Jump to content

Transportation problem

From Rosetta Code
Transportation problem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The transportation problem in linear programming is to find the optimal transportation plan for certain volumes of resources from suppliers to consumers, taking into account the cost of transportation. The plan is a table (matrix), whose rows and columns correspond to the suppliers and consumers, the cells are placed in cargo volume.

Example of the transportation problem:

Consumer 1,
need 20 kg
Consumer 2,
need 30 kg
Consumer 3,
need 10 kg
Supplier 1,
supply 25 kg
$3 per kg $5 per kg $7 per kg
Supplier 2,
supply 35 kg
$3 per kg $2 per kg $5 per kg



The object is to solve the classical transport problem using the method of potentials (with redistributive cycle) with the preparation of the initial transportation plan by the north-west corner of the features to be implemented in this task. The input is the number of suppliers and customers, inventory levels, needs and cost matrix transport cargo. The output of the program is the optimal plan. If necessary, enter a fictitious vendor or customer.

The solution for the above example would be the plan:

Consumer 1 Consumer 2 Consumer 3
Supplier 1 20 kg - 5 kg
Supplier 2 - 30 kg 5 kg



See also



Related tasks



1C

// based on the program of <romix>

перем m,n; // Table size
перем u,v;
перем БазисныеЯчейки;
перем iЦикл, jЦикл;
перем Цены, Спрос, Предложение, Отгрузки; // Arrays of the transportation problem
перем i1, j1;
перем СпросОстаток, ПредложениеОстаток;
перем гл_сч;
перем гсч;

Функция РаспределениеМетодомСевероЗападногоУгла()
    Для j=1 по n Цикл
        СпросОстаток[j]=Спрос[j];
    КонецЦикла;
    Для i=1 по m Цикл
        ПредложениеОстаток[i]=Предложение[i];
    КонецЦикла;
    Для i=1 по m Цикл
        Для j=1 по n Цикл
            БазисныеЯчейки[i][j]=0;
            Отгрузки[i][j]=0;
        КонецЦикла;    
    КонецЦикла;
    Для i=1 по m Цикл
        Для j=1 по n Цикл
            Если ПредложениеОстаток[i]=0 Тогда
                Прервать;
            ИначеЕсли ПредложениеОстаток[i]<0 Тогда
                ВызватьИсключение("Error: balance of the offer less than 0");
            КонецЕсли;
            чОбъем=СпросОстаток[j];
            Если чОбъем=0 Тогда
                Продолжить;
            ИначеЕсли чОбъем<0 Тогда    
                ВызватьИсключение("Error: balance of the demand less than 0");
            КонецЕсли;
            Если ПредложениеОстаток[i]<чОбъем Тогда
                чОбъем=ПредложениеОстаток[i];
            КонецЕсли; 
            СпросОстаток[j]=СпросОстаток[j]-чОбъем;
            ПредложениеОстаток[i]=ПредложениеОстаток[i]-чОбъем;
            БазисныеЯчейки[i][j]=1;
            Отгрузки[i][j]=чОбъем;
        КонецЦикла;    
    КонецЦикла;    
КонецФункции

Функция ПроверкаПравильностиОтгрузок()
    Для i=1 по m Цикл
        стр="Отгрузки: ";
        Для j=1 по n Цикл
            стр=стр+Отгрузки[i][j]+" ";
        КонецЦикла;    
        Сообщить(стр);
    КонецЦикла;        
    Для i=1 по m Цикл
        чОбъем=0;
        Для j=1 по n Цикл
            чОбъем=чОбъем+Отгрузки[i][j];
        КонецЦикла;    
        Если чОбъем<>Предложение[i] Тогда
            ВызватьИсключение("Error: shipment on the line does not equal the proposal in the row "+i);
        КонецЕсли;
    КонецЦикла;    
    Для j=1 по n Цикл
        чОбъем=0;
        Для i=1 по m Цикл
            чОбъем=чОбъем+Отгрузки[i][j];
        КонецЦикла;    
        Если чОбъем<>Спрос[j] Тогда
            ВызватьИсключение("Error: shipment by the column does not equal to the demand in the column "+j);
        КонецЕсли;
    КонецЦикла;    
    Возврат Истина;
КонецФункции    

Функция ВычислениеПотенциалов()
    перем i, j;
    Для i=1 по m Цикл
        u[i]=НеОпределено;
    КонецЦикла;
    Для j=1 по n Цикл
        v[j]=НеОпределено;
    КонецЦикла;
    u[1]=0;
    гл_сч=m*n;
    ВычислениеПотенциаловПоГоризонтали(1);
    Для i=1 по m Цикл
        Если u[i]=НеОпределено Тогда
            Сообщить("Failed to evaluate the potential u["+i+"]");
            Возврат Ложь;
        КонецЕсли;    
    КонецЦикла;
    Для j=1 по n Цикл
        Если v[j]=НеОпределено Тогда
            Сообщить("Failed to evaluate the potential v["+j+"]");
            Возврат Ложь;
        КонецЕсли;    
    КонецЦикла;
    Возврат Истина;
КонецФункции

Функция ВычислениеПотенциаловПоВертикали(j)
    Если v[j]=НеОпределено Тогда 
        ВызватьИсключение("Failed to get the potential v["+j+"]");
    КонецЕсли;    
    Для i=1 по m Цикл
        Если БазисныеЯчейки[i][j]=0 Тогда
            Продолжить;
        КонецЕсли;
        Если u[i]<>НеОпределено Тогда
            Продолжить;
        Иначе
            u[i]=Цены[i][j]-v[j];
            ВычислениеПотенциаловПоГоризонтали(i);
        КонецЕсли;    
    КонецЦикла;    
КонецФункции

Функция ВычислениеПотенциаловПоГоризонтали(i)
    гл_сч=гл_сч-1;
    Если гл_сч=0 Тогда
        ВызватьИсключение("Looping in the calculation of potential");
    КонецЕсли;    
    Если u[i]=НеОпределено Тогда 
        ВызватьИсключение("Failed to get potential u["+i+"]");
    КонецЕсли;    
    Для j=1 по n Цикл
        Если БазисныеЯчейки[i][j]=0 Тогда
            Продолжить;
        КонецЕсли;
        Если v[j]<>НеОпределено Тогда
            Продолжить;
        Иначе
            v[j]=Цены[i][j]-u[i];
            ВычислениеПотенциаловПоВертикали(j);
        КонецЕсли;    
    КонецЦикла;    
КонецФункции    

Функция ПроверкаОптимальности()
    перем чРешениеОптимально, чМинимальнаяДельта, i, j, Дельта;
    чРешениеОптимально=Истина;
    чМинимальнаяДельта=НеОпределено;
    Для i=1 по m Цикл
        стр="Дельта=";
        Для j=1 по n Цикл
            Если БазисныеЯчейки[i][j]=1 Тогда
                Дельта=0;
            Иначе
                Дельта = Цены[i][j]-u[i]-v[j];
            КонецЕсли;
            стр=стр+Дельта+" ";
            Если Дельта<0 Тогда
                чРешениеОптимально=Ложь;
            КонецЕсли;
            Если чМинимальнаяДельта=НеОпределено Тогда
                чМинимальнаяДельта=Дельта;
                i1=i;
                j1=j;
            Иначе
                Если Дельта<чМинимальнаяДельта Тогда
                    чМинимальнаяДельта=Дельта;
                    i1=i;
                    j1=j;
                КонецЕсли;        
            КонецЕсли;    
        КонецЦикла;    
    КонецЦикла;
    Возврат чРешениеОптимально;
КонецФункции

Функция СтоимостьПеревозки()
    чСумма=0;
    Для i=1 по m Цикл
        Для j=1 по n Цикл
            чСумма=чСумма+(Отгрузки[i][j]*Цены[i][j]);
        КонецЦикла;    
    КонецЦикла;
    Возврат чСумма;
КонецФункции    

Функция ПоискНулевойЯчейкиДляВводаВБазис()
    ок=0;
    Для i=1 по m Цикл
        Для j=1 по n Цикл
            Если БазисныеЯчейки[i][j]=0 Тогда
                ок=1;
                Прервать;
            КонецЕсли;
        КонецЦикла;
        Если ок=1 Тогда
            Прервать;
        КонецЕсли;
    КонецЦикла;    
    Если ок=0 Тогда
        ВызватьИсключение("There is no nonbasic (zero) cell entry into the basis");
    КонецЕсли;
    Пока 1=1 Цикл
        i=ГСЧ.СлучайноеЧисло(1, m);
        j=ГСЧ.СлучайноеЧисло(1, n);
        Если БазисныеЯчейки[i][j]=1 Тогда
            Продолжить;
        КонецЕсли;
        Если Отгрузки[i][j]<>0 Тогда
            ВызватьИсключение("Nonzero shipment for nonbasic cell");
        КонецЕсли;
        БазисныеЯчейки[i][j]=1;
        Сообщить("В базис введена ячейка "+i+" "+j);
        Возврат Истина;
    КонецЦикла;
КонецФункции

Функция НайтиЦикл(i0, j0)
    гл_сч = m*n;
    iЦикл.Очистить();
    jЦикл.Очистить();
    Если НайтиЦикл_ПоГоризонтали(i0, j0) Тогда
        Возврат Истина;
    КонецЕсли;
    Возврат Ложь;
КонецФункции

Функция НайтиЦикл_ПоГоризонтали(i0, j0)
    гл_сч=гл_сч-1;
    Если гл_сч=0 Тогда
        ВызватьИсключение("Too many iterations in the cycle search");
    КонецЕсли;    
    Для j=1 по n Цикл
        Если j=j0 Тогда
            Продолжить;
        КонецЕсли;
        Если БазисныеЯчейки[i0][j]=0 Тогда
            Продолжить;
        КонецЕсли;
        Если НайтиЦикл_ПоВертикали(i0, j) Тогда
            iЦикл.Добавить(i0);
            jЦикл.Добавить(j);
            Возврат Истина;
        КонецЕсли;    
    КонецЦикла;
    Возврат Ложь;
КонецФункции    

Функция НайтиЦикл_ПоВертикали(i0, j0)
    Для i=1 по m Цикл
        Если (j0=j1) и (i=i1) Тогда
                iЦикл.Добавить(i);
                jЦикл.Добавить(j0);
                Возврат Истина;
        КонецЕсли;    
        Если i=i0 Тогда
            Продолжить;
        КонецЕсли;
        Если БазисныеЯчейки[i][j0]=0 Тогда
            Продолжить;
        КонецЕсли;
        Если НайтиЦикл_ПоГоризонтали(i, j0) Тогда
            iЦикл.Добавить(i);
            jЦикл.Добавить(j0);
            Возврат Истина;
        КонецЕсли;    
    КонецЦикла;    
    Возврат Ложь;
КонецФункции

Функция ПерераспределениеПоЦиклу()
    Сообщить("Redistribution by the cycle "+iЦикл.Количество());
    Если jЦикл.Количество()<>iЦикл.Количество() Тогда
        ВызватьИсключение("Unequal dimension for the cycle coordinates");
    КонецЕсли;
    Если iЦикл.Количество()<4 Тогда
        ВызватьИсключение("Cycle is less than 4 items");
    КонецЕсли;    
    Тета=НеОпределено;
    Знак="+";
    Для й=0 по iЦикл.ВГраница() Цикл
        i=iЦикл[й];
        j=jЦикл[й];
        Если Знак="-" Тогда
            Объем=Отгрузки[i][j];
            Если Тета=НеОпределено Тогда
                Тета=Объем;
            Иначе
                Если Объем<Тета Тогда
                    Тета=Объем;
                КонецЕсли;    
            КонецЕсли;    
            Знак="+";
        Иначе
            Знак="-";
        КонецЕсли;    
    КонецЦикла;    
    Если Тета=НеОпределено Тогда
        ВызватьИсключение("Failed to evaluate variable theta.");
    КонецЕсли;
    Сообщить("Тета="+Тета);
    Если Тета=0 Тогда
        Возврат Ложь;
    КонецЕсли;
    Знак="+";
    Для й=0 по iЦикл.ВГраница() Цикл
        i=iЦикл[й];
        j=jЦикл[й];
        Если Знак="-" Тогда
            Отгрузки[i][j]=Отгрузки[i][j]-Тета;
            Знак="+";
        Иначе
            Отгрузки[i][j]=Отгрузки[i][j]+Тета;
            Знак="-";
        КонецЕсли;    
    КонецЦикла;
    Возврат Истина;
КонецФункции

Функция РешениеТранспортнойЗадачи()
    ГСЧ = Новый ГенераторСлучайныхЧисел();
    БазисныеЯчейки = Новый Массив(m+1,n+1);
    Отгрузки = Новый Массив(m+1,n+1);
    СпросОстаток=Новый Массив(n+1);
    ПредложениеОстаток=Новый Массив(m+1);
    u=Новый Массив(m+1);
    v=Новый Массив(n+1);
    iЦикл = Новый Массив;
    jЦикл = Новый Массив;
    чСпрос=0;
    Для j=1 по n Цикл
        чСпрос=чСпрос+Спрос[j];
    КонецЦикла;    
    чПредложение=0;
    Для i=1 по m Цикл
        чПредложение=чПредложение+Предложение[i];
    КонецЦикла;
    Если чПредложение>чСпрос Тогда
        Сообщить("Offering more than the demand for "+(чПредложение-чСпрос)+" units of cargo. Create a fictitious user.");
        Возврат Ложь;
    ИначеЕсли чПредложение<чСпрос Тогда
        Сообщить("Offering less than the demand for "+(чСпрос-чПредложение)+" units of cargo. Create a fictitious vendor.");
        Возврат Ложь;
    КонецЕсли;        
    РаспределениеМетодомСевероЗападногоУгла();
    чСумма=СтоимостьПеревозки();
    Сообщить("The cost of transportation by the north-west corner: "+чСумма);
    Пока 1=1 Цикл
        ПроверкаПравильностиОтгрузок();
        счБазисных=0;
        Для i=1 по m Цикл
            Для j=1 по n Цикл
                Если Отгрузки[i][j]>0 Тогда
                    БазисныеЯчейки[i][j]=1;
                    счБазисных=счБазисных+1;
                ИначеЕсли Отгрузки[i][j]<0 Тогда    
                    ВызватьИсключение("Shipments should not be negative");
                Иначе
                    БазисныеЯчейки[i][j]=0;
                КонецЕсли;    
            КонецЦикла;    
        КонецЦикла;
        Пока счБазисных<(m+n-1) Цикл
            Сообщить("Решение вырождено");
            ПоискНулевойЯчейкиДляВводаВБазис();
            счБазисных=счБазисных+1;
        КонецЦикла;
        Если ВычислениеПотенциалов()=Ложь Тогда
            Продолжить;
        КонецЕсли;    
        Если ПроверкаОптимальности()=Истина Тогда
            Сообщить("Solution is optimal.");
            Прервать;
        КонецЕсли;
        Сообщить("Solution is not optimal.");
        Если НайтиЦикл(i1, j1)= Ложь Тогда
            ВызватьИсключение("Unable to find a cycle");
        КонецЕсли;
        ПерераспределениеПоЦиклу();
        чСумма=СтоимостьПеревозки();
        Сообщить("***");
        Сообщить("The cost of transport: "+чСумма);
    КонецЦикла;    
    Возврат Истина;
КонецФункции

&НаКлиенте
Процедура КомандаРассчитать(Команда)
    РешениеТранспортнойЗадачи();
КонецПроцедуры

C#

Translation of: Java
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;

namespace TransportationProblem {
    class Shipment {
        public Shipment(double q, double cpu, int r, int c) {
            Quantity = q;
            CostPerUnit = cpu;
            R = r;
            C = c;
        }

        public double CostPerUnit { get; }

        public double Quantity { get; set; }

        public int R { get; }

        public int C { get; }
    }

    class Program {
        private static int[] demand;
        private static int[] supply;
        private static double[,] costs;
        private static Shipment[,] matrix;

        static void Init(string filename) {
            string line;
            using (StreamReader file = new StreamReader(filename)) {
                line = file.ReadLine();
                var numArr = line.Split();
                int numSources = int.Parse(numArr[0]);
                int numDestinations = int.Parse(numArr[1]);

                List<int> src = new List<int>();
                List<int> dst = new List<int>();

                line = file.ReadLine();
                numArr = line.Split();
                for (int i = 0; i < numSources; i++) {
                    src.Add(int.Parse(numArr[i]));
                }

                line = file.ReadLine();
                numArr = line.Split();
                for (int i = 0; i < numDestinations; i++) {
                    dst.Add(int.Parse(numArr[i]));
                }

                // fix imbalance
                int totalSrc = src.Sum();
                int totalDst = dst.Sum();
                if (totalSrc > totalDst) {
                    dst.Add(totalSrc - totalDst);
                } else if (totalDst > totalSrc) {
                    src.Add(totalDst - totalSrc);
                }

                supply = src.ToArray();
                demand = dst.ToArray();

                costs = new double[supply.Length, demand.Length];
                matrix = new Shipment[supply.Length, demand.Length];

                for (int i = 0; i < numSources; i++) {
                    line = file.ReadLine();
                    numArr = line.Split();
                    for (int j = 0; j < numDestinations; j++) {
                        costs[i, j] = int.Parse(numArr[j]);
                    }
                }
            }
        }

        static void NorthWestCornerRule() {
            for (int r = 0, northwest = 0; r < supply.Length; r++) {
                for (int c = northwest; c < demand.Length; c++) {
                    int quantity = Math.Min(supply[r], demand[c]);
                    if (quantity > 0) {
                        matrix[r, c] = new Shipment(quantity, costs[r, c], r, c);

                        supply[r] -= quantity;
                        demand[c] -= quantity;

                        if (supply[r] == 0) {
                            northwest = c;
                            break;
                        }
                    }
                }
            }
        }

        static void SteppingStone() {
            double maxReduction = 0;
            Shipment[] move = null;
            Shipment leaving = null;

            FixDegenerateCase();

            for (int r = 0; r < supply.Length; r++) {
                for (int c = 0; c < demand.Length; c++) {
                    if (matrix[r, c] != null) {
                        continue;
                    }

                    Shipment trial = new Shipment(0, costs[r, c], r, c);
                    Shipment[] path = GetClosedPath(trial);

                    double reduction = 0;
                    double lowestQuantity = int.MaxValue;
                    Shipment leavingCandidate = null;

                    bool plus = true;
                    foreach (var s in path) {
                        if (plus) {
                            reduction += s.CostPerUnit;
                        } else {
                            reduction -= s.CostPerUnit;
                            if (s.Quantity < lowestQuantity) {
                                leavingCandidate = s;
                                lowestQuantity = s.Quantity;
                            }
                        }
                        plus = !plus;
                    }
                    if (reduction < maxReduction) {
                        move = path;
                        leaving = leavingCandidate;
                        maxReduction = reduction;
                    }
                }
            }

            if (move != null) {
                double q = leaving.Quantity;
                bool plus = true;
                foreach (var s in move) {
                    s.Quantity += plus ? q : -q;
                    matrix[s.R, s.C] = s.Quantity == 0 ? null : s;
                    plus = !plus;
                }
                SteppingStone();
            }
        }

        static List<Shipment> MatrixToList() {
            List<Shipment> newList = new List<Shipment>();
            foreach (var item in matrix) {
                if (null != item) {
                    newList.Add(item);
                }
            }
            return newList;
        }

        static Shipment[] GetClosedPath(Shipment s) {
            List<Shipment> path = MatrixToList();
            path.Add(s);

            // remove (and keep removing) elements that do not have a
            // vertical AND horizontal neighbor
            int before;
            do {
                before = path.Count;
                path.RemoveAll(ship => {
                    var nbrs = GetNeighbors(ship, path);
                    return nbrs[0] == null || nbrs[1] == null;
                });
            } while (before != path.Count);

            // place the remaining elements in the correct plus-minus order
            Shipment[] stones = path.ToArray();
            Shipment prev = s;
            for (int i = 0; i < stones.Length; i++) {
                stones[i] = prev;
                prev = GetNeighbors(prev, path)[i % 2];
            }
            return stones;
        }

        static Shipment[] GetNeighbors(Shipment s, List<Shipment> lst) {
            Shipment[] nbrs = new Shipment[2];
            foreach (var o in lst) {
                if (o != s) {
                    if (o.R == s.R && nbrs[0] == null) {
                        nbrs[0] = o;
                    } else if (o.C == s.C && nbrs[1] == null) {
                        nbrs[1] = o;
                    }
                    if (nbrs[0] != null && nbrs[1] != null) {
                        break;
                    }
                }
            }
            return nbrs;
        }

        static void FixDegenerateCase() {
            const double eps = double.Epsilon;
            if (supply.Length + demand.Length - 1 != MatrixToList().Count) {
                for (int r = 0; r < supply.Length; r++) {
                    for (int c = 0; c < demand.Length; c++) {
                        if (matrix[r, c] == null) {
                            Shipment dummy = new Shipment(eps, costs[r, c], r, c);
                            if (GetClosedPath(dummy).Length == 0) {
                                matrix[r, c] = dummy;
                                return;
                            }
                        }
                    }
                }
            }
        }
        
        static void PrintResult(string filename) {
            Console.WriteLine("Optimal solution {0}\n", filename);
            double totalCosts = 0;

            for (int r = 0; r < supply.Length; r++) {
                for (int c = 0; c < demand.Length; c++) {
                    Shipment s = matrix[r, c];
                    if (s != null && s.R == r && s.C == c) {
                        Console.Write(" {0,3} ", s.Quantity);
                        totalCosts += (s.Quantity * s.CostPerUnit);
                    } else {
                        Console.Write("  -  ");
                    }
                }
                Console.WriteLine();
            }
            Console.WriteLine("\nTotal costs: {0}\n", totalCosts);
        }

        static void Main() {
            foreach (var filename in new string[] { "input1.txt", "input2.txt", "input3.txt" }) {
                Init(filename);
                NorthWestCornerRule();
                SteppingStone();
                PrintResult(filename);
            }
        }
    }
}
Output:
Optimal solution input1.txt

  20   -     5
  -    30    5

Total costs: 180

Optimal solution input2.txt

  -    -    -    12
  20   -    10   10
  -    30   -     3

Total costs: 130

Optimal solution input3.txt

  -    -    -    14
  -     9   -     1
  10   -     5   -
  -     5    7   -
  -     1   -    -

Total costs: 1000

C++

Translation of: Kotlin
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <numeric>
#include <string>
#include <vector>
#include <cfloat>

using namespace std;

class Shipment {
public:
    double costPerUnit;
    int r, c;
    double quantity;

    Shipment() : quantity(0), costPerUnit(0), r(-1), c(-1) {
        // empty
    }

    Shipment(double q, double cpu, int r, int c) : quantity(q), costPerUnit(cpu), r(r), c(c) {
        // empty
    }

    friend bool operator==(const Shipment &lhs, const Shipment &rhs) {
        return lhs.costPerUnit == rhs.costPerUnit
            && lhs.quantity == rhs.quantity
            && lhs.r == rhs.r
            && lhs.c == rhs.c;
    }

    friend bool operator!=(const Shipment &lhs, const Shipment &rhs) {
        return !(lhs == rhs);
    }

    static Shipment ZERO;
};
Shipment Shipment::ZERO = {};

vector<int> demand, supply;
vector<vector<double>> costs;
vector<vector<Shipment>> matrix;

void init(string filename) {
    ifstream ifs;

    ifs.open(filename);
    if (!ifs) {
        cerr << "File not found: " << filename << '\n';
        return;
    }

    size_t numSources, numDestinations;
    ifs >> numSources >> numDestinations;

    vector<int> src, dst;
    int t;

    for (size_t i = 0; i < numSources; i++) {
        ifs >> t;
        src.push_back(t);
    }

    for (size_t i = 0; i < numDestinations; i++) {
        ifs >> t;
        dst.push_back(t);
    }

    // fix imbalance
    int totalSrc = accumulate(src.cbegin(), src.cend(), 0);
    int totalDst = accumulate(dst.cbegin(), dst.cend(), 0);
    if (totalSrc > totalDst) {
        dst.push_back(totalSrc - totalDst);
    } else if (totalDst > totalSrc) {
        src.push_back(totalDst - totalSrc);
    }

    supply = src;
    demand = dst;

    costs.clear();
    matrix.clear();

    double d;
    for (size_t i = 0; i < numSources; i++) {
        size_t cap = max(numDestinations, demand.size());

        vector<double> dt(cap);
        vector<Shipment> st(cap);
        for (size_t j = 0; j < numDestinations; j++) {
            ifs >> d;
            dt[j] = d;
        }
        costs.push_back(dt);
        matrix.push_back(st);
    }
    for (size_t i = numSources; i < supply.size(); i++) {
        size_t cap = max(numDestinations, demand.size());

        vector<Shipment> st(cap);
        matrix.push_back(st);

        vector<double> dt(cap);
        costs.push_back(dt);
    }
}

void northWestCornerRule() {
    int northwest = 0;
    for (size_t r = 0; r < supply.size(); r++) {
        for (size_t c = northwest; c < demand.size(); c++) {
            int quantity = min(supply[r], demand[c]);
            if (quantity > 0) {
                matrix[r][c] = Shipment(quantity, costs[r][c], r, c);

                supply[r] -= quantity;
                demand[c] -= quantity;

                if (supply[r] == 0) {
                    northwest = c;
                    break;
                }
            }
        }
    }
}

vector<Shipment> matrixToVector() {
    vector<Shipment> result;
    for (auto &row : matrix) {
        for (auto &s : row) {
            if (s != Shipment::ZERO) {
                result.push_back(s);
            }
        }
    }
    return result;
}

vector<Shipment> getNeighbors(const Shipment &s, const vector<Shipment> &lst) {
    vector<Shipment> nbrs(2);
    for (auto &o : lst) {
        if (o != s) {
            if (o.r == s.r && nbrs[0] == Shipment::ZERO) {
                nbrs[0] = o;
            } else if (o.c == s.c && nbrs[1] == Shipment::ZERO) {
                nbrs[1] = o;
            }
            if (nbrs[0] != Shipment::ZERO && nbrs[1] != Shipment::ZERO) {
                break;
            }
        }
    }
    return nbrs;
}

vector<Shipment> getClosedPath(const Shipment &s) {
    auto path = matrixToVector();
    path.insert(path.begin(), s);

    // remove (and keep removing) elements that do not have a
    // vertical AND horizontal neighbor
    size_t before;
    do {
        before = path.size();
        path.erase(
            remove_if(
                path.begin(), path.end(),
                [&path](Shipment &ship) {
                    auto nbrs = getNeighbors(ship, path);
                    return nbrs[0] == Shipment::ZERO || nbrs[1] == Shipment::ZERO;
                }),
            path.end());
    } while (before != path.size());

    // place the remaining elements in the correct plus-minus order
    vector<Shipment> stones(path.size());
    fill(stones.begin(), stones.end(), Shipment::ZERO);
    auto prev = s;
    for (size_t i = 0; i < stones.size(); i++) {
        stones[i] = prev;
        prev = getNeighbors(prev, path)[i % 2];
    }
    return stones;
}

void fixDegenerateCase() {
    double eps = DBL_MIN;
    if (supply.size() + demand.size() - 1 != matrixToVector().size()) {
        for (size_t r = 0; r < supply.size(); r++) {
            for (size_t c = 0; c < demand.size(); c++) {
                if (matrix[r][c] == Shipment::ZERO) {
                    Shipment dummy(eps, costs[r][c], r, c);
                    if (getClosedPath(dummy).empty()) {
                        matrix[r][c] = dummy;
                        return;
                    }
                }
            }
        }
    }
}

void steppingStone() {
    double maxReduction = 0;
    vector<Shipment> move;
    Shipment leaving;
    bool isNull = true;

    fixDegenerateCase();

    for (size_t r = 0; r < supply.size(); r++) {
        for (size_t c = 0; c < demand.size(); c++) {
            if (matrix[r][c] != Shipment::ZERO) {
                continue;
            }

            Shipment trial(0, costs[r][c], r, c);
            vector<Shipment> path = getClosedPath(trial);

            double reduction = 0;
            double lowestQuantity = INT32_MAX;
            Shipment leavingCandidate;

            bool plus = true;
            for (auto &s : path) {
                if (plus) {
                    reduction += s.costPerUnit;
                } else {
                    reduction -= s.costPerUnit;
                    if (s.quantity < lowestQuantity) {
                        leavingCandidate = s;
                        lowestQuantity = s.quantity;
                    }
                }
                plus = !plus;
            }
            if (reduction < maxReduction) {
                isNull = false;
                move = path;
                leaving = leavingCandidate;
                maxReduction = reduction;
            }
        }
    }

    if (!isNull) {
        double q = leaving.quantity;
        bool plus = true;
        for (auto &s : move) {
            s.quantity += plus ? q : -q;
            matrix[s.r][s.c] = s.quantity == 0 ? Shipment::ZERO : s;
            plus = !plus;
        }
        steppingStone();
    }
}

void printResult(string filename) {
    ifstream ifs;
    string buffer;

    ifs.open(filename);
    if (!ifs) {
        cerr << "File not found: " << filename << '\n';
        return;
    }

    cout << filename << "\n\n";
    while (!ifs.eof()) {
        getline(ifs, buffer);
        cout << buffer << '\n';
    }
    cout << '\n';

    cout << "Optimal solution " << filename << "\n\n";
    double totalCosts = 0.0;
    for (size_t r = 0; r < supply.size(); r++) {
        for (size_t c = 0; c < demand.size(); c++) {
            auto s = matrix[r][c];
            if (s != Shipment::ZERO && s.r == r && s.c == c) {
                cout << ' ' << setw(3) << s.quantity << ' ';
                totalCosts += s.quantity * s.costPerUnit;
            } else {
                cout << "  -  ";
            }
        }
        cout << '\n';
    }
    cout << "\nTotal costs: " << totalCosts << "\n\n";
}

void process(string filename) {
    init(filename);
    northWestCornerRule();
    steppingStone();
    printResult(filename);
}

int main() {
    process("input1.txt");
    process("input2.txt");
    process("input3.txt");

    return 0;
}
Output:
input1.txt

2 3
25 35
20 30 10
3 5 7
3 2 5

Optimal solution input1.txt

  20   -     5
  -    30    5

Total costs: 180

input2.txt

3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8

Optimal solution input2.txt

  -    -    -    12
  20   -    10   10
  -    30   -     3

Total costs: 130

input3.txt

4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45

Optimal solution input3.txt

  -    -    -    14
  -     9   -     1
  10   -     5   -
  -     5    7   -
  -     1   -    -

Total costs: 1000

D

Translation of: Java
import std.stdio, std.range, std.algorithm, std.conv, std.math, std.traits;

final class Shipment {
    double quantity;
    immutable double costPerUnit;
    immutable size_t r, c;

    this(in double q, in double cpu, in size_t r_, in size_t c_)
    pure nothrow @safe @nogc {
        quantity = q;
        costPerUnit = cpu;
        this.r = r_;
        this.c = c_;
    }
}

alias ShipmentMat = Shipment[][];
alias CostsMat = double[][];

void init(in string fileName, out uint[] demand, out uint[] supply,
          out CostsMat costs, out ShipmentMat matrix) {
    auto inParts = fileName.File.byLine.map!splitter.joiner;

    immutable numSources = inParts.front.to!uint;
    inParts.popFront;
    immutable numDestinations = inParts.front.to!uint;
    inParts.popFront;

    foreach (immutable i; 0 .. numSources) {
        supply ~= inParts.front.to!uint;
        inParts.popFront;
    }

    foreach (immutable i; 0 .. numDestinations) {
        demand ~= inParts.front.to!uint;
        inParts.popFront;
    }

    // Fix imbalance.
    immutable totalSrc = supply.sum;
    immutable totalDst = demand.sum;

    if (totalSrc > totalDst)
        demand ~= totalSrc - totalDst;
    else if (totalDst > totalSrc)
        supply ~= totalDst - totalSrc;

    costs = new CostsMat(supply.length, demand.length);
    foreach (row; costs)
        row[] = 0.0;
    matrix = new ShipmentMat(supply.length, demand.length);

    foreach (immutable i; 0 .. numSources)
        foreach (immutable j; 0 .. numDestinations) {
            costs[i][j] = inParts.front.to!double;
            inParts.popFront;
        }
}

void northWestCornerRule(uint[] demand, uint[] supply, in CostsMat costs,
                         ShipmentMat matrix) pure nothrow @safe {
    size_t northwest = 0;
    foreach (immutable r; 0 .. supply.length) {
        foreach (immutable c; northwest .. demand.length) {
            immutable quantity = min(supply[r], demand[c]);
            if (quantity > 0) {
                matrix[r][c] = new Shipment(quantity, costs[r][c], r, c);

                supply[r] -= quantity;
                demand[c] -= quantity;

                if (supply[r] == 0) {
                    northwest = c;
                    break;
                }
            }
        }
    }
}

void steppingStone(in uint[] demand, in uint[] supply,
                   in CostsMat costs, ShipmentMat matrix) pure @safe {
    double maxReduction = 0;
    Shipment[] move;
    Shipment leaving = null;

    fixDegenerateCase(demand, supply, costs, matrix);

    foreach (immutable r; 0 .. supply.length) {
        foreach (immutable c; 0 .. demand.length) {
            if (matrix[r][c] !is null)
                continue;

            auto trial = new Shipment(0, costs[r][c], r, c);
            auto path = getClosedPath(trial, matrix);

            double reduction = 0;
            double lowestQuantity = uint.max;
            Shipment leavingCandidate = null;

            bool plus = true;
            foreach (s; path) {
                if (plus) {
                    reduction += s.costPerUnit;
                } else {
                    reduction -= s.costPerUnit;
                    if (s.quantity < lowestQuantity) {
                        leavingCandidate = s;
                        lowestQuantity = s.quantity;
                    }
                }
                plus = !plus;
            }
            if (reduction < maxReduction) {
                move = path;
                leaving = leavingCandidate;
                maxReduction = reduction;
            }
        }
    }

    if (move !is null) {
        auto q = leaving.quantity;
        auto plus = true;
        foreach (s; move) {
            s.quantity += plus ? q : -q;
            matrix[s.r][s.c] = (s.quantity == 0) ? null : s;
            plus = !plus;
        }
        steppingStone(demand, supply, costs, matrix);
    }
}

auto matrixToSeq(ShipmentMat matrix) pure nothrow @nogc @safe {
    return matrix.joiner.filter!(s => s !is null);
}

Shipment[] getClosedPath(Shipment s, ShipmentMat matrix) pure @safe
in {
    assert(s !is null);
} out(result) {
    assert(result.all!(sh => sh !is null));
} body {
    Shipment[] stones = chain([s], matrixToSeq(matrix)).array;

    // Remove (and keep removing) elements that do not have
    // a vertical AND horizontal neighbor.
    while (true) {
        auto stones2 = stones.remove!((in e) {
            const nbrs = getNeighbors(e, stones);
            return nbrs[0] is null || nbrs[1] is null;
        });

        if (stones2.length == stones.length)
            break;
        stones = stones2;
    }

    // Place the remaining elements in the correct plus-minus order.
    auto stones3 = stones.dup;
    Shipment prev = s;
    foreach (immutable i, ref si; stones3) {
        si = prev;
        prev = getNeighbors(prev, stones)[i % 2];
    }
    return stones3;
}

Shipment[2] getNeighbors(ShipmentsRange)(in Shipment s, ShipmentsRange seq)
pure nothrow @safe @nogc
if (isForwardRange!ShipmentsRange && is(ForeachType!ShipmentsRange == Shipment))
in {
    assert(s !is null);
    assert(seq.all!(sh => sh !is null));
} body {
    Shipment[2] nbrs;

    foreach (o; seq) {
        if (o !is s) {
            if (o.r == s.r && nbrs[0] is null)
                nbrs[0] = o;
            else if (o.c == s.c && nbrs[1] is null)
                nbrs[1] = o;
            if (nbrs[0] !is null && nbrs[1] !is null)
                break;
        }
    }

    return nbrs;
}

void fixDegenerateCase(in uint[] demand, in uint[] supply,
                       in CostsMat costs, ShipmentMat matrix) pure @safe {
    immutable eps = double.min_normal;

    if (supply.length.signed + demand.length.signed - 1 != matrixToSeq(matrix).walkLength) {
        foreach (immutable r; 0 .. supply.length) {
            foreach (immutable c; 0 .. demand.length) {
                if (matrix[r][c] is null) {
                    auto dummy = new Shipment(eps, costs[r][c], r, c);
                    if (getClosedPath(dummy, matrix).length == 0) {
                        matrix[r][c] = dummy;
                        return;
                    }
                }
            }
        }
    }
}

void printResult(in string fileName, in uint[] demand, in uint[] supply,
                 in CostsMat costs, in ShipmentMat matrix) @safe /*@nogc*/ {
    writefln("Optimal solution %s", fileName);
    double totalCosts = 0;

    foreach (immutable r; 0 .. supply.length) {
        foreach (immutable c; 0 .. demand.length) {
            const s = matrix[r][c];
            if (s !is null && s.r == r && s.c == c) {
                writef(" %3d ", cast(uint)s.quantity);
                totalCosts += s.quantity * s.costPerUnit;
            } else
                write("  -  ");
        }
        //writeln; // Not @safe?
        write('\n');
    }
    writefln("\nTotal costs: %s\n", totalCosts);
}

void main() {
    foreach (fileName; ["transportation_problem1.txt",
                        "transportation_problem2.txt",
                        "transportation_problem3.txt"]) {
        uint[] demand, supply;
        CostsMat costs;
        ShipmentMat matrix;
        init(fileName, demand, supply, costs, matrix);
        northWestCornerRule(demand, supply, costs, matrix);
        steppingStone(demand, supply, costs, matrix);
        printResult(fileName, demand, supply, costs, matrix);
    }
}
Output:
Optimal solution transportation_problem1.txt
  20   -     5 
  -    30    5 

Total costs: 180

Optimal solution transportation_problem2.txt
  -    -    -    12 
  20   -    10   10 
  -    30   -     3 

Total costs: 130

Optimal solution transportation_problem3.txt
  -    -    -    14 
  -     9   -     1 
  10   -     5   -  
  -     5    7   -  
  -     1   -    -  

Total costs: 1000

Glagol

ОТДЕЛ Транспорт+;
ИСПОЛЬЗУЕТ
  Вывод ИЗ "...\Отделы\Обмен\",
  Приём;

ПЕР
  Поставщиков, Потребителей: ЦЕЛ;
  Запасы, Потребности: ДОСТУП К РЯД ИЗ ЦЕЛ;
  Расходы, План: ДОСТУП К РЯД ИЗ РЯД ИЗ ЦЕЛ;
  U, V: ДОСТУП К РЯД ИЗ ЦЕЛ;
  оцСв: ДОСТУП К РЯД ИЗ НАБОР значение: ЦЕЛ; поставщик, потребитель: ЦЕЛ КОН;
  начQ_поставщик, начQ_потребитель: ЦЕЛ;
  Q: ДОСТУП К РЯД ИЗ РЯД ИЗ УЗКЦЕЛ;
  Поправка, Разница: ЦЕЛ;

ЗАДАЧА ПринятьДанные;
ПЕР
  сч1, сч2: ЦЕЛ;
  сумма1, сумма2, разница: ЦЕЛ;
  памЗап, памПотр: ДОСТУП К РЯД ИЗ ЦЕЛ;
УКАЗ
  Вывод.Цепь("Number of suppliers: ");
  Поставщиков := Приём.Число();
  Вывод.Цепь(".^Number of consumers: ");
  Потребителей := Приём.Число();
  СОЗДАТЬ(памЗап, Поставщиков);
  СОЗДАТЬ(памПотр, Потребителей);
  Вывод.Цепь(".^Inventories^^");
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    памЗап[сч1] := Приём.Число();
    Вывод.Цепь(" ")
  КОН;
  Вывод.Цепь("^Requirements:^");
  ОТ сч1 := 0 ДО Потребителей-1 ВЫП
    памПотр[сч1] := Приём.Число();
    Вывод.Цепь(" ")
  КОН;
  сумма1 := 0;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП УВЕЛИЧИТЬ(сумма1, памЗап[сч1]) КОН;
  сумма2 := 0;
  ОТ сч1 := 0 ДО Потребителей-1 ВЫП УВЕЛИЧИТЬ(сумма2, памПотр[сч1]) КОН;
  ЕСЛИ сумма1 > сумма2 ТО
    разница := сумма1 - сумма2;
    Вывод.ЧЦел("^Introduced a fictitious consumer.", сумма1, сумма2, разница, 0);
    УВЕЛИЧИТЬ(Потребителей);
    СОЗДАТЬ(Потребности, Потребителей);
    ОТ сч1 := 0 ДО Потребителей-2 ВЫП Потребности[сч1] := памПотр[сч1] КОН;
    Потребности[Потребителей-1] := разница;
    СОЗДАТЬ(Запасы, Поставщиков);
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП Запасы[сч1] := памЗап[сч1] КОН
  АЕСЛИ сумма2 > сумма1 ТО
    разница := сумма2 - сумма1;
    Вывод.ЧЦел("^Introduced a fictitious supplier.", сумма2, сумма1, разница, 0);
    УВЕЛИЧИТЬ(Поставщиков);
    СОЗДАТЬ(Запасы, Поставщиков);
    ОТ сч1 := 0 ДО Поставщиков-2 ВЫП Запасы[сч1] := памЗап[сч1] КОН;
    Запасы[Поставщиков-1] := разница;
    СОЗДАТЬ(Потребности, Потребителей);
    ОТ сч1 := 0 ДО Потребителей-1 ВЫП Потребности[сч1] := памПотр[сч1] КОН
  ИНАЧЕ
    СОЗДАТЬ(Запасы, Поставщиков);
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП Запасы[сч1] := памЗап[сч1] КОН;
    СОЗДАТЬ(Потребности, Потребителей);
    ОТ сч1 := 0 ДО Потребителей-1 ВЫП Потребности[сч1] := памПотр[сч1] КОН
  КОН;
  СОЗДАТЬ(Расходы, Поставщиков, Потребителей);
  Вывод.Цепь("^The matrix of costs:^");
  ЕСЛИ сумма1 > сумма2 ТО
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-2 ВЫП
        Расходы[сч1, сч2] := Приём.Число();
        Вывод.Цепь(" ")
      КОН;
      Расходы[сч1, Потребителей-1] := 0;
      Вывод.Цепь("^")
    КОН
  АЕСЛИ сумма2 > сумма1 ТО
    ОТ сч1 := 0 ДО Поставщиков-2 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        Расходы[сч1, сч2] := Приём.Число();
        Вывод.Цепь(" ")
      КОН;
      Вывод.Цепь("^")
    КОН;
    ОТ сч1 := 0 ДО Потребителей-1 ВЫП Расходы[Поставщиков-1, сч1] := 0 КОН
  ИНАЧЕ
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        Расходы[сч1, сч2] := Приём.Число();
        Вывод.Цепь(" ")
      КОН;
      Вывод.Цепь("^")
    КОН
  КОН;
  СОЗДАТЬ(План, Поставщиков, Потребителей);
  СОЗДАТЬ(U, Поставщиков);
  СОЗДАТЬ(V, Потребителей);
  СОЗДАТЬ(оцСв, Потребителей*Поставщиков-(Потребителей+Поставщиков-1));
  СОЗДАТЬ(Q, Поставщиков, Потребителей)
КОН ПринятьДанные;

ЗАДАЧА ВывестиПлан;
ПЕР
  сч1, сч2: ЦЕЛ;
УКАЗ
  ОТ сч1 := 1 ДО Потребителей ВЫП Вывод.Цепь("-----") КОН;
  Вывод.Цепь("^");
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ План[сч1, сч2] = -1 ТО Вывод.Цепь("  -  ") ИНАЧЕ
        Вывод.ЧЦел("%4d ", План[сч1, сч2], 0, 0, 0);
      КОН
    КОН;
    Вывод.Цепь("^")
  КОН;
  ОТ сч1 := 1 ДО Потребителей ВЫП Вывод.Цепь("-----") КОН
КОН ВывестиПлан;

ЗАДАЧА ПосчитатьПоправку;
ПЕР
  сч1, сч2: ЦЕЛ;
УКАЗ
  Поправка := -1;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ План[сч1, сч2] # -1 ТО
        ЕСЛИ Q[сч1, сч2] = -1 ТО
          ЕСЛИ Поправка = -1 ТО Поправка := План[сч1, сч2]
          АЕСЛИ Поправка > План[сч1, сч2] ТО Поправка := План[сч1, сч2] КОН
        КОН
      КОН
    КОН
  КОН;
  Разница := Разница * Поправка
КОН ПосчитатьПоправку;

ЗАДАЧА РасставитьНули(недостаток: ЦЕЛ);
ПЕР
  Связь: ДОСТУП К РЯД ИЗ РЯД ИЗ УЗКЦЕЛ;
  сч1, сч2: ЦЕЛ;
  естьБезСвязи: КЛЮЧ;

  ЗАДАЧА ЕстьНапротив(строка, столбец: ЦЕЛ): КЛЮЧ;
  ПЕР сч: ЦЕЛ;
  УКАЗ
    ОТ сч := 0 ДО Поставщиков-1 ВЫП
      ЕСЛИ (сч # строка) И (Связь[сч, столбец] = 1) ТО ВОЗВРАТ ВКЛ КОН
    КОН;
    ОТ сч := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ (сч # столбец) И (Связь[строка, сч] = 1) ТО ВОЗВРАТ ВКЛ КОН
    КОН;
    ВОЗВРАТ ОТКЛ
  КОН ЕстьНапротив;

  ЗАДАЧА СтолбецБезСвязи(номер: ЦЕЛ): КЛЮЧ;
  ПЕР сч: ЦЕЛ;
  УКАЗ
    ОТ сч := 0 ДО Поставщиков-1 ВЫП
      ЕСЛИ Связь[сч, номер] = 1 ТО ВОЗВРАТ ОТКЛ КОН
    КОН;
    ВОЗВРАТ ВКЛ
  КОН СтолбецБезСвязи;

УКАЗ
  СОЗДАТЬ(Связь, Поставщиков, Потребителей);
  естьБезСвязи := ОТКЛ;
  ОТ сч1 := 0 ДО Потребителей-1 ВЫП
    ЕСЛИ План[0, сч1] = -1 ТО Связь[0, сч1] := -1 ИНАЧЕ Связь[0, сч1] := 1 КОН
  КОН;
  ОТ сч1 := 1 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ План[сч1, сч2] = -1 ТО Связь[сч1, сч2] := -1 ИНАЧЕ Связь[сч1, сч2] := 0 КОН
    КОН
  КОН;
  ОТ сч1 := 1 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ Связь[сч1, сч2] = 0 ТО
        ЕСЛИ ЕстьНапротив(сч1, сч2) ТО Связь[сч1, сч2] := 1
        АЕСЛИ НЕ естьБезСвязи ТО естьБезСвязи := ВКЛ КОН
      КОН
    КОН
  КОН;
  ЕСЛИ естьБезСвязи ТО
    ОТ сч1 := Поставщиков-1 ДО 1 ПО -1 ВЫП
      ОТ сч2 := Потребителей-1 ДО 0 ПО -1 ВЫП
        ЕСЛИ Связь[сч1, сч2] = 0 ТО
          ЕСЛИ ЕстьНапротив(сч1, сч2) ТО Связь[сч1, сч2] := 1
          АЕСЛИ НЕ естьБезСвязи ТО естьБезСвязи := ВКЛ КОН
        КОН
      КОН
    КОН
  КОН;
  ЕСЛИ естьБезСвязи ТО
    ОТ сч1 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ СтолбецБезСвязи(сч1) ТО План[0, сч1] := 0; УМЕНЬШИТЬ(недостаток) КОН;
      ЕСЛИ недостаток = 0 ТО сч1 := Потребителей КОН
    КОН
  КОН;
  КОЛЬЦО
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ недостаток = 0 ТО ВЫХОД ИНАЧЕ
          ЕСЛИ План[сч1, сч2] = -1 ТО
            План[сч1, сч2] := 0; УМЕНЬШИТЬ(недостаток);
          КОН
        КОН
      КОН
    КОН;
    ВЫХОД
  КОН
КОН РасставитьНули;

ЗАДАЧА ЗаполнитьОтУгла;
ПЕР
  ОсталосьВНаличии, ОсталосьПотребным: ДОСТУП К РЯД ИЗ ЦЕЛ;
  занято, недостаток: ЦЕЛ;
  сч1, сч2: ЦЕЛ;
УКАЗ
  СОЗДАТЬ(ОсталосьВНаличии, Поставщиков);
  СОЗДАТЬ(ОсталосьПотребным, Потребителей);
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП ОсталосьВНаличии[сч1] := Запасы[сч1] КОН;
  ОТ сч1 := 0 ДО Потребителей-1 ВЫП ОсталосьПотребным[сч1] := Потребности[сч1] КОН;
  занято := 0;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ ОсталосьВНаличии[сч1] = 0 ТО План[сч1, сч2] := -1 ИНАЧЕ
        ЕСЛИ ОсталосьВНаличии[сч1] > ОсталосьПотребным[сч2] ТО
          ЕСЛИ ОсталосьПотребным[сч2] # 0 ТО План[сч1, сч2] := ОсталосьПотребным[сч2]; УВЕЛИЧИТЬ(занято)
          ИНАЧЕ План[сч1, сч2] := -1 КОН;
          УМЕНЬШИТЬ(ОсталосьВНаличии[сч1], ОсталосьПотребным[сч2]);
          ОсталосьПотребным[сч2] := 0
        ИНАЧЕ
          ЕСЛИ ОсталосьВНаличии[сч1] # 0 ТО План[сч1, сч2] := ОсталосьВНаличии[сч1]; УВЕЛИЧИТЬ(занято)
          ИНАЧЕ План[сч1, сч2] := -1 КОН;
          УМЕНЬШИТЬ(ОсталосьПотребным[сч2], ОсталосьВНаличии[сч1]);
          ОсталосьВНаличии[сч1] := 0
        КОН
      КОН
    КОН
  КОН;
  недостаток := (Поставщиков+Потребителей-1) - занято;
  ЕСЛИ недостаток > 0 ТО РасставитьНули(недостаток) КОН
КОН ЗаполнитьОтУгла;

ЗАДАЧА ОценитьБазисныеКлетки;
ПЕР
  сч1, сч2, сч3: ЦЕЛ;
  суммы: ДОСТУП К РЯД ИЗ РЯД 3 ИЗ ЦЕЛ;
  известно: ДОСТУП К РЯД ИЗ РЯД 2 ИЗ КЛЮЧ;
УКАЗ
  СОЗДАТЬ(суммы, Поставщиков+Потребителей-1);
  СОЗДАТЬ(известно, Поставщиков+Потребителей-1);
  известно[0][0] := ВКЛ; известно[0][1] := ОТКЛ;
  ОТ сч1 := 1 ДО (Поставщиков+Потребителей-1)-1 ВЫП известно[сч1][0] := ОТКЛ; известно[сч1][1] := ОТКЛ КОН;
  сч3 := 0;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ План[сч1, сч2] # -1 ТО
        суммы[сч3][0] := сч1; суммы[сч3][1] := сч2; суммы[сч3][2] := Расходы[сч1, сч2];
        УВЕЛИЧИТЬ(сч3)
      КОН
    КОН
  КОН;
  U[0] := 0;
  ОТ сч1 := 1 ДО (Поставщиков+Потребителей-1)-1 ВЫП
    ЕСЛИ суммы[сч1][0] = 0 ТО известно[сч1][0] := ВКЛ КОН
  КОН;
  сч3 := 0;
  ПОВТОРЯТЬ
    сч1 := 0;
    ПОКА НЕ (известно[сч1][0] # известно[сч1][1]) ВЫП
      УВЕЛИЧИТЬ(сч1)
    КОН;
    ЕСЛИ известно[сч1][0] ТО
      V[суммы[сч1][1]] := суммы[сч1][2] - U[суммы[сч1][0]];
      известно[сч1][1] := ВКЛ;
      ОТ сч2 := 0 ДО (Поставщиков+Потребителей-1)-1 ВЫП
        ЕСЛИ (суммы[сч2][1] = суммы[сч1][1]) И (НЕ известно[сч2][1]) ТО известно[сч2][1] := ВКЛ КОН
      КОН
    ИНАЧЕ
      U[суммы[сч1][0]] := суммы[сч1][2] - V[суммы[сч1][1]];
      известно[сч1][0] := ВКЛ;
      ОТ сч2 := 0 ДО (Поставщиков+Потребителей-1)-1 ВЫП
        ЕСЛИ (суммы[сч2][0] = суммы[сч1][0]) И (НЕ известно[сч2][0]) ТО известно[сч2][0] := ВКЛ КОН
      КОН
    КОН;
    УВЕЛИЧИТЬ(сч3)
  ДО сч3 = Поставщиков+Потребителей-1
КОН ОценитьБазисныеКлетки;

ЗАДАЧА ОценитьСвободныеКлетки(): КЛЮЧ;
ПЕР
  сч1, сч2, сч3: ЦЕЛ;
  естьПолож: КЛЮЧ;
УКАЗ
  естьПолож := ОТКЛ;
  сч3 := 0;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ План[сч1, сч2] = -1 ТО
        оцСв[сч3].значение := U[сч1]+V[сч2]-Расходы[сч1,сч2];
        оцСв[сч3].поставщик := сч1; оцСв[сч3].потребитель := сч2;
        ЕСЛИ оцСв[сч3].значение > 0 ТО естьПолож := ВКЛ КОН;
        УВЕЛИЧИТЬ(сч3)
      КОН
    КОН
  КОН;
  ЕСЛИ естьПолож ТО ВОЗВРАТ ОТКЛ ИНАЧЕ ВОЗВРАТ ВКЛ КОН
КОН ОценитьСвободныеКлетки;

ЗАДАЧА Цикл;
ПЕР
  сч1, сч2, сч3: ЦЕЛ;
  максЗн: ЦЕЛ;
  начало, циклНайден: КЛЮЧ;

  ЗАДАЧА НаЛинии(наКакой: ЦЕЛ; столб: КЛЮЧ): ЦЕЛ;
  ПЕР сч, сколько: ЦЕЛ;
  УКАЗ
    сколько := 0;
    ЕСЛИ столб ТО
      ОТ сч := 0 ДО Поставщиков-1 ВЫП
        ЕСЛИ (План[сч, наКакой] # -1) ИЛИ ((сч = начQ_поставщик) И (наКакой = начQ_потребитель)) ТО
          УВЕЛИЧИТЬ(сколько)
        КОН
      КОН
    ИНАЧЕ
      ОТ сч := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ (План[наКакой, сч] # -1) ИЛИ ((наКакой = начQ_поставщик) И (сч = начQ_потребитель)) ТО
          УВЕЛИЧИТЬ(сколько)
        КОН
      КОН
    КОН;
    ВОЗВРАТ сколько
  КОН НаЛинии;

  ЗАДАЧА^ ИскатьВСтолбце(номер, строка: ЦЕЛ): КЛЮЧ;

  ЗАДАЧА ИскатьВСтроке(номер, столбец: ЦЕЛ): КЛЮЧ;
  ПЕР
    сч: ЦЕЛ;
  УКАЗ
    ЕСЛИ (НЕ начало) И (номер = начQ_поставщик) И (столбец = начQ_потребитель) ТО циклНайден := ВКЛ КОН;
    ЕСЛИ начало ТО начало := ОТКЛ КОН;
    ЕСЛИ циклНайден ТО ВОЗВРАТ ВКЛ КОН;
    ОТ сч := 0 ДО Потребителей-1 ВЫП
      ЕСЛИ
        (сч # столбец) И
        ((План[номер, сч] # -1) ИЛИ ((номер = начQ_поставщик) И (сч = начQ_потребитель))) И
        (НаЛинии(сч, ВКЛ) > 1) И
        (Q[номер, сч] = 0)
      ТО
        Q[номер, сч] := -1;
        ЕСЛИ НЕ ИскатьВСтолбце(сч, номер) ТО Q[номер, сч] := 0 ИНАЧЕ ВОЗВРАТ ВКЛ КОН
      КОН
    КОН;
    ВОЗВРАТ ОТКЛ
  КОН ИскатьВСтроке;

  ЗАДАЧА ИскатьВСтолбце(номер, строка: ЦЕЛ): КЛЮЧ;
  ПЕР
    сч: ЦЕЛ;
  УКАЗ
    ЕСЛИ (НЕ начало) И (строка = начQ_поставщик) И (номер = начQ_потребитель) ТО циклНайден := ВКЛ КОН;
    ЕСЛИ начало ТО начало := ОТКЛ КОН;
    ЕСЛИ циклНайден ТО ВОЗВРАТ ВКЛ КОН;
    ОТ сч := 0 ДО Поставщиков-1 ВЫП
      ЕСЛИ
        (сч # строка) И
        ((План[сч, номер] # -1) ИЛИ ((сч = начQ_поставщик) И (номер = начQ_потребитель))) И
        (НаЛинии(сч, ОТКЛ) > 1) И
        (Q[сч, номер] = 0)
      ТО
        Q[сч, номер] := 1;
        ЕСЛИ НЕ ИскатьВСтроке(сч, номер) ТО Q[сч, номер] := 0 ИНАЧЕ ВОЗВРАТ ВКЛ КОН
      КОН
    КОН;
    ВОЗВРАТ ОТКЛ
  КОН ИскатьВСтолбце;

УКАЗ
  максЗн := 0;
  ОТ сч1 := 0 ДО Потребителей*Поставщиков-(Потребителей+Поставщиков-1)-1 ВЫП
    ЕСЛИ оцСв[сч1].значение > максЗн ТО максЗн := оцСв[сч1].значение КОН
  КОН;
  сч3 := 0;
  ПОКА оцСв[сч3].значение # максЗн ВЫП УВЕЛИЧИТЬ(сч3) КОН;
  ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
    ОТ сч2 := 0 ДО Потребителей-1 ВЫП
      Q[сч1, сч2] := 0
    КОН
  КОН;
  Разница := оцСв[сч3].значение;
  начQ_поставщик := оцСв[сч3].поставщик; начQ_потребитель := оцСв[сч3].потребитель;
  начало := ВКЛ; циклНайден := ОТКЛ;
  ЕСЛИ ИскатьВСтроке(начQ_поставщик, начQ_потребитель) ТО КОН
КОН Цикл;

ЗАДАЧА ИзменитьПлан;
ПЕР
  сч1, сч2: ЦЕЛ;
  занято, недостаток: ЦЕЛ;
УКАЗ
  ЕСЛИ Поправка = 0 ТО
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ План[сч1, сч2] = 0 ТО План[сч1, сч2] := -1; сч2 := Потребителей; сч1 := Поставщиков КОН
      КОН
    КОН;
    План[начQ_поставщик, начQ_потребитель] := 0
  ИНАЧЕ
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ Q[сч1, сч2] = 1 ТО
          ЕСЛИ План[сч1, сч2] = -1 ТО План[сч1, сч2] := 0 КОН;
          УВЕЛИЧИТЬ(План[сч1, сч2], Поправка);
        АЕСЛИ Q[сч1, сч2] = -1 ТО УМЕНЬШИТЬ(План[сч1, сч2], Поправка)
        КОН
      КОН
    КОН;
    занято := 0;
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ План[сч1, сч2] > 0 ТО УВЕЛИЧИТЬ(занято) КОН
      КОН
    КОН;
    ОТ сч1 := 0 ДО Поставщиков-1 ВЫП
      ОТ сч2 := 0 ДО Потребителей-1 ВЫП
        ЕСЛИ План[сч1, сч2] = 0 ТО План[сч1, сч2] := -1 КОН
      КОН
    КОН;
    недостаток := (Поставщиков+Потребителей-1) - занято;
    ЕСЛИ недостаток > 0 ТО РасставитьНули(недостаток) КОН
  КОН
КОН ИзменитьПлан;

УКАЗ
  ПринятьДанные;
  ЗаполнитьОтУгла;
  Разница := -1;
  КОЛЬЦО
    ОценитьБазисныеКлетки;
    ЕСЛИ ОценитьСвободныеКлетки() ТО ВЫХОД КОН;
    Цикл;
    ПосчитатьПоправку;
    ИзменитьПлан
  КОН;
  ВывестиПлан

КОН Транспорт.

Input

Number of suppliers: 3.
Number of consumers: 3.
Inventories:
12 40 33
Requirements:
20 30 10
Introduced a fictitious consumer.
The matrix of costs:
3 5 7
2 4 6
9 1 8

Output

--------------------
  -    -    -    12
  20   -    10   10
  -    30   -     3
--------------------

Go

Translation of: Java
package main

import (
    "bufio"
    "container/list"
    "fmt"
    "io/ioutil"
    "log"
    "math"
    "os"
    "strconv"
)

type shipment struct {
    quantity, costPerUnit float64
    r, c                  int
}

var shipZero = shipment{}

type transport struct {
    filename       string
    supply, demand []int
    costs          [][]float64
    matrix         [][]shipment
}

func check(err error) {
    if err != nil {
        log.Fatal(err)
    }
}

func minOf(i, j int) int {
    if i < j {
        return i
    }
    return j
}

func newTransport(filename string) *transport {
    file, err := os.Open(filename)
    check(err)
    defer file.Close()
    scanner := bufio.NewScanner(file)
    scanner.Split(bufio.ScanWords)
    scanner.Scan()
    numSources, err := strconv.Atoi(scanner.Text())
    check(err)
    scanner.Scan()
    numDests, err := strconv.Atoi(scanner.Text())
    check(err)
    src := make([]int, numSources)
    for i := 0; i < numSources; i++ {
        scanner.Scan()
        src[i], err = strconv.Atoi(scanner.Text())
        check(err)
    }
    dst := make([]int, numDests)
    for i := 0; i < numDests; i++ {
        scanner.Scan()
        dst[i], err = strconv.Atoi(scanner.Text())
        check(err)
    }

    // fix imbalance
    totalSrc := 0
    for _, v := range src {
        totalSrc += v
    }
    totalDst := 0
    for _, v := range dst {
        totalDst += v
    }
    diff := totalSrc - totalDst
    if diff > 0 {
        dst = append(dst, diff)
    } else if diff < 0 {
        src = append(src, -diff)
    }

    costs := make([][]float64, len(src))
    for i := 0; i < len(src); i++ {
        costs[i] = make([]float64, len(dst))
    }
    matrix := make([][]shipment, len(src))
    for i := 0; i < len(src); i++ {
        matrix[i] = make([]shipment, len(dst))
    }
    for i := 0; i < numSources; i++ {
        for j := 0; j < numDests; j++ {
            scanner.Scan()
            costs[i][j], err = strconv.ParseFloat(scanner.Text(), 64)
            check(err)
        }
    }
    return &transport{filename, src, dst, costs, matrix}
}

func (t *transport) northWestCornerRule() {
    for r, northwest := 0, 0; r < len(t.supply); r++ {
        for c := northwest; c < len(t.demand); c++ {
            quantity := minOf(t.supply[r], t.demand[c])
            if quantity > 0 {
                t.matrix[r][c] = shipment{float64(quantity), t.costs[r][c], r, c}
                t.supply[r] -= quantity
                t.demand[c] -= quantity
                if t.supply[r] == 0 {
                    northwest = c
                    break
                }
            }
        }
    }
}

func (t *transport) steppingStone() {
    maxReduction := 0.0
    var move []shipment = nil
    leaving := shipZero
    t.fixDegenerateCase()
    for r := 0; r < len(t.supply); r++ {
        for c := 0; c < len(t.demand); c++ {
            if t.matrix[r][c] != shipZero {
                continue
            }
            trial := shipment{0, t.costs[r][c], r, c}
            path := t.getClosedPath(trial)
            reduction := 0.0
            lowestQuantity := float64(math.MaxInt32)
            leavingCandidate := shipZero
            plus := true
            for _, s := range path {
                if plus {
                    reduction += s.costPerUnit
                } else {
                    reduction -= s.costPerUnit
                    if s.quantity < lowestQuantity {
                        leavingCandidate = s
                        lowestQuantity = s.quantity
                    }
                }
                plus = !plus
            }
            if reduction < maxReduction {
                move = path
                leaving = leavingCandidate
                maxReduction = reduction
            }
        }
    }

    if move != nil {
        q := leaving.quantity
        plus := true
        for _, s := range move {
            if plus {
                s.quantity += q
            } else {
                s.quantity -= q
            }
            if s.quantity == 0 {
                t.matrix[s.r][s.c] = shipZero
            } else {
                t.matrix[s.r][s.c] = s
            }
            plus = !plus
        }
        t.steppingStone()
    }
}

func (t *transport) matrixToList() *list.List {
    l := list.New()
    for _, m := range t.matrix {
        for _, s := range m {
            if s != shipZero {
                l.PushBack(s)
            }
        }
    }
    return l
}

func (t *transport) getClosedPath(s shipment) []shipment {
    path := t.matrixToList()
    path.PushFront(s)

    // remove (and keep removing) elements that do not have a
    // vertical AND horizontal neighbor
    var next *list.Element
    for {
        removals := 0
        for e := path.Front(); e != nil; e = next {
            next = e.Next()
            nbrs := t.getNeighbors(e.Value.(shipment), path)
            if nbrs[0] == shipZero || nbrs[1] == shipZero {
                path.Remove(e)
                removals++
            }
        }
        if removals == 0 {
            break
        }
    }

    // place the remaining elements in the correct plus-minus order
    stones := make([]shipment, path.Len())
    prev := s
    for i := 0; i < len(stones); i++ {
        stones[i] = prev
        prev = t.getNeighbors(prev, path)[i%2]
    }
    return stones
}

func (t *transport) getNeighbors(s shipment, lst *list.List) [2]shipment {
    var nbrs [2]shipment
    for e := lst.Front(); e != nil; e = e.Next() {
        o := e.Value.(shipment)
        if o != s {
            if o.r == s.r && nbrs[0] == shipZero {
                nbrs[0] = o
            } else if o.c == s.c && nbrs[1] == shipZero {
                nbrs[1] = o
            }
            if nbrs[0] != shipZero && nbrs[1] != shipZero {
                break
            }
        }
    }
    return nbrs
}

func (t *transport) fixDegenerateCase() {
    eps := math.SmallestNonzeroFloat64
    if len(t.supply)+len(t.demand)-1 != t.matrixToList().Len() {
        for r := 0; r < len(t.supply); r++ {
            for c := 0; c < len(t.demand); c++ {
                if t.matrix[r][c] == shipZero {
                    dummy := shipment{eps, t.costs[r][c], r, c}
                    if len(t.getClosedPath(dummy)) == 0 {
                        t.matrix[r][c] = dummy
                        return
                    }
                }
            }
        }
    }
}

func (t *transport) printResult() {
    fmt.Println(t.filename)
    text, err := ioutil.ReadFile(t.filename)
    check(err)
    fmt.Printf("\n%s\n", string(text))
    fmt.Printf("Optimal solution for %s\n\n", t.filename)
    totalCosts := 0.0
    for r := 0; r < len(t.supply); r++ {
        for c := 0; c < len(t.demand); c++ {
            s := t.matrix[r][c]
            if s != shipZero && s.r == r && s.c == c {
                fmt.Printf(" %3d ", int(s.quantity))
                totalCosts += s.quantity * s.costPerUnit
            } else {
                fmt.Printf("  -  ")
            }
        }
        fmt.Println()
    }
    fmt.Printf("\nTotal costs: %g\n\n", totalCosts)
}

func main() {
    filenames := []string{"input1.txt", "input2.txt", "input3.txt"}
    for _, filename := range filenames {
        t := newTransport(filename)
        t.northWestCornerRule()
        t.steppingStone()
        t.printResult()
    }
}
Output:
input1.txt

2 3
25 35
20 30 10
3 5 7
3 2 5

Optimal solution for input1.txt

  20   -     5 
  -    30    5 

Total costs: 180

input2.txt

3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8

Optimal solution for input2.txt

  -    -    -    12 
  20   -    10   10 
  -    30   -     3 

Total costs: 130

input3.txt

4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45

Optimal solution for input3.txt

  -    -    -    14 
  -     9   -     1 
  10   -     5   -  
  -     5    7   -  
  -     1   -    -  

Total costs: 1000

J

The current task description refers to the algorithm by name, but I feel that those names are ambiguous (inadequately descriptive - we need the algorithm specified here on rosettacode, not problems which we expect are so well understood that no one needs to describe them).

So, I will be working with this interpretation:

(*) Assign shipments for the lowest cost unsatisfied need which can be supplied. When breaking ties, pick the first one which would be encountered when scanning left to right, top to bottom (which is the same order you use when reading english text on a page).

(*) Supply however much of the need which can be supplied by that shipment.

(*) Repeat until done.

(If this algorithm is incorrect for this task, that would just underline the need for a better task description. And, probably, also: the need for a more representative task example.)

In other words:

NB. C's y[m] v= x  implemented as  x m ndxasgn v y
ndxasgn=: conjunction define
:
  ((m{y)v x) m} y
)

trans=: adverb define
:
  need=. x
  supl=. y
  cost=. m
  dims=. supl ,&# need
  r=. dims$0
  while. 1 e., xfr=. supl *&*/ need do.
    'iS iN'=. ndxs=. dims#:(i. <./), cost % xfr 
    n=. (iS { supl) <. iN { need
    need=. n iN ndxasgn - need
    supl=. n iS ndxasgn - supl
    r=. n (<ndxs)} r
  end.
)

Task data:

need=: 20 30 10
supply=: 25 35
cost=:3 5 7,:3 2 5

Task example:

   need cost trans supply
20  0 5
 0 30 5

Java

Works with: Java version 8
import java.io.File;
import java.util.*;
import static java.util.Arrays.stream;
import static java.util.stream.Collectors.toCollection;

public class TransportationProblem {

    private static int[] demand;
    private static int[] supply;
    private static double[][] costs;
    private static Shipment[][] matrix;

    private static class Shipment {
        final double costPerUnit;
        final int r, c;
        double quantity;

        public Shipment(double q, double cpu, int r, int c) {
            quantity = q;
            costPerUnit = cpu;
            this.r = r;
            this.c = c;
        }
    }

    static void init(String filename) throws Exception {

        try (Scanner sc = new Scanner(new File(filename))) {
            int numSources = sc.nextInt();
            int numDestinations = sc.nextInt();

            List<Integer> src = new ArrayList<>();
            List<Integer> dst = new ArrayList<>();

            for (int i = 0; i < numSources; i++)
                src.add(sc.nextInt());

            for (int i = 0; i < numDestinations; i++)
                dst.add(sc.nextInt());

            // fix imbalance
            int totalSrc = src.stream().mapToInt(i -> i).sum();
            int totalDst = dst.stream().mapToInt(i -> i).sum();
            if (totalSrc > totalDst)
                dst.add(totalSrc - totalDst);
            else if (totalDst > totalSrc)
                src.add(totalDst - totalSrc);

            supply = src.stream().mapToInt(i -> i).toArray();
            demand = dst.stream().mapToInt(i -> i).toArray();

            costs = new double[supply.length][demand.length];
            matrix = new Shipment[supply.length][demand.length];

            for (int i = 0; i < numSources; i++)
                for (int j = 0; j < numDestinations; j++)
                    costs[i][j] = sc.nextDouble();
        }
    }

    static void northWestCornerRule() {

        for (int r = 0, northwest = 0; r < supply.length; r++)
            for (int c = northwest; c < demand.length; c++) {

                int quantity = Math.min(supply[r], demand[c]);
                if (quantity > 0) {
                    matrix[r][c] = new Shipment(quantity, costs[r][c], r, c);

                    supply[r] -= quantity;
                    demand[c] -= quantity;

                    if (supply[r] == 0) {
                        northwest = c;
                        break;
                    }
                }
            }
    }

    static void steppingStone() {
        double maxReduction = 0;
        Shipment[] move = null;
        Shipment leaving = null;

        fixDegenerateCase();

        for (int r = 0; r < supply.length; r++) {
            for (int c = 0; c < demand.length; c++) {

                if (matrix[r][c] != null)
                    continue;

                Shipment trial = new Shipment(0, costs[r][c], r, c);
                Shipment[] path = getClosedPath(trial);

                double reduction = 0;
                double lowestQuantity = Integer.MAX_VALUE;
                Shipment leavingCandidate = null;

                boolean plus = true;
                for (Shipment s : path) {
                    if (plus) {
                        reduction += s.costPerUnit;
                    } else {
                        reduction -= s.costPerUnit;
                        if (s.quantity < lowestQuantity) {
                            leavingCandidate = s;
                            lowestQuantity = s.quantity;
                        }
                    }
                    plus = !plus;
                }
                if (reduction < maxReduction) {
                    move = path;
                    leaving = leavingCandidate;
                    maxReduction = reduction;
                }
            }
        }

        if (move != null) {
            double q = leaving.quantity;
            boolean plus = true;
            for (Shipment s : move) {
                s.quantity += plus ? q : -q;
                matrix[s.r][s.c] = s.quantity == 0 ? null : s;
                plus = !plus;
            }
            steppingStone();
        }
    }

    static LinkedList<Shipment> matrixToList() {
        return stream(matrix)
                .flatMap(row -> stream(row))
                .filter(s -> s != null)
                .collect(toCollection(LinkedList::new));
    }

    static Shipment[] getClosedPath(Shipment s) {
        LinkedList<Shipment> path = matrixToList();
        path.addFirst(s);

        // remove (and keep removing) elements that do not have a
        // vertical AND horizontal neighbor
        while (path.removeIf(e -> {
            Shipment[] nbrs = getNeighbors(e, path);
            return nbrs[0] == null || nbrs[1] == null;
        }));

        // place the remaining elements in the correct plus-minus order
        Shipment[] stones = path.toArray(new Shipment[path.size()]);
        Shipment prev = s;
        for (int i = 0; i < stones.length; i++) {
            stones[i] = prev;
            prev = getNeighbors(prev, path)[i % 2];
        }
        return stones;
    }

    static Shipment[] getNeighbors(Shipment s, LinkedList<Shipment> lst) {
        Shipment[] nbrs = new Shipment[2];
        for (Shipment o : lst) {
            if (o != s) {
                if (o.r == s.r && nbrs[0] == null)
                    nbrs[0] = o;
                else if (o.c == s.c && nbrs[1] == null)
                    nbrs[1] = o;
                if (nbrs[0] != null && nbrs[1] != null)
                    break;
            }
        }
        return nbrs;
    }

    static void fixDegenerateCase() {
        final double eps = Double.MIN_VALUE;

        if (supply.length + demand.length - 1 != matrixToList().size()) {

            for (int r = 0; r < supply.length; r++)
                for (int c = 0; c < demand.length; c++) {
                    if (matrix[r][c] == null) {
                        Shipment dummy = new Shipment(eps, costs[r][c], r, c);
                        if (getClosedPath(dummy).length == 0) {
                            matrix[r][c] = dummy;
                            return;
                        }
                    }
                }
        }
    }

    static void printResult(String filename) {
        System.out.printf("Optimal solution %s%n%n", filename);
        double totalCosts = 0;

        for (int r = 0; r < supply.length; r++) {
            for (int c = 0; c < demand.length; c++) {

                Shipment s = matrix[r][c];
                if (s != null && s.r == r && s.c == c) {
                    System.out.printf(" %3s ", (int) s.quantity);
                    totalCosts += (s.quantity * s.costPerUnit);
                } else
                    System.out.printf("  -  ");
            }
            System.out.println();
        }
        System.out.printf("%nTotal costs: %s%n%n", totalCosts);
    }

    public static void main(String[] args) throws Exception {

        for (String filename : new String[]{"input1.txt", "input2.txt",
            "input3.txt"}) {
            init(filename);
            northWestCornerRule();
            steppingStone();
            printResult(filename);
        }
    }
}
input1.txt

2 3
25 35
20 30 10
3 5 7
3 2 5

Optimal solution input1.txt

  20   -     5 
  -    30    5 

Total costs: 180.0
input2.txt

3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8

Optimal solution input2.txt

  -    -    -    12 
  20   -    10   10 
  -    30   -     3 

Total costs: 130.0
input3.txt

4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45

Optimal solution input3.txt

  -    -    -    14 
  -     9   -     1 
  10   -     5   -  
  -     5    7   -  
  -     1   -    -  

Total costs: 1000.0

Julia

Code taken from here using JuMP.

using JuMP, GLPK

# cost vector
c = [3, 5, 7, 3, 2, 5];
N = size(c,1);

# constraints Ax (<,>,=) b
A = [1 1 1 0 0 0
     0 0 0 1 1 1
     1 0 0 1 0 0
     0 1 0 0 1 0
     0 0 1 0 0 1];
b = [ 25,  35,  20,  30,  10];
s = ['<', '<', '=', '=', '='];

# construct model
model = Model(GLPK.Optimizer)
@variable(model, x[i=1:N] >= 0, base_name="traded quantities")
cost_fn = @expression(model, c'*x)                                              # cost function
@constraint(model, C1, A[1:2,:]*x .<= b[1:2])                                   # inequality constraints
@constraint(model, C2, A[3:5,:]*x .== b[3:5])                                   # equality constraints
@objective(model, Min, cost_fn)                                                 # objective function

# solve model
status = JuMP.optimize!(model);
xstar = value.(x);
println("solution vector of quantities = ", xstar)
println("minimum total cost = ", JuMP.objective_value(model))

# recover Lagrange multipliers for post-optimality
λ = [JuMP.dual(C1[1]),JuMP.dual(C1[2])]
μ = [JuMP.dual(C2[1]),JuMP.dual(C2[2]),JuMP.dual(C2[3])]
Output:
solution vector of quantities = [20.0, 0.0, 5.0, 0.0, 30.0, 5.0]
minimum total cost = 180.0

Kotlin

Translation of: Java
// version 1.1.51

import java.io.File
import java.util.Scanner
import java.util.LinkedList

class Transport(val filename: String) {

    private val supply: IntArray
    private val demand: IntArray
    private val costs : Array<DoubleArray>
    private val matrix: Array<Array<Shipment>>

    class Shipment(
        var quantity: Double,
        val costPerUnit: Double,
        val r: Int,
        val c: Int
    )

    companion object {
        private val ZERO = Shipment(0.0, 0.0, -1, -1) // to avoid nullable Shipments
    }

    init {
        val sc = Scanner(File(filename))
        try {
            val numSources = sc.nextInt()
            val numDestinations = sc.nextInt()
            val src = MutableList(numSources) { sc.nextInt() }
            val dst = MutableList(numDestinations) { sc.nextInt() }

            // fix imbalance
            val totalSrc = src.sum()
            val totalDst = dst.sum()
            if (totalSrc > totalDst)
                dst.add(totalSrc -totalDst)
            else if (totalDst > totalSrc)
                src.add(totalDst -totalSrc)
            supply = src.toIntArray()
            demand = dst.toIntArray()

            costs  = Array(supply.size) { DoubleArray(demand.size) } 
            matrix = Array(supply.size) { Array(demand.size) { ZERO } }
            for (i in 0 until numSources) {
                for (j in 0 until numDestinations) costs[i][j] = sc.nextDouble()
            }            
        }
        finally {
            sc.close()
        }
    }

    fun northWestCornerRule() {
        var northwest = 0
        for (r in 0 until supply.size) {
            for (c in northwest until demand.size) {
                val quantity = minOf(supply[r], demand[c]).toDouble()
                if (quantity > 0.0) {
                    matrix[r][c] = Shipment(quantity, costs[r][c], r, c)
                    supply[r] -= quantity.toInt()
                    demand[c] -= quantity.toInt()
                    if (supply[r] == 0) {
                        northwest = c
                        break
                    }
                }
            }
        }
    }

    fun steppingStone() {
        var maxReduction = 0.0
        var move: Array<Shipment>? = null
        var leaving = ZERO
        fixDegenerateCase()

        for (r in 0 until supply.size) {
            for (c in 0 until demand.size) {
                if (matrix[r][c] != ZERO) continue
                val trial = Shipment(0.0, costs[r][c], r, c)
                val path = getClosedPath(trial)
                var reduction = 0.0
                var lowestQuantity = Int.MAX_VALUE.toDouble()
                var leavingCandidate = ZERO
                var plus = true
                for (s in path) {
                    if (plus) {
                        reduction += s.costPerUnit
                    }
                    else {
                        reduction -= s.costPerUnit
                        if (s.quantity < lowestQuantity) {
                            leavingCandidate = s
                            lowestQuantity = s.quantity
                        }
                    }
                    plus = !plus
                }
                if (reduction < maxReduction) {
                    move = path
                    leaving = leavingCandidate
                    maxReduction = reduction
                }
            }
        }

        if (move != null) {
            val q = leaving.quantity
            var plus = true
            for (s in move) {
                s.quantity += if (plus) q else -q
                matrix[s.r][s.c] = if (s.quantity == 0.0) ZERO else s
                plus = !plus
            }
            steppingStone()
        }
    }

    private fun matrixToList() =
        LinkedList<Shipment>(matrix.flatten().filter { it != ZERO } )

    private fun getClosedPath(s: Shipment): Array<Shipment> {
        val path = matrixToList()
        path.addFirst(s)

        // remove (and keep removing) elements that do not have a
        // vertical AND horizontal neighbor
        while (path.removeIf {
            val nbrs = getNeighbors(it, path)
            nbrs[0] == ZERO || nbrs[1] == ZERO
        }) ; // empty statement

        // place the remaining elements in the correct plus-minus order
        val stones = Array<Shipment>(path.size) { ZERO }
        var prev = s
        for (i in 0 until stones.size) {
            stones[i] = prev
            prev = getNeighbors(prev, path)[i % 2]
        }
        return stones
    }

    private fun getNeighbors(s: Shipment, lst: LinkedList<Shipment>): Array<Shipment> {
        val nbrs = Array<Shipment>(2) { ZERO }
        for (o in lst) {
            if (o != s) {
                if (o.r == s.r && nbrs[0] == ZERO)
                    nbrs[0] = o
                else if (o.c == s.c && nbrs[1] == ZERO)
                    nbrs[1] = o
                if (nbrs[0] != ZERO && nbrs[1] != ZERO) break
            }
        }
        return nbrs
    }

    private fun fixDegenerateCase() {
        val eps = Double.MIN_VALUE
        if (supply.size + demand.size - 1 != matrixToList().size) {
            for (r in 0 until supply.size) {
                for (c in 0 until demand.size) {
                    if (matrix[r][c] == ZERO) {
                        val dummy = Shipment(eps, costs[r][c], r, c)
                        if (getClosedPath(dummy).size == 0) {
                            matrix[r][c] = dummy
                            return
                        }
                    }
                }
            }
        }
    }

    fun printResult() {
        val text = File(filename).readText()
        println("$filename\n\n$text")
        println("Optimal solution $filename\n")
        var totalCosts = 0.0
 
        for (r in 0 until supply.size) {
            for (c in 0 until demand.size) {
                val s = matrix[r][c]
                if (s != ZERO && s.r == r && s.c == c) {
                    print(" %3s ".format(s.quantity.toInt()))
                    totalCosts += s.quantity * s.costPerUnit
                }
                else print("  -  ")
            }
            println()
        }
        println("\nTotal costs: $totalCosts\n")
    }
}

fun main(args: Array<String>) {
    val filenames = arrayOf("input1.txt", "input2.txt", "input3.txt")
    for (filename in filenames) {
        with (Transport(filename)) {
            northWestCornerRule()
            steppingStone()
            printResult()
        }
    }
}
Output:
Same as Java entry

Nim

Translation of: Go
import fenv, lists, math, sequtils, strformat, strutils

type

  Shipment = object
    quantity: float
    costPerUnit: float
    r, c: int

  Transport = object
    filename: string
    supply: seq[int]
    demand: seq[int]
    costs: seq[seq[float]]
    matrix: seq[seq[Shipment]]

  ShipmentList = DoublyLinkedList[Shipment]

const ShipZero = Shipment()


template emitError(msg: string) =
  raise newException(ValueError, msg)


proc initTransport(filename: string): Transport =
  let infile = filename.open()
  let fields = infile.readLine().splitWhitespace().map(parseInt)
  let numSources = fields[0]
  let numDests = fields[1]
  if numSources < 1 or numDests < 1:
    emitError "wrong number of sources or destinations."
  var src = infile.readLine().splitWhitespace().map(parseInt)
  if src.len != numSources:
    emitError "wrong number of sources; got $1, expected $2.".format(src.len, numSources)
  var dst = infile.readLine().splitWhitespace().map(parseInt)
  if dst.len != numDests:
    emitError "wrong number of destinations; got $1, expected $2.".format(dst.len, numDests)

  # Fix imbalance.
  let totalSrc = sum(src)
  let totalDst = sum(dst)
  let diff = totalSrc - totalDst
  if diff > 0: dst.add diff
  elif diff < 0: src.add -diff

  var costs = newSeqWith(src.len, newSeq[float](dst.len))
  var matrix = newSeqWith(src.len, newSeq[Shipment](dst.len))

  for i in 0..<numSources:
    let fields = infile.readLine().splitWhitespace().map(parseFloat)
    if fields.len > dst.len:
      emitError "wrong number of costs; got $1, expected $2.".format(fields.len, numDests)
    for j in 0..<numDests:
      costs[i][j] = fields[j]

  result = Transport(filename: filename, supply: move(src),
                     demand: move(dst), costs: move(costs), matrix: move(matrix))


func northWestCornerRule(tr: var Transport) =
  var northWest = 0
  for r in 0..tr.supply.high:
    for c in northWest..tr.demand.high:
      let quantity = min(tr.supply[r], tr.demand[c])
      if quantity > 0:
        tr.matrix[r][c] = Shipment(quantity: quantity.toFloat, costPerUnit: tr.costs[r][c], r: r, c: c)
        dec tr.supply[r], quantity
        dec tr.demand[c], quantity
        if tr.supply[r] == 0:
          northWest = c
          break


func getNeighbors(tr: Transport; s: Shipment; list: ShipmentList): array[2, Shipment] =
  for o in list:
    if o != s:
      if o.r == s.r and result[0] == ShipZero:
        result[0] = o
      elif o.c == s.c and result[1] == ShipZero:
        result[1] = o
      if result[0] != ShipZero and result[1] != ShipZero:
        break


func matrixToList(tr: Transport): ShipmentList =
  for m in tr.matrix:
    for s in m:
      if s != ShipZero:
        result.append(s)


func getClosedPath(tr: Transport; s: Shipment): seq[Shipment] =
  var path = tr.matrixToList
  path.prepend(s)

  # Remove (and keep removing) elements that do not have a
  # vertical and horizontal neighbor.
  while true:
    var removals = 0
    for e in path.nodes:
      let nbrs = tr.getNeighbors(e.value, path)
      if nbrs[0] == ShipZero or nbrs[1] == ShipZero:
        path.remove(e)
        inc removals
    if removals == 0:
      break

  # Place the remaining elements in the correct plus-minus order.
  var prev = s
  var i = 0
  for _ in path:
    result.add prev
    prev = tr.getNeighbors(prev, path)[i]
    i = 1 - i


func fixDegenerateCase(tr: var Transport) =
  const Eps = minimumPositiveValue(float)
  if tr.supply.len + tr.demand.len - 1 != tr.matrix.len * tr.matrix[0].len:
    for r in 0..tr.supply.high:
      for c in 0..tr.demand.high:
        if tr.matrix[r][c] == ShipZero:
          let dummy = Shipment(quantity: Eps, costPerUnit: tr.costs[r][c], r: r, c: c)
          if tr.getClosedPath(dummy).len == 0:
            tr.matrix[r][c] = dummy
            return


func steppingStone(tr: var Transport) =
  var maxReduction = 0.0
  var move: seq[Shipment]
  var leaving = ShipZero
  tr.fixDegenerateCase()

  for r in 0..tr.supply.high:
    for c in 0..tr.demand.high:
      if tr.matrix[r][c] != ShipZero:
        continue
      let trial = Shipment(quantity: 0, costPerUnit: tr.costs[r][c], r: r, c: c)
      var path = tr.getClosedPath(trial)
      var reduction = 0.0
      var lowestQuantity = float(int32.high)
      var leavingCandidate = ShipZero
      var plus = true
      for s in path:
        if plus:
          reduction += s.costPerUnit
        else:
          reduction -= s.costPerUnit
          if s.quantity < lowestQuantity:
            leavingCandidate = s
            lowestQuantity = s.quantity
        plus = not plus
      if reduction < maxReduction:
        move = move(path)
        leaving = leavingCandidate
        maxReduction = reduction

  if move.len != 0:
    let q = leaving.quantity
    var plus = true
    for s in move.mitems:
      if plus: s.quantity += q
      else: s.quantity -= q
      tr.matrix[s.r][s.c] = if s.quantity == 0: ShipZero else: s
      plus = not plus
    tr.steppingStone()


proc printResult(tr: Transport) =
  echo tr.filename, '\n'
  stdout.write tr.filename.readFile()
  echo "\nOptimal solution for ", tr.filename, '\n'
  var totalCosts = 0.0
  for r in 0..tr.supply.high:
    for c in 0..tr.demand.high:
      let s = tr.matrix[r][c]
      if s != ShipZero and s.r == r and s.c == c:
        stdout.write &" {int(s.quantity):3} "
        totalCosts += s.quantity * s.costPerUnit
      else:
        stdout.write "  -  "
    echo()
  echo &"\nTotal costs: {totalCosts:g}\n"


when isMainModule:

  const Filenames = ["input1.txt", "input2.txt", "input3.txt"]
  for filename in Filenames:
    var tr = initTransport(filename)
    tr.northWestCornerRule()
    tr.steppingStone()
    tr.printResult()
Output:
input1.txt

2 3
25 35
20 30 10
3 5 7
3 2 5

Optimal solution for input1.txt

  20   -     5 
  -    30    5 

Total costs: 180

input2.txt

3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8

Optimal solution for input2.txt

  -    -    -    12 
  20   -    10   10 
  -    30   -     3 

Total costs: 130

input3.txt

4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45

Optimal solution for input3.txt

  -    -    -    14 
  -     9   -     1 
  10   -     5   -  
  -     5    7   -  
  -     1   -    -  

Total costs: 1000

Pascal

Program transport;
{ based on the program of <Svetlana Belashova> }

Uses Crt;

Label l1;

Const N=10;
      n1=7; n2=7;
      Sa:longint=0;
      Sb:longint=0;

Type points=Array [1..N] of longint;
     distribution=Array [1..N,1..N] of longint;

Var A,B,alfa,beta,B_d,x:points;
    c,p:distribution;
    f,f0,x_min,Sp:longint;
    Nt,x_p,r,r_min,ki,kj,Na,Nb,h,l,i,j:byte;
    d:char;
    u:Array[1..N*N] of byte;

Procedure Nul (var a:points);
var i:byte;
Begin
     for i:=1 to N do a[i]:=0;
End;

Procedure PrintS (x,y:byte; s:string; c:byte);
Begin
     TextColor(c);
     GotoXY(x,y);
     Write(s);
End;

Procedure Print (x,y:byte; n:byte; a:longint; c:byte);
Begin
     TextColor(c);
     GotoXY(x,y); Write(' ':n);
     GotoXY(x,y); Write(a);
End;

Procedure Read (var x:longint; y:byte);
var i:integer;
    s:string;
    c:char;
    j,k:byte;
Begin
     s:=''; i:=1;
     TextColor(11);
     Repeat
           c:=ReadKey;
           Case ord(c) of
48..57:         begin s:=s+c;
                      Write(c);
                      inc(i);
                end;
8:              if i>1 then begin dec(i);
                      Delete(s,i,1);
                      Write(chr(8),' ',chr(8));
                end;
           end;
           j:=WhereX;
           GotoXY(60,1); ClrEOL;
           if i>y then begin
              TextColor(4);
              Write('Not more than ');
              for k:=1 to y-1 do Write('9');
              TextColor(11);
           end;
           GotoXY(j,1);
     Until (ord(c)=13) and (i<y+1);
     val(s,x,i);
End;

Procedure horizontal (a,b,c,d,e:char);
var i,j:byte;
Begin
     Write(a);
     for i:=1 to n2 do Write(b);
     Write(c);
     for i:=1 to Nb do begin
         for j:=1 to n1 do Write(b);
         if i<>Nb then Write(d) else Write(c);
     end;
     for i:=1 to 4 do Write(b);
     Write(e);
End;

Procedure vertical;
var i:byte;
Begin
     Write('│',' ':n2,'║');
     for i:=1 to Nb-1 do Write(' ':n1,'│');
     WriteLn(' ':n1,'║',' ' :4,'│');
End;

Procedure Table; { Drawing the table }
Begin
    ClrScr;
    TextColor(1);
    h:=6+Na*3;
    l:=14+Nb*7;
    GotoXY(1,3);
    for i:=3 to h do vertical;
    GotoXY(1,2);
    horizontal('┌','─','╥','┬','┐');
    for i:=1 to Na+1 do begin
        GotoXY(1,i*3+2);
        if (i=1) or (i=Na+1)
           then horizontal('╞','═','╬','╪','╡')
           else horizontal('├','─','╫','┼','┤');
    end;
    GotoXY(1,h+1);
    horizontal('└','─','╨','┴','┘');
    TextColor(9);
    for i:=1 to Na do begin
        GotoXY(5,i*3+3);
        Write('A',i);
    end;
    for i:=1 to Nb do begin
        GotoXY(i*(n1+1)+n2-2,3);
        Write('B',i);
    end;
    l:=Nb*(n1+1)+n2+3;
    h:=Na*3+6;
    PrintS(4,3,'\Bj',9);
    PrintS(4,4,'Ai\',9);
    PrintS(1,1,'Table N1',14);
    PrintS(l,4,'alfa',9);
    PrintS(3,h,'beta',9);
End;

Procedure EnterIntoTheTable (var a:points; b:byte; c:char); { Entering into the table }
var i,l,m:byte;
Begin
     for i:=1 to b do begin
         TextColor(3);
         GotoXY(32,1);
         ClrEOL;
         Write(c,i,'=  ');
         Read(a[i],n1);
         TextColor(14);
         Case c of
'A':     GotoXY(n2-trunc(ln(a[i])/ln(10)),i*3+4);
'B':     GotoXY(n2+i*(n1+1)-trunc(ln(a[i])/ln(10)),4);
         end;
         Write(a[i]);
     end;
End;

Function CalculatingTheCost:longint;        { Calculating the cost of the plan }
var i,j:byte;
    f:longint;
Begin
     f:=0;
     for i:=1 to Na do
         for j:=1 to Nb do
             if p[i,j]>0 then inc(f,c[i,j]*p[i,j]);
     GotoXY(65,Nt+2);
     TextColor(10);
     Write('F',Nt,'=',f);
     CalculatingTheCost:=f;
End;

Function CalculatingThePotentials:boolean;      { Calculating the potentials }
var k,i,j:byte;
    Z_a,Z_b:points;
    d:boolean;
Begin
     Nul(Z_a); Nul(Z_b);
     alfa[1]:=0; Z_a[1]:=1; k:=1;
     Repeat
           d:=1=1;
           for i:=1 to Na do
               if Z_a[i]=1 then
                  for j:=1 to Nb do
                      if (p[i,j]>-1) and (Z_b[j]=0) then begin
                         Z_b[j]:=1;
                         beta[j]:=c[i,j]-alfa[i];
                         inc(k);
                         d:=1=2;
                      end;
           for i:=1 to Nb do
               if Z_b[i]=1 then
                  for j:=1 to Na do
                      if (p[j,i]>-1) and (Z_a[j]=0) then begin
                         Z_a[j]:=1;
                         alfa[j]:=c[j,i]-beta[i];
                         inc(k);
                         d:=1=2;
                      end;
     Until (k=Na+Nb) or d;
     if d then begin
        i:=1;
        While Z_a[i]=1 do inc(i);
        j:=1;
        While Z_b[j]=0 do inc(j);
        p[i,j]:=0;
        Print((j+1)*(n1+1)+n2-8,i*3+4,1,p[i,j],7);
     end;

     CalculatingThePotentials:=d;
End;

Procedure OutputThePlan;         { Output the plan of distribution }
var i,j,h,l,k:byte;
    c_max:longint;
Begin
     k:=0;
     for i:=1 to Na do begin
         h:=i*3+4;
         for j:=1 to Nb do begin
             l:=j*(n1+1)+n2-5;
             GotoXY(l,h);
             Write(' ':n1);
             if p[i,j]>0 then begin
                inc(k);
                Print(l-trunc(ln(p[i,j])/ln(10))+5,h,1,p[i,j],14);
             end
             else if p[i,j]=0 then begin
                     Print(l+n1-2,h,1,p[i,j],14);
                     inc(k);
             end;
         end;
     end;

     While CalculatingThePotentials do inc(k);

     if k>Na+Nb-1 then PrintS(40,1,'k > n+m-1',12);
End;

Function CalculatingTheCoefficients(var ki,kj:byte):integer; { Calculation the coefficients in the free cells }
var i,j:byte;
    k,k_min:integer;
    b:boolean;
Begin
     b:=1=1;
     for i:=1 to Na do
         for j:=1 to Nb do
             if p[i,j]=-1 then begin
                k:=c[i,j]-alfa[i]-beta[j];
                if b then begin
                   b:=1=2;
                   ki:=i; kj:=j; k_min:=k;
                end else
                    if k<k_min then begin
                       k_min:=k;
                       ki:=i; kj:=j;
                    end;
                TextColor(6);
                GotoXY(j*(n1+1)+n2-5,i*3+4);
                Write('(',k,')');
             end;
     if k_min<0 then PrintS(kj*(n1+1)+n2,ki*3+4,'X',12);
     CalculatingTheCoefficients:=k_min;
End;

Procedure div_mod(c:byte; var a,b:byte);   { Translate one-dimensional array to two-dimensional }
Begin
     b:=c mod Nb; a:=c div Nb +1;
     if b=0 then begin
        b:=Nb; dec(a);
     end;
End;

Procedure Recursive(Xi,Yi:byte; var z:boolean; var c:byte);
var i,j:byte;
Begin
   z:=1=2;
   Case c of
1:   for i:=1 to Na do
         if i<>Xi then
            if p[i,Yi]>-1 then begin
               if u[(i-1)*Nb+Yi]=0 then begin
                  u[(Xi-1)*Nb+Yi]:=(i-1)*Nb+Yi;
                  c:=2;
                  Recursive(i,Yi,z,c);
                  if z then exit;
               end;
            end
            else if (i=ki) and (Yi=kj) then begin
                    u[(Xi-1)*Nb+Yi]:=(ki-1)*Nb+kj;
                    z:=not z;
                    exit;
            end;
2:   for i:=1 to Nb do
         if i<>Yi then
            if p[Xi,i]>-1 then begin
               if u[(Xi-1)*Nb+i]=0 then begin
                  u[(Xi-1)*Nb+Yi]:=(Xi-1)*Nb+i;
                  c:=1;
                  Recursive(Xi,i,z,c);
                  if z then exit;
               end;
            end
            else if (Xi=ki) and (i=kj) then begin
                    u[(Xi-1)*Nb+Yi]:=(ki-1)*Nb+kj;
                    z:=not z;
                    exit;
            end;
   end;
   u[(Xi-1)*Nb+Yi]:=0;
   c:=c mod 2 +1;
End;

Procedure Contour;       { Determine the contour of displacement }
var i,j,k,mi,mj,l:byte;
    z:boolean;
    p_m:longint;
Begin
     for i:=1 to N*N do u[i]:=0;
     l:=1;
     Recursive(ki,kj,z,l);
     i:=ki; j:=kj;
     k:=u[(i-1)*Nb+j];
     div_mod(k,i,j);
     mi:=i; mj:=j; l:=1;
     Repeat
           inc(l);
           k:=u[(i-1)*Nb+j];
           div_mod(k,i,j);
           if l mod 2=1 then
              if p[i,j]<p[mi,mj] then begin
                 mi:=i; mj:=j;
              end;
     Until (i=ki) and (j=kj);

     i:=ki; j:=kj; l:=0;
     p_m:=p[mi,mj];
     Repeat
           if l mod 2=0 then begin
              inc(p[i,j],p_m);
              PrintS((n1+1)*j+n2-1,i*3+3,'(+)',12);
           end else begin
               dec(p[i,j],p_m);
               PrintS((n1+1)*j+n2-1,i*3+3,'(-)',12);
           end;
           if l=0 then inc(p[i,j]);
           k:=u[(i-1)*Nb+j];
           div_mod(k,i,j);
           inc(l);
     Until (i=ki) and (j=kj);
     p[mi,mj]:=-1;
End;

Procedure Pause;
var d:char;
Begin
     TextColor(6);
     GotoXY(40,1);
     Write('Press any key');
     d:=ReadKey;
     GotoXY(40,1);
     ClrEOL;
End;

BEGIN
    Nul(alfa); Nul(beta);
    Nt:=1;
    ClrScr;
    TextColor(10);
    Repeat
          Write('Enter the number of suppliers (2<=Na<=',N-1,')   ');
          ReadLn(Na);
          Write('Enter the number of consumers (2<=Nb<=',N-1,')   ');
          ReadLn(Nb);
    Until (Na>1) and (Na<=N-1) and (Nb>1) and (Nb<=N-1);
    Table;

    PrintS(1,1,'Enter the production quantity:',3);
    EnterIntoTheTable(A,Na,'A');
    EnterIntoTheTable(B,Nb,'B');
    TextColor(3);
    GotoXY(1,1); ClrEOL;
    Write('Enter the cost of transportation');
    for i:=1 to Na do
        for j:=1 to Nb do begin
            TextColor(3);
            GotoXY(29,1); ClrEOL;
            Write('A',i,' - B',j,'  ');
            Read(c[i,j],5);
            Print((n1+1)*j+n2-4,i*3+3,1,c[i,j],11);
        end;

    GotoXY(1,1);
    ClrEOL;
    TextColor(14);
    Write('Table N1');

    for i:=1 to Na do Sa:=Sa+A[i];
    for i:=1 to Nb do Sb:=Sb+B[i];
    if Sa<>Sb then begin
       PrintS(20,1,'The problem is open (Press any key)',7);
       d:=ReadKey;
       if Sa>Sb then begin
          inc(Nb);
          B[Nb]:=Sa-Sb;
          for i:=1 to Na do c[i,Nb]:=0;
       end else begin
           inc(Na);
           A[Na]:=Sb-Sa;
           for i:=1 to Nb do c[Na,i]:=0;
       end;
       Table;
       for i:=1 to Na do
           for j:=1 to Nb do Print((n1+1)*j+n2-4,i*3+3,1,c[i,j],11);
       for i:=1 to Na do
           Print(n2-trunc(ln(A[i])/ln(10)),i*3+4,1,A[i],14);
       for i:=1 to Nb do
           Print(n2+i*(n1+1)-trunc(ln(B[i])/ln(10)),4,1,B[i],14);
       PrintS(20,1,'The problem is open',7);
    end
       else PrintS(20,1,'The problem is closed',7);

(**************** Drafting the basic plan ******************)
    for i:=1 to Nb do B_d[i]:=B[i];
    for i:=1 to Na do begin
        for j:=1 to Nb do x[j]:=j;
        for j:=1 to Nb-1 do begin
            x_min:=c[i,x[j]];
            r_min:=j;
            for r:= j+1 to Nb do
                if (x_min>c[i,x[r]]) or
                 ((x_min=c[i,x[r]]) and (B[x[r]]>b[x[r_min]])) then
                begin
                   x_min :=c[i,x[r]];
                   r_min:=r;
                end;
            x_p:=x[r_min];
            x[r_min]:=x[j];
            x[j]:=x_p;
        end;
        Sp:=0;
        for j:=1 to Nb do begin
            p[i,x[j]]:=B_d[x[j]];
            if p[i,x[j]]>A[i]-Sp then p[i,x[j]]:=A[i]-Sp;
            inc(Sp,p[i,x[j]]);
            dec(B_d[x[j]],p[i,x[j]]);
        end;
    end;
(***********************************************************)

    for i:=1 to Na do
        for j:=1 to Nb do if p[i,j]=0 then p[i,j]:=-1;
    OutputThePlan;
    f:=CalculatingTheCost; f0:=F;

    While CalculatingThePotentials do;
    for i:=1 to Na do Print(l+1,i*3+3,3,alfa[i],11);
    for i:=1 to Nb do Print(i*(n1+1)+n2-4,h,6,beta[i],11);
    Pause;

(******* gradual approach the plan to the optimality ******)
    While CalculatingTheCoefficients(ki,kj)<0 do begin
          Contour;
          pause;
          for i:=1 to Na do
              for j:=1 to Nb do PrintS((n1+1)*j+n2-1,i*3+3,'   ',14);
          inc(Nt);
          GotoXY(1,1);
          Write('Table N',Nt);
          OutputThePlan;
          f0:=f; f:=CalculatingTheCost;
          if CalculatingThePotentials then Goto l1;
          for i:=1 to Na do Print(l+1,i*3+3,3,alfa[i],11);
          for i:=1 to Nb do Print(i*(n1+1)+n2-4,h,6,beta[i],11);
          Pause;
    end;
(***********************************************************)

    PrintS(40,1,'Solution is optimal',12);
    PrintS(60,1,'(any key)',6);
    for i:=1 to Na do
        for j:=1 to Nb do if p[i,j]=-1 then begin
            h:=i*3+4;
            l:=j*(n1+1)+n2-5;
            GotoXY(l,h);
            Write(' ':n1);
        end;
    GotoXY(40,1);
l1: d:=ReadKey;
END.

Perl

Just re-using the code from Vogel's approximation method, tweaked to handle specific input:

use strict;
use warnings;
use feature 'say';
use List::AllUtils qw( max_by nsort_by min );

my $data = <<END;
A=20 B=30 C=10
S=25 T=35
AS=3 BS=5 CS=7
CT=3 BT=2 CT=5
END

my $table = sprintf +('%4s' x 4 . "\n") x 3,
  map {my $t = $_; map "$_$t", '', 'A' .. 'C' } '' , 'S' .. 'T';

my ($cost, %assign) = (0);
while( $data =~ /\b\w=\d/ ) {
  my @penalty;
  for ( $data =~ /\b(\w)=\d/g ) {
    my @all = map /(\d+)/, nsort_by { /\d+/ && $& }
      grep { my ($t, $c) = /(.)(.)=/; $data =~ /\b$c=\d/ and $data =~ /\b$t=\d/ }
      $data =~ /$_\w=\d+|\w$_=\d+/g;
    push @penalty, [ $_, ($all[1] // 0) - $all[0] ];
  }
  my $rc = (max_by { $_->[1] } nsort_by
    { my $x = $_->[0]; $data =~ /(?:$x\w|\w$x)=(\d+)/ && $1 } @penalty)->[0];
  my @lowest = nsort_by { /\d+/ && $& }
    grep { my ($t, $c) = /(.)(.)=/; $data =~ /\b$c=\d/ and $data =~ /\b$t=\d/ }
    $data =~ /$rc\w=\d+|\w$rc=\d+/g;
  my ($t, $c) = $lowest[0] =~ /(.)(.)/;
  my $allocate = min $data =~ /\b[$t$c]=(\d+)/g;
  $table =~ s/$t$c/ sprintf "%2d", $allocate/e;
  $cost += $data =~ /$t$c=(\d+)/ && $1 * $allocate;
  $data =~ s/\b$_=\K\d+/ $& - $allocate || '' /e for $t, $c;
}

say my $result = "cost $cost\n\n" . $table =~ s/[A-Z]{2}/--/gr;
Output:
cost 170

       A   B   C
   S  20  --   5
   T  --  30   5

Phix

The simplest solution I could think of.
Assumes 0 cost is not allowed, but using say -1 as the "done" cost instead should be fine.

with javascript_semantics
procedure solve(sequence needs, avail, costs)
    -- the costs parameter should be length(avail/*aka suppliers*/) rows
    --                            of length(needs/*aka customers*/) cols
    assert(length(costs)==length(avail))
    assert(apply(costs,length)==repeat(length(needs),length(avail)))
    sequence res = repeat(repeat(0,length(needs)),length(avail))
    while true do
        integer best = 0, supplier, customer
        for s=1 to length(costs) do
            for c=1 to length(costs[s]) do
                integer csc = costs[s][c]
                if csc!=0 and (best=0 or csc<best) then
                    best = csc
                    supplier = s
                    customer = c
                end if
            end for
        end for
        if best=0 then exit end if -- all costs examined
        integer amt = min(avail[supplier],needs[customer])
        -- obviously amt can be 0, in which case this just
        -- removes cost entry from further consideration.
        avail[supplier] -= amt
        needs[customer] -= amt
        res[supplier,customer] = amt
        costs[supplier,customer] = 0
    end while
    pp(res,{pp_Nest,1})             
end procedure
 
solve({20,30,10},{25,35},{{3,5,7},{3,2,5}})
Output:
{{20,0,5},
 {0,30,5}}

stepping stones

Obviously I did not really quite understand the problem when I rattled out the above... this does much better.

Translation of: Go
-- demo\rosetta\Transportation_problem.exw
with javascript_semantics
enum QTY, COST, R, C -- (a shipment)
constant eps = 1e-12
 
function print_matrix(sequence matrix)
    atom total_costs = 0.0
    for r=1 to length(matrix) do
        for c=1 to length(matrix[r]) do
            object s = matrix[r][c]
            string st = "  -  "
            if s!=0 and s[R]==r and s[C]==c then
                atom qty = round(s[QTY]) -- (remove +/-eps)
                if qty!=0 then
                    st = sprintf(" %3d ", qty)
                    total_costs += qty * s[COST]
                end if
            end if
            puts(1,st)
        end for
        printf(1,"\n")
    end for
    return total_costs
end function

procedure print_result(sequence transport, atom expected)
    sequence matrix = transport[4]
    printf(1,"Optimal solution\n\n")
    atom total_costs = print_matrix(matrix)
    printf(1,"\nTotal costs: %g (expected %g)\n\n", {total_costs,expected})
end procedure

function get_neighbors(sequence shipment, lst)
    sequence nbrs = {0,0}
    for e=1 to length(lst) do
        sequence o = lst[e]
        if o!=shipment then
            if o[R]==shipment[R] and nbrs[1]==0 then
                nbrs[1] = o
            elsif o[C]==shipment[C] and nbrs[2]==0 then
                nbrs[2] = o
            end if
            if nbrs[1]!=0 and nbrs[2]!=0 then
                exit
            end if
        end if
    end for
    return nbrs
end function

function matrix_to_list(sequence matrix)
    sequence l = {}
    for r=1 to length(matrix) do
        for c=1 to length(matrix[r]) do
            if matrix[r,c]!=0 then
                l = append(l,matrix[r,c])
            end if
        end for
    end for 
    return l
end function

function get_closed_path(sequence matrix, shipment)
    sequence path = matrix_to_list(matrix)
    path = prepend(path,shipment)

    -- remove (and keep removing) elements that do not have a
    -- vertical AND horizontal neighbor
    while true do
        integer removals = 0
        for e=length(path) to 1 by -1 do
            sequence nbrs = get_neighbors(path[e], path)
            if nbrs[1]==0 or nbrs[2]==0 then
                path[e..e] = {}
                removals += 1
            end if
        end for
        if removals==0 then exit end if
    end while
 
    -- place the remaining elements in the correct plus-minus order
    sequence stones = repeat(0,length(path)),
             prev = shipment
    for i=1 to length(stones) do
        stones[i] = prev
        prev = get_neighbors(prev, path)[mod(i,2)+1]
    end for
    return stones
end function
 
function fix_degenerate_case(sequence matrix, costs)
    if length(matrix)+length(matrix[1])-1 != length(matrix_to_list(matrix)) then
        printf(1,"fixing degenerate case...\n")
        for r=1 to length(matrix) do
            for c=1 to length(matrix[r]) do
                if matrix[r][c] == 0 then
                    sequence dummy = {eps, costs[r][c], r, c}
                    if length(get_closed_path(matrix,dummy)) == 0 then
                        matrix[r][c] = dummy
                        return matrix
                    end if
                end if
            end for
        end for
        ?9/0 -- ??
    end if
    return matrix
end function

function initialise(sequence tests, integer t)
    sequence {src,dst,costs} = deep_copy(tests[t])
    string cs = ppf(costs,{pp_Nest,1,pp_StrFmt,3,pp_IntCh,false,pp_Indent,7})
    printf(1,"test %d:\nsrc: %v,\ndst: %v,\ncosts: %s\n",{t,src,dst,cs})
 
    -- check for and fix any imbalance
    atom totalSrc = sum(src),
         totalDst = sum(dst),
         diff = totalSrc-totalDst
    if diff>0 then
        puts(1,"adding dummy consumer...\n")
        dst = append(dst, diff)
        for i=1 to length(costs) do
--DEV...
--          costs[i] &= 0
            costs[i] = deep_copy(costs[i]) & 0
        end for
    elsif diff<0 then
        puts(1,"adding dummy supplier...\n")
        src = append(src, -diff)
        costs = append(costs,repeat(0,length(dst)))
    end if
 
    printf(1,"generating initial feasible solution using northwest corner method...\n")
    sequence matrix = repeat(repeat(0,length(dst)),length(src))
    integer northwest = 1
    for r=1 to length(src) do
        for c=northwest to length(dst) do
            atom qty = min(src[r],dst[c])
            if qty>0 then
                matrix[r][c] = {qty,costs[r,c],r,c}
                src[r] -= qty
                dst[c] -= qty
                if src[r]=0 then
                    northwest = c
                    exit
                end if
            end if
        end for
    end for
    printf(1,"\nTotal costs: %g\n\n", print_matrix(matrix))
    
    return {src,dst,costs,matrix}
end function
 
function stepping_stone(sequence transport)
    sequence {src, dst, costs, matrix} = deep_copy(transport)
    atom maxReduction = 0
    object move = NULL, leaving
    matrix = fix_degenerate_case(matrix, costs)
    for r=1 to length(src) do
        for c=1 to length(dst) do
            if matrix[r][c] = 0 then
                sequence trial_shipment = {0, costs[r][c], r, c},
                         path = get_closed_path(matrix,trial_shipment)
                atom reduction = 0.0,
                     lowestQuantity = 1e308
                object leavingCandidate = 0
                bool plus = true
                for i=1 to length(path) do
                    sequence s = path[i]
                    if plus then
                        reduction += s[COST]
                    else
                        reduction -= s[COST]
                        if s[QTY] < lowestQuantity then
                            leavingCandidate = s
                            lowestQuantity = s[QTY]
                        end if
                    end if
                    plus = not plus
                end for
                if reduction < maxReduction then
                    move = path
                    leaving = leavingCandidate
                    maxReduction = reduction
                end if
            end if
        end for
    end for
 
    if move!=NULL then
        atom q = leaving[QTY]
        bool plus = true
        for i=1 to length(move) do
            sequence s = deep_copy(move[i])
            if plus then
                s[QTY] += q
            else
                s[QTY] -= q
            end if
            if s[QTY] == 0 then
                matrix[s[R]][s[C]] = 0
            else
                matrix[s[R]][s[C]] = s
            end if
            plus = not plus
        end for
        {src, dst, costs, matrix} = stepping_stone({src, dst, costs, matrix})
    end if
    return {src, dst, costs, matrix}
end function
 
--              --  source           dest            costs          expected total
constant tests = {{{25,35},         {20,30,10},     {{3,5,7},
                                                     {3,2,5}},           180},
                  {{12,40,33},      {20,30,10},     {{3,5,7},
                                                     {2,4,6},
                                                     {9,1,8}},           130},
                  {{14,10,15,12},   {10,15,12,15},  {{10,30,25,15},
                                                     {20,15,20,10},
                                                     {10,30,20,20},
                                                     {30,40,35,45}},    1000},
                  {{100,300,300},   {300,200,200},  {{50,40,30},
                                                     {80,40,30},
                                                     {90,70,50}},      39000},
                  {{40,60,50},      {20,30,50,50},  {{4,6,8,8},
                                                     {6,8,6,7},
                                                     {5,7,6,8}},         920},
                  {{12,1,5},        {10,8},         {{ 2, 4},
                                                     { 8,12},
                                                     {12, 6}},            68},
                  {{7,9,18},        {5,8,7,14},     {{19,30,50,10},
                                                     {70,30,40,60},
                                                     {40, 8,70,20}},     743},
                  {{12,11,14,8},    {10,11,15,5,4}, {{ 7,12, 1, 5, 6},
                                                     {15, 3,12, 6,14},
                                                     { 8,16,10,12, 7},
                                                     {18, 8,17,11,16}},  259},
                  {{50,60,50,50},  {30,20,70,30,60},{{16,16,13,22,17},
                                                     {14,14,13,19,15},
                                                     {19,19,20,23,50},
                                                     {50,12,50,15,11}}, 3100},
                  {{50,75,25},      {20,20,50,60},  {{3,5,7,6},
                                                     {2,5,8,2},
                                                     {3,6,9,2}},         610}}
 


--for i=1 to length(tests) do
for i=3 to 3 do
    print_result(stepping_stone(initialise(tests,i)),tests[i][4])
end for

?"done"
{} = wait_key()
Output:

(Obviously the other eight tests all work fine and produce similar output.)

test 3:
src: {14,10,15,12},
dst: {10,15,12,15},
costs: {{10,30,25,15},
        {20,15,20,10},
        {10,30,20,20},
        {30,40,35,45}}

adding dummy supplier...
generating initial feasible solution using northwest corner method...
  10    4   -    -
  -    10   -    -
  -     1   12    2
  -    -    -    12
  -    -    -     1

Total costs: 1220

fixing degenerate case...
Optimal solution

  -    -    -    14
  -     9   -     1
  10   -     5   -
  -     5    7   -
  -     1   -    -

Total costs: 1000 (expected 1000)

Note that Vogel's_approximation_method#Phix gets a few of the others wrong and loops on #2, then again that is unbalanced (needs a dummy customer), and I'm not sure whether throwing such at VAM is fair or not.

R

Using lpSolve::lp.transport.

library(lpSolve)

# cost matrix
costs <- matrix(c(3, 5, 7,
                  3, 2, 5), nrow = 2, byrow = TRUE)

# constraints for suppliers
row.signs <- rep("<=", 2)
row.rhs <- c(25, 35)
# constraints for customers
col.signs <- rep("=", 3)
col.rhs <- c(20, 30, 10)

# minimum cost (objective value)
lp.transport(costs, "min", row.signs, row.rhs, col.signs, col.rhs)
# solution matrix
sol = lp.transport(costs, "min", row.signs, row.rhs, col.signs, col.rhs)$solution
rownames(sol) <- c("Supplier 1", "Supplier 2")
colnames(sol) <- c("Customer 1", "Customer 2", "Customer 3")
sol
Output:
Success: the objective function is 180

           Customer 1 Customer 2 Customer 3
Supplier 1         20          0          5
Supplier 2          0         30          5 

Racket

Translation of: Java

(I understand the letters in Java!)

Using typed/racket, to keep track of Vectors of Vectors of data.

#lang typed/racket
;; {{trans|Java}}
(define-type (V2 A) (Vectorof (Vectorof A)))
(define-type VI (Vectorof Integer))
(define-type V2R (V2 Real))
(define-type Q (U 'ε Integer))
(define ε 'ε)
(struct Shipment ([qty : Q] [cost/unit : Real] [r : Integer] [c : Integer]))
(define-type Shipment/? (Option Shipment))
(define-type V2-Shipment/? (V2 Shipment/?))
(define-type Shipment/?s (Listof Shipment/?))
(define-type Shipments (Listof Shipment))

(: Q+ (Q Q -> Q))
(: Q- (Q Q -> Q))
(: Q<? (Q Q -> Boolean))
(: Q-zero? (Q -> Boolean))
(: Q-unary- (Q -> Q))
(: Q*R (Q Real -> Real))

(define Q+ (match-lambda** [('ε 0) ε] [(0 'ε) ε] [('ε 'ε) ε] [('ε x) x] [(x 'ε) x]
                           [((? integer? x) (? integer? y)) (+ x y)]))

(define Q<? (match-lambda** [('ε 0) #f] [(0 'ε) #t] [('ε 'ε) #f] [('ε x) #t] [(x 'ε) #f]
                            [((? integer? x) (? integer? y)) (< x y)]))

(define Q- (match-lambda** [('ε 0) ε] [(0 'ε) ε] [('ε 'ε) 0] [('ε (? integer? x)) (- x)] [(x 'ε) x]
                           [((? integer? x) (? integer? y)) (- x y)]))

(define Q-unary- (match-lambda ['ε ε] [(? integer? x) (- x)]))

(define Q-zero? (match-lambda ['ε #f] [(? integer? x) (zero? x)]))

(define Q*R (match-lambda** [('ε _) 0] [((? integer? x) y) (* x y)]))

(: vector-ref2 (All (A) ((Vectorof (Vectorof A)) Integer Integer -> A)))
(define (vector-ref2 v2 r c) (vector-ref (vector-ref v2 r) c))

(: vector-set!2 (All (A) ((Vectorof (Vectorof A)) Integer Integer A -> Void)))
(define (vector-set!2 v2 r c v) (vector-set! (vector-ref v2 r) c v))

(define (northwest-corner-rule! [supply : VI] [demand : VI] [costs : V2R] [M : V2-Shipment/?]) : Void
  (define supply-l (vector-length supply))
  (define demand-l (vector-length demand))
  (let loop ((r 0) (nw 0) (c 0))
    (cond [(= r supply-l) (void)]
          [(= c demand-l) (loop (add1 r) nw 0)]
          [else
           (define quantity (min (vector-ref supply r) (vector-ref demand c)))
           (cond
             [(positive? quantity)
              (define shpmnt (Shipment quantity (vector-ref2 costs r c) r c))
              (vector-set!2 M r c shpmnt)
              (define supply-- (- (vector-ref supply r) quantity))
              (define demand-- (- (vector-ref demand c) quantity))
              (vector-set! supply r supply--)
              (vector-set! demand c demand--)
              (if (zero? supply--) (loop (add1 r) c 0) (loop r nw (add1 c)))]
             [else (loop r nw (add1 c))])])))

(define (stepping-stone! [supply : VI] [demand : VI] [costs : V2R] [M : V2-Shipment/?]) : Void
  (fix-degenerate-case! supply demand costs M)
  (define-values (move leaving max-reduction)
    (for*/fold : (Values Shipments Shipment/? Real)
      ((move : Shipments null) (leaving : Shipment/? #f) (max-reduction : Real 0))
      ((r (vector-length supply))
       (c (vector-length demand))
       (m (in-value (vector-ref2 M r c)))
       #:unless m)
      (define path (let ((trial (Shipment 0 (vector-ref2 costs r c) r c))) (get-closed-path trial M)))
      (define-values (+? reduction leaving-cand lowest-quantity)
        (for/fold : (Values Boolean Real Shipment/? (Option Q))
          ((+? #t) (reduction : Real 0) (leaving-cand : Shipment/? #f) (lowest-q : (Option Q) #f))
          ((s (in-list path)))
          (define s.cpu (Shipment-cost/unit s))
          (if +?
              (values #f (+ reduction s.cpu) leaving-cand lowest-q)
              (let ((reduction-- (- reduction s.cpu))
                    (s.q (Shipment-qty s)))
                (if (or (not lowest-q) (Q<? s.q lowest-q))
                    (values #t reduction-- s s.q)
                    (values #t reduction-- leaving-cand lowest-q))))))
      
      (if (< reduction max-reduction)
          (values path leaving-cand reduction)
          (values move leaving max-reduction))))
  
  (unless (null? move)
    (define l.q (Shipment-qty (cast leaving Shipment)))
    (for/fold ((+? : Boolean #t)) ((s (in-list move)))
      (define s.q+ ((if +? Q+ Q-) (Shipment-qty s) l.q))
      (define s+ (struct-copy Shipment s [qty s.q+]))
      (vector-set!2 M (Shipment-r s+) (Shipment-c s+) (if (Q-zero? s.q+) #f s+))
      (not +?))
    (stepping-stone! supply demand costs M)))

(: matrix->list (All (T) ((V2 T) -> (Listof T))))
(define (matrix->list m)
  (for*/list : (Listof T) ((r (in-vector m)) (c (in-vector r)) #:when c)
    c))

(define (fix-degenerate-case! [supply : VI] [demand : VI] [costs : V2R] [M : V2-Shipment/?]) : Void
  (define m-list (matrix->list M))
  (unless (= (+ (vector-length supply) (vector-length demand) -1) (length m-list))
    (let/ec ret : Void
      (for* ((r (vector-length supply)) (c (vector-length demand)) #:unless (vector-ref2 M r c))
        (define dummy (Shipment ε (vector-ref2 costs r c) r c))
        (when (null? (get-closed-path dummy M))
          (vector-set!2 M r c dummy)
          (ret (void)))))))

(: get-closed-path (Shipment V2-Shipment/? -> Shipments))
(define (get-closed-path s matrix)
  ; remove (and keep removing) elements that do not have a vertical AND horizontal neighbour
  (define path
    (let loop : Shipment/?s
      ((path (cons s (matrix->list matrix))))
      (define (has-neighbours [e : Shipment/?]) : Boolean
        (match-define (list n0 n1) (get-neighbours e path))
        (and n0 n1 #t))
      (define-values (with-nbrs w/o-nbrs)
        ((inst partition Shipment/? Shipment/?) has-neighbours path))
      (if (null? w/o-nbrs) with-nbrs (loop with-nbrs))))
  
  ;; place the remaining elements in the correct plus-minus order
  (define p-len (length path))
  (define-values (senots prev)
    (for/fold : (Values Shipments Shipment/?)
      ((senots : Shipments null) (prev : Shipment/? s))
      ((i p-len))
      (values (if prev (cons prev senots) senots)
              (list-ref (get-neighbours prev path) (modulo i 2)))))
  (reverse senots))

(define (get-neighbours [s : Shipment/?] [lst : Shipment/?s]) : (List Shipment/? Shipment/?)
  (define-values (n0 n1)
    (for/fold : (Values Shipment/? Shipment/?)
      ((n0 : Shipment/? #f) (n1 : Shipment/? #f))
      ((o (in-list lst)) #:when (and o s) #:unless (equal? o s))              
      (values (or n0 (and (= (Shipment-r s) (Shipment-r o)) o))
              (or n1 (and (= (Shipment-c s) (Shipment-c o)) o)))))
  (list n0 n1))

(define (print-result [S : VI] [D : VI] [M : V2-Shipment/?] [fmt : String] . [args : Any *]) : Real
  (apply printf (string-append fmt "~%") args)
  (define total-costs
    (for*/sum : Real
      ((r (vector-length S)) (c (vector-length D)))
      (when (zero? c) (unless (zero? r) (newline)))
      (define s (vector-ref2 M r c))
      (cond
        [(and s (= (Shipment-r s) r) (= (Shipment-c s) c))
         (define q (Shipment-qty s))
         (printf "\t~a" q)
         (Q*R q (Shipment-cost/unit s))]
        [else (printf "\t-") 0])))
  (printf "~%Total costs: ~a~%~%" total-costs)
  total-costs)

;; inits from current-input-port --- make sure you set that before coming in
(define (init) : (Values VI VI V2R V2-Shipment/?)
  (define n-sources (cast (read) Integer))
  (define n-destinations (cast (read) Integer))
  (define srcs. (for/list : (Listof Integer) ((_ n-sources)) (cast (read) Integer)))
  (define dsts. (for/list : (Listof Integer) ((_ n-destinations)) (cast (read) Integer)))
  
  (define sum-src--sum-dest (- (apply + srcs.) (apply + dsts.)))
  
  (define-values (supply demand)
    (cond [(positive? sum-src--sum-dest) (values srcs. (append dsts. (list sum-src--sum-dest)))]
          [(negative? sum-src--sum-dest) (values (append srcs. (list (- sum-src--sum-dest))) dsts.)]
          [else (values srcs. dsts.)]))
  
  (define s-l (length supply))
  (define d-l (length demand))
  (define costs (for/vector : V2R ((_ s-l)) ((inst make-vector Real) d-l 0)))
  (define matrix (for/vector : V2-Shipment/? ((_ s-l)) ((inst make-vector Shipment/?) d-l #f)))
  (for* ((i n-sources) (j n-destinations)) (vector-set!2 costs i j (cast (read) Real)))
  (values (list->vector supply) (list->vector demand) costs matrix))

(: transportation-problem (Input-Port -> Real))
(define (transportation-problem p)
  (parameterize ([current-input-port p])
    (define name (read))
    (define-values (supply demand costs matrix) (init))
    (northwest-corner-rule! supply demand costs matrix)
    (stepping-stone! supply demand costs matrix)
    (print-result supply demand matrix "Optimal solutions for: ~s" name)))

(module+ test
  (require typed/rackunit)
  (define (check-tp [in-str : String] [expected-cost : Real])
    (define cost ((inst call-with-input-string Real) in-str transportation-problem))
    (check-equal? cost expected-cost))

  (check-tp #<<$
input1
 2 3
25 35
20 30 10
3 5 7
3 2 5
$
            180)
  
  (check-tp #<<$
input2
3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8 
$
            130)

  (check-tp #<<$
input3
4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45
$
            1000))
Output:

Output of: raco test Transportation-problem.rkt:

raco test: (submod "transportation-problem.rkt" test)
Optimal solutions for: input1
        20      -       5
        -       30      5
Total costs: 180

Optimal solutions for: input2
        -       -       -       12
        20      -       10      10
        -       30      -       3
Total costs: 130

Optimal solutions for: input3
        -       -       -       14
        -       9       -       1
        10      -       5       -
        -       5       7       -
        -       1       -       -
Total costs: 1000

3 tests passed

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.03.1

Using Vogel's approximation method:

my  %costs = :S1{:3C1, :5C2, :7C3}, :S2{:3C1, :2C2, :5C3};
my %demand = :20C1, :30C2, :10C3;
my %supply = :25S1, :35S2;

my @cols = %demand.keys.sort;

my %res;
my %g = (|%supply.keys.map: -> $x { $x => [%costs{$x}.sort(*.value)».key]}),
   (|%demand.keys.map: -> $x { $x => [%costs.keys.sort({%costs{$_}{$x}})]});

while (+%g) {
    my @d = %demand.keys.map: -> $x
      {[$x, my $z = %costs{%g{$x}[0]}{$x},%g{$x}[1] ?? %costs{%g{$x}[1]}{$x} - $z !! $z]}

    my @s = %supply.keys.map: -> $x
      {[$x, my $z = %costs{$x}{%g{$x}[0]},%g{$x}[1] ?? %costs{$x}{%g{$x}[1]} - $z !! $z]}

    @d = |@d.grep({ (.[2] == max @d».[2]) }).&min: :by(*.[1]);
    @s = |@s.grep({ (.[2] == max @s».[2]) }).&min: :by(*.[1]);

    my ($t, $f) = @d[2] == @s[2] ?? (@s[1],@d[1]) !! (@d[2],@s[2]);
    my ($d, $s) = $t > $f ?? (@d[0],%g{@d[0]}[0]) !! (%g{@s[0]}[0], @s[0]);

    my $v = %supply{$s} min %demand{$d};

    %res{$s}{$d} += $v;
    %demand{$d} -= $v;

    if (%demand{$d} == 0) {
        %supply.grep( *.value != 0 )».key.map: -> $v
          { %g{$v}.splice((%g{$v}.first: * eq $d, :k),1) };
        %g{$d}:delete;
        %demand{$d}:delete;
    }

    %supply{$s} -= $v;

    if (%supply{$s} == 0) {
        %demand.grep( *.value != 0 )».key.map: -> $v
          { %g{$v}.splice((%g{$v}.first: * eq $s, :k),1) };
        %g{$s}:delete;
        %supply{$s}:delete;
    }
}

say join "\t", flat '', @cols;
my $total;
for %costs.keys.sort -> $g {
    print "$g\t";
    for @cols -> $col {
        print %res{$g}{$col} // '-', "\t";
        $total += (%res{$g}{$col} // 0) * %costs{$g}{$col};
    }
    print "\n";
}
say "\nTotal cost: $total";
Output:
	C1	C2	C3
S1	20	-	5	
S2	-	30	5	

REXX

Translation of: Java
/* REXX ***************************************************************
* Solve the Transportation Problem using the Northwest Corner Method
Default Input
2 3        # of sources / # of demands
25 35      sources
20 30 10   demands
3 5 7      cost matrix
3 2 5
* 20201210 support no input file -courtesy GS
*          Note: correctnes of input is not checked
* 20201226 add optimization
* 20210103 remove debug code
**********************************************************************/
Signal On Halt
Signal On Novalue
Signal On Syntax

Parse Arg fid
If fid='' Then
  fid='input1.txt'
Call init
matrix.=0
ms=0
Do r=1 To rr
  Do c=1 To cc
    matrix.r.c=r c cost.r.c 0
    End
  End
r=1
c=1
Do While r<=rr & c<=cc
  q=min(source.r,demand.c)
  matrix.r.c=r c cost.r.c q
  source.r=source.r-q
  demand.c=demand.c-q
  If source.r=0 Then r=r+1
  If demand.c=0 Then c=c+1
  End
Call show_alloc 'after NWC application'
Call steppingstone
Exit

/**********************************************************************
* Subroutines for NWC Algorithm
**********************************************************************/

init:
If lines(fid)=0 Then Do
  Say 'Input file not specified or not found. Using default input instead.'
  fid='Default input'
  in.1=sourceline(4)
  Parse Var in.1 numSources .
  Do i=2 To numSources+3
    in.i=sourceline(i+3)
    End
  End
Else Do
  Do i=1 By 1 while lines(fid)>0
    in.i=linein(fid)
    End
  End
Parse Var in.1 numSources numDestinations . 1 rr cc .
source_sum=0
Do i=1 To numSources
  Parse Var in.2 source.i in.2
  ss.i=source.i
  source_in.i=source.i
  source_sum=source_sum+source.i
  End
l=linein(fid)
demand_sum=0
Do i=1 To numDestinations
  Parse Var in.3 demand.i in.3
  dd.i=demand.i
  demand_in.i=demand.i
  demand_sum=demand_sum+demand.i
  End
Do i=1 To numSources
  j=i+3
  l=in.j
  Do j=1 To numDestinations
    Parse Var l cost.i.j l
    End
  End
Do i=1 To numSources
  ol=format(source.i,3)
  Do j=1 To numDestinations
    ol=ol format(cost.i.j,4)
    End
  End
ol='   '
Do j=1 To numDestinations
  ol=ol format(demand.j,4)
  End

Select
  When source_sum=demand_sum Then Nop  /* balanced */
  When source_sum>demand_sum Then Do   /* unbalanced - add dummy demand */
    Say 'This is an unbalanced case (sources exceed demands). We add a dummy consumer.'
    cc=cc+1
    demand.cc=source_sum-demand_sum
    demand_in.cc=demand.cc
    dd.cc=demand.cc
    Do r=1 To rr
      cost.r.cc=0
      End
    End
  Otherwise /* demand_sum>source_sum */ Do /* unbalanced - add dummy source */
    Say 'This is an unbalanced case (demands exceed sources). We add a dummy source.'
    rr=rr+1
    source.rr=demand_sum-source_sum
    source_in.rr=source.rr
    ss.rr=source.rr
    Do c=1 To cc
      cost.rr.c=0
      End
    End
  End
Say 'Sources / Demands / Cost'
ol='    '
Do c=1 To cc
  ol=ol format(demand.c,3)
  End
Say ol

Do r=1 To rr
  ol=format(source.r,4)
  Do c=1 To cc
    ol=ol format(cost.r.c,3)
    End
  Say ol
  End
Return

show_alloc: Procedure Expose matrix. rr cc demand_in. source_in.
Parse Arg header
If header='' Then
  Return
Say ''
Say header
total=0
ol='    '
Do c=1 to cc
  ol=ol format(demand_in.c,3)
  End
Do r=1 to rr
  ol=format(source_in.r,4)
  a=word(matrix.r.1,4)
  If a>0 Then
    ol=format(a,4)
  Else
    ol='  - '
  total=total+word(matrix.r.1,4)*word(matrix.r.1,3)
  Do c=2 To cc
    a=word(matrix.r.c,4)
    If a>0 Then
      ol=ol format(a,4)
    Else
      ol=ol '  - '
    total=total+word(matrix.r.c,4)*word(matrix.r.c,3)
    End
  Say ol
  End
Say 'Total costs:' format(total,4,1)
Return

/**********************************************************************
* Subroutines for Optimization
**********************************************************************/

steppingstone: Procedure Expose matrix. cost. rr cc demand_in.,
                                                     source_in. fid
maxReduction=0
move=''

Call fixDegenerateCase

Do r=1 To rr
  Do c=1 To cc
    Parse Var matrix.r.c r c cost qrc
    If qrc=0 Then Do
      path=getclosedpath(r,c)
      reduction = 0
      lowestQuantity = 1e10
      leavingCandidate = ''
      plus=1
      pathx=path
      Do While pathx<>''
        Parse Var pathx s '|' pathx
        If plus Then
          reduction=reduction+word(s,3)
        Else Do
          reduction=reduction-word(s,3)
          If word(s,4)<lowestQuantity Then Do
            leavingCandidate = s
            lowestQuantity = word(s,4)
            End
          End
        plus=\plus
        End
      If reduction < maxreduction Then Do
        move=path
        leaving=leavingCandidate
        maxReduction = reduction
        End
      End
    End
  End
if move <> '' Then Do
  quant=word(leaving,4)
  plus=1
  Do While move<>''
    Parse Var move m '|' move
    Parse Var m r c cpu qrc
    Parse Var matrix.r.c vr vc vcost vquant
    If plus Then
      nquant=vquant+quant
    Else
      nquant=vquant-quant
    matrix.r.c = vr vc vcost nquant
    plus=\plus
    End
  move=''
  Call steppingStone
  End
Else Do
  Call show_alloc 'Optimal Solution' fid
  End
Return

getclosedpath: Procedure Expose matrix. cost. rr cc
Parse Arg rd,cd
path=rd cd cost.rd.cd word(matrix.rd.cd,4)
do r=1 To rr
  Do c=1 To cc
    If word(matrix.r.c,4)>0 Then Do
      path=path'|'r c cost.r.c word(matrix.r.c,4)
      End
    End
  End
path=magic(path)
Return stones(path)

magic: Procedure
Parse Arg list
Do Forever
  list_1=remove_1(list)
  If list_1=list Then Leave
  list=list_1
  End
Return list_1

remove_1: Procedure
Parse Arg list
cntr.=0
cntc.=0
Do i=1 By 1 While list<>''
  parse Var list e.i '|' list
  Parse Var e.i r c .
  cntr.r=cntr.r+1
  cntc.c=cntc.c+1
  End
n=i-1
keep.=1
Do i=1 To n
  Parse Var e.i r c .
  If cntr.r<2 |,
     cntc.c<2 Then Do
    keep.i=0
    End
  End
list=e.1
Do i=2 To n
  If keep.i Then
    list=list'|'e.i
  End
Return list

stones: Procedure
Parse Arg lst
tstc=lst
Do i=1 By 1 While tstc<>''
  Parse Var tstc o.i '|' tstc
  end
stones=lst
o.0=i-1
prev=o.1
Do i=1 To o.0
  st.i=prev
  k=i//2
  nbrs=getNeighbors(prev, lst)
  Parse Var nbrs n.1 '|' n.2
  If k=0 Then
    prev=n.2
  Else
    prev=n.1
  End
stones=st.1
Do i=2 To o.0
  stones=stones'|'st.i
  End
Return stones

getNeighbors: Procedure
parse Arg s, lst
Do i=1 By 1 While lst<>''
  Parse Var lst o.i '|' lst
  End
o.0=i-1
nbrs.=''
sr=word(s,1)
sc=word(s,2)
Do i=1 To o.0
  If o.i<>s Then Do
    or=word(o.i,1)
    oc=word(o.i,2)
    If or=sr & nbrs.0='' Then
      nbrs.0 = o.i
    else if oc=sc & nbrs.1='' Then
      nbrs.1 = o.i
    If nbrs.0<>'' & nbrs.1<>'' Then
      Leave
    End
  End
return nbrs.0'|'nbrs.1

pelems: Procedure
Parse Arg p
Do i=1 By 1 While p<>''
  Parse Var p x '|' p
  End
Return i

fixDegenerateCase: Procedure Expose matrix. rr cc ms
Call matrixtolist
If (rr+cc-1)<>ms Then Do
  Do r=1 To rr
    Do c=1 To cc
      If word(matrix.r.c,4)=0 Then Do
        matrix.r.c=subword(matrix.r.c,1,3) 1.e-10
        Return
        End
      End
    End
  End
Return

matrixtolist: Procedure Expose matrix. rr cc ms
ms=0
list=''
Do r=1 To rr
  Do c=1 To cc
    If word(matrix.r.c,4)>0 Then Do
      list=list'|'matrix.r.c
      ms=ms+1
      End
    End
  End
Return strip(list,,'|')

Novalue:
  Say 'Novalue raised in line' sigl
  Say sourceline(sigl)
  Say 'Variable' condition('D')
  Signal lookaround

Syntax:
  Say 'Syntax raised in line' sigl
  Say sourceline(sigl)
  Say 'rc='rc '('errortext(rc)')'

halt:
lookaround:
  If fore() Then Do
    Say 'You can look around now.'
    Trace ?R
    Nop
    End
  Exit 12
Output:
F:\>rexx tpx2 input1.txt
Sources / Demands / Cost
      20  30  10
  25   3   5   7
  35   3   2   5

after NWC application
  20    5   -
  -    25   10
Total costs:  185.0

Optimal Solution input1.txt
  20   -     5
  -    30    5
Total costs:  180.0

F:\>rexx tpx2 input2.txt
This is an unbalanced case (sources exceed demands). We add a dummy consumer.
Sources / Demands / Cost
      20  30  10  25
  12   3   5   7   0
  40   2   4   6   0
  33   9   1   8   0

after NWC application
  12   -    -    -
   8   30    2   -
  -    -     8   25
Total costs:  248.0

Optimal Solution input2.txt
  -    -    -    12
  20   -    10   10
  -    30   -     3
Total costs:  130.0

F:\>rexx tpx2 input3.txt
This is an unbalanced case (demands exceed sources). We add a dummy source.
Sources / Demands / Cost
      10  15  12  15
  14  10  30  25  15
  10  20  15  20  10
  15  10  30  20  20
  12  30  40  35  45
   1   0   0   0   0

after NWC application
  10    4   -    -
  -    10   -    -
  -     1   12    2
  -    -    -    12
  -    -    -     1
Total costs: 1220.0

Optimal Solution input3.txt
  -    -    -    14
  -     9   -     1
  10   -     5   -
  -     5    7   -
  -     1   -    -
Total costs: 1000.0

SAS

Use network solver in SAS/OR:

/* create SAS data sets */
data cost_data;
   input from $ to $ cost; 
   datalines;
s1 c1 3
s1 c2 5
s1 c3 7
s2 c1 3
s2 c2 2
s2 c3 5
;

data supply_data;
   input node $ supply;
   datalines;
s1  25
s2  35
c1 -20
c2 -30
c3 -10
;

/* call OPTMODEL procedure in SAS/OR */
proc optmodel;
   /* declare sets and parameters, and read input data */
   set <str,str> LINKS;
   num cost {LINKS};
   read data cost_data into LINKS=[from to] cost;
   set NODES = union {<i,j> in LINKS} {i,j};
   num supply {NODES} init 0;
   read data supply_data into [node] supply;
   num flow {LINKS};

   /* call network solver */
   solve with network /
      mincostflow links=(weight=cost) nodes=(weight=supply) direction=directed out=(flow=flow);

   /* print optimal solution */
   print _OROPTMODEL_NUM_['OBJECTIVE'];
   print flow;
quit;

Output:

180 

flow 
  c1 c2 c3 
s1 20 0 5 
s2 0 30 5 

Visual Basic .NET

Translation of: C#
Module Module1

    Class Shipment
        Public Sub New(q As Double, cpu As Double, rv As Integer, cv As Integer)
            Quantity = q
            CostPerUnit = cpu
            R = rv
            C = cv
        End Sub

        Public ReadOnly Property CostPerUnit() As Double

        Public Property Quantity() As Double

        Public ReadOnly Property R As Integer

        Public ReadOnly Property C As Integer

        Public Shared Operator =(s1 As Shipment, s2 As Shipment) As Boolean
            Return s1.CostPerUnit = s2.CostPerUnit _
                AndAlso s1.Quantity = s2.Quantity _
                AndAlso s1.R = s2.R _
                AndAlso s1.C = s2.C
        End Operator

        Public Shared Operator <>(s1 As Shipment, s2 As Shipment) As Boolean
            Return s1.CostPerUnit <> s2.CostPerUnit _
                OrElse s1.Quantity <> s2.Quantity _
                OrElse s1.R <> s2.R _
                OrElse s1.C <> s2.C
        End Operator
    End Class

    Class Program
        Private demand() As Integer
        Private supply() As Integer
        Private costs(,) As Double
        Private matrix(,) As Shipment

        Sub Init(filename As String)
            Dim file = My.Computer.FileSystem.OpenTextFileReader(filename)
            Dim line = file.ReadLine
            Dim numArr = line.Split
            Dim numSources = Integer.Parse(numArr(0))
            Dim numDestinations = Integer.Parse(numArr(1))

            Dim src As New List(Of Integer)
            Dim dst As New List(Of Integer)

            line = file.ReadLine
            numArr = line.Split
            For i = 1 To numSources
                src.Add(Integer.Parse(numArr(i - 1)))
            Next

            line = file.ReadLine
            numArr = line.Split
            For i = 1 To numDestinations
                dst.Add(Integer.Parse(numArr(i - 1)))
            Next

            REM fix imbalance
            Dim totalSrc = src.Sum
            Dim totalDst = dst.Sum
            If totalSrc > totalDst Then
                dst.Add(totalSrc - totalDst)
            ElseIf totalDst > totalSrc Then
                src.Add(totalDst - totalSrc)
            End If

            supply = src.ToArray
            demand = dst.ToArray

            ReDim costs(supply.Length - 1, demand.Length - 1)
            ReDim matrix(supply.Length - 1, demand.Length - 1)

            For i = 1 To numSources
                line = file.ReadLine
                numArr = line.Split
                For j = 1 To numDestinations
                    costs(i - 1, j - 1) = Integer.Parse(numArr(j - 1))
                Next
            Next
        End Sub

        Sub NorthWestCornerRule()
            Dim northwest = 1
            For r = 1 To supply.Length
                For c = northwest To demand.Length
                    Dim quantity = Math.Min(supply(r - 1), demand(c - 1))
                    If quantity > 0 Then
                        matrix(r - 1, c - 1) = New Shipment(quantity, costs(r - 1, c - 1), r - 1, c - 1)

                        supply(r - 1) -= quantity
                        demand(c - 1) -= quantity

                        If supply(r - 1) = 0 Then
                            northwest = c
                            Exit For
                        End If
                    End If
                Next
            Next
        End Sub

        Sub SteppingStone()
            Dim maxReduction = 0.0
            Dim move() As Shipment = Nothing
            Dim leaving As Shipment = Nothing

            FixDegenerateCase()

            For r = 1 To supply.Length
                For c = 1 To demand.Length
                    If Not IsNothing(matrix(r - 1, c - 1)) Then
                        Continue For
                    End If

                    Dim trial As New Shipment(0, costs(r - 1, c - 1), r - 1, c - 1)
                    Dim path = GetClosedPath(trial)

                    Dim reduction = 0.0
                    Dim lowestQuanity = Integer.MaxValue
                    Dim leavingCandidate As Shipment = Nothing

                    Dim plus = True
                    For Each s In path
                        If plus Then
                            reduction += s.CostPerUnit
                        Else
                            reduction -= s.CostPerUnit
                            If s.Quantity < lowestQuanity Then
                                leavingCandidate = s
                                lowestQuanity = s.Quantity
                            End If
                        End If
                        plus = Not plus
                    Next
                    If reduction < maxReduction Then
                        move = path
                        leaving = leavingCandidate
                        maxReduction = reduction
                    End If
                Next
            Next

            If Not IsNothing(move) Then
                Dim q = leaving.Quantity
                Dim plus = True
                For Each s In move
                    s.Quantity += If(plus, q, -q)
                    matrix(s.R, s.C) = If(s.Quantity = 0, Nothing, s)
                    plus = Not plus
                Next
                SteppingStone()
            End If
        End Sub

        Sub FixDegenerateCase()
            Const eps = Double.Epsilon
            If supply.Length + demand.Length - 1 <> MatrixToList().Count Then
                For r = 1 To supply.Length
                    For c = 1 To demand.Length
                        If IsNothing(matrix(r - 1, c - 1)) Then
                            Dim dummy As New Shipment(eps, costs(r - 1, c - 1), r - 1, c - 1)
                            If GetClosedPath(dummy).Length = 0 Then
                                matrix(r - 1, c - 1) = dummy
                                Return
                            End If
                        End If
                    Next
                Next
            End If
        End Sub

        Function MatrixToList() As List(Of Shipment)
            Dim newList As New List(Of Shipment)
            For Each item In matrix
                If Not IsNothing(item) Then
                    newList.Add(item)
                End If
            Next
            Return newList
        End Function

        Function GetClosedPath(s As Shipment) As Shipment()
            Dim path = MatrixToList()
            path.Add(s)

            REM remove (and keep removing) elements that do not have a veritcal AND horizontal neighbor
            Dim before As Integer
            Do
                before = path.Count
                path.RemoveAll(Function(ship)
                                   Dim nbrs = GetNeighbors(ship, path)
                                   Return IsNothing(nbrs(0)) OrElse IsNothing(nbrs(1))
                               End Function)
            Loop While before <> path.Count

            REM place the remaining elements in the correct plus-minus order
            Dim stones = path.ToArray
            Dim prev = s
            For i = 1 To stones.Length
                stones(i - 1) = prev
                prev = GetNeighbors(prev, path)((i - 1) Mod 2)
            Next
            Return stones
        End Function

        Function GetNeighbors(s As Shipment, lst As List(Of Shipment)) As Shipment()
            Dim nbrs() As Shipment = {Nothing, Nothing}
            For Each o In lst
                If o <> s Then
                    If o.R = s.R AndAlso IsNothing(nbrs(0)) Then
                        nbrs(0) = o
                    ElseIf o.C = s.C AndAlso IsNothing(nbrs(1)) Then
                        nbrs(1) = o
                    End If
                    If Not IsNothing(nbrs(0)) AndAlso Not IsNothing(nbrs(1)) Then
                        Exit For
                    End If
                End If
            Next
            Return nbrs
        End Function

        Sub PrintResult(filename As String)
            Console.WriteLine("Optimal solution {0}" + vbNewLine, filename)
            Dim totalCosts = 0.0

            For r = 1 To supply.Length
                For c = 1 To demand.Length
                    Dim s = matrix(r - 1, c - 1)
                    If Not IsNothing(s) AndAlso s.R = r - 1 AndAlso s.C = c - 1 Then
                        Console.Write(" {0,3} ", s.Quantity)
                        totalCosts += (s.Quantity * s.CostPerUnit)
                    Else
                        Console.Write("  -  ")
                    End If
                Next
                Console.WriteLine()
            Next
            Console.WriteLine(vbNewLine + "Total costs: {0}" + vbNewLine, totalCosts)
        End Sub
    End Class

    Sub Main()
        For Each filename In {"input1.txt", "input2.txt", "input3.txt"}
            Dim p As New Program
            p.Init(filename)
            p.NorthWestCornerRule()
            p.SteppingStone()
            p.PrintResult(filename)
        Next
    End Sub

End Module
Output:
Optimal solution input1.txt

  20   -     5
  -    30    5

Total costs: 180

Optimal solution input2.txt

  -    -    -    12
  20   -    10   10
  -    30   -     3

Total costs: 130

Optimal solution input3.txt

  -    -    -    14
  -     9   -     1
  10   -     5   -
  -     5    7   -
  -     1   -    -

Total costs: 1000

Wren

Translation of: Java
Library: Wren-dynamic
Library: Wren-ioutil
Library: Wren-math
Library: Wren-seq
Library: Wren-fmt
import "./dynamic" for Struct
import "./ioutil" for FileUtil, File
import "./math" for Nums
import "./seq" for Lst
import "./fmt" for Fmt

var Shipment = Struct.create("Shipment", ["quantity", "costPerUnit", "r", "c"])

class Transport {
    construct new(filename) {
        var lines = FileUtil.readLines(filename)
        var split = lines[0].split(" ")
        var numSources = Num.fromString(split[0])
        var numDests   = Num.fromString(split[1])
        var src = List.filled(numSources, 0)
        var dst = List.filled(numDests, 0)
        split = lines[1].split(" ")
        for (i in 0...numSources) src[i] = Num.fromString(split[i])
        split = lines[2].split(" ")
        for (i in 0...numDests) dst[i] = Num.fromString(split[i])

        // fix imbalance
        var totalSrc = Nums.sum(src)
        var totalDst = Nums.sum(dst)
        if (totalSrc > totalDst) {
            dst.add(totalSrc - totalDst)
        } else if (totalDst > totalSrc) {
            src.add(totalDst - totalSrc)
        }
        _supply = src
        _demand = dst
        _costs  = List.filled(_supply.count, null)
        _matrix = List.filled(_supply.count, null)
        for (i in 0..._supply.count) {
            _costs[i]  = List.filled(_demand.count, 0)
            _matrix[i] = List.filled(_demand.count, null)
        }
        for (i in 0...numSources) {
            split = lines[i + 3].split(" ")
            for (j in 0...numDests) _costs[i][j] = Num.fromString(split[j])
        }
        _filename = filename
    }

    northWestCornerRule() {
        var northwest = 0
        for (r in 0..._supply.count) {
            var c = northwest
            while (c < _demand.count) {
                var quantity = _supply[r].min(_demand[c])
                if (quantity > 0) {
                    _matrix[r][c] = Shipment.new(quantity, _costs[r][c], r, c)
                    _supply[r] = _supply[r] - quantity.floor
                    _demand[c] = _demand[c] - quantity.floor
                    if (_supply[r] == 0) {
                        northwest = c
                        break
                    }
                }
                c = c + 1
            }
        }
    }

    steppingStone() {
        var maxReduction = 0
        var move = null
        var leaving = null
        fixDegenerateCase_()

        for (r in 0..._supply.count) {
            for (c in 0..._demand.count) {
                if (_matrix[r][c] != null) continue
                var trial = Shipment.new(0, _costs[r][c], r, c)
                var path = getClosedPath_(trial)
                var reduction = 0
                var lowestQuantity = Num.maxSafeInteger
                var leavingCandidate = null
                var plus = true
                for (s in path) {
                    if (plus) {
                        reduction = reduction + s.costPerUnit
                    } else {
                        reduction = reduction - s.costPerUnit
                        if (s.quantity < lowestQuantity) {
                            leavingCandidate = s
                            lowestQuantity = s.quantity
                        }
                    }
                    plus = !plus
                }
                if (reduction < maxReduction) {
                    move = path
                    leaving = leavingCandidate
                    maxReduction = reduction
                }
            }
        }

        if (move) {
            var q = leaving.quantity
            var plus = true
            for (s in move) {
                s.quantity = s.quantity + ((plus) ? q : -q)
                _matrix[s.r][s.c] = (s.quantity == 0) ? null : s
                plus = !plus
            }
            steppingStone()
        }
    }

    matrixToList_() { Lst.flatten(_matrix).where { |s| s != null }.toList }

    getClosedPath_(s) {
        var path = matrixToList_()
        path.insert(0, s)
        // remove (and keep removing) elements that do not have a
        // vertical AND horizontal neighbor
        while (true) {
            var removals = 0
            for (e in path) {
                var nbrs = getNeighbors_(e, path)
                if (nbrs[0] == null || nbrs[1] == null) {
                    path.remove(e)
                    removals = removals + 1
                }
            }
            if (removals == 0) break
        }

        // place the remaining elements in the correct plus-minus order
        var stones = List.filled(path.count, null)
        var prev = s
        for (i in 0...stones.count) {
            stones[i] = prev
            prev = getNeighbors_(prev, path)[i % 2]
        }
        return stones
    }

    getNeighbors_(s, lst) {
        var nbrs = List.filled(2, null)
        for (o in lst) {
            if (o != s) {
                if (o.r == s.r && nbrs[0] == null) {
                    nbrs[0] = o
                } else if (o.c == s.c && nbrs[1] == null) {
                    nbrs[1] = o
                }
                if (nbrs[0] != null && nbrs[1] != null) break
            }
        }
        return nbrs
    }

    fixDegenerateCase_() {
        var eps = Num.smallest
        if (_supply.count + _demand.count - 1 != matrixToList_().count) {
            for (r in 0..._supply.count) {
                for (c in 0..._demand.count) {
                    if (_matrix[r][c] == null) {
                        var dummy = Shipment.new(eps, _costs[r][c], r, c)
                        if (getClosedPath_(dummy).count == 0) {
                            _matrix[r][c] = dummy
                            return
                        }
                    }
                }
            }
        }
    }

    printResult() {
        var text = File.read(_filename)
        System.print("%(_filename)\n\n%(text)")
        System.print("Optimal solution %(_filename)\n")
        var totalCosts = 0
        for (r in 0..._supply.count) {
            for (c in 0..._demand.count) {
                var s = _matrix[r][c]
                if (s != null && s.r == r && s.c == c) {
                    Fmt.write(" $3d ", s.quantity.floor)
                    totalCosts = totalCosts + s.quantity * s.costPerUnit
                } else System.write("  -  ")
            }
            System.print()
        }
        System.print("\nTotal costs: %(totalCosts)\n")
    }
}

var filenames = ["input1.txt", "input2.txt", "input3.txt"]
for (filename in filenames) {
    var t = Transport.new(filename)
    t.northWestCornerRule()
    t.steppingStone()
    t.printResult()
}
Output:
input1.txt

2 3
25 35
20 30 10
3 5 7
3 2 5

Optimal solution input1.txt

  20   -     5 
  -    30    5 

Total costs: 180

input2.txt

3 3
12 40 33
20 30 10
3 5 7
2 4 6
9 1 8

Optimal solution input2.txt

  -    -    -    12 
  20   -    10   10 
  -    30   -     3 

Total costs: 130

input3.txt

4 4
14 10 15 12
10 15 12 15
10 30 25 15
20 15 20 10
10 30 20 20
30 40 35 45

Optimal solution input3.txt

  -    -    -    14 
  -     9   -     1 
  10   -     5   -  
  -     5    7   -  
  -     1   -    -  

Total costs: 1000
Cookies help us deliver our services. By using our services, you agree to our use of cookies.