist-tail! dlist new-link))
new-link)
 
(define (insert-before dlist dlink data)
 ; Insert a fresh link containing DATA before existing link DLINK
(insert-between dlist (dlink-prev dlink) dlink data))
 
(define (insert-after dlist dlink data)
 ; Insert a fresh link containing DATA after existing link DLINK
(insert-between dlist dlink (dlink-next dlink) data))
 
(define (insert-head dlist data)
 ; Insert a fresh link containing DATA at the head of DLIST
(insert-between dlist #f (dlist-head dlist) data))
 
(define (insert-tail dlist data)
 ; Insert a fresh link containing DATA at the tail of DLIST
(insert-between dlist (dlist-tail dlist) #f data))
 
(define (remove-link dlist dlink)
 ; Remove link DLINK from DLIST and return its content
(let ((before (dlink-prev dlink))
(after (dlink-next dlink)))
(if before
(set-dlink-next! before after)
(set-dlist-head! dlist after))
(if after
(set-dlink-prev! after before)
(set-dlist-tail! dlist before))))
 
(define (dlist-elements dlist)
 ; Returns the elements of DLIST as a list
(define (extract-values dlink acc)
(if dlink
(extract-values (dlink-next dlink) (cons (dlink-content dlink) acc))
acc))
(reverse (extract-values (dlist-head dlist) '())))
 
(let ((dlist (make-dlist #f #f)))
(insert-head dlist 1)
(insert-tail dlist 4)
(insert-after dlist (dlist-head dlist) 2)
(let* ((next-to-last (insert-before dlist (dlist-tail dlist) 3))
(bad-link (insert-before dlist next-to-last 42)))
(remove-link dlist bad-link))
(dlist-elements dlist))
 


REXX[edit]

        ╔═════════════════════════════════════════════════════════════════════════╗
        ║        ☼☼☼☼☼☼☼☼☼☼☼ Functions of the  List Manager ☼☼☼☼☼☼☼☼☼☼☼           ║
        ║   @init      ─── initializes the List.                                  ║
        ║                                                                         ║
        ║   @size      ─── returns the size of the List  [could be a  0  (zero)]. ║
        ║                                                                         ║
        ║   @show      ─── shows (displays) the complete List.                    ║
        ║   @show k,1  ─── shows (displays) the  Kth  item.                       ║
        ║   @show k,m  ─── shows (displays)  M  items,  starting with  Kth  item. ║
        ║   @show ,,─1 ─── shows (displays) the complete List backwards.          ║
        ║                                                                         ║
        ║   @get  k    ─── returns the  Kth  item.                                ║
        ║   @get  k,m  ─── returns the  M  items  starting with the  Kth  item.   ║
        ║                                                                         ║
        ║   @put  x    ─── adds the  X  items to the  end  (tail) of the List.    ║
        ║   @put  x,0  ─── adds the  X  items to the start (head) of the List.    ║
        ║   @put  x,k  ─── adds the  X  items to before of the  Kth  item.        ║
        ║                                                                         ║
        ║   @del  k    ─── deletes the item  K.                                   ║
        ║   @del  k,m  ─── deletes the   M  items  starting with item  K.         ║
        ╚═════════════════════════════════════════════════════════════════════════╝

REXX doesn't have linked lists, as there are no pointers (or handles).
However, linked lists can be simulated with lists in REXX.

/*REXX program implements various List Manager functions  (see the documentation above).*/
call sy 'initializing the list.'  ; call @init
call sy 'building list: Was it a cat I saw' ; call @put "Was it a cat I saw"
call sy 'displaying list size.'  ; say "list size="@size()
call sy 'forward list'  ; call @show
call sy 'backward list'  ; call @show ,,-1
call sy 'showing 4th item'  ; call @show 4,1
call sy 'showing 5th & 6th items'  ; call @show 5,2
call sy 'adding item before item 4: black'  ; call @put "black",4
call sy 'showing list'  ; call @show
call sy 'adding to tail: there, in the ...' ; call @put "there, in the shadows, stalking its prey (and next meal)."
call sy 'showing list'  ; call @show
call sy 'adding to head: Oy!'  ; call @put "Oy!",0
call sy 'showing list'  ; call @show
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
p: return word(arg(1), 1) /*pick the first word out of many items*/
sy: say; say left('', 30) "───" arg(1) '───'; return
@init: $.@=; @adjust: $.@=space($.@); $.#=words($.@); return
@hasopt: arg o; return pos(o, opt)\==0
@size: return $.#
/*──────────────────────────────────────────────────────────────────────────────────────*/
@del: procedure expose $.; arg k,m; call @parms 'km'
_=subword($.@, k, k-1) subword($.@, k+m)
$.@=_; call @adjust; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
@get: procedure expose $.; arg k,m,dir,_
call @parms 'kmd'
do j=k for m by dir while j>0 & j<=$.#
_=_ subword($.@, j, 1)
end /*j*/
return strip(_)
/*──────────────────────────────────────────────────────────────────────────────────────*/
@parms: arg opt /*define a variable based on an option.*/
if @hasopt('k') then k=min($.#+1, max(1, p(k 1)))
if @hasopt('m') then m=p(m 1)
if @hasopt('d') then dir=p(dir 1); return
/*──────────────────────────────────────────────────────────────────────────────────────*/
@put: procedure expose $.; parse arg x,k; k=p(k $.#+1); call @parms 'k'
$.@=subword($.@, 1, max(0, k-1)) x subword($.@, k); call @adjust
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
@show: procedure expose $.; parse arg k,m,dir; if dir==-1 & k=='' then k=$.#
m=p(m $.#); call @parms 'kmd'; say @get(k,m, dir); return

output

                               ─── initializing the list. ───

                               ─── building list: Was it a cat I saw ───

                               ─── displaying list size. ───
list size=6

                               ─── forward list ───
Was it a cat I saw

                               ─── backward list ───
saw I cat a it Was

                               ─── showing 4th item ───
cat

                               ─── showing 5th & 6th items ───
I saw

                               ─── adding item before item 4: black ───

                               ─── showing list ───
Was it a black cat I saw

                               ─── adding to tail: there, in the ... ───

                               ─── showing list ───
Was it a black cat I saw there, in the shadows, stalking its prey (and next meal).

                               ─── adding to head: Oy! ───

                               ─── showing list ───
Oy! Was it a black cat I saw there, in the shadows, stalking its prey (and next meal). 

Ruby[edit]

See Doubly-Linked List (element)#Ruby, Doubly-Linked List (element insertion)#Ruby and Doubly-Linked List (traversal)#Ruby

Tcl[edit]

This task was earlier marked as unfeasible for Tcl. Tcl lists are compact arrays of pointers to values. However, on very long lists, insertions and deletions (if not at end) may require copying a large amount of data. In such cases, the implementation below may be helpful. It provides a single dl command, which is called with the name of a DList, a method name, and possibly more arguments as required. The testcases below should give a good idea. The asList and asList2 methods demonstrate forward and backward traversal.

See also Doubly-Linked List (element) for a TclOO-based version.

package require Tcl 8.4 
proc dl {_name cmd {where error} {value ""}} {
upvar 1 $_name N
switch -- $cmd {
insert {
if ![info exists N()] {set N() {"" "" 0}}
set id [lindex $N() 2]
lset N() 2 [incr id]
switch -- $where {
head {
set prev {}
set next [lindex $N() 0]
lset N() 0 $id
}
end {
set prev [lindex $N() 1]
set next {}
lset N() 1 $id
}
default {
set prev $where
set next [lindex $N($where) 1]
lset N($where) 1 $id
}
}
if {$prev ne ""} {lset N($prev) 1 $id}
if {$next ne ""} {lset N($next) 0 $id}
if {[lindex $N() 1] eq ""} {lset N() 1 $id}
set N($id) [list $prev $next $value]
return $id
}
delete {
set i $where
if {$where eq "head"} {set i [dl N head]}
if {$where eq "end"} {set i [dl N end]}
foreach {prev next} $N($i) break
if {$prev ne ""} {lset N($prev) 1 $next}
if {$next ne ""} {lset N($next) 0 $prev}
if {[dl N head] == $i} {lset N() 0 $next}
if {[dl N end] == $i} {lset N() 1 $prev}
unset N($i)
}
findfrom {
if {$where eq "head"} {set where [dl N head]}
for {set i $where} {$i ne ""} {set i [dl N next $i]} {
if {[dl N get $i] eq $value} {return $i}
}
}
get {lindex $N($where) 2}
set {lset N($where) 2 $value; set value}
head {lindex $N() 0}
end {lindex $N() 1}
next {lindex $N($where) 1}
prev {lindex $N($where) 0}
length {expr {[array size N]-1}}
asList {
set res {}
for {set i [dl N head]} {$i ne ""} {set i [dl N next $i]} {
lappend res [dl N get $i]
}
return $res
}
asList2 {
set res {}
for {set i [dl N end]} {$i ne ""} {set i [dl N prev $i]} {
lappend res [dl N get $i]
}
return $res
}
}
}
# Testing code
set testcases [split {
dl D insert head foo
dl D insert end bar
dl D insert head hello
dl D set [dl D head] hi
dl D insert end grill
set i [dl D findfrom head bar]
dl D set $i BAR
dl D insert $i and
dl D length
dl D asList2
dl D delete $i
dl D findfrom head nix
dl D delete head
dl D delete end
dl D delete end
dl D delete head
dl D length
} \n]
foreach case $testcases {
if {[string trim $case] ne ""} {
puts " $case -> [eval $case] : [dl D asList]"
if {[lsearch $argv -p] >= 0} {parray D}
}
}

Visual Basic .NET[edit]

Public Class DoubleLinkList(Of T)
Private m_Head As Node(Of T)
Private m_Tail As Node(Of T)
 
Public Sub AddHead(ByVal value As T)
Dim node As New Node(Of T)(Me, value)
 
If m_Head Is Nothing Then
m_Head = Node
m_Tail = m_Head
Else
node.Next = m_Head
m_Head = node
End If
 
End Sub
 
Public Sub AddTail(ByVal value As T)
Dim node As New Node(Of T)(Me, value)
 
If m_Tail Is Nothing Then
m_Head = node
m_Tail = m_Head
Else
node.Previous = m_Tail
m_Tail = node
End If
End Sub
 
Public ReadOnly Property Head() As Node(Of T)
Get
Return m_Head
End Get
End Property
 
Public ReadOnly Property Tail() As Node(Of T)
Get
Return m_Tail
End Get
End Property
 
Public Sub RemoveTail()
If m_Tail Is Nothing Then Return
 
If m_Tail.Previous Is Nothing Then 'empty
m_Head = Nothing
m_Tail = Nothing
Else
m_Tail = m_Tail.Previous
m_Tail.Next = Nothing
End If
End Sub
 
Public Sub RemoveHead()
If m_Head Is Nothing Then Return
 
If m_Head.Next Is Nothing Then 'empty
m_Head = Nothing
m_Tail = Nothing
Else
m_Head = m_Head.Next
m_Head.Previous = Nothing
End If
End Sub
 
End Class
 
Public Class Node(Of T)
Private ReadOnly m_Value As T
Private m_Next As Node(Of T)
Private m_Previous As Node(Of T)
Private ReadOnly m_Parent As DoubleLinkList(Of T)
 
Public Sub New(ByVal parent As DoubleLinkList(Of T), ByVal value As T)
m_Parent = parent
m_Value = value
End Sub
 
Public Property [Next]() As Node(Of T)
Get
Return m_Next
End Get
Friend Set(ByVal value As Node(Of T))
m_Next = value
End Set
End Property
 
Public Property Previous() As Node(Of T)
Get
Return m_Previous
End Get
Friend Set(ByVal value As Node(Of T))
m_Previous = value
End Set
End Property
 
Public ReadOnly Property Value() As T
Get
Return m_Value
End Get
End Property
 
Public Sub InsertAfter(ByVal value As T)
If m_Next Is Nothing Then
m_Parent.AddTail(value)
ElseIf m_Previous Is Nothing Then
m_Parent.AddHead(value)
Else
Dim node As New Node(Of T)(m_Parent, value)
node.Previous = Me
node.Next = Me.Next
Me.Next.Previous = node
Me.Next = node
End If
End Sub
 
Public Sub Remove()
If m_Next Is Nothing Then
m_Parent.RemoveTail()
ElseIf m_Previous Is Nothing Then
m_Parent.RemoveHead()
Else
m_Previous.Next = Me.Next
m_Next.Previous = Me.Previous
End If
End Sub
 
End Class

zkl[edit]

class Node{
fcn init(_value,_prev=Void,_next=Void)
{ var value=_value, prev=_prev, next=_next; }
fcn toString{ value.toString() }
fcn append(value){ // loops not allowed: create a new Node
b,c := Node(value,self,next),next;
next=b;
if(c) c.prev=b;
b
}
fcn delete{
if(prev) prev.next=next;
if(next) next.prev=prev;
self
}
fcn last { n,p := self,self; while(n){ p,n = n,n.next } p }
fcn first { n,p := self,self; while(n){ p,n = n,n.prev } p }
fcn walker(forward=True){
dir:=forward and "next" or "prev";
Walker(fcn(rn,dir){
if(not (n:=rn.value)) return(Void.Stop);
rn.set(n.setVar(dir));
n.value;
}.fp(Ref(self),dir))
}
}
a:=Node("a"); 
a.append("c").append("d");
a.last().append("e");
a.last().first().append("b");
foreach n in (a){ print(n," ") } println();
foreach n in (a.last().walker(False)){ print(n," ") } println();
Output:
a  b  c  d  e  
e  d  c  b  a