Yellowstone sequence

From Rosetta Code
Revision as of 22:15, 22 May 2020 by rosettacode>Gerard Schildberger (added block highlighting.)
Yellowstone sequence is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.


The Yellowstone sequence, also called the Yellowstone permutation, is defined as:

For n <= 3,

   a(n) = n

For n >= 4,

   a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and 
          is not relatively prime to a(n-2).


The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence.


Example

a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2).


Task
Find and show as output the first 30 Yellowstone numbers.


Extra
Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers.


Related tasks


See also

Factor

Works with: Factor version 0.99 2020-01-23

<lang factor>USING: accessors assocs colors.constants combinators.short-circuit io kernel math prettyprint sequences sets ui ui.gadgets ui.gadgets.charts ui.gadgets.charts.lines ;

yellowstone? ( n hs seq -- ? )
   {
       [ drop in? not ]
       [ nip last gcd nip 1 = ]
       [ nip dup length 2 - swap nth gcd nip 1 > ]
   } 3&& ;
next-yellowstone ( hs seq -- n )
   [ 4 ] 2dip [ 3dup yellowstone? ] [ [ 1 + ] 2dip ] until
   2drop ;
next ( hs seq -- hs' seq' )
   2dup next-yellowstone [ suffix! ] [ pick adjoin ] bi ;
<yellowstone> ( n -- seq )
   [ HS{ 1 2 3 } clone dup V{ } set-like ] dip dup 3 <=
   [ head nip ] [ 3 - [ next ] times nip ] if ;


! Show first 30 Yellowstone numbers.

"First 30 Yellowstone numbers:" print 30 <yellowstone> [ pprint bl ] each nl

! Plot first 100 Yellowstone numbers.

chart new { { 0 100 } { 0 175 } } >>axes line new COLOR: blue >>color 100 <iota> 100 <yellowstone> zip >>data add-gadget "Yellowstone numbers" open-window</lang>

Output:
First 30 Yellowstone numbers:
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

Go

This uses Gnuplot-X11 to do the plotting rather than a third party Go plotting library. <lang go>package main

import (

   "fmt"
   "log"
   "os/exec"

)

func gcd(x, y int) int {

   for y != 0 {
       x, y = y, x%y
   }
   return x

}

func yellowstone(n int) []int {

   m := make(map[int]bool)
   a := make([]int, n+1)
   for i := 1; i < 4; i++ {
       a[i] = i
       m[i] = true
   }
   min := 4
   for c := 4; c <= n; c++ {
       for i := min; ; i++ {
           if !m[i] && gcd(a[c-1], i) == 1 && gcd(a[c-2], i) > 1 {
               a[c] = i
               m[i] = true
               if i == min {
                   min++
               }
               break
           }
       }
   }    
   return a[1:]

}

func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

func main() {

   x := make([]int, 100)
   for i := 0; i < 100; i++ {
       x[i] = i + 1
   }
   y := yellowstone(100)
   fmt.Println("The first 30 Yellowstone numbers are:")
   fmt.Println(y[:30])
   g := exec.Command("gnuplot", "-persist")
   w, err := g.StdinPipe()
   check(err)
   check(g.Start())
   fmt.Fprintln(w, "unset key; plot '-'")
   for i, xi := range x {
       fmt.Fprintf(w, "%d %d\n", xi, y[i])
   }
   fmt.Fprintln(w, "e")
   w.Close()
   g.Wait()

}</lang>

Output:
The first 30 Yellowstone numbers are:
[1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17]

Haskell

<lang haskell>import Data.List (unfoldr)

yellowstone :: [Integer] yellowstone = 1 : 2 : 3 : unfoldr (Just . f) (2,3,[4..]) where

 f :: (Integer, Integer, [Integer]) -> (Integer, (Integer, Integer, [Integer]))
 f (p2, p1, rest) = (next, (p1, next, rest_)) where
   (next, rest_) = select rest
   select :: [Integer] -> (Integer, [Integer])
   select (x:xs)
     | gcd x p1 == 1 && gcd x p2 /= 1 = (x, xs)
     | otherwise = (y, x:ys)
     where (y, ys) = select xs

main :: IO () main = print $ take 30 yellowstone</lang>

Output:
[1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27,22,39,11,13,33,26,45,28,51,32,17]

A variation on the definition of the Yellowstone permutation (in terms of iterate, as an alternative to unfoldr), and a basic chart of the first 100 terms. (Plotting tested only on Haskell for Mac).

<lang haskell>import qualified Graphics.SVGFonts.ReadFont as F import Graphics.Rendering.Chart.Backend.Diagrams import Graphics.Rendering.Chart.Easy import Diagrams.Backend.Rasterific import Diagrams.Prelude import Codec.Picture import Control.Arrow (second)


YELLOWSTONE PERMUTATION------------------

yellowstone :: [Integer] yellowstone = 1 : 2 : (active <$> iterate nextWindow (2, 3, [4 ..]))

 where
   nextWindow :: (Integer, Integer, [Integer]) -> (Integer, Integer, [Integer])
   nextWindow (p2, p1, rest) = (p1, n, residue)
     where
       [rp2, rp1] = relativelyPrime <$> [p2, p1]
       go (x:xs)
         | rp1 x && not (rp2 x) = (x, xs)
         | otherwise = second ((:) x) (go xs)
       (n, residue) = go rest
   active (_, x, _) = x

relativelyPrime :: Integer -> Integer -> Bool relativelyPrime a b = 1 == gcd a b


30 FIRST TERMS, AND CHART OF FIRST 100-----------

main :: IO (Image PixelRGBA8) main = do

 print $ take 30 yellowstone
 env <- chartEnv
 return $
   chartRender env $
   plot (line "Yellowstone terms" [zip [1 ..] (take 100 yellowstone)])

CHART GENERATION----------------------

chartRender

 :: (Default r, ToRenderable r)
 => DEnv Double -> EC r () -> Image PixelRGBA8

chartRender env ec =

 let (width, _) = envOutputSize env
 in renderDia Rasterific (RasterificOptions (mkWidth width)) $
    fst $ runBackendR env (toRenderable (execEC ec))

LOCAL FONT------------------------

chartEnv :: IO (DEnv Double) chartEnv = do

 sansR <- F.loadFont "SourceSansPro_R.svg"
 sansRB <- F.loadFont "SourceSansPro_RB.svg"
 let fontChosen fs =
       case (_font_name fs, _font_slant fs, _font_weight fs) of
         ("sans-serif", FontSlantNormal, FontWeightNormal) -> sansR
         ("sans-serif", FontSlantNormal, FontWeightBold) -> sansRB
 return $ createEnv vectorAlignmentFns 640 400 fontChosen</lang>
Output:
[1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27,22,39,11,13,33,26,45,28,51,32,17]

J

<lang J> GCD=: +. relatively_prime=: 1 = GCD

yellowstone=: monad define

start=. #\ i. 4 + y NB. prepare minimal starting values
s=. 3 {. start      NB. the sequence vector
start=. 3 }. start
while. y > # s do.
 z=. {. start   NB. z is the lowest number not in the sequence
 while.do.
  if. 0 1 -: (_2 {. s) relatively_prime z do.
   if. z -.@e. s do.
    break.
   end.
  end.
  z =. >: z
 end.
 start=. start -. z  NB. remove z from the list of starting values
 s=. s , z
end.
s

) </lang>

   yellowstone 30
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

   load'plot'
   'marker'plot yellowstone 100

Java

<lang java> import java.util.ArrayList; import java.util.List;

public class YellowstoneSequence {

   public static void main(String[] args) {
        System.out.printf("First 30 values in the yellowstone sequence:%n%s%n", yellowstoneSequence(30));
   }
   private static List<Integer> yellowstoneSequence(int sequenceCount) {
       List<Integer> yellowstoneList = new ArrayList<Integer>();
       yellowstoneList.add(1);
       yellowstoneList.add(2);
       yellowstoneList.add(3);
       int num = 4;
       List<Integer> notYellowstoneList = new ArrayList<Integer>();
       int yellowSize = 3;
       while ( yellowSize < sequenceCount ) {
           int found = -1;
           for ( int index = 0 ; index < notYellowstoneList.size() ; index++ ) {
               int test = notYellowstoneList.get(index);
               if ( gcd(yellowstoneList.get(yellowSize-2), test) > 1 && gcd(yellowstoneList.get(yellowSize-1), test) == 1 ) {
                   found = index;
                   break;
               }
           }
           if ( found >= 0 ) {
               yellowstoneList.add(notYellowstoneList.remove(found));
               yellowSize++;
           }
           else {
               while ( true ) {
                   if ( gcd(yellowstoneList.get(yellowSize-2), num) > 1 && gcd(yellowstoneList.get(yellowSize-1), num) == 1 ) {
                       yellowstoneList.add(num);
                       yellowSize++;
                       num++;
                       break;
                   }
                   notYellowstoneList.add(num);
                   num++;
               }
           }
       }
       return yellowstoneList;
   }
       
   private static final int gcd(int a, int b) {
       if ( b == 0 ) {
           return a;
       }
       return gcd(b, a%b);
   }

} </lang>

Output:
First 30 values in the yellowstone sequence:
[1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17]

JavaScript

Translation of: Python
Works with: ES6

<lang javascript>(() => {

   'use strict';
   // yellowstone :: Generator [Int]
   function* yellowstone() {
       // A non finite stream of terms in the
       // Yellowstone permutation of the natural numbers.
       // OEIS A098550
       const nextWindow = ([p2, p1, rest]) => {
           const [rp2, rp1] = [p2, p1].map(
               relativelyPrime
           );
           const go = xxs => {
               const [x, xs] = Array.from(
                   uncons(xxs).Just
               );
               return rp1(x) && !rp2(x) ? (
                   Tuple(x)(xs)
               ) : secondArrow(cons(x))(
                   go(xs)
               );
           };
           return [p1, ...Array.from(go(rest))];
       };
       const A098550 = fmapGen(x => x[1])(
           iterate(nextWindow)(
               [2, 3, enumFrom(4)]
           )
       );
       yield 1
       yield 2
       while (true)(
           yield A098550.next().value
       )
   };


   // relativelyPrime :: Int -> Int -> Bool
   const relativelyPrime = a =>
       // True if a is relatively prime to b.
       b => 1 === gcd(a)(b);


   // ------------------------TEST------------------------
   const main = () => console.log(
       take(30)(
           yellowstone()
       )
   );


   // -----------------GENERIC FUNCTIONS------------------
   // Just :: a -> Maybe a
   const Just = x => ({
       type: 'Maybe',
       Nothing: false,
       Just: x
   });
   // Nothing :: Maybe a
   const Nothing = () => ({
       type: 'Maybe',
       Nothing: true,
   });
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = a =>
       b => ({
           type: 'Tuple',
           '0': a,
           '1': b,
           length: 2
       });
   // abs :: Num -> Num
   const abs =
       // Absolute value of a given number - without the sign.
       Math.abs;
   // cons :: a -> [a] -> [a]
   const cons = x =>
       xs => Array.isArray(xs) ? (
           [x].concat(xs)
       ) : 'GeneratorFunction' !== xs
       .constructor.constructor.name ? (
           x + xs
       ) : ( // cons(x)(Generator)
           function*() {
               yield x;
               let nxt = xs.next()
               while (!nxt.done) {
                   yield nxt.value;
                   nxt = xs.next();
               }
           }
       )();
   // enumFrom :: Enum a => a -> [a]
   function* enumFrom(x) {
       // A non-finite succession of enumerable
       // values, starting with the value x.
       let v = x;
       while (true) {
           yield v;
           v = 1 + v;
       }
   }
   // fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
   const fmapGen = f =>
       function*(gen) {
           let v = take(1)(gen);
           while (0 < v.length) {
               yield(f(v[0]))
               v = take(1)(gen)
           }
       };
   // gcd :: Int -> Int -> Int
   const gcd = x => y => {
       const
           _gcd = (a, b) => (0 === b ? a : _gcd(b, a % b)),
           abs = Math.abs;
       return _gcd(abs(x), abs(y));
   };
   // iterate :: (a -> a) -> a -> Gen [a]
   const iterate = f =>
       function*(x) {
           let v = x;
           while (true) {
               yield(v);
               v = f(v);
           }
       };
   // length :: [a] -> Int
   const length = xs =>
       // Returns Infinity over objects without finite
       // length. This enables zip and zipWith to choose
       // the shorter argument when one is non-finite,
       // like cycle, repeat etc
       (Array.isArray(xs) || 'string' === typeof xs) ? (
           xs.length
       ) : Infinity;
   // secondArrow :: (a -> b) -> ((c, a) -> (c, b))
   const secondArrow = f => xy =>
       // A function over a simple value lifted
       // to a function over a tuple.
       // f (a, b) -> (a, f(b))
       Tuple(xy[0])(
           f(xy[1])
       );
   // take :: Int -> [a] -> [a]
   // take :: Int -> String -> String
   const take = n =>
       // The first n elements of a list,
       // string of characters, or stream.
       xs => 'GeneratorFunction' !== xs
       .constructor.constructor.name ? (
           xs.slice(0, n)
       ) : [].concat.apply([], Array.from({
           length: n
       }, () => {
           const x = xs.next();
           return x.done ? [] : [x.value];
       }));
   // uncons :: [a] -> Maybe (a, [a])
   const uncons = xs => {
       // Just a tuple of the head of xs and its tail,
       // Or Nothing if xs is an empty list.
       const lng = length(xs);
       return (0 < lng) ? (
           Infinity > lng ? (
               Just(Tuple(xs[0])(xs.slice(1))) // Finite list
           ) : (() => {
               const nxt = take(1)(xs);
               return 0 < nxt.length ? (
                   Just(Tuple(nxt[0])(xs))
               ) : Nothing();
           })() // Lazy generator
       ) : Nothing();
   };
   // MAIN ---
   return main();

})();</lang>

Output:
1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27,22,39,11,13,33,26,45,28,51,32,17

Julia

<lang julia>using Plots

function yellowstone(N)

   a = [1, 2, 3]
   b = Dict(1 => 1, 2 => 1, 3 => 1)
   start = 4
   while length(a) < N
       inseries = true
       for i in start:typemax(Int)
           if haskey(b, i)
               if inseries
                   start += 1
               end
           else
               inseries = false
           end
           if !haskey(b, i) && (gcd(i, a[end]) == 1) && (gcd(i, a[end - 1]) > 1)
               push!(a, i)
               b[i] = 1
               break
           end
       end
   end
   return a

end

println("The first 30 entries of the Yellowstone permutation:\n", yellowstone(30))

x = 1:100 y = yellowstone(100) plot(x, y)

</lang>

Output:
The first 30 entries of the Yellowstone permutation:
[1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17]

Perl

<lang perl>use strict; use warnings; use feature 'say';

use List::Util qw(first); use GD::Graph::bars;

use constant Inf => 1e5;

sub gcd {

 my ($u, $v) = @_;
 while ($v) {
   ($u, $v) = ($v, $u % $v);
 }
 return abs($u);

}

sub yellowstone {

   my($terms) = @_;
   my @s = (1, 2, 3);
   my @used = (1) x 4;
   my $min  = 3;
   while (1) {
       my $index = first { not defined $used[$_] and gcd($_,$s[-2]) != 1 and gcd($_,$s[-1]) == 1 } $min .. Inf;
       $used[$index] = 1;
       $min = (first { not defined $used[$_] } 0..@used-1) || @used-1;
       push @s, $index;
       last if @s == $terms;
   }
   @s;

}

say "The first 30 terms in the Yellowstone sequence:\n" . join ' ', yellowstone(30);

my @data = ( [1..500], [yellowstone(500)]); my $graph = GD::Graph::bars->new(800, 600); $graph->set(

   title          => 'Yellowstone sequence',
   y_max_value    => 1400,
   x_tick_number  => 5,
   r_margin       => 10,
   dclrs          => [ 'blue' ],

) or die $graph->error; my $gd = $graph->plot(\@data) or die $graph->error;

open my $fh, '>', 'yellowstone-sequence.png'; binmode $fh; print $fh $gd->png(); close $fh;</lang>

Output:
The first 30 terms in the Yellowstone sequence:
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

See graph at off-site PNG image

Phix

Translation of: Julia

<lang Phix>function yellowstone(integer N)

   sequence a = {1, 2, 3},
            b = repeat(true,3)
   integer i = 4
   while length(a) < N do
       if (i>length(b) or b[i]=false)
       and gcd(i,a[$])=1
       and gcd(i,a[$-1])>1 then
           a &= i
           if i>length(b) then
               b &= repeat(false,i-length(b))
           end if
           b[i] = true
           i = 4
       end if
       i += 1
   end while
   return a

end function

printf(1,"The first 30 entries of the Yellowstone permutation:\n%v\n", {yellowstone(30)})</lang>

Output:
The first 30 entries of the Yellowstone permutation:
{1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27,22,39,11,13,33,26,45,28,51,32,17}

a simple plot

Library: pGUI

<lang Phix>include pGUI.e IupOpen() IupControlsOpen() Ihandle plot = IupPlot("MENUITEMPROPERTIES=Yes, SIZE=640x320") IupSetAttribute(plot, "TITLE", "Yellowstone Numbers"); IupSetAttribute(plot, "TITLEFONTSIZE", "10"); IupSetAttribute(plot, "TITLEFONTSTYLE", "ITALIC"); IupSetAttribute(plot, "GRIDLINESTYLE", "DOTTED"); IupSetAttribute(plot, "GRID", "YES"); IupSetAttribute(plot, "AXS_XLABEL", "n"); IupSetAttribute(plot, "AXS_YLABEL", "a(n)"); IupSetAttribute(plot, "AXS_XFONTSTYLE", "ITALIC"); IupSetAttribute(plot, "AXS_YFONTSTYLE", "ITALIC"); IupSetAttribute(plot, "AXS_YTICKSIZEAUTO", "NO"); IupSetAttribute(plot, "AXS_YTICKMAJORSIZE", "8"); IupSetAttribute(plot, "AXS_YTICKMINORSIZE", "0"); IupPlotBegin(plot) sequence y500 = yellowstone(500) for x=1 to 500 do

   IupPlotAdd(plot, x, y500[x])

end for {} = IupPlotEnd(plot) --IupSetAttribute(plot, "DS_MODE", "BAR") -- (optional) Ihandle dlg = IupDialog(plot) IupCloseOnEscape(dlg) IupSetAttribute(dlg, "TITLE", "Yellowstone Names") IupMap(dlg) IupShowXY(dlg,IUP_CENTER,IUP_CENTER) IupMainLoop() IupClose()</lang>

PicoLisp

<lang PicoLisp>(load "@lib/frac.l") (de yellow (N)

  (let (L (list 3 2 1)  I 4  C 3  D)
     (while (> N C)
        (when
           (and
              (not (idx 'D I))
              (=1 (gcd I (get L 1)))
              (> (gcd I (get L 2)) 1) )
           (push 'L I)
           (idx 'D I T)
           (setq I 4)
           (inc 'C) )
        (inc 'I) )
     (flip L) ) )

(println (yellow 30))</lang>

Output:
(1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17)

Python

Works with: Python version 3.7

<lang python>Yellowstone permutation OEIS A098550

from itertools import chain, count, islice from operator import itemgetter from math import gcd

from matplotlib import pyplot


  1. yellowstone :: [Int]

def yellowstone():

   A non-finite stream of terms from
      the Yellowstone permutation.
      OEIS A098550.
   
   # relativelyPrime :: Int -> Int -> Bool
   def relativelyPrime(a):
       return lambda b: 1 == gcd(a, b)
   # nextWindow :: (Int, Int, [Int]) -> (Int, Int, [Int])
   def nextWindow(triple):
       p2, p1, rest = triple
       [rp2, rp1] = map(relativelyPrime, [p2, p1])
       # match :: [Int] -> (Int, [Int])
       def match(xxs):
           x, xs = uncons(xxs)['Just']
           return (x, xs) if rp1(x) and not rp2(x) else (
               second(cons(x))(
                   match(xs)
               )
           )
       n, residue = match(rest)
       return (p1, n, residue)
   return chain(
       range(1, 3),
       map(
           itemgetter(1),
           iterate(nextWindow)(
               (2, 3, count(4))
           )
       )
   )


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Terms of the Yellowstone permutation.
   print(showList(
       take(30)(yellowstone())
   ))
   pyplot.plot(
       take(100)(yellowstone())
   )
   pyplot.xlabel(main.__doc__)
   pyplot.show()


  1. GENERIC -------------------------------------------------
  1. Just :: a -> Maybe a

def Just(x):

   Constructor for an inhabited Maybe (option type) value.
      Wrapper containing the result of a computation.
   
   return {'type': 'Maybe', 'Nothing': False, 'Just': x}


  1. Nothing :: Maybe a

def Nothing():

   Constructor for an empty Maybe (option type) value.
      Empty wrapper returned where a computation is not possible.
   
   return {'type': 'Maybe', 'Nothing': True}


  1. cons :: a -> [a] -> [a]

def cons(x):

   Construction of a list from x as head,
      and xs as tail.
   
   return lambda xs: [x] + xs if (
       isinstance(xs, list)
   ) else x + xs if (
       isinstance(xs, str)
   ) else chain([x], xs)


  1. iterate :: (a -> a) -> a -> Gen [a]

def iterate(f):

   An infinite list of repeated
      applications of f to x.
   
   def go(x):
       v = x
       while True:
           yield v
           v = f(v)
   return go


  1. second :: (a -> b) -> ((c, a) -> (c, b))

def second(f):

   A simple function lifted to a function over a tuple,
      with f applied only to the second of two values.
   
   return lambda xy: (xy[0], f(xy[1]))


  1. showList :: [a] -> String

def showList(xs):

   Stringification of a list.
   return '[' + ','.join(repr(x) for x in xs) + ']'


  1. take :: Int -> [a] -> [a]
  2. take :: Int -> String -> String

def take(n):

   The prefix of xs of length n,
      or xs itself if n > length xs.
   
   return lambda xs: (
       xs[0:n]
       if isinstance(xs, (list, tuple))
       else list(islice(xs, n))
   )


  1. uncons :: [a] -> Maybe (a, [a])

def uncons(xs):

   The deconstruction of a non-empty list
      (or generator stream) into two parts:
      a head value, and the remaining values.
   
   if isinstance(xs, list):
       return Just((xs[0], xs[1:])) if xs else Nothing()
   else:
       nxt = take(1)(xs)
       return Just((nxt[0], xs)) if nxt else Nothing()


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27,22,39,11,13,33,26,45,28,51,32,17]

Raku

(formerly Perl 6)

Works with: Rakudo version 2020.01

Not really clear whether a line graph or bar graph was desired, so generate both. Also, 100 points don't really give a good feel for the overall shape so do 500.

<lang perl6>my @yellowstone = 1, 2, 3, -> $q, $p {

   state @used = True xx 4;
   state $min  = 3;
   my \index = ($min .. *).first: { not @used[$_] and $_ gcd $q != 1 and $_ gcd $p == 1 };
   @used[index] = True;
   $min = @used.first(!*, :k) // +@used - 1;
   index

} … *;

put "The first 30 terms in the Yellowstone sequence:\n", @yellowstone[^30];

use SVG; use SVG::Plot;

my @x = ^500;

my $chart = SVG::Plot.new(

   background  => 'white',
   width       => 1000,
   height      => 600,
   plot-width  => 950,
   plot-height => 550,
   x           => @x,
   x-tick-step => { 10 },
   y-tick-step => { 50 },
   min-y-axis  => 0,
   values      => [@yellowstone[@x],],
   title       => "Yellowstone Sequence - First {+@x} values (zero indexed)",

);

my $line = './Yellowstone-sequence-line-perl6.svg'.IO; my $bars = './Yellowstone-sequence-bars-perl6.svg'.IO;

$line.spurt: SVG.serialize: $chart.plot: :lines; $bars.spurt: SVG.serialize: $chart.plot: :bars;</lang>

Output:
The first 30 terms in the Yellowstone sequence:
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

See (offsite SVG images) Line graph or Bar graph

REXX

horizontal list of numbers

<lang rexx>/*REXX program calculates any number of terms in the Yellowstone (permutation) sequence.*/ parse arg m . /*obtain optional argument from the CL.*/ if m== | m=="," then m= 30 /*Not specified? Then use the default.*/ !.= 0 /*initialize an array of numbers(used).*/

  1. = 0 /*count of Yellowstone numbers in seq. */

$= /*list " " " " " */

     do j=1  until #==m;  prev= # - 1
     if j<5  then do;  #= #+1;   @.#= j;  !.#= j;  !.j= 1;  $= strip($ j);  iterate;  end
        do k=1;   if !.k  then iterate          /*Already used?  Then skip this number.*/
        if gcd(k, @.#)\==1  |  gcd(k, @.prev)<2  then iterate   /*not meet requirement?*/
        #= #+1;   @.#= k;     !.k= 1;   $= $ k  /*bump ctr; assign; mark used; add list*/
        leave                                   /*find the next Yellowstone seq. number*/
        end   /*k*/
     end      /*j*/

say $ /*display a list of a Yellowstone seq. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ gcd: parse arg x,y; do until y==0; parse value x//y y with y x; end; return x</lang>

output   when using the default input:     30
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

vertical histogram plot

A horizontal histogram could also be shown,   but it would require a taller (higher) plot with more vertical screen real estate. <lang rexx>/*REXX program calculates any number of terms in the Yellowstone (permutation) sequence.*/ parse arg m . /*obtain optional argument from the CL.*/ if m== | m=="," then m= 30 /*Not specified? Then use the default.*/ !.= 0 /*initialize an array of numbers(used).*/

  1. = 0 /*count of Yellowstone numbers in seq. */

$= /*list " " " " " */

     do j=1  until #==m;  prev= # - 1
     if j<5  then do;  #= #+1;   @.#= j;  !.#= j;  !.j= 1;  $= strip($ j);  iterate;  end
        do k=1;   if !.k  then iterate          /*Already used?  Then skip this number.*/
        if gcd(k, @.#)\==1  |  gcd(k, @.prev)<2  then iterate   /*not meet requirement?*/
        #= #+1;   @.#= k;     !.k= 1;   $= $ k  /*bump ctr; assign; mark used; add list*/
        leave                                   /*find the next Yellowstone seq. number*/
        end   /*k*/
     end      /*j*/

call $histo $ '(vertical)' /*invoke a REXX vertical histogram plot*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ gcd: parse arg x,y; do until y==0; parse value x//y y with y x; end; return x</lang>

output   when using the input:     100

The terminal screen size has a height of 55 characters (including values), the plot is shown at three quarter scale.

                                                                           ■
                                                                           │
                                                                           │
                                                                           │                       ■
                                                                         ■ │                       │
                                                                         │ │                     ■ │
                                                                         │ │                     │ │
                                                                         │ │                     │ │
                                                                         │ │                   ■ │ │
                                                                         │ │                   │ │ │
                                                                         │ │                   │ │ │
                                                                         │ │               ■   │ │ │
                                                                       ■ │ │               │   │ │ │
                                                                       │ │ │             ■ │   │ │ │
                                                                       │ │ │             │ │ ■ │ │ │
                                                                       │ │ │        ■    │ │ │ │ │ │
                                                                     ■ │ │ │      ■ │    │ │ │ │ │ │
                                                    ■                │ │ │ │      │ │    │ │ │ │ │ │
                                                    │                │ │ │ │    ■ │ │    │ │ │ │ │ │
                                                    │                │ │ │ │    │ │ │    │ │ │ │ │ │
                                                    │                │ │ │ │ ■  │ │ │    │ │ │ │ │ │
                                                    │            ■   │ │ │ │ │  │ │ │    │ │ │ │ │ │
                                                    │            │   │ │ │ │ │  │ │ │    │ │ │ │ │ │
                                            ■       │          ■ │   │ │ │ │ │  │ │ │    │ │■│ │ │■│
                                     ■      │       │          │ │   │ │ │ │ │  │ │ │    │ │││ │ │││
                               ■     │      │       │     ■    │ │   │ │ │ │ │  │ │ │■   │■│││ │ │││
                               │     │      │       │     │    │ │   │ │ │ │ │  │ │ ││  ■│││││ │■│││
                               │     │      │       │   ■ │    │ │   │ │ │ │ │  │ │■││  ││││││■│││││
                               │     │      │       │ ■ │ │    │ │ ■ │ │ │ │ │  │■││││  ││││││││││││
                               │     │      │       │ │ │ │    │ │ │ │ │ │■│■│  ││││││  ││││││││││││
                               │     │      │   ■   │ │ │ │    │ │■│ │ │ │││││ ■││││││  ││││││││││││
                               │   ■ │      │   │   │ │ │ │    │■│││ │ │■│││││ │││││││  ││││││││││││
                               │   │ │   ■  │   │   │ │ │ │■   │││││ │ │││││││ │││││││  ││││││││││││
                               │   │ │   │  │ ■ │   │ │ │ ││  ■│││││ │■│││││││ │││││││  ││││││││││││
                               │ ■ │ │   │  │ │ │   │ │ │■││  ││││││■│││││││││ │││││││  ││││││││││││
                           ■   │ │ │ │   │  │ │ │■  │■│ ││││  ││││││││││││││││ │││││││  ││││││││││││
                           │   │ │ │ │ ■ │  │ │ ││ ■│││ ││││  ││││││││││││││││ │││││││  ││││││││││││
                         ■ │   │ │ │ │ │ │  │■│ ││ ││││■││││  ││││││││││││││││ │││││││ ■││││││││││││
                         │ │   │ │ │ │ │ │ ■│││■││ │││││││││  ││││││││││││││││ │││││││■│││││││││││││
                    ■    │ │   │ │ │■│ │■│ │││││││ │││││││││  ││││││││││││││││■│││││││││││││││││││││
            ■       │  ■ │ │   │ │■│││ │││ │││││││ │││││││││  ││││││││││││││││││││││││││││││││││││││
            │       │  │ │ │■  │ │││││■│││ │││││││ │││││││││■■││││││││││││││││││││││││││││││││││││││
            │     ■ │  │■│■││  │ │││││││││ │││││││ │││││││││││││││││││││││││││││││││││││││││││││││││
          ■ │     │■│  ││││││  │■│││││││││ │││││││■│││││││││││││││││││││││││││││││││││││││││││││││││
          │ │   ■■│││  ││││││  │││││││││││■│││││││││││││││││││││││││││││││││││││││││││││││││││││││││
      ■   │ │■  │││││  ││││││■■│││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││
      │■  │■││  │││││ ■│││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││
    ■■││  ││││ ■│││││■││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││
────┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴
1234981156213171222231132425311825363934361494546524157485862359696751616171713717181844818191718191
      54  5256 0107291336581278545456109839254709038125616729183498741036627407016102613228322844546
                                                    5                9 3 1 5 5  1 7 3    9 5 5 5 5 5

Ruby

<lang ruby>def yellow(n)

 a = [1, 2, 3]
 b = { 1 => true, 2 => true, 3 => true }
 i = 4
 while n > a.length
   if !b[i] && i.gcd(a[-1]) == 1 && i.gcd(a[-2]) > 1
     a << i
     b[i] = true
     i = 4
   end
   i += 1
 end
 a

end

p yellow(30)</lang>

Output:
[1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17]

Tcl

<lang Tcl>proc gcd {a b} {

   while {$b} {
       lassign [list $b [expr {$a % $b}]] a b
   }
   return $a

}

proc gen_yellowstones Template:MaxN 30 {

   set r {}
   for {set n 1} {$n <= $maxN} {incr n} {
       if {$n <= 3} {
           lappend r $n
       } else {
           ## NB: list indices start at 0, not 1.
           set pred    [lindex $r end  ]       ;# a(n-1): coprime
           set prepred [lindex $r end-1]       ;# a(n-2): not coprime
           for {set k 4} {1} {incr k} {
               if {[lsearch -exact $r $k] >= 0} { continue }
               if {1 != [gcd $k $pred   ]} { continue }
               if {1 == [gcd $k $prepred]} { continue }
               ## candidate k survived all tests...
               break
           }
           lappend r $k
       }
   }
   return $r

} puts "The first 30 Yellowstone numbers are:" puts [gen_yellowstones]</lang>

Output:
The first 30 Yellowstone numbers are:
1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17

zkl

Translation of: Julia

This sequence is limited to the max size of a Dictionary, 64k <lang zkl>fcn yellowstoneW{ // --> iterator

  Walker.zero().tweak(fcn(a,b){
     foreach i in ([1..]){
        if(not b.holds(i) and i.gcd(a[-1])==1 and i.gcd(a[-2]) >1){

a.del(0).append(i); // only keep last two terms b[i]=True; return(i); }

     }
  }.fp(List(2,3), Dictionary(1,True, 2,True, 3,True))).push(1,2,3);

}</lang> <lang zkl>println("The first 30 entries of the Yellowstone permutation:"); yellowstoneW().walk(30).concat(", ").println();</lang>

Output:
The first 30 entries of the Yellowstone permutation:
1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17

Plot using Gnuplot <lang zkl>gnuplot:=System.popen("gnuplot","w"); gnuplot.writeln("unset key; plot '-'"); yellowstoneW().pump(1_000, gnuplot.writeln.fp(" ")); // " 1\n", " 2\n", ... gnuplot.writeln("e"); gnuplot.flush(); ask("Hit return to finish"); gnuplot.close();</lang> Offsite Image: yellowstone