Jump to content

Priority queue

From Rosetta Code
Task
Priority queue
You are encouraged to solve this task according to the task description, using any language you may know.

A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.

Task: Create a priority queue. The queue must support at least two operations:

  1. Insertion. An element is added to the queue with a priority (a numeric value).
  2. Top item removal. Deletes the element or one of the elements with the current top priority and return it.

Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.

To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data:

Priority    Task
  3        Clear drains
  4        Feed cat
  5        Make tea
  1        Solve RC tasks
  2        Tax return

The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.

Ada

Works with: Ada 2012

Ada 2012 includes container classes for priority queues.

<lang Ada>with Ada.Containers.Synchronized_Queue_Interfaces; with Ada.Containers.Unbounded_Priority_Queues; with Ada.Strings.Unbounded;

procedure Priority_Queues is

  use Ada.Containers;
  use Ada.Strings.Unbounded;
  type Queue_Element is record
     Priority : Natural;
     Content  : Unbounded_String;
  end record;
  function Get_Priority (Element : Queue_Element) return Natural is
  begin
     return Element.Priority;
  end Get_Priority;
  function Before (Left, Right : Natural) return Boolean is
  begin
     return Left > Right;
  end Before;
  package String_Queues is new Synchronized_Queue_Interfaces
    (Element_Type => Queue_Element);
  package String_Priority_Queues is new Unbounded_Priority_Queues
    (Queue_Interfaces => String_Queues,
     Queue_Priority => Natural);
  My_Queue : String_Priority_Queues.Queue;

begin

  My_Queue.Enqueue (New_Item => (Priority => 3, Content => To_Unbounded_String ("Clear drains")));
  My_Queue.Enqueue (New_Item => (Priority => 4, Content => To_Unbounded_String ("Feed cat")));
  My_Queue.Enqueue (New_Item => (Priority => 5, Content => To_Unbounded_String ("Make tea")));
  My_Queue.Enqueue (New_Item => (Priority => 1, Content => To_Unbounded_String ("Solve RC tasks")));
  My_Queue.Enqueue (New_Item => (Priority => 2, Content => To_Unbounded_String ("Tax return")));
  declare
     Element : Queue_Element;
  begin
     while My_Queue.Current_Use > 0 loop
        My_Queue.Dequeue (Element => Element);
        Ada.Text_IO.Put_Line (Natural'Image (Element.Priority) & " => " & To_String (Element.Content));
     end loop;
  end;

end Priority_Queues;</lang>

output:


Axiom

Axiom already has a heap domain for ordered sets. We define a domain for ordered key-entry pairs and then define a priority queue using the heap domain over the pairs: <lang Axiom>)abbrev Domain ORDKE OrderedKeyEntry OrderedKeyEntry(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where

 Exports == OrderedSet with
   construct: (Key,Entry) -> %
   elt: (%,"key") -> Key
   elt: (%,"entry") -> Entry
 Implementation == add
   Rep := Record(k:Key,e:Entry)
   x,y: %
   construct(a,b) == construct(a,b)$Rep @ %
   elt(x,"key"):Key == (x@Rep).k
   elt(x,"entry"):Entry == (x@Rep).e
   x < y == x.key < y.key
   x = y == x.key = y.key
   hash x == hash(x.key)
   if Entry has CoercibleTo OutputForm then
     coerce(x):OutputForm == bracket [(x.key)::OutputForm,(x.entry)::OutputForm]

)abbrev Domain PRIORITY PriorityQueue S ==> OrderedKeyEntry(Key,Entry) PriorityQueue(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where

 Exports == PriorityQueueAggregate S with
   heap : List S  -> %
   setelt: (%,Key,Entry) -> Entry
 Implementation == Heap(S) add
   setelt(x:%,key:Key,entry:Entry) == 
     insert!(construct(key,entry)$S,x)
     entry</lang>For an example:<lang Axiom>pq := empty()$PriorityQueue(Integer,String)

pq(3):="Clear drains"; pq(4):="Feed cat"; pq(5):="Make tea"; pq(1):="Solve RC tasks"; pq(2):="Tax return"; [extract!(pq) for i in 1..#pq]</lang>Output:<lang Axiom>

  [[5,"Make tea"], [4,"Feed cat"], [3,"Clear drains"], [2,"Tax return"],
   [1,"Solve RC tasks"]]
                                 Type: List(OrderedKeyEntry(Integer,String))</lang>

C

Using a dynamic array as a binary heap. Stores integer priority and a void data pointer. There's no limit on heap size besides integer overflow, although a very large heap will cause a lot of page faults. Supports insert, extraction, peeking at top element, merging and clearing. <lang c>#include <stdio.h>

  1. include <stdlib.h>

typedef struct { void * data; int pri; } q_elem_t; typedef struct { q_elem_t *buf; int n, alloc; } pri_queue_t, *pri_queue;

  1. define priq_purge(q) (q)->n = 1
  2. define priq_size(q) ((q)->n - 1)

/* first element in array not used to simplify indices */ pri_queue priq_new(int size) { if (size < 4) size = 4;

pri_queue q = malloc(sizeof(pri_queue_t)); q->buf = malloc(sizeof(q_elem_t) * size); q->alloc = size; q->n = 1;

return q; }

void priq_push(pri_queue q, void *data, int pri) { q_elem_t *b; int n, m;

if (q->n >= q->alloc) { q->alloc *= 2; b = q->buf = realloc(q->buf, sizeof(q_elem_t) * q->alloc); } else b = q->buf;

n = q->n++; /* append at end, then up heap */ while ((m = n / 2) && pri < b[m].pri) { b[n] = b[m]; n = m; } b[n].data = data; b[n].pri = pri; }

/* remove top item. returns 0 if empty. *pri can be null. */ void * priq_pop(pri_queue q, int *pri) { void *out; if (q->n == 1) return 0;

q_elem_t *b = q->buf;

out = b[1].data; if (pri) *pri = b[1].pri;

/* pull last item to top, then down heap. */ --q->n;

int n = 1, m; while ((m = n * 2) < q->n) { if (m + 1 < q->n && b[m].pri > b[m + 1].pri) m++;

if (b[q->n].pri <= b[m].pri) break; b[n] = b[m]; n = m; }

b[n] = b[q->n]; if (q->n < q->alloc / 2 && q->n >= 16) q->buf = realloc(q->buf, (q->alloc /= 2) * sizeof(b[0]));

return out; }

/* get the top element without removing it from queue */ void* priq_top(pri_queue q, int *pri) { if (q->n == 1) return 0; if (pri) *pri = q->buf[1].pri; return q->buf[1].data; }

/* this is O(n log n), but probably not the best */ void priq_combine(pri_queue q, pri_queue q2) { int i; q_elem_t *e = q2->buf + 1;

for (i = q2->n - 1; i >= 1; i--, e++) priq_push(q, e->data, e->pri); priq_purge(q2); }

int main() { int i, p; const char *c, *tasks[] ={ "Clear drains", "Feed cat", "Make tea", "Solve RC tasks", "Tax return" }; int pri[] = { 3, 4, 5, 1, 2 };

/* make two queues */ pri_queue q = priq_new(0), q2 = priq_new(0);

/* push all 5 tasks into q */ for (i = 0; i < 5; i++) priq_push(q, tasks[i], pri[i]);

/* pop them and print one by one */ while ((c = priq_pop(q, &p))) printf("%d: %s\n", p, c);

/* put a million random tasks in each queue */ for (i = 0; i < 1 << 20; i++) { p = rand() / ( RAND_MAX / 5 ); priq_push(q, tasks[p], pri[p]);

p = rand() / ( RAND_MAX / 5 ); priq_push(q2, tasks[p], pri[p]); }

printf("\nq has %d items, q2 has %d items\n", priq_size(q), priq_size(q2));

/* merge q2 into q; q2 is empty */ priq_combine(q, q2); printf("After merge, q has %d items, q2 has %d items\n", priq_size(q), priq_size(q2));

/* pop q until it's empty */ for (i = 0; (c = priq_pop(q, 0)); i++); printf("Popped %d items out of q\n", i);

return 0; }</lang>output<lang>1: Solve RC tasks 2: Tax return 3: Clear drains 4: Feed cat 5: Make tea

q has 1048576 items, q2 has 1048576 items After merge, q has 2097152 items, q2 has 0 items Popped 2097152 items out of q</lang>

C++

The C++ standard library contains the std::priority_queue opaque data structure. It implements a max-heap.

<lang cpp>#include <iostream>

  1. include <string>
  2. include <queue>
  3. include <utility>

int main() {

 std::priority_queue<std::pair<int, std::string> > pq;
 pq.push(std::make_pair(3, "Clear drains"));
 pq.push(std::make_pair(4, "Feed cat"));
 pq.push(std::make_pair(5, "Make tea"));
 pq.push(std::make_pair(1, "Solve RC tasks"));
 pq.push(std::make_pair(2, "Tax return"));
 while (!pq.empty()) {
   std::cout << pq.top().first << ", " << pq.top().second << std::endl;
   pq.pop();
 }
 return 0;

}</lang>

output:

5, Make tea
4, Feed cat
3, Clear drains
2, Tax return
1, Solve RC tasks

Alternately, you can use a pre-existing container of yours and use the heap operations to manipulate it:

<lang cpp>#include <iostream>

  1. include <string>
  2. include <vector>
  3. include <algorithm>
  4. include <utility>

int main() {

 std::vector<std::pair<int, std::string> > pq;
 pq.push_back(std::make_pair(3, "Clear drains"));
 pq.push_back(std::make_pair(4, "Feed cat"));
 pq.push_back(std::make_pair(5, "Make tea"));
 pq.push_back(std::make_pair(1, "Solve RC tasks"));
 // heapify
 std::make_heap(pq.begin(), pq.end());
 // enqueue
 pq.push_back(std::make_pair(2, "Tax return"));
 std::push_heap(pq.begin(), pq.end());
 while (!pq.empty()) {
   // peek
   std::cout << pq[0].first << ", " << pq[0].second << std::endl;
   // dequeue
   std::pop_heap(pq.begin(), pq.end());
   pq.pop_back();
 }
 return 0;

}</lang>

output:

5, Make tea
4, Feed cat
3, Clear drains
2, Tax return
1, Solve RC tasks

C#

<lang C#> using System;

namespace PriorityQueue {

   class Program
   {
       static void Main(string[] args)
       {
           PriorityQueue PQ = new PriorityQueue();
           PQ.push(3, "Clear drains");
           PQ.push(4, "Feed cat");
           PQ.push(5, "Make tea");
           PQ.push(1, "Solve RC tasks");
           PQ.push(2, "Tax return");
           while (!PQ.Empty)
           {
               var Val = PQ.pop();
               Console.WriteLine(Val[0] + " : " + Val[1]);
           }
           Console.ReadKey();
       }
   }
   class PriorityQueue
   {
       private System.Collections.SortedList PseudoQueue;
       public bool Empty
       {
           get
           {
               return PseudoQueue.Count == 0;
           }
       }
       public PriorityQueue()
       {
           PseudoQueue = new System.Collections.SortedList();
       }
       public void push(object Priority, object Value)
       {
           PseudoQueue.Add(Priority, Value);
       }
       public object[] pop()
       {
           object[] ReturnValue = { null, null };
           if (PseudoQueue.Count > 0)
           {
               ReturnValue[0] = PseudoQueue.GetKey(0);
               ReturnValue[1] = PseudoQueue.GetByIndex(0);
               PseudoQueue.RemoveAt(0);
           }
           return ReturnValue;
       }
   }

} </lang>

CoffeeScript

<lang coffeescript> PriorityQueue = ->

 # Use closure style for object creation (so no "new" required).
 # Private variables are toward top.
 h = []
 
 better = (a, b) ->
   h[a].priority < h[b].priority
 
 swap = (a, b) ->
   [h[a], h[b]] = [h[b], h[a]]
     
 sift_down = ->
   max = h.length
   n = 0
   while n < max
     c1 = 2*n + 1
     c2 = c1 + 1
     best = n
     best = c1 if c1 < max and better(c1, best)
     best = c2 if c2 < max and better(c2, best)
     return if best == n
     swap n, best
     n = best
     
 sift_up = ->
   n = h.length - 1
   while n > 0
     parent = Math.floor((n-1) / 2)
     return if better parent, n
     swap n, parent
     n = parent

 # now return the public interface, which is an object that only
 # has functions on it
 self =
   size: ->
     h.length
   push: (priority, value) ->
     elem =
       priority: priority
       value: value
     h.push elem
     sift_up()
     
   pop: ->
     throw Error("cannot pop from empty queue") if h.length == 0
     value = h[0].value
     last = h.pop()
     if h.length > 0
       h[0] = last
       sift_down()
     value
  1. test

do ->

 pq = PriorityQueue()
 pq.push 3, "Clear drains"
 pq.push 4, "Feed cat"
 pq.push 5, "Make tea"
 pq.push 1, "Solve RC tasks"
 pq.push 2, "Tax return"
 while pq.size() > 0
   console.log pq.pop()
   
 # test high performance
 for n in [1..100000]
   priority = Math.random()
   pq.push priority, priority
 
 v = pq.pop()
 console.log "First random element was #{v}"
 while pq.size() > 0
   new_v = pq.pop()
   throw Error "Queue broken" if new_v < v
   v = new_v
 console.log "Final random element was #{v}"

</lang>

output

<lang> > coffee priority_queue.coffee Solve RC tasks Tax return Clear drains Feed cat Make tea First random element was 0.00002744467929005623 Final random element was 0.9999718656763434 </lang>

D

<lang d>import std.stdio, std.container, std.array, std.typecons;

void main() {

   alias tuple T;
   auto heap = heapify([T(3, "Clear drains"),
                        T(4, "Feed cat"),
                        T(5, "Make tea"),
                        T(1, "Solve RC tasks"),
                        T(2, "Tax return")]);
   while (!heap.empty) {
       writeln(heap.front);
       heap.removeFront();
   }

}</lang>

Output:
Tuple!(int,string)(5, "Make tea")
Tuple!(int,string)(4, "Feed cat")
Tuple!(int,string)(3, "Clear drains")
Tuple!(int,string)(2, "Tax return")
Tuple!(int,string)(1, "Solve RC tasks")

Factor

Factor has priority queues implemented in the library: documentation is available at http://docs.factorcode.org/content/article-heaps.html (or by typing "heaps" help interactively in the listener). <lang factor><min-heap> [ {

   { 3 "Clear drains" }
   { 4 "Feed cat" }
   { 5 "Make tea" }
   { 1 "Solve RC tasks" }
   { 2 "Tax return" }
 } swap heap-push-all 

] [

 [ print ] slurp-heap

] bi</lang>

output: <lang factor>Solve RC tasks Tax return Clear drains Feed cat Make tea</lang>

Fortran

<lang Fortran>module priority_queue_mod implicit none

type node

 character (len=100)              :: task
 integer                          :: priority

end type

type queue

 type(node), allocatable :: buf(:)
 integer                 :: n = 0

contains

 procedure :: top
 procedure :: enqueue
 procedure :: siftdown

end type

contains

subroutine siftdown(this, a)

 class (queue)           :: this
 integer                 :: a, parent, child
 associate (x => this%buf)
 parent = a
 do while(parent*2 <= this%n)
   child = parent*2
   if (child + 1 <= this%n) then 
     if (x(child+1)%priority > x(child)%priority ) then
       child = child +1 
     end if
   end if
   if (x(parent)%priority < x(child)%priority) then
     x([child, parent]) = x([parent, child])
     parent = child
   else
     exit
   end if  
 end do      
 end associate

end subroutine

function top(this) result (res)

 class(queue) :: this
 type(node)   :: res
 res = this%buf(1)
 this%buf(1) = this%buf(this%n)
 this%n = this%n - 1
 call this%siftdown(1)

end function

subroutine enqueue(this, priority, task)

 class(queue), intent(inout) :: this
 integer                     :: priority
 character(len=*)            :: task
 type(node)                  :: x
 type(node), allocatable     :: tmp(:)
 integer                     :: i
 x%priority = priority
 x%task = task
 this%n = this%n +1  
 if (.not.allocated(this%buf)) allocate(this%buf(1))
 if (size(this%buf)<this%n) then
   allocate(tmp(2*size(this%buf)))
   tmp(1:this%n-1) = this%buf
   call move_alloc(tmp, this%buf)
 end if
 this%buf(this%n) = x
 i = this%n
 do 
   i = i / 2
   if (i==0) exit
   call this%siftdown(i)
 end do

end subroutine end module

program main

 use priority_queue_mod
 type (queue) :: q
 type (node)  :: x 
 call q%enqueue(3, "Clear drains")
 call q%enqueue(4, "Feed cat")
 call q%enqueue(5, "Make Tea")
 call q%enqueue(1, "Solve RC tasks")
 call q%enqueue(2, "Tax return")
 do while (q%n >0) 
   x = q%top()
   print "(g0,a,a)", x%priority, " -> ", trim(x%task)
 end do

end program

! Output: ! 5 -> Make Tea ! 4 -> Feed cat ! 3 -> Clear drains ! 2 -> Tax return ! 1 -> Solve RC tasks </lang>

Go

Go's standard library contains the container/heap package, which which provides operations to operate as a heap any data structure that contains the Push, Pop, Len, Less, and Swap methods.

<lang go>package main

import (

   "fmt"
   "container/heap"

)

type Task struct {

   priority int
   name     string

}

type TaskPQ []Task

func (self TaskPQ) Len() int { return len(self) } func (self TaskPQ) Less(i, j int) bool {

   return self[i].priority < self[j].priority

} func (self TaskPQ) Swap(i, j int) { self[i], self[j] = self[j], self[i] } func (self *TaskPQ) Push(x interface{}) { *self = append(*self, x.(Task)) } func (self *TaskPQ) Pop() (popped interface{}) {

   popped = (*self)[len(*self)-1]
   *self = (*self)[:len(*self)-1]
   return

}

func main() {

   pq := &TaskPQ{{3, "Clear drains"},
       {4, "Feed cat"},
       {5, "Make tea"},
       {1, "Solve RC tasks"}}
   // heapify
   heap.Init(pq)
   // enqueue
   heap.Push(pq, Task{2, "Tax return"})
   for pq.Len() != 0 { 
       // dequeue
       fmt.Println(heap.Pop(pq))
   }

}</lang>

output:

{1 Solve RC tasks}
{2 Tax return}
{3 Clear drains}
{4 Feed cat}
{5 Make tea}

Haskell

One of the best Haskell implementations of priority queues (of which there are many) is pqueue, which implements a binomial heap. <lang haskell>import Data.PQueue.Prio.Min

main = print (toList (fromList [(3, "Clear drains"),(4, "Feed cat"),(5, "Make tea"),(1, "Solve RC tasks"), (2, "Tax return")]))</lang>

Alternatively, a homemade min heap implementation: <lang haskell>data MinHeap a = Nil | MinHeap { v::a, cnt::Int, l::MinHeap a, r::MinHeap a } deriving (Show, Eq)

hPush :: (Ord a) => a -> MinHeap a -> MinHeap a hPush x Nil = MinHeap {v = x, cnt = 1, l = Nil, r = Nil} hPush x h = if x < vv -- insert element, try to keep the tree balanced then if hLength (l h) <= hLength (r h) then MinHeap { v=x, cnt=cc, l=hPush vv ll, r=rr } else MinHeap { v=x, cnt=cc, l=ll, r=hPush vv rr } else if hLength (l h) <= hLength (r h) then MinHeap { v=vv, cnt=cc, l=hPush x ll, r=rr } else MinHeap { v=vv, cnt=cc, l=ll, r=hPush x rr } where (vv, cc, ll, rr) = (v h, 1 + cnt h, l h, r h)

hPop :: (Ord a) => MinHeap a -> (a, MinHeap a) hPop h = (v h, pq) where -- just pop, heed not the tree balance pq | l h == Nil = r h | r h == Nil = l h | v (l h) <= v (r h) = let (vv,hh) = hPop (l h) in MinHeap {v = vv, cnt = hLength hh + hLength (r h), l = hh, r = r h} | otherwise = let (vv,hh) = hPop (r h) in MinHeap {v = vv, cnt = hLength hh + hLength (l h), l = l h, r = hh}

hLength :: (Ord a) => MinHeap a -> Int hLength Nil = 0 hLength h = cnt h

hFromList :: (Ord a) => [a] -> MinHeap a hFromList = foldl (flip hPush) Nil

hToList :: (Ord a) => MinHeap a -> [a] hToList = unfoldr f where

 f Nil = Nothing
 f h = Just $ hPop h

main = mapM_ print $ hToList $ hFromList [ (3, "Clear drains"), (4, "Feed cat"), (5, "Make tea"), (1, "Solve RC tasks"), (2, "Tax return")]</lang>

Icon and Unicon

This solution uses classes provided by the UniLib package. Heap is an implementation of a priority queue and Closure is used to allow the queue to order lists based on their first element. The solution only works in Unicon. <lang Unicon>import Utils # For Closure class import Collections # For Heap (dense priority queue) class

procedure main()

  pq := Heap(, Closure("[]",Arg,1) )
  pq.add([3, "Clear drains"])
  pq.add([4, "Feed cat"])
  pq.add([5, "Make tea"])
  pq.add([1, "Solve RC tasks"])
  pq.add([2, "Tax return"])
  while task := pq.get() do write(task[1]," -> ",task[2])

end </lang> Output when run:

1 -> Solve RC tasks
2 -> Tax return
3 -> Clear drains
4 -> Feed cat
5 -> Make tea

J

Implementation:

<lang j>coclass 'priorityQueue'

PRI=: QUE=:

insert=:4 :0

 p=. PRI,x
 q=. QUE,y
 assert. p -:&$ q
 assert. 1 = #$q
 ord=: \: p
 QUE=: ord { q
 PRI=: ord { p
 i.0 0

)

topN=:3 :0

 assert y<:#PRI
 r=. y{.QUE
 PRI=: y}.PRI
 QUE=: y}.QUE
 r

)</lang>

Efficiency is obtained by batching requests. Size of batch for insert is determined by size of arguments. Size of batch for topN is its right argument.

Example:

<lang j> Q=: conew'priorityQueue'

  3 4 5 1 2 insert__Q 'clear drains';'feed cat';'make tea';'solve rc task';'tax return'
  >topN__Q 1

make tea

  >topN__Q 4

feed cat clear drains tax return solve rc task</lang>

Java

Java has a PriorityQueue class. It requires either the elements implement Comparable, or you give it a custom Comparator to compare the elements.

<lang java>import java.util.PriorityQueue;

class Task implements Comparable<Task> {

   final int priority;
   final String name;
   public Task(int p, String n) {
       priority = p;
       name = n;
   }
   public String toString() {
       return priority + ", " + name;
   }
   public int compareTo(Task other) {
       return priority < other.priority ? -1 : priority > other.priority ? 1 : 0;
   }
   public static final void main(String[] args) {
       PriorityQueue<Task> pq = new PriorityQueue<Task>();
       pq.add(new Task(3, "Clear drains"));
       pq.add(new Task(4, "Feed cat"));
       pq.add(new Task(5, "Make tea"));
       pq.add(new Task(1, "Solve RC tasks"));
       pq.add(new Task(2, "Tax return"));
       while (!pq.isEmpty())
           System.out.println(pq.remove());
   }

}</lang>

output:

1, Solve RC tasks
2, Tax return
3, Clear drains
4, Feed cat
5, Make tea

Mathematica

<lang mathematica>push = Function[{queue, priority, item},

  queue = SortBy[Append[queue, {priority, item}], First], HoldFirst];

pop = Function[queue,

  If[Length@queue == 0, Null, 
   With[{item = queue-1, 2}, queue = Most@queue; item]], 
  HoldFirst];

peek = Function[queue,

  If[Length@queue == 0, Null, Max[queueAll, 1]], HoldFirst];

merge = Function[{queue1, queue2},

  SortBy[Join[queue1, queue2], First], HoldAll];</lang>

Example:

<lang mathematica>queue = {}; push[queue, 3, "Clear drains"]; push[queue, 4, "Feed cat"]; push[queue, 5, "Make tea"]; push[queue, 1, "Solve RC tasks"]; push[queue, 2, "Tax return"]; Print[peek[queue]]; Print[pop[queue]]; queue1 = {}; push[queue1, 6, "Drink tea"]; Print[merge[queue, queue1]];</lang>

Output:

5

Make tea

{{1,Solve RC tasks},{2,Tax return},{3,Clear drains},{4,Feed cat},{6,Drink tea}}

Maxima

<lang maxima>/* Naive implementation using a sorted list of pairs [key, [item[1], ..., item[n]]]. The key may be any number (integer or not). Items are extracted in FIFO order. */

defstruct(pqueue(q = []))$

/* Binary search */

find_key(q, p) := block(

  [i: 1, j: length(q), k, c],
  if j = 0 then false
  elseif (c: q[i][1]) >= p then
     (if c = p then i else false)
  elseif (c: q[j][1]) <= p then
     (if c = p then j else false)
  else catch(
     while j >= i do (
        k: quotient(i + j, 2),
        if (c: q[k][1]) = p then throw(k)
        elseif c < p then i: k + 1 else j: k - 1
     ),
     false
  )

)$

pqueue_push(pq, x, p) := block(

  [q: pq@q, k],
  k: find_key(q, p),
  if integerp(k) then q[k][2]: endcons(x, q[k][2])
  else pq@q: sort(cons([p, [x]], q)),
  'done

)$

pqueue_pop(pq) := block(

  [q: pq@q, v, x],
  if emptyp(q) then 'fail else (
     p: q[1][1],
     v: q[1][2],
     x: v[1],
     if length(v) > 1 then q[1][2]: rest(v) else pq@q: rest(q),
     x
  )

)$

pqueue_print(pq) := block([t], while (t: pqueue_pop(pq)) # 'fail do disp(t))$


/* An example */

a: new(pqueue)$

pqueue_push(a, "take milk", 4)$ pqueue_push(a, "take eggs", 4)$ pqueue_push(a, "take wheat flour", 4)$ pqueue_push(a, "take salt", 4)$ pqueue_push(a, "take oil", 4)$ pqueue_push(a, "carry out crepe recipe", 5)$ pqueue_push(a, "savour !", 6)$ pqueue_push(a, "add strawberry jam", 5 + 1/2)$ pqueue_push(a, "call friends", 5 + 2/3)$ pqueue_push(a, "go to the supermarket and buy food", 3)$ pqueue_push(a, "take a shower", 2)$ pqueue_push(a, "get dressed", 2)$ pqueue_push(a, "wake up", 1)$ pqueue_push(a, "serve cider", 5 + 3/4)$ pqueue_push(a, "buy also cider", 3)$

pqueue_print(a); "wake up" "take a shower" "get dressed" "go to the supermarket and buy food" "buy also cider" "take milk" "take butter" "take flour" "take salt" "take oil" "carry out recipe" "add strawberry jam" "call friends" "serve cider" "savour !"</lang>

Objective-C

Works with: Cocoa

The priority queue used in this example is not actually written in Objective-C. It is part of Apple's (C-based) Core Foundation library, which is included with in Cocoa on Mac OS X and iOS. Its interface is a C function interface, which makes the code very ugly. Core Foundation is not included in GNUStep or other Objective-C APIs.

<lang objc>#import <Foundation/Foundation.h>

const void *PQRetain(CFAllocatorRef allocator, const void *ptr) {

 return [(id)ptr retain];

} void PQRelease(CFAllocatorRef allocator, const void *ptr) {

 [(id)ptr release];

} CFComparisonResult PQCompare(const void *ptr1, const void *ptr2, void *unused) {

 return [(id)ptr1 compare:(id)ptr2];

}

@interface Task : NSObject {

 int priority;
 NSString *name;

} - (id)initWithPriority:(int)p andName:(NSString *)n; - (NSComparisonResult)compare:(Task *)other; @end

@implementation Task - (id)initWithPriority:(int)p andName:(NSString *)n {

 if ((self = [super init])) {
   priority = p;
   name = [n copy];
 }
 return self;

} - (void)dealloc {

 [name release];
 [super dealloc];

} - (NSString *)description {

 return [NSString stringWithFormat:@"%d, %@", priority, name];

} - (NSComparisonResult)compare:(Task *)other {

 if (priority == other->priority)
   return NSOrderedSame;
 else if (priority < other->priority)
   return NSOrderedAscending;
 else
   return NSOrderedDescending;

} @end

int main (int argc, const char *argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 CFBinaryHeapCallBacks callBacks = {0, PQRetain, PQRelease, NULL, PQCompare};
 CFBinaryHeapRef pq = CFBinaryHeapCreate(NULL, 0, &callBacks, NULL);
 CFBinaryHeapAddValue(pq, [[[Task alloc] initWithPriority:3 andName:@"Clear drains"] autorelease]);
 CFBinaryHeapAddValue(pq, [[[Task alloc] initWithPriority:4 andName:@"Feed cat"] autorelease]);
 CFBinaryHeapAddValue(pq, [[[Task alloc] initWithPriority:5 andName:@"Make tea"] autorelease]);
 CFBinaryHeapAddValue(pq, [[[Task alloc] initWithPriority:1 andName:@"Solve RC tasks"] autorelease]);
 CFBinaryHeapAddValue(pq, [[[Task alloc] initWithPriority:2 andName:@"Tax return"] autorelease]);
 while (CFBinaryHeapGetCount(pq) != 0) {
   Task *task = (id)CFBinaryHeapGetMinimum(pq);
   NSLog(@"%@", task);
   CFBinaryHeapRemoveMinimumValue(pq);
 }
 CFRelease(pq);
 [pool drain];
 return 0;

} </lang>

log:

2011-08-22 07:46:19.250 Untitled[563:903] 1, Solve RC tasks
2011-08-22 07:46:19.255 Untitled[563:903] 2, Tax return
2011-08-22 07:46:19.256 Untitled[563:903] 3, Clear drains
2011-08-22 07:46:19.257 Untitled[563:903] 4, Feed cat
2011-08-22 07:46:19.258 Untitled[563:903] 5, Make tea

OCaml

Holger Arnold's OCaml base library provides a PriorityQueue module.

<lang ocaml>module PQ = Base.PriorityQueue

let () =

 let tasks = [
   3, "Clear drains";
   4, "Feed cat";
   5, "Make tea";
   1, "Solve RC tasks";
   2, "Tax return";
 ] in
 let pq = PQ.make (fun (prio1, _) (prio2, _) -> prio1 > prio2) in
 List.iter (PQ.add pq) tasks;
 while not (PQ.is_empty pq) do
   let _, task = PQ.first pq in
   PQ.remove_first pq;
   print_endline task
 done</lang>

testing:

$ ocaml -I +pcre pcre.cma base.cma pq.ml
Make tea
Feed cat
Clear drains
Tax return
Solve RC tasks

Although OCaml's standard library does not have a dedicated priority queue structure, one can (for most purposes) use the built-in Set data structure as a priority queue, as long as no two elements compare equal (since Set does not allow duplicate elements). This is the case here since no two tasks should have the same name. Note that Set is a functional, persistent data structure, so we derive new priority queues from the old ones functionally, rather than modifying them imperatively; the complexity is still O(log n).

<lang ocaml>module PQSet = Set.Make

 (struct
    type t = int * string (* pair of priority and task name *)
    let compare = compare
  end);;

let () =

 let tasks = [
   3, "Clear drains";
   4, "Feed cat";
   5, "Make tea";
   1, "Solve RC tasks";
   2, "Tax return";
 ] in
 let pq = List.fold_right PQSet.add tasks PQSet.empty in
 let rec aux pq' =
   if not (PQSet.is_empty pq') then begin
     let prio, name as task = PQSet.min_elt pq' in
     Printf.printf "%d, %s\n" prio name;
     aux (PQSet.remove task pq')
   end
 in aux pq</lang>

testing:

$ ocaml pq.ml
1, Solve RC tasks
2, Tax return
3, Clear drains
4, Feed cat
5, Make tea

Perl

There are a few implementations on CPAN. Following uses Heap::Priority[1] <lang perl>use 5.10.0; use strict; use Heap::Priority;

my $h = new Heap::Priority;

$h->highest_first(); # higher or lower number is more important $h->add(@$_) for ["Clear drains", 3], ["Feed cat", 4], ["Make tea", 5], ["Solve RC tasks", 1], ["Tax return", 2];

say while ($_ = $h->pop);</lang>output<lang>Make tea Feed cat Clear drains Tax return Solve RC tasks</lang>

Perl 6

This is a rather simple implementation. It requires the priority to be a positive integer value, with lower values being higher priority. There isn't a hard limit on how many priority levels you can have, though more than a few dozen is probably not practical.

The tasks are stored internally as an array of FIFO buffers, so multiple tasks of the same priority level will be returned in the order they were stored.

<lang perl6>class PriorityQueue {

   has @!tasks is rw;
   method insert ( Int $priority where { $priority >= 0 }, $task ) {
       @!tasks[$priority] //= [];
       @!tasks[$priority].push: $task; 
   }
   method get { @!tasks.first({$^_}).shift }
   method is_empty { !?@!tasks.first({$^_}) }

}

my $pq = PriorityQueue.new;

for (

   3, 'Clear drains',
   4, 'Feed cat',
   5, 'Make tea',
   9, 'Sleep',
   3, 'Check email',
   1, 'Solve RC tasks',
   9, 'Exercise',
   2, 'Do taxes'

) -> $priority, $task {

   $pq.insert( $priority, $task );

}

say $pq.get until $pq.is_empty;</lang>

Output:

Solve RC tasks
Do taxes
Clear drains
Check email
Feed cat
Make tea
Sleep
Exercise

PHP

Works with: PHP version 5.3+

PHP's SplPriorityQueue class implements a max-heap. PHP also separately has SplHeap, SplMinHeap, and SplMaxHeap classes. <lang php><?php $pq = new SplPriorityQueue;

$pq->insert('Clear drains', 3); $pq->insert('Feed cat', 4); $pq->insert('Make tea', 5); $pq->insert('Solve RC tasks', 1); $pq->insert('Tax return', 2);

// This line causes extract() to return both the data and priority (in an associative array), // Otherwise it would just return the data $pq->setExtractFlags(SplPriorityQueue::EXTR_BOTH);

while (!$pq->isEmpty()) {

   print_r($pq->extract());

} ?></lang>

Output:

Array
(
    [data] => Make tea
    [priority] => 5
)
Array
(
    [data] => Feed cat
    [priority] => 4
)
Array
(
    [data] => Clear drains
    [priority] => 3
)
Array
(
    [data] => Tax return
    [priority] => 2
)
Array
(
    [data] => Solve RC tasks
    [priority] => 1
)
Works with: PHP version 5.3+

The difference between SplHeap and SplPriorityQueue is that SplPriorityQueue takes the data and the priority as two separate arguments, and the comparison is only made on the priority; whereas SplHeap takes only one argument (the element), and the comparison is made on that directly. In all of these classes it is possible to provide a custom comparator by subclassing the class and overriding its compare method. <lang php><?php $pq = new SplMinHeap;

$pq->insert(array(3, 'Clear drains')); $pq->insert(array(4, 'Feed cat')); $pq->insert(array(5, 'Make tea')); $pq->insert(array(1, 'Solve RC tasks')); $pq->insert(array(2, 'Tax return'));

while (!$pq->isEmpty()) {

   print_r($pq->extract());

} ?></lang>

Output:

Array
(
    [0] => 1
    [1] => Solve RC tasks
)
Array
(
    [0] => 2
    [1] => Tax return
)
Array
(
    [0] => 3
    [1] => Clear drains
)
Array
(
    [0] => 4
    [1] => Feed cat
)
Array
(
    [0] => 5
    [1] => Make tea
)

PicoLisp

The following implementation imposes no limits. It uses a binary tree for storage. The priority levels may be numeric, or of any other type. <lang PicoLisp># Insert item into priority queue (de insertPQ (Queue Prio Item)

  (idx Queue (cons Prio Item) T) )
  1. Remove and return top item from priority queue

(de removePQ (Queue)

  (cdar (idx Queue (peekPQ Queue) NIL)) )
  1. Find top element in priority queue

(de peekPQ (Queue)

  (let V (val Queue)
     (while (cadr V)
        (setq V @) )
     (car V) ) )
  1. Merge second queue into first

(de mergePQ (Queue1 Queue2)

  (balance Queue1 (sort (conc (idx Queue1) (idx Queue2)))) )</lang>

Test: <lang PicoLisp># Two priority queues (off Pq1 Pq2)

  1. Insert into first queue

(insertPQ 'Pq1 3 '(Clear drains)) (insertPQ 'Pq1 4 '(Feed cat))

  1. Insert into second queue

(insertPQ 'Pq2 5 '(Make tea)) (insertPQ 'Pq2 1 '(Solve RC tasks)) (insertPQ 'Pq2 2 '(Tax return))

  1. Merge second into first queue

(mergePQ 'Pq1 'Pq2)

  1. Remove and print all items from first queue

(while Pq1

  (println (removePQ 'Pq1)) )</lang>

Output:

(Solve RC tasks)
(Tax return)
(Clear drains)
(Feed cat)
(Make tea)

Prolog

SWI-Prolog has a library heaps.pl, written by Lars Buitinck that implements priority queues.
Informations here : http://www.swi-prolog.org/pldoc/doc/swi/library/heaps.pl

Example of use : <lang Prolog>priority-queue :- TL0 = [3-'Clear drains', 4-'Feed cat'],

% we can create a priority queue from a list list_to_heap(TL0, Heap0),

% alternatively we can start from an empty queue % get from empty_heap/1.

% now we add the other elements add_to_heap(Heap0, 5, 'Make tea', Heap1), add_to_heap(Heap1, 1, 'Solve RC tasks', Heap2), add_to_heap(Heap2, 2, 'Tax return', Heap3),

% we list the content of the heap: heap_to_list(Heap3, TL1), writeln('Content of the queue'), maplist(writeln, TL1), nl,

% now we retrieve the minimum-priority pair get_from_heap(Heap3, Priority, Key, Heap4), format('Retrieve top of the queue : Priority ~w, Element ~w~n', [Priority, Key]), nl,

% we list the content of the heap: heap_to_list(Heap4, TL2), writeln('Content of the queue'), maplist(writeln, TL2). </lang> The output :

1 ?- priority-queue.
Content of the queue
1-Solve RC tasks
2-Tax return
3-Clear drains
4-Feed cat
5-Make tea

Retrieve top of the queue : Priority 1, Element Solve RC tasks

Content of the queue
2-Tax return
3-Clear drains
4-Feed cat
5-Make tea
true.

PureBasic

The priority queue is implemented using a binary heap array and a map. The map stores the elements of a given priority in a FIFO list. Priorities can be any signed 32 value. <lang purebasic>Structure taskList

 List description.s()  ;implements FIFO queue

EndStructure

Structure task

 *tl.tList  ;pointer to a list of task descriptions
 Priority.i ;tasks priority, lower value has more priority

EndStructure

Structure priorityQueue

 maxHeapSize.i ;increases as needed
 heapItemCount.i  ;number of elements currently in heap
 Array heap.task(0) ;elements hold FIFO queues ordered by priorities, lowest first
 map heapMap.taskList() ;holds lists of tasks with the same priority that are FIFO queues

EndStructure

Procedure insertPQ(*PQ.priorityQueue, description.s, p)

 If FindMapElement(*PQ\heapMap(), Str(p))
   LastElement(*PQ\heapMap()\description())
   AddElement(*PQ\heapMap()\description())
   *PQ\heapMap()\description() = description
 Else
   Protected *tl.taskList = AddMapElement(*PQ\heapMap(), Str(p))
   AddElement(*tl\description())
   *tl\description() = description
    
   Protected pos = *PQ\heapItemCount
   
   *PQ\heapItemCount + 1
   If *PQ\heapItemCount > *PQ\maxHeapSize
     Select *PQ\maxHeapSize
       Case 0
         *PQ\maxHeapSize = 128
       Default
         *PQ\maxHeapSize * 2
     EndSelect
     Redim *PQ\heap.task(*PQ\maxHeapSize)
   EndIf 
   
   While pos > 0 And p < *PQ\heap((pos - 1) / 2)\Priority
     *PQ\heap(pos) = *PQ\heap((pos - 1) / 2)
     pos = (pos - 1) / 2
   Wend
   
   *PQ\heap(pos)\tl = *tl
   *PQ\heap(pos)\Priority = p
 EndIf 

EndProcedure

Procedure.s removePQ(*PQ.priorityQueue)

 Protected *tl.taskList = *PQ\heap(0)\tl, description.s
 FirstElement(*tl\description())
 description = *tl\description()
 If ListSize(*tl\description()) > 1
   DeleteElement(*tl\description())
 Else
   DeleteMapElement(*PQ\heapMap(), Str(*PQ\heap(0)\Priority))
  
   *PQ\heapItemCount - 1
   *PQ\heap(0) = *PQ\heap(*PQ\heapItemCount)
   
   Protected pos
   Repeat
     Protected child1 = 2 * pos + 1
     Protected child2 = 2 * pos + 2
     If child1 >= *PQ\heapItemCount
       Break 
     EndIf
     
     Protected smallestChild
     If child2 >= *PQ\heapItemCount
       smallestChild = child1 
     ElseIf *PQ\heap(child1)\Priority <= *PQ\heap(child2)\Priority
       smallestChild = child1 
     Else
       smallestChild = child2 
     EndIf
     
     If (*PQ\heap(smallestChild)\Priority >= *PQ\heap(pos)\Priority)
       Break 
     EndIf
     Swap *PQ\heap(pos)\tl, *PQ\heap(smallestChild)\tl
     Swap *PQ\heap(pos)\Priority, *PQ\heap(smallestChild)\Priority
     pos = smallestChild
   ForEver
 EndIf 
 
 ProcedureReturn description

EndProcedure

Procedure isEmptyPQ(*PQ.priorityQueue) ;returns 1 if empty, otherwise returns 0

 If *PQ\heapItemCount
   ProcedureReturn 0
 EndIf
 ProcedureReturn 1

EndProcedure

If OpenConsole()

 Define PQ.priorityQueue
 insertPQ(PQ, "Clear drains", 3)
 insertPQ(PQ, "Answer Phone 1", 8)
 insertPQ(PQ, "Feed cat", 4)
 insertPQ(PQ, "Answer Phone 2", 8)
 insertPQ(PQ, "Make tea", 5)
 insertPQ(PQ, "Sleep", 9)
 insertPQ(PQ, "Check email", 3)
 insertPQ(PQ, "Solve RC tasks", 1)
 insertPQ(PQ, "Answer Phone 3", 8)
 insertPQ(PQ, "Exercise", 9)
 insertPQ(PQ, "Answer Phone 4", 8)
 insertPQ(PQ, "Tax return", 2)
  
 While Not isEmptyPQ(PQ)
   PrintN(removePQ(PQ))
 Wend
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang> Sample output:

Solve RC tasks
Tax return
Clear drains
Check email
Feed cat
Make tea
Answer Phone 1
Answer Phone 2
Answer Phone 3
Answer Phone 4
Sleep
Exercise

Python

Using PriorityQueue

Python has the class queue.PriorityQueue in its standard library.

The data structures in the "queue" module are synchronized multi-producer, multi-consumer queues for multi-threaded use. They can however handle this task: <lang python>>>> import queue >>> pq = queue.PriorityQueue() >>> for item in ((3, "Clear drains"), (4, "Feed cat"), (5, "Make tea"), (1, "Solve RC tasks"), (2, "Tax return")): pq.put(item)


>>> while not pq.empty(): print(pq.get_nowait())


(1, 'Solve RC tasks') (2, 'Tax return') (3, 'Clear drains') (4, 'Feed cat') (5, 'Make tea') >>> </lang>

Help text for queue.PriorityQueue

<lang python>>>> import queue >>> help(queue.PriorityQueue) Help on class PriorityQueue in module queue:

class PriorityQueue(Queue)

|  Variant of Queue that retrieves open entries in priority order (lowest first).
|  
|  Entries are typically tuples of the form:  (priority number, data).
|  
|  Method resolution order:
|      PriorityQueue
|      Queue
|      builtins.object
|  
|  Methods inherited from Queue:
|  
|  __init__(self, maxsize=0)
|  
|  empty(self)
|      Return True if the queue is empty, False otherwise (not reliable!).
|      
|      This method is likely to be removed at some point.  Use qsize() == 0
|      as a direct substitute, but be aware that either approach risks a race
|      condition where a queue can grow before the result of empty() or
|      qsize() can be used.
|      
|      To create code that needs to wait for all queued tasks to be
|      completed, the preferred technique is to use the join() method.
|  
|  full(self)
|      Return True if the queue is full, False otherwise (not reliable!).
|      
|      This method is likely to be removed at some point.  Use qsize() >= n
|      as a direct substitute, but be aware that either approach risks a race
|      condition where a queue can shrink before the result of full() or
|      qsize() can be used.
|  
|  get(self, block=True, timeout=None)
|      Remove and return an item from the queue.
|      
|      If optional args 'block' is true and 'timeout' is None (the default),
|      block if necessary until an item is available. If 'timeout' is
|      a positive number, it blocks at most 'timeout' seconds and raises
|      the Empty exception if no item was available within that time.
|      Otherwise ('block' is false), return an item if one is immediately
|      available, else raise the Empty exception ('timeout' is ignored
|      in that case).
|  
|  get_nowait(self)
|      Remove and return an item from the queue without blocking.
|      
|      Only get an item if one is immediately available. Otherwise
|      raise the Empty exception.
|  
|  join(self)
|      Blocks until all items in the Queue have been gotten and processed.
|      
|      The count of unfinished tasks goes up whenever an item is added to the
|      queue. The count goes down whenever a consumer thread calls task_done()
|      to indicate the item was retrieved and all work on it is complete.
|      
|      When the count of unfinished tasks drops to zero, join() unblocks.
|  
|  put(self, item, block=True, timeout=None)
|      Put an item into the queue.
|      
|      If optional args 'block' is true and 'timeout' is None (the default),
|      block if necessary until a free slot is available. If 'timeout' is
|      a positive number, it blocks at most 'timeout' seconds and raises
|      the Full exception if no free slot was available within that time.
|      Otherwise ('block' is false), put an item on the queue if a free slot
|      is immediately available, else raise the Full exception ('timeout'
|      is ignored in that case).
|  
|  put_nowait(self, item)
|      Put an item into the queue without blocking.
|      
|      Only enqueue the item if a free slot is immediately available.
|      Otherwise raise the Full exception.
|  
|  qsize(self)
|      Return the approximate size of the queue (not reliable!).
|  
|  task_done(self)
|      Indicate that a formerly enqueued task is complete.
|      
|      Used by Queue consumer threads.  For each get() used to fetch a task,
|      a subsequent call to task_done() tells the queue that the processing
|      on the task is complete.
|      
|      If a join() is currently blocking, it will resume when all items
|      have been processed (meaning that a task_done() call was received
|      for every item that had been put() into the queue).
|      
|      Raises a ValueError if called more times than there were items
|      placed in the queue.
|  
|  ----------------------------------------------------------------------
|  Data descriptors inherited from Queue:
|  
|  __dict__
|      dictionary for instance variables (if defined)
|  
|  __weakref__
|      list of weak references to the object (if defined)

>>> </lang>

Using heapq

Python has the heapq module in its standard library.

Although one can use the heappush method to add items individually to a heap similar to the method used in the PriorityQueue example above, we will instead transform the list of items into a heap in one go then pop them off one at a time as before. <lang python>>>> from heapq import heappush, heappop, heapify >>> items = [(3, "Clear drains"), (4, "Feed cat"), (5, "Make tea"), (1, "Solve RC tasks"), (2, "Tax return")] >>> heapify(items) >>> while items: print(heappop(items))


(1, 'Solve RC tasks') (2, 'Tax return') (3, 'Clear drains') (4, 'Feed cat') (5, 'Make tea') >>> </lang>

Help text for module heapq

<lang python>>>> help('heapq') Help on module heapq:

NAME

   heapq - Heap queue algorithm (a.k.a. priority queue).

DESCRIPTION

   Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
   all k, counting elements from 0.  For the sake of comparison,
   non-existing elements are considered to be infinite.  The interesting
   property of a heap is that a[0] is always its smallest element.
   
   Usage:
   
   heap = []            # creates an empty heap
   heappush(heap, item) # pushes a new item on the heap
   item = heappop(heap) # pops the smallest item from the heap
   item = heap[0]       # smallest item on the heap without popping it
   heapify(x)           # transforms list into a heap, in-place, in linear time
   item = heapreplace(heap, item) # pops and returns smallest item, and adds
                                  # new item; the heap size is unchanged
   
   Our API differs from textbook heap algorithms as follows:
   
   - We use 0-based indexing.  This makes the relationship between the
     index for a node and the indexes for its children slightly less
     obvious, but is more suitable since Python uses 0-based indexing.
   
   - Our heappop() method returns the smallest item, not the largest.
   
   These two make it possible to view the heap as a regular Python list
   without surprises: heap[0] is the smallest item, and heap.sort()
   maintains the heap invariant!

FUNCTIONS

   heapify(...)
       Transform list into a heap, in-place, in O(len(heap)) time.
   
   heappop(...)
       Pop the smallest item off the heap, maintaining the heap invariant.
   
   heappush(...)
       Push item onto heap, maintaining the heap invariant.
   
   heappushpop(...)
       Push item on the heap, then pop and return the smallest item
       from the heap. The combined action runs more efficiently than
       heappush() followed by a separate call to heappop().
   
   heapreplace(...)
       Pop and return the current smallest value, and add the new item.
       
       This is more efficient than heappop() followed by heappush(), and can be
       more appropriate when using a fixed-size heap.  Note that the value
       returned may be larger than item!  That constrains reasonable uses of
       this routine unless written as part of a conditional replacement:
       
           if item > heap[0]:
               item = heapreplace(heap, item)
   
   merge(*iterables)
       Merge multiple sorted inputs into a single sorted output.
       
       Similar to sorted(itertools.chain(*iterables)) but returns a generator,
       does not pull the data into memory all at once, and assumes that each of
       the input streams is already sorted (smallest to largest).
       
       >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
       [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
   
   nlargest(n, iterable, key=None)
       Find the n largest elements in a dataset.
       
       Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
   
   nsmallest(n, iterable, key=None)
       Find the n smallest elements in a dataset.
       
       Equivalent to:  sorted(iterable, key=key)[:n]

DATA

   __about__ = 'Heap queues\n\n[explanation by François Pinard]\n\nH... t...
   __all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge', '...

FILE

   c:\python32\lib\heapq.py


>>> </lang>

R

Using closures: <lang R>PriorityQueue <- function() {

 keys <<- values <<- NULL
 insert <- function(key, value) {
   temp <- c(keys, key)
   ord <- order(temp)
   keys <<- temp[ord]
   values <<- c(values, list(value))[ord]
 }
 pop <- function() {
   head <- values1
   values <<- values[-1]
   keys <<- keys[-1]
   return(head)
 }
 empty <- function() length(keys) == 0
 list(insert = insert, pop = pop, empty = empty)

}

pq <- PriorityQueue() pq$insert(3, "Clear drains") pq$insert(4, "Feed cat") pq$insert(5, "Make tea") pq$insert(1, "Solve RC tasks") pq$insert(2, "Tax return") while(!pq$empty()) {

 print(pq$pop())

}</lang>With output:<lang R>[1] "Solve RC tasks" [1] "Tax return" [1] "Clear drains" [1] "Feed cat" [1] "Make tea"</lang>A similar implementation using R5 classes:<lang R>PriorityQueue <-

 setRefClass("PriorityQueue",
             fields = list(keys = "numeric", values = "list"),
             methods = list(
               insert = function(key,value) {
                 temp <- c(keys,key)
                 ord <- order(temp)
                 keys <<- temp[ord]
                 values <<- c(values,list(value))[ord]
               },
               pop = function() {
                 head <- values1
                 keys <<- keys[-1]
                 values <<- values[-1]
                 return(head)
               },
               empty = function() length(keys) == 0
               ))</lang>The only change in the example would be in the instantiation:<lang R>pq <- PriorityQueue$new()</lang>

Racket

This solution implements priority queues on top of heaps. <lang racket>

  1. lang racket

(require data/heap)

(define pq (make-heap (λ(x y) (<= (second x) (second y)))))

(define (insert! x pri)

 (heap-add! pq (list pri x)))

(define (remove-min!)

 (begin0 
   (first (heap-min pq))
   (heap-remove-min! pq)))

(insert! 3 "Clear drains") (insert! 4 "Feed cat") (insert! 5 "Make tea") (insert! 1 "Solve RC tasks") (insert! 2 "Tax return")

(remove-min!) (remove-min!) (remove-min!) (remove-min!) (remove-min!) </lang> Output: <lang racket> "Solve RC tasks" "Tax return" "Clear drains" "Feed cat" "Make tea" </lang>

Ruby

A naive, inefficient implementation <lang ruby>class PriorityQueueNaive

 def initialize
   @q = Hash.new { |h, k| h[k] = []}
   @priorities = []
 end
 def push(priority, item)
   @q[priority] << item
   @priorities = @q.keys.sort
 end
 def pop
   p = @priorities[0]
   item = @q[p].shift
   if @q[p].empty?
     @q.delete(p)
     @priorities.shift
   end
   item
 end
 def peek
   if not empty?
     @q[@priorities[0]][0]
   end
 end
 def empty?
   @priorities.empty?
 end
 def inspect
   @q.inspect
 end

end

test = [

 [6, "drink tea"],
 [3, "Clear drains"],
 [4, "Feed cat"],
 [5, "Make tea"],
 [6, "eat biscuit"],
 [1, "Solve RC tasks"],
 [2, "Tax return"],

]

pq = PriorityQueueNaive.new test.each {|pr, str| pq.push(pr, str) } until pq.empty?

 puts pq.pop

end</lang> outputs

Solve RC tasks
Tax return
Clear drains
Feed cat
Make tea
drink tea
eat biscuit

Run BASIC

<lang runbasic>sqliteconnect #mem, ":memory:"

  1. mem execute("CREATE TABLE queue (priority float,descr text)")

' -------------------------------------------------------------- ' Insert items into the que ' --------------------------------------------------------------

  1. mem execute("INSERT INTO queue VALUES (3,'Clear drains')")
  2. mem execute("INSERT INTO queue VALUES (4,'Feed cat')")
  3. mem execute("INSERT INTO queue VALUES (5,'Make tea')")
  4. mem execute("INSERT INTO queue VALUES (1,'Solve RC tasks')")
  5. mem execute("INSERT INTO queue VALUES (2,'Tax return')")

'--------------- insert priority between 4 and 5 -----------------

  1. mem execute("INSERT INTO queue VALUES (4.5,'My Special Project')")

what$ = " -------------- Find first priority ---------------------" mem$ = "SELECT * FROM queue ORDER BY priority LIMIT 1" gosub [getQueue]

what$ = " -------------- Find last priority ---------------------" mem$ = "SELECT * FROM queue ORDER BY priority desc LIMIT 1" gosub [getQueue]

what$ = " -------------- Delete Highest Priority ---------------------" mem$ = "DELETE FROM queue WHERE priority = (select max(q.priority) FROM queue as q)"

  1. mem execute(mem$)

what$ = " -------------- List Priority Sequence ---------------------" mem$ = "SELECT * FROM queue ORDER BY priority" gosub [getQueue] end


[getQueue] print what$

  1. mem execute(mem$)

rows = #mem ROWCOUNT() print "Priority Description" for i = 1 to rows #row = #mem #nextrow() priority = #row priority() descr$ = #row descr$() print priority;" ";descr$ next i RETURN</lang> outputs

 -------------- Find first priority ---------------------
Priority    Description
1.0         Solve RC tasks
 -------------- Find last priority ---------------------
Priority    Description
5.0         Make tea
 -------------- List Priority Sequence ---------------------
Priority    Description
1.0         Solve RC tasks
2.0         Tax return
3.0         Clear drains
4.0         Feed cat
4.5         My Special Project

Scala

Scala has a class PriorityQueue in its standard library. <lang scala>import scala.collection.mutable.PriorityQueue case class Task(prio:Int, text:String) extends Ordered[Task] {

 def compare(that: Task)=that.prio compare this.prio

}

//test var q=PriorityQueue[Task]() ++ Seq(Task(3, "Clear drains"), Task(4, "Feed cat"),

 Task(5, "Make tea"), Task(1, "Solve RC tasks"), Task(2, "Tax return"))

while(q.nonEmpty) println(q dequeue)</lang> Output:

Task(1,Solve RC tasks)
Task(2,Tax return)
Task(3,Clear drains)
Task(4,Feed cat)
Task(5,Make tea)

Instead of deriving the class from Ordering an implicit conversion could be provided. <lang scala>case class Task(prio:Int, text:String) implicit def taskOrdering=new Ordering[Task] {

 def compare(t1:Task, t2:Task):Int=t2.prio compare t1.prio

}</lang>

Standard ML

Works with: SML/NJ

Note: this is a max-heap

<lang sml>structure TaskPriority = struct

 type priority = int
 val compare = Int.compare
 type item = int * string
 val priority : item -> int = #1

end

structure PQ = LeftPriorityQFn (TaskPriority)

let

 val tasks = [
   (3, "Clear drains"),
   (4, "Feed cat"),
   (5, "Make tea"),
   (1, "Solve RC tasks"),
   (2, "Tax return")]
 val pq = foldr PQ.insert PQ.empty tasks
 (* or val pq = PQ.fromList tasks *)
 fun aux pq' =
   case PQ.next pq' of
     NONE => ()
   | SOME ((prio, name), pq) => (
       print (Int.toString prio ^ ", " ^ name ^ "\n");
       aux pq
     )

in

 aux pq

end</lang>

testing:

5, Make tea
4, Feed cat
3, Clear drains
2, Tax return
1, Solve RC tasks

Tcl

Library: Tcllib (Package: struct::prioqueue)

<lang tcl>package require struct::prioqueue

set pq [struct::prioqueue] foreach {priority task} {

   3 "Clear drains"
   4 "Feed cat"
   5 "Make tea"
   1 "Solve RC tasks"
   2 "Tax return"

} {

   # Insert into the priority queue
   $pq put $task $priority

}

  1. Drain the queue, in priority-sorted order

while {[$pq size]} {

   # Remove the front-most item from the priority queue
   puts [$pq get]

}</lang> Which produces this output:

Make tea
Feed cat
Clear drains
Tax return
Solve RC tasks
Cookies help us deliver our services. By using our services, you agree to our use of cookies.