Jump to content

Palindromic gapful numbers

From Rosetta Code


Task
Palindromic gapful numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Numbers   (positive integers expressed in base ten)   that are (evenly) divisible by the number formed by the first and last digit are known as   gapful numbers.


Evenly divisible   means divisible with   no   remainder.


All   one─   and two─digit   numbers have this property and are trivially excluded.   Only numbers   100   will be considered for this Rosetta Code task.


Example

1037   is a   gapful   number because it is evenly divisible by the number   17   which is formed by the first and last decimal digits of   1037.


A palindromic number is   (for this task, a positive integer expressed in base ten),   when the number is reversed,   is the same as the original number.


Task
  •   Show   (nine sets)   the first   20   palindromic gapful numbers that   end   with:
  •   the digit   1
  •   the digit   2
  •   the digit   3
  •   the digit   4
  •   the digit   5
  •   the digit   6
  •   the digit   7
  •   the digit   8
  •   the digit   9
  •   Show   (nine sets, like above)   of palindromic gapful numbers:
  •   the last   15   palindromic gapful numbers   (out of       100)
  •   the last   10   palindromic gapful numbers   (out of   1,000)       {optional}


(For other ways of expressing the (above) requirements, see the   discussion   page.


Related tasks


Also see



AppleScript

<lang applescript>-- Return the next palindromic decimal integer value > the positive integer n. on nextPalindromic(n)

   -- Count n's digits.
   set temp to n div 10
   set digitCount to 1
   repeat until (temp is 0)
       set temp to temp div 10
       set digitCount to digitCount + 1
   end repeat
   -- Drop all the digits after the (first) middle one.
   set cut to 10 ^ (digitCount div 2)
   set oldLo to n mod cut
   set n to n - oldLo
   -- Make a new low end from the reverse of the same number of digits from the high end.
   set lo to 0
   repeat with p from ((digitCount + 1) div 2) to (digitCount - 1)
       set lo to lo * 10 + n div (10 ^ p) mod 10
   end repeat
   if (lo is not greater than oldLo) then
       -- If the result's not greater than the original low end, add 1 to the high-end's middle digit. 
       set n to n + cut
       -- Get another new low end if the number of digits is even or there's a carry in the result.
       -- Special-case where the result has carried to the next power of ten.
       if ((digitCount mod 2 is 0) or (n div cut mod 10 is 0)) then
           if (n = 10 ^ digitCount) then
               set lo to 1
           else
               set lo to 0
               repeat with p from ((digitCount + 1) div 2) to (digitCount - 1)
                   set lo to lo * 10 + n div (10 ^ p) mod 10
               end repeat
           end if
       end if
   end if
   
   return (n + lo) div 1

end nextPalindromic

on isGapful(n)

   set units to n mod 10
   set temp to n div 10
   repeat until (temp < 10)
       set temp to temp div 10
   end repeat
   
   return (n mod (temp * 10 + units) = 0)

end isGapful

-- Task code: on doTask()

   script o
       property collector : {}
   end script
   
   set part1 to {"First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:"}
   set part2 to {"86th to 100th such:"}
   set part3 to {"991st to 1000th:"}
   set astid to AppleScript's text item delimiters
   set AppleScript's text item delimiters to "  "
   repeat with endDigit from 1 to 9
       set o's collector to {}
       set m to endDigit * 100
       set n to m
       repeat until ((count o's collector) = 1000)
           set n to nextPalindromic(n)
           if (n mod 10 is endDigit) then
               if (isGapful(n)) then set end of o's collector to n
           else
               set m to m * 10
               set n to m
           end if
       end repeat
       set end of part1 to (items 1 thru 20 of o's collector) as text
       set end of part2 to (items 86 thru 100 of o's collector) as text
       set end of part3 to (items 991 thru end of o's collector) as text
   end repeat
   set AppleScript's text item delimiters to linefeed
   set output to {part1, "", part2, "", part3} as text
   set AppleScript's text item delimiters to astid
   
   return output

end doTask

return doTask()</lang>

Output:
"First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:
121  1001  1111  1221  1331  1441  1551  1661  1771  1881  1991  10901  11011  12221  13431  14641  15851  17171  18381  19591
242  2002  2112  2222  2332  2442  2552  2662  2772  2882  2992  20702  21912  22022  23232  24442  25652  26862  28182  29392
363  3003  3333  3663  3993  31713  33033  36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
484  4004  4224  4444  4664  4884  40304  42724  44044  46464  48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5005  5115  5225  5335  5445  5555  5665  5775  5885  5995  50105  51315  52525  53735  54945  55055  56265  57475  58685  59895
6006  6336  6666  6996  61116  64746  66066  69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7007  7777  77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8008  8448  8888  80608  86768  88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9009  9999  94149  99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999  9459549  9508059  9557559  9606069

86th to 100th such:
165561  166661  167761  168861  169961  170071  171171  172271  173371  174471  175571  176671  177771  178871  179971
265562  266662  267762  268862  269962  270072  271172  272272  273372  274472  275572  276672  277772  278872  279972
30366303  30399303  30422403  30455403  30488403  30511503  30544503  30577503  30600603  30633603  30666603  30699603  30722703  30755703  30788703
4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
565565  566665  567765  568865  569965  570075  571175  572275  573375  574475  575575  576675  577775  578875  579975
60399306  60422406  60455406  60488406  60511506  60544506  60577506  60600606  60633606  60666606  60699606  60722706  60755706  60788706  60811806
72299227  72322327  72399327  72422427  72499427  72522527  72599527  72622627  72699627  72722727  72799727  72822827  72899827  72922927  72999927
80611608  80622608  80633608  80644608  80655608  80666608  80677608  80688608  80699608  80800808  80811808  80822808  80833808  80844808  80855808
95311359  95400459  95499459  95588559  95677659  95766759  95855859  95944959  96033069  96122169  96211269  96300369  96399369  96488469  96577569

991st to 1000th:
17799771  17800871  17811871  17822871  17833871  17844871  17855871  17866871  17877871  17888871
27799772  27800872  27811872  27822872  27833872  27844872  27855872  27866872  27877872  27888872
3.084004803E+9  3.084334803E+9  3.084664803E+9  3.084994803E+9  3.085225803E+9  3.085555803E+9  3.085885803E+9  3.086116803E+9  3.086446803E+9  3.086776803E+9
482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
57800875  57811875  57822875  57833875  57844875  57855875  57866875  57877875  57888875  57899875
6.084004806E+9  6.084334806E+9  6.084664806E+9  6.084994806E+9  6.085225806E+9  6.085555806E+9  6.085885806E+9  6.086116806E+9  6.086446806E+9  6.086776806E+9
7.452992547E+9  7.453223547E+9  7.453993547E+9  7.454224547E+9  7.454994547E+9  7.455225547E+9  7.455995547E+9  7.456226547E+9  7.456996547E+9  7.457227547E+9
8.085995808E+9  8.086006808E+9  8.086116808E+9  8.086226808E+9  8.086336808E+9  8.086446808E+9  8.086556808E+9  8.086666808E+9  8.086776808E+9  8.086886808E+9
9.675005769E+9  9.675995769E+9  9.676886769E+9  9.677777769E+9  9.678668769E+9  9.679559769E+9  9.680440869E+9  9.681331869E+9  9.682222869E+9  9.683113869E+9"

C

Translation of: C++

<lang c>#include <stdbool.h>

  1. include <stdio.h>
  2. include <stdint.h>

typedef uint64_t integer;

integer reverse(integer n) {

   integer rev = 0;
   while (n > 0) {
       rev = rev * 10 + (n % 10);
       n /= 10;
   }
   return rev;

}

typedef struct palgen_tag {

   integer power;
   integer next;
   int digit;
   bool even;

} palgen_t;

void init_palgen(palgen_t* palgen, int digit) {

   palgen->power = 10;
   palgen->next = digit * palgen->power - 1;
   palgen->digit = digit;
   palgen->even = false;

}

integer next_palindrome(palgen_t* p) {

   ++p->next;
   if (p->next == p->power * (p->digit + 1)) {
       if (p->even)
           p->power *= 10;
       p->next = p->digit * p->power;
       p->even = !p->even;
   }
   return p->next * (p->even ? 10 * p->power : p->power)
       + reverse(p->even ? p->next : p->next/10);

}

bool gapful(integer n) {

   integer m = n;
   while (m >= 10)
       m /= 10;
   return n % (n % 10 + 10 * m) == 0;

}

void print(int len, integer array[][len]) {

   for (int digit = 1; digit < 10; ++digit) {
       printf("%d: ", digit);
       for (int i = 0; i < len; ++i)
           printf(" %llu", array[digit - 1][i]);
       printf("\n");
   }

}

int main() {

   const int n1 = 20, n2 = 15, n3 = 10;
   const int m1 = 100, m2 = 1000;
   integer pg1[9][n1];
   integer pg2[9][n2];
   integer pg3[9][n3];
   for (int digit = 1; digit < 10; ++digit) {
       palgen_t pgen;
       init_palgen(&pgen, digit);
       for (int i = 0; i < m2; ) {
           integer n = next_palindrome(&pgen);
           if (!gapful(n))
               continue;
           if (i < n1)
               pg1[digit - 1][i] = n;
           else if (i < m1 && i >= m1 - n2)
               pg2[digit - 1][i - (m1 - n2)] = n;
           else if (i >= m2 - n3)
               pg3[digit - 1][i - (m2 - n3)] = n;
           ++i;
       }
   }
   printf("First %d palindromic gapful numbers ending in:\n", n1);
   print(n1, pg1);
   printf("\nLast %d of first %d palindromic gapful numbers ending in:\n", n2, m1);
   print(n2, pg2);
   printf("\nLast %d of first %d palindromic gapful numbers ending in:\n", n3, m2);
   print(n3, pg3);
   return 0;

}</lang>

Output:
First 20 palindromic gapful numbers ending in:
1:  121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2:  242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3:  363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4:  484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5:  5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6:  6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7:  7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8:  8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9:  9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1:  165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2:  265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3:  30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5:  565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6:  60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7:  72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8:  80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9:  95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1:  17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2:  27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3:  3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5:  57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6:  6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7:  7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8:  8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9:  9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

C++

The idea of generating palindromes first then testing for gapfulness was borrowed from other solutions. <lang cpp>#include <iostream>

  1. include <cstdint>

typedef uint64_t integer;

integer reverse(integer n) {

   integer rev = 0;
   while (n > 0) {
       rev = rev * 10 + (n % 10);
       n /= 10;
   }
   return rev;

}

// generates base 10 palindromes greater than 100 starting // with the specified digit class palindrome_generator { public:

   palindrome_generator(int digit) : power_(10), next_(digit * power_ - 1),
       digit_(digit), even_(false) {}
   integer next_palindrome() {
       ++next_;
       if (next_ == power_ * (digit_ + 1)) {
           if (even_)
               power_ *= 10;
           next_ = digit_ * power_;
           even_ = !even_;
       }
       return next_ * (even_ ? 10 * power_ : power_)
           + reverse(even_ ? next_ : next_/10);
   }

private:

   integer power_;
   integer next_;
   int digit_;
   bool even_;

};

bool gapful(integer n) {

   integer m = n;
   while (m >= 10)
       m /= 10;
   return n % (n % 10 + 10 * m) == 0;

}

template<size_t len> void print(integer (&array)[9][len]) {

   for (int digit = 1; digit < 10; ++digit) {
       std::cout << digit << ":";
       for (int i = 0; i < len; ++i)
           std::cout << ' ' << array[digit - 1][i];
       std::cout << '\n';
   }

}

int main() {

   const int n1 = 20, n2 = 15, n3 = 10;
   const int m1 = 100, m2 = 1000;
   integer pg1[9][n1];
   integer pg2[9][n2];
   integer pg3[9][n3];
   for (int digit = 1; digit < 10; ++digit) {
       palindrome_generator pgen(digit);
       for (int i = 0; i < m2; ) {
           integer n = pgen.next_palindrome();
           if (!gapful(n))
               continue;
           if (i < n1)
               pg1[digit - 1][i] = n;
           else if (i < m1 && i >= m1 - n2)
               pg2[digit - 1][i - (m1 - n2)] = n;
           else if (i >= m2 - n3)
               pg3[digit - 1][i - (m2 - n3)] = n;
           ++i;
       }
   }
   std::cout << "First " << n1 << " palindromic gapful numbers ending in:\n";
   print(pg1);
   std::cout << "\nLast " << n2 << " of first " << m1 << " palindromic gapful numbers ending in:\n";
   print(pg2);
   std::cout << "\nLast " << n3 << " of first " << m2 << " palindromic gapful numbers ending in:\n";
   print(pg3);
   return 0;

}</lang>

Output:
First 20 palindromic gapful numbers ending in:
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Crystal

Brute force and slow

<lang ruby>def palindromesgapful(digit, pow)

 r1 = (10_u64**pow + 1) * digit
 r2 = 10_u64**pow * (digit + 1)
 nn = digit * 11
 (r1...r2).select { |i| n = i.to_s; n == n.reverse && i.divisible_by?(nn) }

end

def digitscount(digit, count)

 pow  = 2
 nums = [] of UInt64
 while nums.size < count
   nums += palindromesgapful(digit, pow)
   pow += 1
 end
 nums[0...count]

end

count = 20 puts "First 20 palindromic gapful numbers ending with:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count)}\n" }

count = 100 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(15)}\n" }

count = 1000 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(10)}\n" }</lang>

Orders of Magnitude Faster: Direct Generation of Numbers

Crystal is a statically typed and a compiled language.
The code as implemented has been tested to produce optimum performance.

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: $ crystal run --release palindromicgapfuls.cr 

Optimized version, the ultimate fastest: 21.5 secs <lang ruby>def palindromicgapfuls(digit, count)

 gapfuls = [] of UInt64            # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 (2..).select do |power|
   base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     left_half = front_half.to_s; right_half = left_half.reverse
     if power.odd?
       palindrome = (left_half + right_half).to_u64
       10.times do
         gapfuls << palindrome if palindrome.divisible_by?(nn)
         return gapfuls if gapfuls.size == count
         palindrome += base11
       end
     else
       palindrome = (left_half.rchop + right_half).to_u64
       10.times do 
         gapfuls << palindrome if palindrome.divisible_by?(nn)
         return gapfuls if gapfuls.size == count
         palindrome += base
       end  
     end
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

Compact version: 22.0 secs <lang ruby>def palindromicgapfuls(digit, count)

 gapfuls = [] of UInt64            # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 (2..).select do |power|
   base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     palindrome, left_half = 0_u64, front_half.to_s
     basep, right_half     = base11, left_half.reverse
     (basep = base; left_half = left_half.rchop) if power.even?
     palindrome = (left_half + right_half).to_u64
     10.times do
       gapfuls << palindrome if palindrome.divisible_by?(nn)
       return gapfuls if gapfuls.size == count
       palindrome += basep
     end
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

Object Oriented implementation: same speed - 21.8 seconds
Here using a Struct (allocated on stack) is faster than using a Class (allocated on heap) <lang ruby>struct PalindromicGapfuls

 include Enumerable(UInt64)
 @nn : Int32
 def initialize(@digit : Int32)
   @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
 end
 def each
   (2..).select do |power|
     base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
     base11  = base * 11             # value of middle two digits positions: 110..
     this_lo = base * @digit         # starting half for this digit: 10.. to  90..
     next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
     this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
       left_half = front_half.to_s; right_half = left_half.reverse
       if power.odd?
         palindrome = (left_half + right_half).to_u64
         10.times do
           yield palindrome if palindrome.divisible_by?(@nn)
           palindrome += base11
         end
       else
         palindrome = (left_half.rchop + right_half).to_u64
         10.times do 
           yield palindrome if palindrome.divisible_by?(@nn)
           palindrome += base
         end  
       end
     end
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

Original version optimized for minimal memory use: 24.6 secs <lang ruby>def palindromicgapfuls(digit, count, keep)

 skipped = 0                       # initial count of skipped values
 to_skip = count - keep            # count of unwanted values to skip
 gapfuls = [] of UInt64            # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 (2..).select do |power|
   base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     left_half = front_half.to_s; right_half = left_half.reverse
     if power.odd?
       palindrome = (left_half + right_half).to_u64
       10.times do
         (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome.divisible_by?(nn)
         palindrome += base11
       end
     else
       palindrome = (left_half.rchop + right_half).to_u64
       10.times do
         (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome.divisible_by?(nn)
         palindrome += base
       end  
     end
     return gapfuls[0...keep] unless gapfuls.size < keep
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

Compact version optimized for minimal memory use: 24.5 secs <lang ruby>def palindromicgapfuls(digit, count, keep)

 skipped = 0                       # initial count of skipped values
 to_skip = count - keep            # count of unwanted values to skip
 gapfuls = [] of UInt64            # array of palindromic gapfuls
 nn, base = (digit * 11).to_u64, 1_u64 # digit gapful divisor: 11, 22,...88, 99
 (2..).select do |power|
   base   *= 10 if power.even?     # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     palindrome, left_half = 0_u64, front_half.to_s
     basep, right_half     = base11, left_half.reverse
     (basep = base; left_half = left_half.rchop) if power.even?
     palindrome = (left_half + right_half).to_u64
     10.times do
       (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome.divisible_by?(nn)
       palindrome += basep
     end
     return gapfuls[0...keep] unless gapfuls.size < keep
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

OOP version optimized for minimal memory use - 25.4 secs
It creates an output method that skips the unwanted values and only keeps/stores the desired ones. <lang ruby>struct PalindromicGapfuls

 include Enumerable(UInt64)
 @nn : Int32
 def initialize(@digit : Int32)
   @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
 end
 def each
   (2..).select do |power|
     base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
     base11  = base * 11             # value of middle two digits positions: 110..
     this_lo = base * @digit         # starting half for this digit: 10.. to  90..
     next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
     this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
       left_half = front_half.to_s; right_half = left_half.reverse
       if power.odd?
         palindrome = (left_half + right_half).to_u64
         10.times do
           yield palindrome if palindrome.divisible_by?(@nn)
           palindrome += base11
         end
       else
         palindrome = (left_half.rchop + right_half).to_u64
         10.times do 
           yield palindrome if palindrome.divisible_by?(@nn)
           palindrome += base
         end  
       end
     end
   end
 end
 # Optimized output method: only keep desired values.
 def keep_from(count, keep)
   to_skip = (count - keep)
   kept = [] of UInt64
   each_with_index do |value, i|
     i < to_skip ? next : kept << value
     return kept if kept.size == keep
   end
 end

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

Compact minimized memory version that numerically create palindromes: 9.2 secs <lang ruby>def palindromicgapfuls(digit, count, keep)

 skipped = 0                       # initial count of skipped values
 to_skip = count - keep            # count of unwanted values to skip
 gapfuls = [] of UInt64            # array of palindromic gapfuls
 nn, base = digit * 11, 1_u64      # digit gapful divisor: 11, 22,...88, 99
 (2..).select do |power|
   base   *= 10 if power.even?     # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     basep = power.odd? ? base11 : base 
     palindrome = make_palindrome(front_half, power)
     10.times do
       (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome.divisible_by?(nn)
       palindrome += basep
     end
     return gapfuls[0...keep] unless gapfuls.size < keep
   end
 end

end

def make_palindrome(front_half, power)

 result = front_half
 result //= 10 if power.even?
 while front_half > 0
   result *= 10
   result += front_half.remainder(10)
   front_half //= 10
 end
 result

end

start = Time.monotonic

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds</lang>

OOP version optimized for minimal memory use, palindromes created numerically - 9.59 secs <lang ruby>struct PalindromicGapfuls

   include Enumerable(UInt64)
  
   @nn : Int32
  
   def initialize(@digit : Int32)
     @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
   end
  
   def each
     (2..).select do |power|
       base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
       base11  = base * 11             # value of middle two digits positions: 110..
       this_lo = base * @digit         # starting half for this digit: 10.. to  90..
       next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
       this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
         basep = power.odd? ? base11 : base 
         palindrome = make_palindrome(front_half, power)
         10.times do
           yield palindrome if palindrome.divisible_by?(@nn)
           palindrome += basep
         end
       end
     end
   end
   def make_palindrome(front_half, power) 
     result = front_half
     result //= 10 if power.even?
     while front_half > 0
       result *= 10
       result += front_half.remainder(10)
       front_half //= 10
     end
     result
   end
  
   # Optimized output method: only keep desired values.
   def keep_from(count, keep)
     to_skip = (count - keep)
     kept = [] of UInt64
     each_with_index do |value, i|
       i < to_skip ? next : kept << value
       return kept if kept.size == keep
     end
   end
 end
  
 start = Time.monotonic
  
 count, keep = 20, 20
 puts "First 20 palindromic gapful numbers ending with:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 count, keep = 100, 15
 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 count, keep = 1_000, 10
 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 count, keep = 100_000, 1
 puts "\n100,000th palindromic gapful number ending with:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 count, keep = 1_000_000, 1
 puts "\n1,000,000th palindromic gapful number ending with:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 count, keep = 10_000_000, 1
 puts "\n10,000,000th palindromic gapful number ending with:"
 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
 puts (Time.monotonic - start).total_seconds</lang>
Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Factor

<lang factor>USING: formatting fry io kernel lists lists.lazy locals math math.functions math.ranges math.text.utils prettyprint sequences ; IN: rosetta-code.palindromic-gapful-numbers

! Palindromic numbers are relatively rare compared to gapful ! numbers, so our strategy for finding palindromic gapful ! numbers is to filter gapful numbers from palindromic numbers.

! Palindromic numbers can be generated directly rather than ! filtered or identified from the natural numbers. This is a ! significant speedup since palindromic numbers are relatively ! rare in the natural numbers.

! Here I have used a generation method similar to ! https://www.geeksforgeeks.org/generate-palindromic-numbers-less-n/

! Create a palindrome from its base natural number. ! e.g. 321 t -> 32123 ! 321 f -> 321123

create-palindrome ( n odd? -- m )
   dupd [ 10 /i ] when swap [ over 0 > ]
   [ 10 * [ 10 /mod ] [ + ] bi* ] while nip ;

! Create an infinite lazy list of palindromic numbers starting ! at 100.

palindromes ( -- l )
   1 lfrom [
       10 swap ^ dup 10 * [a,b)
       [ [ t create-palindrome ] map ]
       [ [ f create-palindrome ] map ] bi
       [ sequence>list ] bi@ lappend
   ] lmap-lazy lconcat ;

! Is an integer gapful?

gapful? ( n -- ? )
   dup 1 digit-groups [ first ] [ last 10 * + ] bi divisor? ;

! Create an infinite lazy list of gapful palindromes.

gapful-palindromes ( -- l ) palindromes [ gapful? ] lfilter ;
show-palindromic-gapfuls ( last of -- )
   gapful-palindromes :> nums
   last of
   "~~==[ Last  %d  of  %d  palindromic gapful numbers starting at 100 ]==~~\n"
   printf 9 [1,b] [| d |
       of nums [ 10 mod d = ] lfilter ltake list>array
       last tail* d pprint ": " write [ pprint bl ] each nl
   ] each nl ;

20 20  ! part 1 15 100  ! part 2 10 1000  ! part 3 (Optional) [ show-palindromic-gapfuls ] 2tri@</lang>

Output:
~~==[ Last  20  of  20  palindromic gapful numbers starting at 100 ]==~~
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591 
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392 
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333 
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804 
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895 
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336 
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087 
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648 
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069 

~~==[ Last  15  of  100  palindromic gapful numbers starting at 100 ]==~~
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971 
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

~~==[ Last  10  of  1000  palindromic gapful numbers starting at 100 ]==~~
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871 
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384 
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

Fōrmulæ

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

Go

This uses the same strategy as the Factor entry i.e. to generate all palindromic numbers in order and then test whether they're gapful or not.

To keep the Pascal entry company, I've extended the search to the first 10 million such numbers for each of the nine sets. <lang go>package main

import "fmt"

func reverse(s uint64) uint64 {

   e := uint64(0)
   for s > 0 {
       e = e*10 + (s % 10)
       s /= 10
   }
   return e

}

func commatize(n uint) string {

   s := fmt.Sprintf("%d", n)
   le := len(s)
   for i := le - 3; i >= 1; i -= 3 {
       s = s[0:i] + "," + s[i:]
   }
   return s

}

func ord(n uint) string {

   var suffix string
   if n > 10 && ((n-11)%100 == 0 || (n-12)%100 == 0 || (n-13)%100 == 0) {
       suffix = "th"
   } else {
       switch n % 10 {
       case 1:
           suffix = "st"
       case 2:
           suffix = "nd"
       case 3:
           suffix = "rd"
       default:
           suffix = "th"
       }
   }
   return fmt.Sprintf("%s%s", commatize(n), suffix)

}

func main() {

   const max = 10_000_000
   data := [][3]uint{{1, 20, 7}, {86, 100, 8}, {991, 1000, 10}, {9995, 10000, 12}, {1e5, 1e5, 14},
       {1e6, 1e6, 16}, {1e7, 1e7, 18}}
   results := make(map[uint][]uint64)
   for _, d := range data {
       for i := d[0]; i <= d[1]; i++ {
           results[i] = make([]uint64, 9)
       }
   }
   var p uint64

outer:

   for d := uint64(1); d < 10; d++ {
       count := uint(0)
       pow := uint64(1)
       fl := d * 11
       for nd := 3; nd < 20; nd++ {
           slim := (d + 1) * pow
           for s := d * pow; s < slim; s++ {
               e := reverse(s)
               mlim := uint64(1)
               if nd%2 == 1 {
                   mlim = 10
               }
               for m := uint64(0); m < mlim; m++ {
                   if nd%2 == 0 {
                       p = s*pow*10 + e
                   } else {
                       p = s*pow*100 + m*pow*10 + e
                   }
                   if p%fl == 0 {
                       count++
                       if _, ok := results[count]; ok {
                           results[count][d-1] = p
                       }
                       if count == max {
                           continue outer
                       }
                   }
               }
           }
           if nd%2 == 1 {
               pow *= 10
           }
       }
   }
   for _, d := range data {
       if d[0] != d[1] {
           fmt.Printf("%s to %s palindromic gapful numbers (> 100) ending with:\n", ord(d[0]), ord(d[1]))
       } else {
           fmt.Printf("%s palindromic gapful number (> 100) ending with:\n", ord(d[0]))
       }
       for i := 1; i <= 9; i++ {
           fmt.Printf("%d: ", i)
           for j := d[0]; j <= d[1]; j++ {
               fmt.Printf("%*d ", d[2], results[j][i-1])
           }
           fmt.Println()
       }
       fmt.Println()
   }

}</lang>

Output:
1st to 20th palindromic gapful numbers (> 100) ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591 
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392 
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333 
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804 
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895 
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336 
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087 
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648 
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069 

86th to 100th palindromic gapful numbers (> 100) ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971 
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284 
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

991st to 1,000th palindromic gapful numbers (> 100) ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871 
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384 
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

9,995th to 10,000th palindromic gapful numbers (> 100) ending with:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871 
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872 
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803 
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384 
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875 
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806 
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647 
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808 
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869 

100,000th palindromic gapful number (> 100) ending with:
1:   178788887871 
2:   278788887872 
3: 30878611687803 
4:  4833326233384 
5:   578789987875 
6: 60878611687806 
7: 74826144162847 
8: 80869688696808 
9: 96878077087869 

1,000,000th palindromic gapful number (> 100) ending with:
1:   17878799787871 
2:   27878799787872 
3: 3087876666787803 
4:  483333272333384 
5:   57878799787875 
6: 6087876996787806 
7: 7487226666227847 
8: 8086969559696808 
9: 9687870990787869 

10,000,000th palindromic gapful number (> 100) ending with:
1:   1787878888787871 
2:   2787878888787872 
3: 308787855558787803 
4:  48333332623333384 
5:   5787878998787875 
6: 608787855558787806 
7: 748867523325768847 
8: 808696968869696808 
9: 968787783387787869 

Haskell

Brute Force

<lang haskell>import Control.Monad (guard)

palindromic :: Int -> Bool palindromic n = d == reverse d

where
 d = show n

gapful :: Int -> Bool gapful n = n `rem` firstLastDigit == 0

where
 firstLastDigit = read [head asDigits, last asDigits]
 asDigits = show n

result :: Int -> [Int] result d = do

 x <- [(d+100),(d+110)..]
 guard $ palindromic x && gapful x
 pure x

showSets :: (Int -> String) -> IO () showSets r = go 1

where
 go n = if n <= 9 then do
   putStrLn (show n ++ ": " ++ r n)
   go (succ n)
   else pure ()

main :: IO () main = do

 putStrLn "\nFirst 20 palindromic gapful numbers ending in:"
 showSets (show . take 20 . result)
 putStrLn "\nLast 15 of first 100 palindromic gapful numbers ending in:"
 showSets (show . drop 85 . take 100 . result)
 putStrLn "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
 showSets (show . drop 990 . take 1000 . result)
 putStrLn "\ndone."</lang>

Optimized

Here the approach is to generate a series of palindromes. <lang haskell>import Data.List (sort, unfoldr) import Control.Monad (guard)

gapful :: Int -> Bool gapful n = n `rem` firstLastDigit n == 0

where
 firstLastDigit = (\xs -> head xs * 10 + last xs) . reverse
   . unfoldr (\n -> guard (n /= 0) >> pure (n `mod` 10, n `div` 10))
 

toPalinDrome :: Int -> [Int] toPalinDrome n = filter ((&&) . (> 100) <*> gapful) [go n n, go n (n `div` 10)]

 where
   go p 0 = p
   go p n = go (p * 10 + (n `mod` 10)) (n `div` 10)

gapfulPalindromes :: [Int] gapfulPalindromes = (sort . (=<<) toPalinDrome) [1 .. 99999]

endsWith :: Int -> [Int] endsWith n = filter ((n ==) . (`mod` 10)) gapfulPalindromes

showSets :: (String, [Int] -> [Int]) -> String showSets (k, r) =

 k ++
 " palindromic gapful numbers ending in:\n" ++
 unlines ((<*>) ((++) . show) ((": " ++) . show . r . endsWith) <$> [1 .. 9])

main :: IO () main =

 mapM_
   (putStrLn . showSets)
   [ ("First 20", take 20)
   , ("Last 15 of first 100", drop 85 . take 100)
   , ("Last 10 of first 1000", drop 990 . take 1000)
   ]</lang>
Output:
First 20 palindromic gapful numbers ending in:
1: [121,1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,10901,11011,12221,13431,14641,15851,17171,18381,19591]
2: [242,2002,2112,2222,2332,2442,2552,2662,2772,2882,2992,20702,21912,22022,23232,24442,25652,26862,28182,29392]
3: [363,3003,3333,3663,3993,31713,33033,36663,300003,303303,306603,309903,312213,315513,318813,321123,324423,327723,330033,333333]
4: [484,4004,4224,4444,4664,4884,40304,42724,44044,46464,48884,400004,401104,402204,403304,404404,405504,406604,407704,408804]
5: [5005,5115,5225,5335,5445,5555,5665,5775,5885,5995,50105,51315,52525,53735,54945,55055,56265,57475,58685,59895]
6: [6006,6336,6666,6996,61116,64746,66066,69696,600006,603306,606606,609906,612216,615516,618816,621126,624426,627726,630036,633336]
7: [7007,7777,77077,700007,707707,710017,717717,720027,727727,730037,737737,740047,747747,750057,757757,760067,767767,770077,777777,780087]
8: [8008,8448,8888,80608,86768,88088,800008,802208,804408,806608,808808,821128,823328,825528,827728,829928,840048,842248,844448,846648]
9: [9009,9999,94149,99099,900009,909909,918819,927729,936639,945549,954459,963369,972279,981189,990099,999999,9459549,9508059,9557559,9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1: [165561,166661,167761,168861,169961,170071,171171,172271,173371,174471,175571,176671,177771,178871,179971]
2: [265562,266662,267762,268862,269962,270072,271172,272272,273372,274472,275572,276672,277772,278872,279972]
3: [30366303,30399303,30422403,30455403,30488403,30511503,30544503,30577503,30600603,30633603,30666603,30699603,30722703,30755703,30788703]
4: [4473744,4485844,4497944,4607064,4619164,4620264,4632364,4644464,4656564,4668664,4681864,4693964,4803084,4815184,4827284]
5: [565565,566665,567765,568865,569965,570075,571175,572275,573375,574475,575575,576675,577775,578875,579975]
6: [60399306,60422406,60455406,60488406,60511506,60544506,60577506,60600606,60633606,60666606,60699606,60722706,60755706,60788706,60811806]
7: [72299227,72322327,72399327,72422427,72499427,72522527,72599527,72622627,72699627,72722727,72799727,72822827,72899827,72922927,72999927]
8: [80611608,80622608,80633608,80644608,80655608,80666608,80677608,80688608,80699608,80800808,80811808,80822808,80833808,80844808,80855808]
9: [95311359,95400459,95499459,95588559,95677659,95766759,95855859,95944959,96033069,96122169,96211269,96300369,96399369,96488469,96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1: [17799771,17800871,17811871,17822871,17833871,17844871,17855871,17866871,17877871,17888871]
2: [27799772,27800872,27811872,27822872,27833872,27844872,27855872,27866872,27877872,27888872]
3: [3084004803,3084334803,3084664803,3084994803,3085225803,3085555803,3085885803,3086116803,3086446803,3086776803]
4: [482282284,482414284,482535284,482656284,482777284,482898284,482909284,483020384,483141384,483262384]
5: [57800875,57811875,57822875,57833875,57844875,57855875,57866875,57877875,57888875,57899875]
6: [6084004806,6084334806,6084664806,6084994806,6085225806,6085555806,6085885806,6086116806,6086446806,6086776806]
7: [7452992547,7453223547,7453993547,7454224547,7454994547,7455225547,7455995547,7456226547,7456996547,7457227547]
8: [8085995808,8086006808,8086116808,8086226808,8086336808,8086446808,8086556808,8086666808,8086776808,8086886808]
9: [9675005769,9675995769,9676886769,9677777769,9678668769,9679559769,9680440869,9681331869,9682222869,9683113869]

done.

J

Part 1:

   task1 =: {. (((= 10&#:) # ]) palindromic_multiples_of_eleven)
   palindromic_multiples_of_eleven =: [: (#~ (99&< *. palindrome&>)) (11*i.100001)&*
   palindrome =: (-: |.)@:":

   20 task1&> >:i.9
 121 1001  1111   1221   1331   1441   1551   1661   1771   1881   1991  10901  11011  12221  13431  14641   15851   17171   18381   19591
 242 2002  2112   2222   2332   2442   2552   2662   2772   2882   2992  20702  21912  22022  23232  24442   25652   26862   28182   29392
 363 3003  3333   3663   3993  31713  33033  36663 300003 303303 306603 309903 312213 315513 318813 321123  324423  327723  330033  333333
 484 4004  4224   4444   4664   4884  40304  42724  44044  46464  48884 400004 401104 402204 403304 404404  405504  406604  407704  408804
5005 5115  5225   5335   5445   5555   5665   5775   5885   5995  50105  51315  52525  53735  54945  55055   56265   57475   58685   59895
6006 6336  6666   6996  61116  64746  66066  69696 600006 603306 606606 609906 612216 615516 618816 621126  624426  627726  630036  633336
7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067  767767  770077  777777  780087
8008 8448  8888  80608  86768  88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928  840048  842248  844448  846648
9009 9999 94149  99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Part 2: <lang> palindromify=: [: , ((,~ |.@}.) ; (,~ |.))&> gapful=: (0 = (|~ ({.,{:)&.(10&#.inv)))&> task2_cartesian_products=: [: , [: { ((i. 10) ; (>: i. 9)) #~ ,&1 task2_palindromes=: [: 10&#.&> [: palindromify task2_cartesian_products task2_gapfuls=: [: /:~ [: ; [: (#~ gapful)@task2_palindromes&.> >:@i. </lang>

   palindromify { ;: 'abc XY'   NB. demonstration
+---+----+---+----+---+----+---+----+---+----+---+----+
|XaX|XaaX|YaY|YaaY|XbX|XbbX|YbY|YbbY|XcX|XccX|YcY|YccY|
+---+----+---+----+---+----+---+----+---+----+---+----+


   NB. task2 solution

   A=: task2_gapfuls 4  NB. A is an ordered vector of the 3 to 10 digit gapful palindromes
   B=: (</.~ 10&#:) A   NB. B are A grouped by last (first) digit

   (# , {:)&> B  NB. tally and tail of each group
12120 1999999991
12120 2999999992
 4044 3999999993
 6061 4899999984
12120 5999999995
 4044 6999999996
 1785 7999449997
 3031 8889999888
 1352 9999999999

   (_15 {. 100&{.)&> B  NB. the last 15 of the first hundred
  165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
  265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
  565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

   (_10 {. 1000&{.)&> B  NB. the last 10 of the first 1000
  17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
  27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
  57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869


   NB. timing
   NB. B matches the rearranged expression
   timespacex'assert B -: (</.~ 10&#:) task2_gapfuls 4'  NB. approximate timing for the substantial part of the effort
0.551638 7.2343e7

   NB. full memory, Thinkpad W540

   JVERSION
Engine: j901/j64avx2/windows
Release-c: commercial/2020-01-11T13:29:14
Library: 9.01.20
Platform: Win 64
Installer: J901 install
InstallPath: c:/program files/j901
Contact: www.jsoftware.com

Java

<lang java> import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map;

public class PalindromicGapfulNumbers {

   public static void main(String[] args) {
       System.out.println("First 20 palindromic gapful numbers ending in:");
       displayMap(getPalindromicGapfulEnding(20, 20));
       System.out.printf("%nLast 15 of first 100 palindromic gapful numbers ending in:%n");
       displayMap(getPalindromicGapfulEnding(15, 100));
       System.out.printf("%nLast 10 of first 1000 palindromic gapful numbers ending in:%n");
       displayMap(getPalindromicGapfulEnding(10, 1000));
   }
   
   private static void displayMap(Map<Integer,List<Long>> map) {
       for ( int key = 1 ; key <= 9 ; key++ ) {
           System.out.println(key + " : " + map.get(key));
       }
   }
   
   public static Map<Integer,List<Long>> getPalindromicGapfulEnding(int countReturned, int firstHowMany) {
       Map<Integer,List<Long>> map = new HashMap<>();
       Map<Integer,Integer> mapCount = new HashMap<>();
       for ( int i = 1 ; i <= 9 ; i++ ) {
           map.put(i, new ArrayList<>());
           mapCount.put(i, 0);
       }
       boolean notPopulated = true;
       for ( long n = 101 ; notPopulated ; n = nextPalindrome(n) ) {
           if ( isGapful(n) ) {
               int index = (int) (n % 10);
               if ( mapCount.get(index) < firstHowMany ) {
                   map.get(index).add(n);
                   mapCount.put(index, mapCount.get(index) + 1);
                   if ( map.get(index).size() > countReturned ) {
                       map.get(index).remove(0);
                   }
               }
               boolean finished = true;
               for ( int i = 1 ; i <= 9 ; i++ ) {
                   if ( mapCount.get(i) < firstHowMany ) {
                       finished = false;
                       break;
                   }
               }
               if ( finished ) {
                   notPopulated = false;
               }
           }
       }
       return map;
   }
   
   public static boolean isGapful(long n) {
       String s = Long.toString(n);
       return n % Long.parseLong("" + s.charAt(0) + s.charAt(s.length()-1)) == 0;
   }
   
   public static int length(long n) {
       int length = 0;
       while ( n > 0 ) {
           length += 1;
           n /= 10;
       }
       return length;
   }
   
   public static long nextPalindrome(long n) {
       int length = length(n);
       if ( length % 2 == 0 ) {
           length /= 2;
           while ( length > 0 ) {
               n /= 10;
               length--;
           }
           n += 1;
           if ( powerTen(n) ) {
               return Long.parseLong(n + reverse(n/10));
           }
           return Long.parseLong(n + reverse(n));
       }
       length = (length - 1) / 2;
       while ( length > 0 ) {
           n /= 10;
           length--;
       }
       n += 1;
       if ( powerTen(n) ) {
           return Long.parseLong(n + reverse(n/100));
       }
       return Long.parseLong(n + reverse(n/10));
   }
   
   private static boolean powerTen(long n) {
       while ( n > 9 && n % 10 == 0 ) {
           n /= 10;
       }
       return n == 1;
   }
       
   private static String reverse(long n) {
       return (new StringBuilder(n + "")).reverse().toString();
   }

} </lang>

Output:
First 20 palindromic gapful numbers ending in:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

Julia

<lang julia>import Base.iterate, Base.IteratorSize, Base.IteratorEltype

struct Palindrome x1::UInt8; x2::UInt8; outer::UInt8; end Base.IteratorSize(p::Palindrome) = Base.IsInfinite() Base.IteratorEltype(g::Palindrome) = Vector{Int8}

function Base.iterate(p::Palindrome, state=(UInt8[p.x1]))

   arr, len = [p.outer; state; p.outer], length(state)
   if all(c -> c == p.x2, state)
       return arr, fill(p.x1, len + 1)
   end
   for i in (len+1)÷2:-1:1
       if state[i] < p.x2
           state[len - i + 1] = state[i] = state[i] + one(UInt8)
           return arr, state
       else
           state[len - i + 1] = state[i] = p.x1
       end
   end
   state[1] += one(UInt8)
   push!(state, state[1])
   return arr, state

end

asint(s) = foldl((i, j) -> 10i + j, s) isgapful(a) = mod(asint(a), a[1] * 11) == 0 GapfulPalindrome(i) = Iterators.filter(isgapful, Iterators.take(Palindrome(0, 9, i), 100000000000))

function testpal()

   for (lastones, outof) in [(20, 20), (15, 100), (10, 1000), (10, 10000), (10, 100000), (10, 1000000), (10, 10000000)]
       @time begin
           println("\nLast digit | Last $lastones of $outof palindromic gapful numbers from 100\n",
               "-----------|----------------------------------------------------------------------------------------------------------------")
           output = fill("", 9)
           Threads.@threads for i in 1:9
               gplist = sort!(asint.(collect(Iterators.take(GapfulPalindrome(i), outof))))
               output[i] = "     $i        " * string(gplist[end-lastones+1:end]) * "\n"
           end
           foreach(print, output)
       end
   end

end

testpal()

</lang>

Output:
Last digit | Last 20 of 20 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
     2        [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
     3        [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
     4        [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
     5        [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
     6        [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
     7        [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
     8        [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
     9        [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]
  0.623229 seconds (1.68 M allocations: 85.926 MiB, 2.02% gc time)

Last digit | Last 15 of 100 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
     2        [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
     3        [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
     4        [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
     5        [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
     6        [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
     7        [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
     8        [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
     9        [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]
  0.011659 seconds (125.64 k allocations: 4.389 MiB)

Last digit | Last 10 of 1000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
     2        [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
     3        [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
     4        [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
     5        [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
     6        [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
     7        [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
     8        [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
     9        [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]
  0.121723 seconds (1.31 M allocations: 45.342 MiB, 23.28% gc time)

Last digit | Last 10 of 10000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [1787007871, 1787117871, 1787227871, 1787337871, 1787447871, 1787557871, 1787667871, 1787777871, 1787887871, 1787997871]
     2        [2787007872, 2787117872, 2787227872, 2787337872, 2787447872, 2787557872, 2787667872, 2787777872, 2787887872, 2787997872]
     3        [308745547803, 308748847803, 308751157803, 308754457803, 308757757803, 308760067803, 308763367803, 308766667803, 308769967803, 308772277803]
     4        [48322922384, 48323032384, 48324242384, 48325452384, 48326662384, 48327872384, 48329192384, 48330303384, 48331513384, 48332723384]
     5        [5787007875, 5787117875, 5787227875, 5787337875, 5787447875, 5787557875, 5787667875, 5787777875, 5787887875, 5787997875]
     6        [608748847806, 608751157806, 608754457806, 608757757806, 608760067806, 608763367806, 608766667806, 608769967806, 608772277806, 608775577806]
     7        [746931139647, 746938839647, 746941149647, 746948849647, 746951159647, 746958859647, 746961169647, 746968869647, 746971179647, 746978879647]
     8        [808686686808, 808687786808, 808688886808, 808689986808, 808690096808, 808691196808, 808692296808, 808693396808, 808694496808, 808695596808]
     9        [968652256869, 968661166869, 968670076869, 968679976869, 968688886869, 968697796869, 968706607869, 968715517869, 968724427869, 968733337869]
  1.194631 seconds (13.03 M allocations: 452.216 MiB, 19.09% gc time)

Last digit | Last 10 of 100000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [178779977871, 178780087871, 178781187871, 178782287871, 178783387871, 178784487871, 178785587871, 178786687871, 178787787871, 178788887871]
     2        [278779977872, 278780087872, 278781187872, 278782287872, 278783387872, 278784487872, 278785587872, 278786687872, 278787787872, 278788887872]
     3        [30878344387803, 30878377387803, 30878400487803, 30878433487803, 30878466487803, 30878499487803, 30878522587803, 30878555587803, 30878588587803, 30878611687803]
     4        [4833228223384, 4833241423384, 4833253523384, 4833265623384, 4833277723384, 4833289823384, 4833290923384, 4833302033384, 4833314133384, 4833326233384]
     5        [578780087875, 578781187875, 578782287875, 578783387875, 578784487875, 578785587875, 578786687875, 578787787875, 578788887875, 578789987875]
     6        [60878344387806, 60878377387806, 60878400487806, 60878433487806, 60878466487806, 60878499487806, 60878522587806, 60878555587806, 60878588587806, 60878611687806]
     7        [74825233252847, 74825333352847, 74825433452847, 74825533552847, 74825633652847, 74825733752847, 74825833852847, 74825933952847, 74826044062847, 74826144162847]
     8        [80869599596808, 80869600696808, 80869611696808, 80869622696808, 80869633696808, 80869644696808, 80869655696808, 80869666696808, 80869677696808, 80869688696808]
     9        [96877266277869, 96877355377869, 96877444477869, 96877533577869, 96877622677869, 96877711777869, 96877800877869, 96877899877869, 96877988977869, 96878077087869]
 10.614688 seconds (129.23 M allocations: 4.349 GiB, 14.81% gc time)

Last digit | Last 10 of 1000000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [17878700787871, 17878711787871, 17878722787871, 17878733787871, 17878744787871, 17878755787871, 17878766787871, 17878777787871, 17878788787871, 17878799787871]
     2        [27878700787872, 27878711787872, 27878722787872, 27878733787872, 27878744787872, 27878755787872, 27878766787872, 27878777787872, 27878788787872, 27878799787872]
     3        [3087873993787803, 3087874224787803, 3087874554787803, 3087874884787803, 3087875115787803, 3087875445787803, 3087875775787803, 3087876006787803, 3087876336787803, 3087876666787803]
     4        [483332292233384, 483332303233384, 483332424233384, 483332545233384, 483332666233384, 483332787233384, 483332919233384, 483333030333384, 483333151333384, 483333272333384]
     5        [57878700787875, 57878711787875, 57878722787875, 57878733787875, 57878744787875, 57878755787875, 57878766787875, 57878777787875, 57878788787875, 57878799787875]
     6        [6087874224787806, 6087874554787806, 6087874884787806, 6087875115787806, 6087875445787806, 6087875775787806, 6087876006787806, 6087876336787806, 6087876666787806, 6087876996787806]
     7        [7487217557127847, 7487218558127847, 7487219559127847, 7487220660227847, 7487221661227847, 7487222662227847, 7487223663227847, 7487224664227847, 7487225665227847, 7487226666227847]
     8        [8086968668696808, 8086968778696808, 8086968888696808, 8086968998696808, 8086969009696808, 8086969119696808, 8086969229696808, 8086969339696808, 8086969449696808, 8086969559696808]
     9        [9687862882687869, 9687863773687869, 9687864664687869, 9687865555687869, 9687866446687869, 9687867337687869, 9687868228687869, 9687869119687869, 9687870000787869, 9687870990787869]
114.847779 seconds (1.28 G allocations: 43.170 GiB, 19.29% gc time)

Last digit | Last 10 of 10000000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [1787877997787871, 1787878008787871, 1787878118787871, 1787878228787871, 1787878338787871, 1787878448787871, 1787878558787871, 1787878668787871, 1787878778787871, 1787878888787871]
     2        [2787877997787872, 2787878008787872, 2787878118787872, 2787878228787872, 2787878338787872, 2787878448787872, 2787878558787872, 2787878668787872, 2787878778787872, 2787878888787872]
     3        [308787828828787803, 308787831138787803, 308787834438787803, 308787837738787803, 308787840048787803, 308787843348787803, 308787846648787803, 308787849948787803, 308787852258787803, 308787855558787803]
     4        [48333322822333384, 48333324142333384, 48333325352333384, 48333326562333384, 48333327772333384, 48333328982333384, 48333329092333384, 48333330203333384, 48333331413333384, 48333332623333384]
     5        [5787878008787875, 5787878118787875, 5787878228787875, 5787878338787875, 5787878448787875, 5787878558787875, 5787878668787875, 5787878778787875, 5787878888787875, 5787878998787875]
     6        [608787828828787806, 608787831138787806, 608787834438787806, 608787837738787806, 608787840048787806, 608787843348787806, 608787846648787806, 608787849948787806, 608787852258787806, 608787855558787806]
     7        [748867469964768847, 748867472274768847, 748867479974768847, 748867482284768847, 748867489984768847, 748867492294768847, 748867499994768847, 748867503305768847, 748867513315768847, 748867523325768847]
     8        [808696959959696808, 808696960069696808, 808696961169696808, 808696962269696808, 808696963369696808, 808696964469696808, 808696965569696808, 808696966669696808, 808696967769696808, 808696968869696808]
     9        [968787702207787869, 968787711117787869, 968787720027787869, 968787729927787869, 968787738837787869, 968787747747787869, 968787756657787869, 968787765567787869, 968787774477787869, 968787783387787869]
1770.411549 seconds (13.02 G allocations: 443.799 GiB, 40.12% gc time)

Nim

Translation of: Crystal
Forms palindromes using number<->string conversions.

<lang ruby>import strutils, typetraits # for number input import times # for timing code execution import unicode # for reversed

proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =

 var skipped = 0                       # initial count of skipped values
 let to_skip = count - keep            # count of unwanted values to skip
 var gapfuls = newSeq[uint64]()        # array of palindromic gapfuls
 let nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 var (power, base, basep) = (1, 1, 0)
 while true:
   if (power.inc; power and 1) == 0: base = base * 10
   var base11  = base * 11             # value of middle two digits positions: 110..
   var this_lo = base * digit          # starting half for this digit: 10.. to  90..
   var next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   while this_lo < next_lo - 1:
     var (palindrome, palindrome_base, left_half) = (0'u64, 0'u64, this_lo.intToStr)
     let right_half = left_half.reversed
     if (power and 1) == 1: basep = base11; palindrome_base = (left_half & right_half).parseUInt
     else: basep = base; left_half.removeSuffix("0"); palindrome_base = (left_half & right_half).parseUInt
     for i in 0..9:
       palindrome = palindrome_base + (basep * i).uint
       if (palindrome mod nn.uint) == 0:
         if skipped < to_skip: (skipped += 1; continue)
         gapfuls.add(palindrome)
         if gapfuls.len == keep: return gapfuls
     this_lo += 10

let start = epochTime()

var (count, keep) = (20, 20) echo("First 20 palindromic gapful numbers ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15) echo("\nLast 15 of first 100 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10) echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1) echo("\n100,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1) echo("\n1,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1) echo("\n10,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)</lang>

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, GCC 10.2.0, Nim 1.4.0
Compil: $ nim c --cc:gcc --d:danger palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 25.42800664901733 secs
Faster version performing number<->string conversions for palindromes.

<lang ruby>import strutils, typetraits # for number input import times # for timing code execution import unicode # for reversed

proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =

 var skipped = 0                     # initial count of skipped values
 let to_skip = count - keep          # count of unwanted values to skip
 let nn = digit * 11                 # digit gapful divisor: 11, 22,...88, 99
 var (power, base, digit) = (1, 1u64, digit.uint64)
 while true:
   if (power.inc; power and 1) == 0: base *= 10
   let base11  = base * 11           # value of middle two digits positions: 110..
   let this_lo = base * digit        # starting half for this digit: 10.. to  90..
   let next_lo = base * (digit + 1)  # starting half for next digit: 20.. to 100..
   for front_half in countup(this_lo, next_lo - 2, 10):
     var
       basep = base11 
       left_half = $front_half
     let right_half = left_half.reversed
     if (power and 1) == 0: basep = base; left_half.setLen left_half.len - 1
     var palindrome = (left_half.add right_half; left_half).parseUInt.uint64
     for _ in 0..9:
       if palindrome mod nn.uint == 0: (skipped.inc; if skipped > to_skip: result.add palindrome)
       palindrome += basep
     if result.len >= keep: result.setLen(keep); return

let start = epochTime()

var (count, keep) = (20, 20) echo("First 20 palindromic gapful numbers ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15) echo("\nLast 15 of first 100 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10) echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1) echo("\n100,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1) echo("\n1,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1) echo("\n10,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)</lang>

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, GCC 10.2.0, Nim 1.4.0
Compil: $ nim c -d:danger -d:lto --passC:-march=native palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 18.29568219184875 secs
Fastest: make palindromes directly numerically.

<lang ruby>import strutils, typetraits # for number input import times # for timing code execution import unicode # for reversed

proc make_palindrome(front_half: uint64, power: int): uint64 =

 var (result, front_half) = (front_half, front_half)
 if (power and 1) == 0: result = result div 10
 while front_half > 0:
   result = result * 10
   result += front_half mod 10
   front_half = front_half div 10
 result

proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =

 var skipped = 0                       # initial count of skipped values
 let to_skip = count - keep            # count of unwanted values to skip
 var gapfuls = newSeq[uint64]()        # array of palindromic gapfuls
 let nn = uint64(digit * 11)           # digit gapful divisor: 11, 22,...88, 99
 var (power, base) = (1, 1)
 while true:
   if (power.inc; power and 1) == 0: base = base * 10
   var base11  = base * 11             # value of middle two digits positions: 110..
   var this_lo = base * digit          # starting half for this digit: 10.. to  90..
   var next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   while this_lo < next_lo - 1:
     let basep = if (power and 1) == 1: base11 else: base
     var palindrome = make_palindrome(this_lo.uint64, power)
     for _ in 0..9:
       if palindrome mod nn == 0: (skipped.inc; if skipped > to_skip: gapfuls.add(palindrome))
       palindrome += basep.uint64
     if gapfuls.len >= keep: return gapfuls[0..keep-1]
     this_lo += 10

let start = epochTime()

var (count, keep) = (20, 20) echo("First 20 palindromic gapful numbers ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15) echo("\nLast 15 of first 100 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10) echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1) echo("\n100,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1) echo("\n1,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1) echo("\n10,000,000th palindromic gapful number ending with:") for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)</lang>

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, GCC 10.2.0, Nim 1.4.0
Compil: $ nim c --cc:gcc --d:danger palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 8.308537244796753 secs
Output:
First 20 palindromic gapful numbers ending with:
1 : @[121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : @[242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : @[363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : @[484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : @[5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : @[6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : @[7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : @[8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : @[9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : @[165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : @[265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : @[30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : @[4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : @[565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : @[60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : @[72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : @[80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : @[95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : @[17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : @[27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : @[3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : @[482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : @[57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : @[6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : @[7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : @[8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : @[9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : @[178788887871]
2 : @[278788887872]
3 : @[30878611687803]
4 : @[4833326233384]
5 : @[578789987875]
6 : @[60878611687806]
7 : @[74826144162847]
8 : @[80869688696808]
9 : @[96878077087869]

1,000,000th palindromic gapful number ending with:
1 : @[17878799787871]
2 : @[27878799787872]
3 : @[3087876666787803]
4 : @[483333272333384]
5 : @[57878799787875]
6 : @[6087876996787806]
7 : @[7487226666227847]
8 : @[8086969559696808]
9 : @[9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : @[1787878888787871]
2 : @[2787878888787872]
3 : @[308787855558787803]
4 : @[48333332623333384]
5 : @[5787878998787875]
6 : @[608787855558787806]
7 : @[748867523325768847]
8 : @[808696968869696808]
9 : @[968787783387787869]

Pascal

Works with: Free Pascal

Creating palindromes by adding the right numbers one by one and the precalculated modulus of that numbers
So the numbers to check stays small in bitsize modsum ~16 Bit , n ~ 64 Bit.Dividing is therefore faster
Thinking about it, you don't need n = Uint64, only the value of the digit in that place is enough.
Of course this task has no relevance see digit 9 from 100,000 to 10,000,000

9 :   96878077087869
9 :  9687870990787869
9 : 968787783387787869

<lang pascal>program PalinGap; {$IFDEF FPC}

  {$MODE DELPHI}{$OPTIMIZATION ON,ALL}{$CODEALIGN proc=16}{$ALIGN 16}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} //example 5 digits, digit d // d000d // +00100 10 -times delta[0] aka middle digit //->d010d d020d d030d d040d d050d d060d d070d d080d d090d and // d100d -> not palindromatic //correct by -10x00100 and use the next delta for the next digitplaces // d000d //+ 01010 -> delta[1] // d101d // starting over again with delta[0] until delta[1] is used 10 times type

 tLimits = record
             LoLmt,HiLmt:Uint64;
           end;

const

 base = 10;

var

 delta    : Array[0..9] of Uint64;
 deltaBase: Array[0..9] of Uint64;
 deltaMod : Array[0..9] of Uint32;
 deltaModBase : Array[0..9] of Uint32;
 IdxCnt : Array[0..9] of Uint32;
 ModSum : UInt64;
 dgtMod : UInt32;

procedure InitDelta(dgt:Byte;dgtCnt:Byte); var

 n : Uint64;
 i,k,mid : NativeInt;

Begin

 mid := (dgtCnt-1) DIV 2;
 //create Add masks
 For i := 0 to mid do
 Begin
   IF ODD(dgtCnt) then

//first 1,101,10001,1000001,100000001,10000000001

   Begin
     n := 1;
     IF i> 0 then
     Begin
       For k := 1 to i do
         n := n*(Base*Base);
       inc(n);
     end
   end
   Else //even

// first 11,1001,100001,10000001...

   Begin
     n := Base;
     For k := 1 to i do
       n := n*(Base*Base);
     inc(n);
   end;

// second move to the right place // 1000000,10100000,10001000,10000010,100000001

   dgtMod := (dgt*(Base+1));
   For k := mid-1 DOWNTO i do
     n := n*Base;
   delta[i] := n;
   deltaMod[i]:= n MOD dgtMod;
   deltaBase[i] := base*n;
   deltaModBase[i]:= (base*n) MOD dgtMod;
 end;
 //counter for digit position
 For k := 0 to 9 do
   IdxCnt[k] := Base;

end;

function NextPalin(n : Uint64;dgtcnt:NativeInt):Uint64;inline; var

 k,b: NativeInt;

begin

 k := 0;
 repeat
   n := n+delta[k];
   inc(ModSum,deltaMod[k]);
   b := IdxCnt[k]-1;
   IdxCnt[k]:= b;
   IF b <> 0 then
     break
   else
   Begin
     n := n-deltaBase[k];
     dec(ModSum,deltaModBase[k]);
     IdxCnt[k]:= Base;
     inc(k);
     IF k = dgtCnt then
     Begin
       n := 0;
       BREAK;
     end;
   end;
 until false;
 NextPalin  := n;

end;

procedure OutPalinGap(lowLmt,HiLmt,dgt:NativeInt); var

 n : Uint64;
 i,dgtcnt,mid :NativeInt;

begin

 i:=1;
 write(dgt,' :');
 For dgtcnt := 3 to 20 do
 Begin
   mid := (dgtcnt-1) shr 1;
   initDelta(dgt,dgtcnt);
   n := dgt*delta[mid];// '10...01' -> 'd0...0d'
   ModSum := n MOD dgtMod;
   while (n <>0) AND (i< LowLmt) do
   Begin
     IF (ModSum MOD dgtMod) = 0 then
     Begin
       inc(i);
       ModSum :=0;//reduce Modsum
     end;
     n := NextPalin(n,mid);
   end;
   while (n <>0) AND (i<= HiLmt) do
   Begin
     IF (ModSum MOD dgtMod) = 0 then
     Begin
       inc(i);
       write(n:dgtcnt+1);
       ModSum :=0;//reduce Modsum
     end;
     n := NextPalin(n,mid);
   end;
   IF (i > HiLmt) then
     BREAK;
 end;
 writeln;

end;

var

 dgt : NativeInt;

begin

 writeln('palindromic gapful numbers from 1 to 20');
 For dgt := 1 to 9 do
   OutPalinGap(1,20,dgt);
 writeln;
 writeln('palindromic gapful numbers from 86 to 100');
 For dgt := 1 to 9 do
   OutPalinGap(86,100,dgt);
 writeln;
 writeln('palindromic gapful numbers from 991 to 1000');
 For dgt := 1 to 9 do
   OutPalinGap(991,1000,dgt);
 writeln;
 writeln('palindromic gapful number    100,000');
 For dgt := 1 to 9 do
   OutPalinGap(100000,100000,dgt);
 writeln;
 writeln('palindromic gapful number  1,000,000');
 For dgt := 1 to 9 do
   OutPalinGap(1000000,1000000,dgt);
 writeln;
 writeln('palindromic gapful number  10,000,000');
 For dgt := 1 to 9 do
   OutPalinGap(10000000,10000000,dgt);
 writeln;

end.</lang>

Output:

palindromic gapful numbers from 1 to 20 1 : 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591 2 : 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392 3 : 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333 4 : 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804 5 : 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895 6 : 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336 7 : 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087 8 : 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648 9 : 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

palindromic gapful numbers from 86 to 100 1 : 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971 2 : 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972 3 : 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 4 : 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 5 : 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975 6 : 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 7 : 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 8 : 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 9 : 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

palindromic gapful numbers from 991 to 1000 1 : 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871 2 : 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872 3 : 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 4 : 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384 5 : 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875 6 : 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 7 : 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 8 : 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 9 : 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

palindromic gapful number 100,000 1 : 178788887871 2 : 278788887872 3 : 30878611687803 4 : 4833326233384 5 : 578789987875 6 : 60878611687806 7 : 74826144162847 8 : 80869688696808 9 : 96878077087869

palindromic gapful number 1,000,000 1 : 17878799787871 2 : 27878799787872 3 : 3087876666787803 4 : 483333272333384 5 : 57878799787875 6 : 6087876996787806 7 : 7487226666227847 8 : 8086969559696808 9 : 9687870990787869

palindromic gapful number 10,000,000 1 : 1787878888787871 2 : 2787878888787872 3 : 308787855558787803 4 : 48333332623333384 5 : 5787878998787875 6 : 608787855558787806 7 : 748867523325768847 8 : 808696968869696808 9 : 968787783387787869

real 0m4,503s

Phix

Translation of: Go

Translation of Go, but trimmed back to bare minimum: you should not expect this to fare particularly well at the 10_000_000-level against the likes of Go/Pascal, though it should fare reasonably well against lesser beings... <lang Phix>function reverse_n(atom s)

   atom e = 0
   while s>0 do
       e = e*10 + remainder(s,10)
       s = floor(s/10)
   end while
   return e

end function

constant mx = 1000,

        data = {{1, 20, "%7d "}, {86, 100, "%8d "}, {991, 1000, "%10d "}}

include builtins\ordinal.e

procedure main()

   sequence results = repeat(repeat({},9),mx)
   for d=1 to 9 do -- (the start/end digit)
       integer count = 0, pow = 1, fl = d*11
       for nd=3 to 15 do -- (number of digits, usually quits early)
           -- (obvs. 64-bit phix is fine with 19 digits, but 32-bit ain't)
           bool odd = (remainder(nd,2)==1)
           for s=d*pow to (d+1)*pow-1 do   -- (eg 300 to 399)
               integer e = reverse_n(s)
               for m=0 to iff(odd?9:0) do  -- (1 or 10 iterations)
                   atom p = e + iff(odd ? s*pow*100+m*pow*10
                                        : s*pow*10)
                   if remainder(p,fl)==0 then  -- gapful!
                       count += 1
                       results[count][d] = p
                       -- (see? goto /is/ sometimes useful :-))
                       if count==mx then #ilASM{jmp :outer} end if
                   end if
               end for
           end for
           if odd then pow *= 10 end if
       end for
       if count<mx then ?9/0 end if -- oh dear...
       #ilASM{::outer}
   end for

   for i=1 to length(data) do
       {integer s, integer e, string fmt} = data[i]
       printf(1,"%,d%s to %,d%s palindromic gapful numbers (> 100) ending with:\n", {s,ord(s),e,ord(e)})
       for d=1 to 9 do
           printf(1,"%d: ",d)
           for j=s to e do
               printf(1,fmt,results[j][d])
           end for
           printf(1,"\n")
       end for
       printf(1,"\n")
   end for

end procedure main()</lang>

Output:
1st to 20th palindromic gapful numbers (> 100) ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069

86th to 100th palindromic gapful numbers (> 100) ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

991st to 1,000th palindromic gapful numbers (> 100) ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Prolog

Works with: SWI Prolog

<lang prolog>init_palindrome(Digit, p(10, Next, 0)):-

   Next is Digit * 10 - 1.

next_palindrome(Digit, p(Power, Next, Even), p(Power1, Next2, Even1), Palindrome):-

   Next1 is Next + 1,
   (Next1 is Power * (Digit + 1) ->
       (Even == 1 -> Power1 is Power * 10 ; Power1 = Power),
       Next2 is Digit * Power1,
       Even1 is 1 - Even
       ;
       Power1 = Power,
       Next2 = Next1,
       Even1 = Even
   ),
   (Even1 == 1 ->
       X is 10 * Power1, Y = Next2
       ;
       X = Power1, Y is Next2 // 10
   ),
   reverse_number(Y, Z),
   Palindrome is Next2 * X + Z.
    

reverse_number(N, R):-

   reverse_number(N, 0, R).

reverse_number(0, Result, Result):-

   !.

reverse_number(N, R, Result):-

   R1 is R * 10 + N mod 10,
   N1 is N // 10,
   reverse_number(N1, R1, Result).

is_gapful(N):-

   is_gapful(N, N).

is_gapful(N, M):-

   M < 10,
   !,
   0 is N mod (N mod 10 + 10 * (M mod 10)).

is_gapful(N, M):-

   M1 is M // 10,
   is_gapful(N, M1).

find_palindromic_gapful_numbers(N, List):-

   find_palindromic_gapful_numbers(N, 1, List).

find_palindromic_gapful_numbers(_, 10, []):-

   !.

find_palindromic_gapful_numbers(N, Digit, [Numbers|Rest]):-

   find_palindromic_gapful_numbers1(Digit, N, Numbers),
   Next_digit is Digit + 1,
   find_palindromic_gapful_numbers(N, Next_digit, Rest).

find_palindromic_gapful_numbers1(Digit, N, List):-

   init_palindrome(Digit, P),
   find_palindromic_gapful_numbers1(Digit, P, N, 0, List).

find_palindromic_gapful_numbers1(_, _, N, N, []):-

   !.

find_palindromic_gapful_numbers1(Digit, P, N, Count, List):-

   next_palindrome(Digit, P, P_next, Palindrome),
   (is_gapful(Palindrome) ->
       Count1 is Count + 1,
       List = [Palindrome|Rest]
       ;
       Count1 = Count,
       List = Rest
   ),
   find_palindromic_gapful_numbers1(Digit, P_next, N, Count1, Rest).

print_numbers(First, Last, Numbers):-

   (First == 1 ->
       writef("First %w palindromic gapful numbers ending in:\n", [Last])
       ;
       Count is Last - First + 1,
       writef("Last %w of first %w palindromic gapful numbers ending in:\n", [Count, Last])
   ),
   print_numbers(First, Last, 1, Numbers),
   nl.
   

print_numbers(_, _, 10, _):-

   !.

print_numbers(First, Last, Digit, [N|Numbers]):-

   writef("%w:", [Digit]),
   print_numbers1(First, Last, 1, N),
   Next_digit is Digit + 1,
   print_numbers(First, Last, Next_digit, Numbers).

print_numbers1(_, Last, I, _):-

   I > Last,
   nl,
   !.

print_numbers1(First, Last, I, [_|Numbers]):-

   I < First,
   !,
   J is I + 1,
   print_numbers1(First, Last, J, Numbers).

print_numbers1(First, Last, I, [N|Numbers]):-

   writef(" %w", [N]),
   J is I + 1,
   print_numbers1(First, Last, J, Numbers).

main:-

   find_palindromic_gapful_numbers(1000, Numbers),
   print_numbers(1, 20, Numbers),
   print_numbers(86, 100, Numbers),
   print_numbers(991, 1000, Numbers).</lang>
Output:
First 20 palindromic gapful numbers ending in:
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Python

Generators

Uses the technique of:

  1. generating all odd number of digits palindromes, in order.
  2. generating all even number of digits palindromes, in order.
  3. merge sorting those (unbounded) generators.
  4. then filtering the palindromes for gapful palindromic numbers >= 100

With the number generator the binning was straight-forward.
Runtime is short.

Note: Although this uses the idea of generating palindromes from the Geeks4geeks reference mentioned in the Factor entry, none of their code was used.

<lang python>from itertools import count from pprint import pformat import re import heapq


def pal_part_gen(odd=True):

   for i in count(1):
       fwd = str(i)
       rev = fwd[::-1][1:] if odd else fwd[::-1]
       yield int(fwd + rev)

def pal_ordered_gen():

   yield from heapq.merge(pal_part_gen(odd=True), pal_part_gen(odd=False))

def is_gapful(x):

   return (x % (int(str(x)[0]) * 10 + (x % 10)) == 0)

if __name__ == '__main__':

   start = 100
   for mx, last in [(20, 20), (100, 15), (1_000, 10)]:
       print(f"\nLast {last} of the first {mx} binned-by-last digit " 
             f"gapful numbers >= {start}")
       bin = {i: [] for i in range(1, 10)}
       gen = (i for i in pal_ordered_gen() if i >= start and is_gapful(i))
       while any(len(val) < mx for val in bin.values()):
           g = next(gen)
           val = bin[g % 10]
           if len(val) < mx:
               val.append(g)
       b = {k:v[-last:] for k, v in bin.items()}
       txt = pformat(b, width=220)
       print(, re.sub(r"[{},\[\]]", , txt))</lang>
Output:
Last 20 of the first 20 binned-by-last digit gapful numbers >= 100
 1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
 2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
 3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
 4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
 5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
 6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
 7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
 8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
 9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of the first 100 binned-by-last digit gapful numbers >= 100
 1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
 2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
 3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
 5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
 6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
 7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
 8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
 9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of the first 1000 binned-by-last digit gapful numbers >= 100
 1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
 2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
 3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
 5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
 6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
 7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
 8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
 9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Functional

<lang python>Palindromic gapful numbers

from itertools import chain, count, islice, tee from functools import reduce


  1. palindromicGapfuls :: () -> [Int]

def palindromicGapfuls():

   A non-finite series of gapful palindromic numbers.
   
   def derived(digitsEven):
       A palindrome of an even or odd number of digits,
          obtained by appending either all or just the tail
          of the reversed digits of n.
       
       def go(x):
           s = str(x)
           r = s[::-1]
           return int((s + r) if digitsEven else (s + r[1:]))
       return go
   return filter(
       lambda n: 0 == n % (int(str(n)[0]) * 10 + (n % 10)),
       mergeInOrder(
           map(derived(False), count(10))
       )(map(derived(True), count(10)))
   )


  1. --------------------------TESTS--------------------------
  2. main :: IO ()

def main():

   Various samples of gapful palindromes grouped by final digit.
   tpl = tee(palindromicGapfuls(), 9)
   # sample :: (String, Int, Int) -> String
   def sample(label, dropped, taken):
       return fTable(label)(compose(cons(' '), str))(
           compose(unwords, map_(str))
       )(
           compose(
               take(taken),
               drop(dropped),
               lambda i: filter(
                   lambda x: i == x % 10,
                   tpl[i - 1]
               )
           )
       )(enumFromTo(1)(9))
   print(
       '\n\n'.join(map(lambda x: sample(*x), [
           ('First 20 samples of gapful palindromes ' +
            '(> 100) by last digit:', 0, 20),
           ('Last 15 of first 100 gapful palindromes ' +
            '(> 100) by last digit:', 65, 15),
           ('Last 10 of first 1000 gapful palindromes ' +
            '(> 100) by last digit:', 890, 10)
       ]))
   )
  1. ------------------------DISPLAY -------------------------


  1. fTable :: String -> (a -> String) ->
  2. (b -> String) -> (a -> b) -> [a] -> String

def fTable(s):

   Heading -> x display function -> fx display function ->
      f -> xs -> tabular string.
   
   def go(xShow, fxShow, f, xs):
       ys = [xShow(x) for x in xs]
       w = max(map(len, ys))
       return s + '\n' + '\n'.join(map(
           lambda x, y: y.rjust(w, ' ') + ': ' + fxShow(f(x)),
           xs, ys
       ))
   return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
       xShow, fxShow, f, xs
   )


  1. ------------------------GENERIC--------------------------
  1. Just :: a -> Maybe a

def Just(x):

   Constructor for an inhabited Maybe (option type) value.
      Wrapper containing the result of a computation.
   
   return {'type': 'Maybe', 'Nothing': False, 'Just': x}


  1. Nothing :: Maybe a

def Nothing():

   Constructor for an empty Maybe (option type) value.
      Empty wrapper returned where a computation is not possible.
   
   return {'type': 'Maybe', 'Nothing': True}


  1. compose :: ((a -> a), ...) -> (a -> a)

def compose(*fs):

   Composition, from right to left,
      of a series of functions.
   
   def go(f, g):
       return lambda x: f(g(x))
   return reduce(go, fs, lambda x: x)


  1. cons :: a -> [a] -> [a]

def cons(x):

   A list string or iterator constructed
      from x as head, and xs as tail.
   
   return lambda xs: [x] + xs if (
       isinstance(xs, list)
   ) else x + xs if (
       isinstance(xs, str)
   ) else chain([x], xs)


  1. drop :: Int -> [a] -> [a]

def drop(n):

   The sublist of xs beginning at
      (zero-based) index n.
   
   def go(xs):
       take(n)(xs)
       return xs
   return go


  1. enumFromTo :: Int -> Int -> [Int]

def enumFromTo(m):

   Enumeration of integer values [m..n]
   def go(n):
       return list(range(m, 1 + n))
   return go


  1. map :: (a -> b) -> [a] -> [b]

def map_(f):

   The list obtained by applying f
      to each element of xs.
   
   return lambda xs: [f(x) for x in xs]


  1. mergeInOrder :: Gen [Int] -> Gen [Int] -> Gen [Int]

def mergeInOrder(ga):

   An ordered, non-finite, stream of integers
      obtained by merging two other such streams.
   
   def go(ma, mb):
       a = ma
       b = mb
       while not a['Nothing'] and not b['Nothing']:
           (a1, a2) = a['Just']
           (b1, b2) = b['Just']
           if a1 < b1:
               yield a1
               a = uncons(a2)
           else:
               yield b1
               b = uncons(b2)
   return lambda gb: go(uncons(ga), uncons(gb))


  1. take :: Int -> [a] -> [a]

def take(n):

   The prefix of xs of length n,
      or xs itself if n > length xs.
   
   return lambda xs: list(islice(xs, n))


  1. uncons :: [a] -> Maybe (a, [a])

def uncons(xs):

   The deconstruction of a non-empty list
      (or generator stream) into two parts:
      a head value, and the remaining values.
   
   nxt = take(1)(xs)
   return Just((nxt[0], xs)) if nxt else Nothing()


  1. unwords :: [String] -> String

def unwords(xs):

   A space-separated string derived
      from a list of words.
   
   return ' '.join(xs)


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
First 20 samples of gapful palindromes (> 100) by last digit:
 1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
 2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
 3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
 4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
 5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
 6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
 7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
 8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
 9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 gapful palindromes (> 100) by last digit:
 1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
 2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
 3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
 5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
 6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
 7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
 8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
 9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 gapful palindromes (> 100) by last digit:
 1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
 2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
 3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
 5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
 6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
 7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
 8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
 9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.07.1

<lang perl6>constant @digits = '0','1','2','3','4','5','6','7','8','9';

  1. Infinite lazy iterator to generate palindromic "gap" numbers

my @npal = flat [ @digits ], [ '00','11','22','33','44','55','66','77','88','99' ],

 {
   sink @^previous, @^penultimate;
   [ flat @digits.map: -> \digit { @penultimate.map: digit ~ * ~ digit  } ]
 } … *;
  1. Individual lazy palindromic gapful number iterators for each start/end digit

my @gappal = (1..9).map: -> \digit {

   my \divisor = digit + 10 * digit;
   @npal.hyper.map: -> \this { next unless (my \test = digit ~ this ~ digit) %% divisor; test }

}

  1. Display

( "(Required) First 20 gapful palindromes:", ^20, 7

 ,"\n(Required) 86th through 100th:",                 85..99, 8
 ,"\n(Optional) 991st through 1,000th:",            990..999, 10
 ,"\n(Extra stretchy) 9,995th through 10,000th:", 9994..9999, 12
 ,"\n(Meh) 100,000th:",                                99999, 14

).hyper(:1batch).map: -> $caption, $range, $fmt {

   my $now = now;
   say $caption;
   put "$_: " ~ @gappal[$_-1][|$range].fmt("%{$fmt}s") for 1..9;
   say round( now - $now, .001 ), " seconds";

}</lang>

Output:
(Required) First 20 gapful palindromes:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069
0.111 seconds

(Required) 86th through 100th:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569
0.046 seconds

(Optional) 991st through 1,000th:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869
0.282 seconds

(Extra stretchy) 9,995th through 10,000th:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869
3.114 seconds

(Meh) 100,000th:
1:   178788887871
2:   278788887872
3: 30878611687803
4:  4833326233384
5:   578789987875
6: 60878611687806
7: 74826144162847
8: 80869688696808
9: 96878077087869
32.603 seconds

REXX

<lang rexx>/*REXX program computes and displays palindromic gapful numbers, it also can show those */ /*─────────────────────── palindromic gapful numbers listed by their last decimal digit.*/ numeric digits 20 /*ensure enough decimal digits gapfuls.*/ parse arg pangaps /*obtain optional arguments from the CL*/ if pangaps= then pangaps= 20 100@@15 1000@@10 /*Not specified? Then use the defaults*/

       do until pangaps=;      parse var pangaps  stuff pangaps;      call pangap stuff
       end   /*until*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ pangap: procedure; parse arg n '@' sp "@" z; #= 0; if sp== then sp= 100

                                                        if  z==  then  z=   n
       @which= ' last ';                                if  z==n   then @which= " first "
       @pangap#Start= ' palindromic gapful numbers starting at: '
       say center(@which      z     ' of '     n      @pangap#Start      sp" ", 140, "═")
       #.= 0                                    /*array of result counts for each digit*/
       tot= n * 9                               /*total # of results that are wanted.  */
       $.=;                 sum= 0              /*blank lists;  digit results (so far).*/
             do j=sp  until sum==tot            /*loop 'til all digit counters filled. */
             if reverse(j)  \==j  then iterate  /*Not a palindrome?       Then skip it.*/
             parse var   j   a  2    -1  b    /*obtain the first and last dec. digit.*/
             if #.b          ==n  then iterate  /*Digit quota filled?     Then skip it.*/
             if j // (a||b) \==0  then iterate  /*Not divisible by A||B?    "    "   " */
             sum= sum + 1;        #.b= #.b + 1  /*bump the sum counter & digit counter.*/
             $.b= $.b  j                        /*append   J   to the correct list.    */
             end   /*j*/
                                                /* [↓]  just show the last  Z  numbers.*/
             do k=1  for 9;   say  k':'   strip( subword($.k, 1 + n - z) )
             end   /*k*/;     say
       return</lang>
output   when using the internal default inputs:

(Shown at   5/6   size.)

═════════════════════════════════════ first  20  of  20  palindromic gapful numbers starting at:  100 ══════════════════════════════════════
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

═════════════════════════════════════ last  15  of  100  palindromic gapful numbers starting at:  100 ══════════════════════════════════════
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

═════════════════════════════════════ last  10  of  1000  palindromic gapful numbers starting at:  100 ═════════════════════════════════════
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Ruby

Translation of: Crystal

Brute force and slow

<lang ruby>def palindromesgapful(digit, pow)

 r1 = digit * (10**pow + 1)
 r2 = 10**pow * (digit + 1)
 nn = digit * 11
 (r1...r2).select { |i| n = i.to_s; n == n.reverse && i % nn == 0 }

end

def digitscount(digit, count)

 pow  = 2
 nums = []
 while nums.size < count
   nums += palindromesgapful(digit, pow)
   pow += 1
 end
 nums[0...count]

end

count = 20 puts "First 20 palindromic gapful numbers ending with:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count)}\n" }

count = 100 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(15)}\n" }

count = 1000 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" (1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(10)}\n" }</lang>

Orders of Magnitude Faster: Direct Generation of Numbers

Ruby is a dynamic language evaluated at runtime.
The code as implemented has been tested to produce optimum performance.

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.13
Run as: $ ruby palindromicgapfuls.rb

Optimized version, the ultimate fastest: Ruby 2.7.1 - 112.5 secs <lang ruby>def palindromicgapfuls(digit, count)

 gapfuls = []                      # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 power = 1                         # these two lines will work
 while power += 1                  # for all Ruby VMs|versions
 #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
   base    = 10**(power >> 1)      # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     left_half = front_half.to_s; right_half = left_half.reverse
     if power.odd?
       palindrome = (left_half + right_half).to_i
       10.times do
           gapfuls << palindrome if palindrome % nn == 0
           palindrome += base11
       end
     else
       palindrome = (left_half.chop + right_half).to_i
       10.times do
         gapfuls << palindrome if palindrome % nn == 0
         palindrome += base
       end  
     end
    return gapfuls[0...count] unless gapfuls.size < count
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.now - start)</lang>

Compact version: Ruby-2.7.1 - 113.0 secs <lang ruby>def palindromicgapfuls(digit, count)

 gapfuls = []                      # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 power = 1                         # these two lines will work
 while power += 1                  # for all Ruby VMs|versions
 #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
   base    = 10**(power >> 1)      # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     left_half, basep = front_half.to_s, base11; right_half = left_half.reverse
     (basep = base; left_half = left_half.chop) if power.even?
     palindrome = (left_half + right_half).to_i
     10.times do
       gapfuls << palindrome if palindrome % nn == 0
       palindrome += basep
     end
     return gapfuls[0...count] unless gapfuls.size < count
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.now - start)</lang>

Object Oriented implementation: Ruby 2.7.1 - 113.0 secs <lang ruby>class PalindromicGapfuls

 include Enumerable
 def initialize(digit)
   @digit = digit
   @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
 end
 def each
   power = 1                         # these two lines will work
   while power += 1                  # for all Ruby VMs|versions
   #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
     base    = 10**(power >> 1)      # value of middle digit position: 10..
     base11  = base * 11             # value of middle two digits positions: 110..
     this_lo = base * @digit         # starting half for this digit: 10.. to  90..
     next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
     this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
       left_half = front_half.to_s; right_half = left_half.reverse
       if power.odd?
         palindrome = (left_half + right_half).to_i
         10.times do
           yield palindrome if palindrome % @nn == 0
           palindrome += base11
         end
       else
         palindrome = (left_half.chop + right_half).to_i
         10.times do
           yield palindrome if palindrome % @nn == 0
           palindrome += base
         end  
       end
     end
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

puts (Time.now - start)</lang>

Versions optimized for minimal memory use: Ruby 2.7.1 - 110.0 secs <lang ruby>def palindromicgapfuls(digit, count, keep)

 skipped = 0                       # initial count of skipped values
 to_skip = count - keep            # count of unwanted values to skip
 gapfuls = []                      # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 power = 1                         # these two lines will work
 while power += 1                  # for all Ruby VMs|versions
 #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
   base    = 10**(power >> 1)      # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
     left_half = front_half.to_s; right_half = left_half.reverse
     if power.odd?
       palindrome = (left_half + right_half).to_i
       10.times do
         (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome % nn == 0
         palindrome += base11
       end
     else
       palindrome = (left_half.chop + right_half).to_i
       10.times do
         (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome % nn == 0
         palindrome += base
       end  
     end
     return gapfuls[0...keep] unless gapfuls.size < keep
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.now - start)</lang>

Compact version optimized for minimal memory use: Ruby 2.7.1 - 111.5 secs <lang ruby>def palindromicgapfuls(digit, count, keep)

 skipped = 0                       # initial count of skipped values
 to_skip = count - keep            # count of unwanted values to skip
 gapfuls = []                      # array of palindromic gapfuls
 nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
 power = 1                         # these two lines will work
 while power += 1                  # for all Ruby VMs|versions
 #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
   base    = 10 ** (power >> 1)    # value of middle digit position: 10..
   base11  = base * 11             # value of middle two digits positions: 110..
   this_lo = base * digit          # starting half for this digit: 10.. to  90..
   next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
   this_lo.step(to: next_lo - 1, by: 10) do |front_half|   # d_00; d_10; d_20; ...
     left_half, basep = front_half.to_s, base11; right_half = left_half.reverse
     (basep = base; left_half = left_half.chop) if power.even?
     palindrome = (left_half + right_half).to_i
     10.times do
       (gapfuls << palindrome if (skipped += 1) > to_skip) if palindrome % nn == 0
       palindrome += basep
     end
     return gapfuls[0...keep] unless gapfuls.size < keep
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.now - start)</lang>

OOP version optimized for minimal memory use: Ruby 2.7.1 - 116.0 secs
It creates an output method that skips the unwanted values and only keeps/stores the desired ones. <lang ruby>class PalindromicGapfuls

 include Enumerable
 def initialize(digit)
   @digit = digit
   @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
 end
 def each
   power = 1                         # these two lines will work
   while power += 1                  # for all Ruby VMs|versions
   #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
     base    = 10**(power >> 1)      # value of middle digit position: 10..
     base11  = base * 11             # value of middle two digits positions: 110..
     this_lo = base * @digit         # starting half for this digit: 10.. to  90..
     next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
     this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
       left_half = front_half.to_s; right_half = left_half.reverse
       if power.odd?
         palindrome = (left_half + right_half).to_i
         10.times do
           yield palindrome if palindrome % @nn == 0
           palindrome += base11
         end
       else
         palindrome = (left_half.chop + right_half).to_i
         10.times do
           yield palindrome if palindrome % @nn == 0
           palindrome += base
         end  
       end
     end
   end
 end
 # Optimized output method: only keep desired values.
 def keep_from(count, keep)
   to_skip = (count - keep)
   kept = []
   each_with_index do |value, i|
     i < to_skip ? next : kept << value
     return kept if kept.size == keep
   end
 end

end

start = Time.now

count, keep = 20, 20 puts "First 20 palindromic gapful numbers ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100, 15 puts "\nLast 15 of first 100 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000, 10 puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100_000, 1 puts "\n100,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000_000, 1 puts "\n1,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 10_000_000, 1 puts "\n10,000,000th palindromic gapful number ending with:" 1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

puts (Time.now - start)</lang>

Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Rust

Translation of: Crystal
This version uses number->string then string->number conversions to create palindromes.

<lang rust>fn palindromicgapfuls(digit: u64, count: u64, keep: usize) -> Vec<u64> {

 let mut skipped = 0u64;              // initial count of skipped values
 let to_skip = count - keep as u64;   // count of unwanted values to skip
 let mut gapfuls: Vec<u64> = vec![];  // array of palindromic gapfuls
 let nn = digit * 11;                 // digit gapful divisor: 11, 22,...88, 99
 let (mut power, mut base) = (1, 1u64);
 loop { power += 1;
   if power & 1 == 0 { base *= 10 };  // value of middle digit position: 10..
   let base11  = base * 11;           // value of middle two digits positions: 110..
   let this_lo = base * digit;        // starting half for this digit: 10.. to  90..
   let next_lo = base * (digit + 1);  // starting half for next digit: 20.. to 100..
   for front_half in (this_lo..next_lo-1).step_by(10) { // d_00; d_10; d_20; ...
     let (mut left_half, mut basep) = (front_half.to_string(), 0);
     let right_half = left_half.chars().rev().collect::<String>();
     if power & 1 == 1 { basep = base11; left_half.push_str(&right_half) }
     else              { basep = base;   left_half.pop(); left_half.push_str(&right_half) };
     let mut palindrome = left_half.parse::<u64>().unwrap();
     for _ in 0..10 {
       if palindrome % nn == 0 { skipped += 1; if skipped > to_skip { gapfuls.push(palindrome) } };
       palindrome += basep;
     } 
     if gapfuls.len() >= keep { return gapfuls[0..keep].to_vec() };
   }
 }

}

fn main() {

 let t = std::time::Instant::now();  
 
 let (count, keep) = (20, 20);
 println!("First 20 palindromic gapful numbers ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (100, 15);
 println!("\nLast 15 of first 100 palindromic gapful numbers ending in:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (1_000, 10);
 println!("\nLast 10 of first 1000 palindromic gapful numbers ending in:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (100_000, 1);
 println!("\n100,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (1_000_000, 1);
 println!("\n1,000,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (10_000_000, 1);
 println!("\n10,000,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 println!("{:?}", t.elapsed())

}</lang>

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, Rust 1.48
Compil: $ rustc -C opt-level=3 -C target-cpu=native -C codegen-units=1 -C lto palindromicgapfuls.rs 
Run as: ./palindromicgapfuls
Time: 19.973894976s


This version creates palindromes numerically instead of using number<->string conversions.
About 2.5x faster.

<lang rust>fn palindromicgapfuls(digit: u64, count: u64, keep: usize) -> Vec<u64> {

 let mut skipped = 0u64;              // initial count of skipped values
 let to_skip = count - keep as u64;   // count of unwanted values to skip
 let mut gapfuls: Vec<u64> = vec![];  // array of palindromic gapfuls
 let nn = digit * 11;                 // digit gapful divisor: 11, 22,...88, 99
 let (mut power, mut base) = (1, 1u64);
 loop { power += 1;
   if power & 1 == 0 { base *= 10 }   // value of middle digit position: 10..
   let base11 = base * 11;            // value of middle two digits positions: 110..
   let this_lo = base * digit;        // starting half for this digit: 10.. to  90..
   let next_lo = base * (digit + 1);  // starting half for next digit: 20.. to 100..
   for front_half in (this_lo..next_lo).step_by(10) { // d_00; d_10; d_20; ...
     let basep = if power & 1 == 1 { base11 } else { base };
     let mut palindrome = make_palindrome(front_half, power);
     for _ in 0..10 {
       if palindrome % nn == 0 { skipped += 1; if skipped > to_skip { gapfuls.push(palindrome) } };
       palindrome += basep;
     }
     if gapfuls.len() >= keep { return gapfuls[0..keep].to_vec() };

} } }

fn make_palindrome(mut front_half: u64, power: u64) -> u64 {

 let mut result = front_half;
 if power & 1 == 0 { result /= 10; }
 while front_half > 0 {
   result *= 10;
   result += front_half % 10;
   front_half /= 10;
 }
 result

}

fn main() {

 let t = std::time::Instant::now();  
 
 let (count, keep) = (20, 20);
 println!("First 20 palindromic gapful numbers ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (100, 15);
 println!("\nLast 15 of first 100 palindromic gapful numbers ending in:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (1_000, 10);
 println!("\nLast 10 of first 1000 palindromic gapful numbers ending in:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (100_000, 1);
 println!("\n100,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (1_000_000, 1);
 println!("\n1,000,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 let (count, keep) = (10_000_000, 1);
 println!("\n10,000,000th palindromic gapful number ending with:");
 for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
 
 println!("{:?}", t.elapsed())

}</lang>

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, Rust 1.48
Compil: $ rustc -C opt-level=3 -C target-cpu=native -C codegen-units=1 -C lto palindromicgapfuls.rs 
Run as: ./palindromicgapfuls
Time: 8.768842134s
Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Sidef

Inspired from the C++ and Raku entries. <lang ruby>class PalindromeGenerator (digit, base=10) {

   has power = base
   has after = (digit*power - 1)
   has even  = false
   method next {
       if (++after == power*(digit+1)) {
           power *= base if even
           after = digit*power
           even.not!
       }
       even ? (after*power*base + reverse(after, base))
            : (after*power + reverse(after/base, base))
   }

}

var task = [

   "(Required) First 20 gapful palindromes:",       { .first(20) }, 7,
   ,"\n(Required) 86th through 100th:",             { .first(1e2).last(15) }, 8,
   ,"\n(Optional) 991st through 1,000th:",          { .first(1e3).last(10) }, 10,
   ,"\n(Extra stretchy) 9,995th through 10,000th:", { .first(1e4).last(6) }, 12,

]

task.each_slice(3, {|title, f, w|

   say title
   for d in (1..9) {
       var k    = 11*d
       var iter = PalindromeGenerator(d)
       var arr  = f(^Inf->lazy.map { iter.next }.grep {|n| k `divides` n })
       say ("#{d}: ", arr.map{ "%*s" % (w, _) }.join(' '))
   }

})</lang>

Output:
(Required) First 20 gapful palindromes:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069

(Required) 86th through 100th:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

(Optional) 991st through 1,000th:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

(Extra stretchy) 9,995th through 10,000th:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869

Wren

Translation of: Go
Library: Wren-fmt

Search limited to the first 100,000 palindromic gapful numbers as, beyond that, the numbers become too large (>= 2 ^ 53) to be accurately represented by Wren's Num type. <lang ecmascript>import "/fmt" for Conv, Fmt

var reverse = Fn.new { |s|

   var e = 0
   while (s > 0) {
       e = e * 10 + (s % 10)
       s = (s/10).floor
   }
   return e

}

var MAX = 100000 var data = [ [1, 20, 7], [86, 100, 8], [991, 1000, 10], [9995, 10000, 12], [99996, 100000, 14] ] var results = {} for (d in data) {

   for (i in d[0]..d[1]) results[i] = List.filled(9, 0)

} var p for (d in 1..9) {

   var next_d = false
   var count = 0
   var pow = 1
   var fl = d * 11
   for (nd in 3..19) {
       var slim = (d + 1) * pow
       for (s in d*pow...slim) {
           var e = reverse.call(s)
           var mlim = (nd%2 != 1) ? 1 : 10
           for (m in 0...mlim) {
               if (nd%2 == 0) {
                   p = s*pow*10 + e
               } else {
                   p = s*pow*100 + m*pow*10 + e
               }
               if (p%fl == 0) {
                   count = count + 1
                   var rc = results[count]
                   if (rc != null) rc[d-1] = p
                   if (count == MAX) next_d = true
               }
               if (next_d) break
           }
           if (next_d) break
       }
       if (next_d) break
       if (nd%2 == 1) pow = pow * 10
   }    

}

for (d in data) {

   var s1 = Fmt.ordinalize(d[0])
   var s2 = Fmt.ordinalize(d[1]) 
   System.print("%(s1) to %(s2) palindromic gapful numbers (> 100) ending with:")
   for (i in 1..9) {
       System.write("%(i): ")
       for (j in d[0]..d[1]) System.write("%(Fmt.d(d[2], results[j][i-1])) ")
       System.print()
   }
   System.print()

}</lang>

Output:
1st to 20th palindromic gapful numbers (> 100) ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591 
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392 
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333 
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804 
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895 
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336 
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087 
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648 
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069 

86th to 100th palindromic gapful numbers (> 100) ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971 
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284 
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

991st to 1,000th palindromic gapful numbers (> 100) ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871 
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384 
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

9,995th to 10,000th palindromic gapful numbers (> 100) ending with:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871 
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872 
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803 
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384 
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875 
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806 
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647 
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808 
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869 

99,996th to 100,000th palindromic gapful numbers (> 100) ending with:
1:   178784487871   178785587871   178786687871   178787787871   178788887871 
2:   278784487872   278785587872   278786687872   278787787872   278788887872 
3: 30878499487803 30878522587803 30878555587803 30878588587803 30878611687803 
4:  4833289823384  4833290923384  4833302033384  4833314133384  4833326233384 
5:   578785587875   578786687875   578787787875   578788887875   578789987875 
6: 60878499487806 60878522587806 60878555587806 60878588587806 60878611687806 
7: 74825733752847 74825833852847 74825933952847 74826044062847 74826144162847 
8: 80869644696808 80869655696808 80869666696808 80869677696808 80869688696808 
9: 96877711777869 96877800877869 96877899877869 96877988977869 96878077087869 

zkl

Using ideas from the Factor entry <lang zkl>// 10,True --> 101,111,121,131,141,151,161,171,181,191,202, .. // 10,False --> 1001,1111,1221,1331,1441,1551,1661,1771,1881,.. fcn createPalindromeW(start,oddLength){ //--> iterator

  [start..].tweak('wrap(z){
     p,n := z,z;
     if(oddLength) n/=10;
     while(n>0){ p,n = p*10 + (n%10), n/10; }
     p
  })

} fcn palindromicGapfulW(endsWith){ //--> iterator

  po,pe := createPalindromeW(10,True), createPalindromeW(10,False);
  div:=endsWith*10 + endsWith;
  Walker.zero().tweak('wrap{
     p:=( if(pe.peek()<po.peek()) pe.next() else po.next() );
     if(p%10==endsWith and (p%div)==0) p else Void.Skip 
  })

}</lang> <lang zkl>println("First 20 palindromic gapful numbers:"); [1..9].apply(palindromicGapfulW).apply("walk",20) : pgpp(_);

foreach N,sz in (T( T(100,15), T(1_000,10), )){

  println("\nLast %d of %,d palindromic gapful numbers:".fmt(sz,N));
  [1..9].apply('wrap(n){ palindromicGapfulW(n).drop(N-sz).walk(sz) }) : pgpp(_);

}

fcn pgpp(table){ // pretty print ( (numbers),(numbers) )

  m,fmt := (0).max(table.apply((0).max)).numDigits, "%%%dd ".fmt(m).fmt;
  foreach d,row in ([1..].zip(table)){ println(d,": ",row.pump(String,fmt)) }

}</lang>

Output:
First 20 palindromic gapful numbers:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591 
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392 
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333 
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804 
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895 
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336 
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087 
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648 
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069 

Last 15 of 100 palindromic gapful numbers:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971 
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284 
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

Last 10 of 1,000 palindromic gapful numbers:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871 
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384 
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

<lang zkl>/* We can also thread the whole mess, which for this case, is a 3.75 speed up

*   (3 min to 48sec) with 8 cores (Intel 4/4).
*/

fcn palGT(n,N,sz){ palindromicGapfulW(n).drop(N-sz).walk(sz) } // worker thread foreach N,sz in (T( T(100_000,1) )){

  println("\nLast %d of %,d palindromic gapful numbers:".fmt(sz,N));
  [1..9].apply('wrap(n){ palGT.future(n,N,sz) })  // create threads
     .apply("noop")		// wait for threads to finish
  : pgpp(_);

}</lang>

Output:
Last 1 of 100,000 palindromic gapful numbers:
1:   178788887871 
2:   278788887872 
3: 30878611687803 
4:  4833326233384 
5:   578789987875 
6: 60878611687806 
7: 74826144162847 
8: 80869688696808 
9: 96878077087869 
Cookies help us deliver our services. By using our services, you agree to our use of cookies.