A* search algorithm

From Rosetta Code
A* search algorithm is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The A* search algorithm is an extension of Dijkstra's algorithm useful for finding the lowest cost path between two nodes (aka vertices) of a graph. The path may traverse any number of nodes connected by edges (aka arcs) with each edge having an associated cost. The algorithm uses a heuristic which associates an estimate of the lowest cost path from this node to the goal node, such that this estimate is never greater than the actual cost.

The algorithm should not assume that all edge costs are the same. It should be possible to start and finish on any node, including ones identified as a barrier in the task.

Task

Consider the problem of finding a route across the diagonal of a chess board-like 8x8 grid. The rows are numbered from 0 to 7. The columns are also numbered 0 to 7. The start position is (0, 0) and the end position is (7, 7). Movement is allow by one square in any direction including diagonals, similar to a king in chess. The standard movement cost is 1. To make things slightly harder, there is a barrier that occupy certain positions of the grid. Moving into any of the barrier positions has a cost of 100.

The barrier occupies the positions (2,4), (2,5), (2,6), (3,6), (4,6), (5,6), (5,5), (5,4), (5,3), (5,2), (4,2) and (3,2).

A route with the lowest cost should be found using the A* search algorithm (there are multiple optimal solutions with the same total cost).

Print the optimal route in text format, as well as the total cost of the route.

Optionally, draw the optimal route and the barrier positions.

Note: using a heuristic score of zero is equivalent to Dijkstra's algorithm and that's kind of cheating/not really A*!

Extra Credit

Use this algorithm to solve an 8 puzzle. Each node of the input graph will represent an arrangement of the tiles. The nodes will be connected by 4 edges representing swapping the blank tile up, down, left, or right. The cost of each edge is 1. The heuristic will be the sum of the manhatten distance of each numbered tile from its goal position. An 8 puzzle graph will have 9!/2 (181,440) nodes. The 15 puzzle has over 10 trillion nodes. This algorithm may solve simple 15 puzzles (but there are not many of those).

See also


Related tasks



C

<lang c>

  1. include <stdlib.h>
  2. include <stdio.h>
  3. include <string.h>
  4. include <float.h>

/* and not not_eq */

  1. include <iso646.h>

/* add -lm to command line to compile with this header */

  1. include <math.h>
  1. define map_size_rows 10
  2. define map_size_cols 10

char map[map_size_rows][map_size_cols] = {

   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
   {1, 0, 0, 0, 0, 0, 0, 0, 0, 1},
   {1, 0, 0, 0, 0, 0, 0, 0, 0, 1},
   {1, 0, 0, 0, 0, 1, 1, 1, 0, 1},
   {1, 0, 0, 1, 0, 0, 0, 1, 0, 1},
   {1, 0, 0, 1, 0, 0, 0, 1, 0, 1},
   {1, 0, 0, 1, 1, 1, 1, 1, 0, 1},
   {1, 0, 0, 0, 0, 0, 0, 0, 0, 1},
   {1, 0, 0, 0, 0, 0, 0, 0, 0, 1},
   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

};

/* description of graph node */ struct stop {

   double col, row;
   /* array of indexes of routes from this stop to neighbours in array of all routes */
   int * n;
   int n_len;
   double f, g, h;
   int from;

};

int ind[map_size_rows][map_size_cols] = {

   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
   {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}

};

/* description of route between two nodes */ struct route {

   /* route has only one direction! */
   int x; /* index of stop in array of all stops of src of this route */
   int y; /* intex of stop in array of all stops od dst of this route */
   double d;

};

int main() {

   int i, j, k, l, b, found;
   int p_len = 0;
   int * path = NULL;
   int c_len = 0;
   int * closed = NULL;
   int o_len = 1;
   int * open = (int*)calloc(o_len, sizeof(int));
   double min, tempg;
   int s;
   int e;
   int current;
   int s_len = 0;
   struct stop * stops = NULL;
   int r_len = 0;
   struct route * routes = NULL;
   for (i = 1; i < map_size_rows - 1; i++) {
       for (j = 1; j < map_size_cols - 1; j++) {
           if (!map[i][j]) {
               ++s_len;
               stops = (struct stop *)realloc(stops, s_len * sizeof(struct stop));
               int t = s_len - 1;
               stops[t].col = j;
               stops[t].row = i;
               stops[t].from = -1;
               stops[t].g = DBL_MAX;
               stops[t].n_len = 0;
               stops[t].n = NULL;
               ind[i][j] = t;
           }
       }
   }
   /* index of start stop */
   s = 0;
   /* index of finish stop */
   e = s_len - 1;
   for (i = 0; i < s_len; i++) {
       stops[i].h = sqrt(pow(stops[e].row - stops[i].row, 2) + pow(stops[e].col - stops[i].col, 2));
   }
   for (i = 1; i < map_size_rows - 1; i++) {
       for (j = 1; j < map_size_cols - 1; j++) {
           if (ind[i][j] >= 0) {
               for (k = i - 1; k <= i + 1; k++) {
                   for (l = j - 1; l <= j + 1; l++) {
                       if ((k == i) and (l == j)) {
                           continue;
                       }
                       if (ind[k][l] >= 0) {
                           ++r_len;
                           routes = (struct route *)realloc(routes, r_len * sizeof(struct route));
                           int t = r_len - 1;
                           routes[t].x = ind[i][j];
                           routes[t].y = ind[k][l];
                           routes[t].d = sqrt(pow(stops[routes[t].y].row - stops[routes[t].x].row, 2) + pow(stops[routes[t].y].col - stops[routes[t].x].col, 2));
                           ++stops[routes[t].x].n_len;
                           stops[routes[t].x].n = (int*)realloc(stops[routes[t].x].n, stops[routes[t].x].n_len * sizeof(int));
                           stops[routes[t].x].n[stops[routes[t].x].n_len - 1] = t;
                       }
                   }
               }
           }
       }
   }
   open[0] = s;
   stops[s].g = 0;
   stops[s].f = stops[s].g + stops[s].h;
   found = 0;
   while (o_len and not found) {
       min = DBL_MAX;
       for (i = 0; i < o_len; i++) {
           if (stops[open[i]].f < min) {
               current = open[i];
               min = stops[open[i]].f;
           }
       }
       if (current == e) {
           found = 1;
           ++p_len;
           path = (int*)realloc(path, p_len * sizeof(int));
           path[p_len - 1] = current;
           while (stops[current].from >= 0) {
               current = stops[current].from;
               ++p_len;
               path = (int*)realloc(path, p_len * sizeof(int));
               path[p_len - 1] = current;
           }
       }
       for (i = 0; i < o_len; i++) {
           if (open[i] == current) {
               if (i not_eq (o_len - 1)) {
                   for (j = i; j < (o_len - 1); j++) {
                       open[j] = open[j + 1];
                   }
               }
               --o_len;
               open = (int*)realloc(open, o_len * sizeof(int));
               break;
           }
       }
       ++c_len;
       closed = (int*)realloc(closed, c_len * sizeof(int));
       closed[c_len - 1] = current;
       for (i = 0; i < stops[current].n_len; i++) {
           b = 0;
           for (j = 0; j < c_len; j++) {
               if (routes[stops[current].n[i]].y == closed[j]) {
                   b = 1;
               }
           }
           if (b) {
               continue;
           }
           tempg = stops[current].g + routes[stops[current].n[i]].d;
           b = 1;
           if (o_len > 0) {
               for (j = 0; j < o_len; j++) {
                   if (routes[stops[current].n[i]].y == open[j]) {
                       b = 0;
                   }
               }
           }
           if (b or (tempg < stops[routes[stops[current].n[i]].y].g)) {
               stops[routes[stops[current].n[i]].y].from = current;
               stops[routes[stops[current].n[i]].y].g = tempg;
               stops[routes[stops[current].n[i]].y].f = stops[routes[stops[current].n[i]].y].g + stops[routes[stops[current].n[i]].y].h;
               if (b) {
                   ++o_len;
                   open = (int*)realloc(open, o_len * sizeof(int));
                   open[o_len - 1] = routes[stops[current].n[i]].y;
               }
           }
       }
   }
   for (i = 0; i < map_size_rows; i++) {
       for (j = 0; j < map_size_cols; j++) {
           if (map[i][j]) {
               putchar(0xdb);
           } else {
               b = 0;
               for (k = 0; k < p_len; k++) {
                   if (ind[i][j] == path[k]) {
                       ++b;
                   }
               }
               if (b) {
                   putchar('x');
               } else {
                   putchar('.');
               }
           }
       }
       putchar('\n');
   }
   if (not found) {
       puts("IMPOSSIBLE");
   } else {
       printf("path cost is %d:\n", p_len);
       for (i = p_len - 1; i >= 0; i--) {
           printf("(%1.0f, %1.0f)\n", stops[path[i]].col, stops[path[i]].row);
       }
   }
   for (i = 0; i < s_len; ++i) {
       free(stops[i].n);
   }
   free(stops);
   free(routes);
   free(path);
   free(open);
   free(closed);
   return 0;

} </lang>

Output:
▒▒▒▒▒▒▒▒▒▒
▒x.......▒
▒.x......▒
▒.x..▒▒▒.▒
▒.x▒...▒.▒
▒.x▒...▒.▒
▒.x▒▒▒▒▒.▒
▒..xxxxx.▒
▒.......x▒
▒▒▒▒▒▒▒▒▒▒
path cost is 12:
(1, 1)
(2, 2)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 7)
(4, 7)
(5, 7)
(6, 7)
(7, 7)
(8, 8)

C++

<lang cpp>

  1. include <list>
  2. include <algorithm>
  3. include <iostream>

class point { public:

   point( int a = 0, int b = 0 ) { x = a; y = b; }
   bool operator ==( const point& o ) { return o.x == x && o.y == y; }
   point operator +( const point& o ) { return point( o.x + x, o.y + y ); }
   int x, y;

};

class map { public:

   map() {
       char t[8][8] = {
           {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0},
           {0, 0, 0, 0, 1, 1, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0},
           {0, 0, 1, 0, 0, 0, 1, 0}, {0, 0, 1, 1, 1, 1, 1, 0},
           {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}
       };
       w = h = 8;
       for( int r = 0; r < h; r++ )
           for( int s = 0; s < w; s++ )
               m[s][r] = t[r][s];
   }
   int operator() ( int x, int y ) { return m[x][y]; }
   char m[8][8];
   int w, h;

};

class node { public:

   bool operator == (const node& o ) { return pos == o.pos; }
   bool operator == (const point& o ) { return pos == o; }
   bool operator < (const node& o ) { return dist + cost < o.dist + o.cost; }
   point pos, parent;
   int dist, cost;

};

class aStar { public:

   aStar() {
       neighbours[0] = point( -1, -1 ); neighbours[1] = point(  1, -1 );
       neighbours[2] = point( -1,  1 ); neighbours[3] = point(  1,  1 );
       neighbours[4] = point(  0, -1 ); neighbours[5] = point( -1,  0 );
       neighbours[6] = point(  0,  1 ); neighbours[7] = point(  1,  0 );
   }

   int calcDist( point& p ){
       // need a better heuristic
       int x = end.x - p.x, y = end.y - p.y;
       return( x * x + y * y );
   }

   bool isValid( point& p ) {
       return ( p.x >-1 && p.y > -1 && p.x < m.w && p.y < m.h );
   }

   bool existPoint( point& p, int cost ) {
       std::list<node>::iterator i;
       i = std::find( closed.begin(), closed.end(), p );
       if( i != closed.end() ) {
           if( ( *i ).cost + ( *i ).dist < cost ) return true;
           else { closed.erase( i ); return false; }
       }
       i = std::find( open.begin(), open.end(), p );
       if( i != open.end() ) {
           if( ( *i ).cost + ( *i ).dist < cost ) return true;
           else { open.erase( i ); return false; }
       }
       return false;
   }

   bool fillOpen( node& n ) {
       int stepCost, nc, dist;
       point neighbour;
       for( int x = 0; x < 8; x++ ) {
           // one can make diagonals have different cost
           stepCost = x < 4 ? 1 : 1;
           neighbour = n.pos + neighbours[x];
           if( neighbour == end ) return true;

           if( isValid( neighbour ) && m( neighbour.x, neighbour.y ) != 1 ) {
               nc = stepCost + n.cost;
               dist = calcDist( neighbour );
               if( !existPoint( neighbour, nc + dist ) ) {
                   node m;
                   m.cost = nc; m.dist = dist;
                   m.pos = neighbour; 
                   m.parent = n.pos;
                   open.push_back( m );
               }
           }
       }
       return false;
   }

   bool search( point& s, point& e, map& mp ) {
       node n; end = e; start = s; m = mp;
       n.cost = 0; n.pos = s; n.parent = 0; n.dist = calcDist( s ); 
       open.push_back( n );
       while( !open.empty() ) {
           //open.sort();
           node n = open.front();
           open.pop_front();
           closed.push_back( n );
           if( fillOpen( n ) ) return true;
       }
       return false;
   }

   int path( std::list<point>& path ) {
       path.push_front( end );
       int cost = 1 + closed.back().cost; 
       path.push_front( closed.back().pos );
       point parent = closed.back().parent;

       for( std::list<node>::reverse_iterator i = closed.rbegin(); i != closed.rend(); i++ ) {
           if( ( *i ).pos == parent && !( ( *i ).pos == start ) ) {
               path.push_front( ( *i ).pos );
               parent = ( *i ).parent;
           }
       }
       path.push_front( start );
       return cost;
   }

   map m; point end, start;
   point neighbours[8];
   std::list<node> open;
   std::list<node> closed;

};

int main( int argc, char* argv[] ) {

   map m;
   point s, e( 7, 7 );
   aStar as;

   if( as.search( s, e, m ) ) {
       std::list<point> path;
       int c = as.path( path );
       for( int y = -1; y < 9; y++ ) {
           for( int x = -1; x < 9; x++ ) {
               if( x < 0 || y < 0 || x > 7 || y > 7 || m( x, y ) == 1 )
                   std::cout << char(0xdb);
               else {
                   if( std::find( path.begin(), path.end(), point( x, y ) )!= path.end() )
                       std::cout << "x";
                   else std::cout << ".";
               }
           }
           std::cout << "\n";
       }

       std::cout << "\nPath cost " << c << ": ";
       for( std::list<point>::iterator i = path.begin(); i != path.end(); i++ ) {
           std::cout<< "(" << ( *i ).x << ", " << ( *i ).y << ") ";
       }
   }
   std::cout << "\n\n";
   return 0;

} </lang>

Output:
██████████
█x.......█
█x.......█
█x...███.█
█x.█...█.█
█x.█...█.█
█.x█████.█
█..xxxx..█
█......xx█
██████████

Path cost 11: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 5) (2, 6) (3, 6) (4, 6) (5, 6) (6, 7) (7, 7)


D

ported from c++ code <lang D>

import std.stdio; import std.algorithm; import std.range; import std.array;

struct Point {

   int x;
   int y;
   Point opBinary(string op = "+")(Point o) { return Point( o.x + x, o.y + y ); }

}

struct Map {

   int w = 8;
   int h = 8;
   bool[][] m = [
           [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 1, 0, 0, 0, 1, 0],
           [0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]
       ];

}

struct Node {

   Point pos;
   Point parent;
   int dist;
   int cost;
   bool opEquals(const Node n) { return pos == n.pos;  }
   bool opEquals(const Point p) { return pos == p;  }
   int opCmp(ref const Node n) const { return (n.dist + n.cost) - (dist + cost); }

};

struct AStar {

   Map m;
   Point end;
   Point start;
  	Point[8] neighbours = [Point(-1,-1), Point(1,-1), Point(-1,1), Point(1,1), Point(0,-1), Point(-1,0), Point(0,1), Point(1,0)];
   Node[] open;
   Node[] closed;
   int calcDist(Point b) {
       // need a better heuristic
       int x = end.x - b.x, y = end.y - b.y;
       return( x * x + y * y );
   }
   
   bool isValid(Point b) {
       return ( b.x >-1 && b.y > -1 && b.x < m.w && b.y < m.h );
   }

   bool existPoint(Point b, int cost) {
       auto i = closed.countUntil(b);
       if( i != -1 ) {
           if( closed[i].cost + closed[i].dist < cost ) return true;
           else { closed = closed.remove!(SwapStrategy.stable)(i); return false; }
       }
       i = open.countUntil(b);
       if( i != -1 ) {
           if( open[i].cost + open[i].dist < cost ) return true;
           else { open = open.remove!(SwapStrategy.stable)(i); return false; }
       }
       return false;
   }

   bool fillOpen( ref Node n ) {
       int stepCost;
       int nc;
       int dist;
       Point neighbour;

       for( int x = 0; x < 8; ++x ) {
           // one can make diagonals have different cost
           stepCost = x < 4 ? 1 : 1;
           neighbour = n.pos + neighbours[x];
           if( neighbour == end ) return true;

           if( isValid( neighbour ) && m.m[neighbour.y][neighbour.x] != 1 ) {
               nc = stepCost + n.cost;
               dist = calcDist( neighbour );
               if( !existPoint( neighbour, nc + dist ) ) {
                   Node m;
                   m.cost = nc; m.dist = dist;
                   m.pos = neighbour; 
                   m.parent = n.pos;
                   open ~= m;
               }
           }
       }
       return false;
   }

   bool search( ref Point s, ref Point e, ref Map mp ) {
       Node n; end = e; start = s; m = mp;
       n.cost = 0; 
       n.pos = s; 
       n.parent = Point(); 
       n.dist = calcDist( s ); 
       open ~= n ;
       while( !open.empty() ) {
           //open.sort();
           Node nx = open.front();
           open = open.drop(1).array;
           closed ~= nx ;
           if( fillOpen( nx ) ) return true;
       }
       return false;
   }

   int path( ref Point[] path ) {
       path = end ~ path;
       int cost = 1 + closed.back().cost; 
       path = closed.back().pos ~ path;
       Point parent = closed.back().parent;

       foreach(ref i ; closed.retro) {
           if( i.pos == parent && !( i.pos == start ) ) {
               path = i.pos ~ path;
               parent = i.parent;
           }
       }
       path = start ~ path;
       return cost;
   }

};

int main(string[] argv) {

   Map m;
   Point s;
   Point e = Point( 7, 7 );
   AStar as;

   if( as.search( s, e, m ) ) {
       Point[] path;
       int c = as.path( path );
       for( int y = -1; y < 9; y++ ) {
           for( int x = -1; x < 9; x++ ) {
               if( x < 0 || y < 0 || x > 7 || y > 7 || m.m[y][x] == 1 )
                   write(cast(char)0xdb);
               else {
                   if( path.canFind(Point(x,y)))
                       write("x");
                   else write(".");
               }
           }
           writeln();
       }

       write("\nPath cost ", c, ": ");
       foreach( i; path ) {
           write("(", i.x, ", ", i.y, ") ");
       }
   }

write("\n\n");

   return 0;

} </lang>

Output:
██████████
█x.......█
█x.......█
█x...███.█
█x.█...█.█
█x.█...█.█
█.x█████.█
█..xxxx..█
█......xx█
██████████

Path cost 11: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 5) (2, 6) (3, 6) (4, 6) (5, 6) (6, 7) (7, 7)

Go

<lang go>// Package astar implements the A* search algorithm with minimal constraints // on the graph representation. package astar

import "container/heap"

// Exported node type. type Node interface {

   To() []Arc               // return list of arcs from this node to another
   Heuristic(from Node) int // heuristic cost from another node to this one

}

// An Arc, actually a "half arc", leads to another node with integer cost. type Arc struct {

   To   Node
   Cost int

}

// rNode holds data for a "reached" node type rNode struct {

   n    Node
   from Node
   l    int // route len
   g    int // route cost
   f    int // "g+h", route cost + heuristic estimate
   fx   int // heap.Fix index

}

type openHeap []*rNode // priority queue

// Route computes a route from start to end nodes using the A* algorithm. // // The algorithm is general A*, where the heuristic is not required to be // monotonic. If a route exists, the function will find a route regardless // of the quality of the Heuristic. For an admissiable heuristic, the route // will be optimal. func Route(start, end Node) (route []Node, cost int) {

   // start node initialized with heuristic
   cr := &rNode{n: start, l: 1, f: end.Heuristic(start)}
   // maintain a set of reached nodes.  start is reached initially
   r := map[Node]*rNode{start: cr}
   // oh is a heap of nodes "open" for exploration.  nodes go on the heap
   // when they get an initial or new "g" route distance, and therefore a
   // new "f" which serves as priority for exploration.
   oh := openHeap{cr}
   for len(oh) > 0 {
       bestRoute := heap.Pop(&oh).(*rNode)
       bestNode := bestRoute.n
       if bestNode == end {
           // done.  prepare return values
           cost = bestRoute.g
           route = make([]Node, bestRoute.l)
           for i := len(route) - 1; i >= 0; i-- {
               route[i] = bestRoute.n
               bestRoute = r[bestRoute.from]
           }
           return
       }
       l := bestRoute.l + 1
       for _, to := range bestNode.To() {
           // "g" route distance from start
           g := bestRoute.g + to.Cost
           if alt, ok := r[to.To]; !ok {
               // alt being reached for the first time
               alt = &rNode{n: to.To, from: bestNode, l: l,
                   g: g, f: g + end.Heuristic(to.To)}
               r[to.To] = alt
               heap.Push(&oh, alt)
           } else {
               if g >= alt.g {
                   continue // candidate route no better than existing route
               }
               // it's a better route
               // update data and make sure it's on the heap
               alt.from = bestNode
               alt.l = l
               alt.g = g
               alt.f = end.Heuristic(alt.n)
               if alt.fx < 0 {
                   heap.Push(&oh, alt)
               } else {
                   heap.Fix(&oh, alt.fx)
               }
           }
       }
   }
   return nil, 0

}

// implement container/heap func (h openHeap) Len() int { return len(h) } func (h openHeap) Less(i, j int) bool { return h[i].f < h[j].f } func (h openHeap) Swap(i, j int) {

   h[i], h[j] = h[j], h[i]
   h[i].fx = i
   h[j].fx = j

}

func (p *openHeap) Push(x interface{}) {

   h := *p
   fx := len(h)
   h = append(h, x.(*rNode))
   h[fx].fx = fx
   *p = h

}

func (p *openHeap) Pop() interface{} {

   h := *p
   last := len(h) - 1
   *p = h[:last]
   h[last].fx = -1
   return h[last]

}</lang> <lang go>package main

import (

   "fmt"
   "astar"

)

// rcNode implements the astar.Node interface type rcNode struct{ r, c int }

var barrier = map[rcNode]bool{{2, 4}: true, {2, 5}: true,

   {2, 6}: true, {3, 6}: true, {4, 6}: true, {5, 6}: true, {5, 5}: true,
   {5, 4}: true, {5, 3}: true, {5, 2}: true, {4, 2}: true, {3, 2}: true}

// graph representation is virtual. Arcs from a node are generated when // requested, but there is no static graph representation. func (fr rcNode) To() (a []astar.Arc) {

   for r := fr.r - 1; r <= fr.r+1; r++ {
       for c := fr.c - 1; c <= fr.c+1; c++ {
           if (r == fr.r && c == fr.c) || r < 0 || r > 7 || c < 0 || c > 7 {
               continue
           }
           n := rcNode{r, c}
           cost := 1
           if barrier[n] {
               cost = 100
           }
           a = append(a, astar.Arc{n, cost})
       }
   }
   return a

}

// The heuristic computed is max of row distance and column distance. // This is effectively the cost if there were no barriers. func (n rcNode) Heuristic(fr astar.Node) int {

   dr := n.r - fr.(rcNode).r
   if dr < 0 {
       dr = -dr
   }
   dc := n.c - fr.(rcNode).c
   if dc < 0 {
       dc = -dc
   }
   if dr > dc {
       return dr
   }
   return dc

}

func main() {

   route, cost := astar.Route(rcNode{0, 0}, rcNode{7, 7})
   fmt.Println("Route:", route)
   fmt.Println("Cost:", cost)

}</lang>

Output:
Route: [{0 0} {1 1} {2 2} {3 1} {4 1} {5 1} {6 2} {6 3} {6 4} {6 5} {6 6} {7 7}]
Cost: 11

JavaScript

Animated.
To see how it works on a random map go here <lang javascript> var ctx, map, opn = [], clsd = [], start = {x:1, y:1, f:0, g:0}, goal = {x:8, y:8, f:0, g:0}, mw = 10, mh = 10, neighbours, path;

function findNeighbour( arr, n ) {

   var a;
   for( var i = 0; i < arr.length; i++ ) {
       a = arr[i];
       if( n.x === a.x && n.y === a.y ) return i;
   }
   return -1;

} function addNeighbours( cur ) {

   var p;
   for( var i = 0; i < neighbours.length; i++ ) {
       var n = {x: cur.x + neighbours[i].x, y: cur.y + neighbours[i].y, g: 0, h: 0, prt: {x:cur.x, y:cur.y}};
       if( map[n.x][n.y] == 1 || findNeighbour( clsd, n ) > -1 ) continue;
       n.g = cur.g + neighbours[i].c; n.h = Math.abs( goal.x - n.x ) + Math.abs( goal.y - n.y );
       p = findNeighbour( opn, n );
       if( p > -1 && opn[p].g + opn[p].h <= n.g + n.h ) continue;
       opn.push( n );
   }
   opn.sort( function( a, b ) {
       return ( a.g + a.h ) - ( b.g + b.h ); } );

} function createPath() {

   path = [];
   var a, b;
   a = clsd.pop();
   path.push( a );
   while( clsd.length ) {
       b = clsd.pop();
       if( b.x != a.prt.x || b.y != a.prt.y ) continue;
       a = b; path.push( a );
   }
}

function solveMap() {

   drawMap();
   if( opn.length < 1 ) {
       document.body.appendChild( document.createElement( "p" ) ).innerHTML = "Impossible!";
       return;
   }
   var cur = opn.splice( 0, 1 )[0];
   clsd.push( cur );
   if( cur.x == goal.x && cur.y == goal.y ) {
       createPath(); drawMap();
       return;
   }
   addNeighbours( cur );
   requestAnimationFrame( solveMap );

} function drawMap() {

   ctx.fillStyle = "#ee6"; ctx.fillRect( 0, 0, 200, 200 );
   for( var j = 0; j < mh; j++ ) {
       for( var i = 0; i < mw; i++ ) {
           switch( map[i][j] ) {
               case 0: continue;
               case 1: ctx.fillStyle = "#990"; break;
               case 2: ctx.fillStyle = "#090"; break;
               case 3: ctx.fillStyle = "#900"; break;
           }
           ctx.fillRect( i, j, 1, 1 );
       }
   }
   var a;
   if( path.length ) {
       var txt = "Path: " + ( path.length - 1 ) + "
["; for( var i = path.length - 1; i > -1; i-- ) { a = path[i]; ctx.fillStyle = "#999"; ctx.fillRect( a.x, a.y, 1, 1 ); txt += "(" + a.x + ", " + a.y + ") "; } document.body.appendChild( document.createElement( "p" ) ).innerHTML = txt + "]"; return; } for( var i = 0; i < opn.length; i++ ) { a = opn[i]; ctx.fillStyle = "#909"; ctx.fillRect( a.x, a.y, 1, 1 ); } for( var i = 0; i < clsd.length; i++ ) { a = clsd[i]; ctx.fillStyle = "#009"; ctx.fillRect( a.x, a.y, 1, 1 ); }

} function createMap() {

   map = new Array( mw );
   for( var i = 0; i < mw; i++ ) {
       map[i] = new Array( mh );
       for( var j = 0; j < mh; j++ ) {
           if( !i || !j || i == mw - 1 || j == mh - 1 ) map[i][j] = 1;
           else map[i][j] = 0;
       }
   }
   map[5][3] = map[6][3] = map[7][3] = map[3][4] = map[7][4] = map[3][5] = 
   map[7][5] = map[3][6] = map[4][6] = map[5][6] = map[6][6] = map[7][6] = 1;
   //map[start.x][start.y] = 2; map[goal.x][goal.y] = 3;

} function init() {

   var canvas = document.createElement( "canvas" );
   canvas.width = canvas.height = 200;
   ctx = canvas.getContext( "2d" );
   ctx.scale( 20, 20 );
   document.body.appendChild( canvas );
   neighbours = [
       {x:1, y:0, c:1}, {x:-1, y:0, c:1}, {x:0, y:1, c:1}, {x:0, y:-1, c:1}, 
       {x:1, y:1, c:1.4}, {x:1, y:-1, c:1.4}, {x:-1, y:1, c:1.4}, {x:-1, y:-1, c:1.4}
   ];
   path = []; createMap(); opn.push( start ); solveMap();

} </lang>

Output:

Path: 11 [(1, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 7) (4, 8) (5, 8) (6, 8) (7, 8) (8, 8) ]


Julia

Unlike some of the examples, the graphic in the solution has its origin in the bottom right. <lang Julia>using LightGraphs, SimpleWeightedGraphs

const chessboardsize = 8 const givenobstacles = [(2,4), (2,5), (2,6), (3,6), (4,6), (5,6), (5,5), (5,4), (5,3), (5,2), (4,2), (3,2)] vfromcart(p, n) = (p[1] - 1) * n + p[2] const obstacles = [vfromcart(o .+ 1, chessboardsize) for o in givenobstacles] zbasedpath(path, n) = [(div(v - 1, n), (v - 1) % n) for v in path] pathcost(path) = sum(map(x -> x in obstacles ? 100 : 1, path[2:end]))

function surround(x, y, n)

   bottomx = x > 1 ? x -1 : x
   topx = x < n ? x + 1 : x
   bottomy = y > 1 ? y - 1 : y
   topy = y < n ? y + 1 : y
   [CartesianIndex(x,y) for x in bottomx:topx for y in bottomy:topy]

end

function kinggraph(N)

   graph = SimpleWeightedGraph(N*N)
   for row in 1:N, col in 1:N, p in surround(row, col, N)
       origin = vfromcart(CartesianIndex(row, col), N)
       targ = vfromcart(p, N)
       hcost = (targ in obstacles || origin in obstacles) ? 100 : 1
       add_edge!(graph, origin, targ, hcost)
   end
   graph

end

kgraph = kinggraph(chessboardsize) path = enumerate_paths(dijkstra_shortest_paths(kgraph, 1), 64) println("Solution has cost $(pathcost(path)):\n", zbasedpath(path, chessboardsize))

path2graphic(x, path) = (x in obstacles ? '█' : x in path ? 'x' : '.') for i in 64:-1:1

   print(path2graphic(i, path))
   if i % 8 == 1
       println()
   end

end

</lang>
Output:

Solution has cost 11: Tuple{Int64,Int64}[(0, 0), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 2), (7, 3), (7, 4), (6, 5), (6, 6), (7, 7)] x..xx... .xx..x.. .█████x. .█...█x. .█...█x. .███.x.. ......x. .......x

Kotlin

<lang kotlin> import java.lang.Math.abs

typealias GridPosition = Pair<Int, Int> typealias Barrier = Set<GridPosition>

const val MAX_SCORE = 99999999

abstract class Grid(private val barriers: List<Barrier>) {

   open fun heuristicDistance(start: GridPosition, finish: GridPosition): Int {
       val dx = abs(start.first - finish.first)
       val dy = abs(start.second - finish.second)
       return (dx + dy) + (-2) * minOf(dx, dy)
   }
   fun inBarrier(position: GridPosition) = barriers.any { it.contains(position) }
   abstract fun getNeighbours(position: GridPosition): List<GridPosition>
   open fun moveCost(from: GridPosition, to: GridPosition) = if (inBarrier(to)) MAX_SCORE else 1

}

class SquareGrid(width: Int, height: Int, barriers: List<Barrier>) : Grid(barriers) {

   private val heightRange: IntRange = (0 until height)
   private val widthRange: IntRange = (0 until width)
   private val validMoves = listOf(Pair(1, 0), Pair(-1, 0), Pair(0, 1), Pair(0, -1), Pair(1, 1), Pair(-1, 1), Pair(1, -1), Pair(-1, -1))
   override fun getNeighbours(position: GridPosition): List<GridPosition> = validMoves
           .map { GridPosition(position.first + it.first, position.second + it.second) }
           .filter { inGrid(it) }
   private fun inGrid(it: GridPosition) = (it.first in widthRange) && (it.second in heightRange)

}


/**

* Implementation of the A* Search Algorithm to find the optimum path between 2 points on a grid.
*
* The Grid contains the details of the barriers and methods which supply the neighboring vertices and the
* cost of movement between 2 cells.  Examples use a standard Grid which allows movement in 8 directions
* (i.e. includes diagonals) but alternative implementation of Grid can be supplied.
*
*/

fun aStarSearch(start: GridPosition, finish: GridPosition, grid: Grid): Pair<List<GridPosition>, Int> {

   /**
    * Use the cameFrom values to Backtrack to the start position to generate the path
    */
   fun generatePath(currentPos: GridPosition, cameFrom: Map<GridPosition, GridPosition>): List<GridPosition> {
       val path = mutableListOf(currentPos)
       var current = currentPos
       while (cameFrom.containsKey(current)) {
           current = cameFrom.getValue(current)
           path.add(0, current)
       }
       return path.toList()
   }
   val openVertices = mutableSetOf(start)
   val closedVertices = mutableSetOf<GridPosition>()
   val costFromStart = mutableMapOf(start to 0)
   val estimatedTotalCost = mutableMapOf(start to grid.heuristicDistance(start, finish))
   val cameFrom = mutableMapOf<GridPosition, GridPosition>()  // Used to generate path by back tracking
   while (openVertices.size > 0) {
       val currentPos = openVertices.minBy { estimatedTotalCost.getValue(it) }!!
       // Check if we have reached the finish
       if (currentPos == finish) {
           // Backtrack to generate the most efficient path
           val path = generatePath(currentPos, cameFrom)
           return Pair(path, estimatedTotalCost.getValue(finish)) // First Route to finish will be optimum route
       }
       // Mark the current vertex as closed
       openVertices.remove(currentPos)
       closedVertices.add(currentPos)
       grid.getNeighbours(currentPos)
               .filterNot { closedVertices.contains(it) }  // Exclude previous visited vertices
               .forEach { neighbour ->
                   val score = costFromStart.getValue(currentPos) + grid.moveCost(currentPos, neighbour)
                   if (score < costFromStart.getOrDefault(neighbour, MAX_SCORE)) {
                       if (!openVertices.contains(neighbour)) {
                           openVertices.add(neighbour)
                       }
                       cameFrom.put(neighbour, currentPos)
                       costFromStart.put(neighbour, score)
                       estimatedTotalCost.put(neighbour, score + grid.heuristicDistance(neighbour, finish))
                   }
               }
   }
   throw IllegalArgumentException("No Path from Start $start to Finish $finish")

}

fun main(args: Array<String>) {

   val barriers = listOf(setOf( Pair(2,4), Pair(2,5), Pair(2,6), Pair(3,6), Pair(4,6), Pair(5,6), Pair(5,5),
                Pair(5,4), Pair(5,3), Pair(5,2), Pair(4,2), Pair(3,2)))
   val (path, cost) = aStarSearch(GridPosition(0,0), GridPosition(7,7), SquareGrid(8,8, barriers))
   println("Cost: $cost  Path: $path")

} </lang>

Output:

Cost: 11 Path: [(0, 0), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (7, 7)]

Lua

<lang lua> -- QUEUE ----------------------------------------------------------------------- Queue = {} function Queue:new()

   local q = {}
   self.__index = self
   return setmetatable( q, self )

end function Queue:push( v )

   table.insert( self, v )

end function Queue:pop()

   return table.remove( self, 1 )

end function Queue:getSmallestF()

   local s, i = nil, 2
   while( self[i] ~= nil and self[1] ~= nil ) do
       if self[i]:F() < self[1]:F() then
           s = self[1]
           self[1] = self[i] 
           self[i] = s
       end
       i = i + 1
   end
   return self:pop()

end

-- LIST ------------------------------------------------------------------------ List = {} function List:new()

   local l = {}
   self.__index = self
   return setmetatable( l, self )

end function List:push( v )

 table.insert( self, v )

end function List:pop()

   return table.remove( self )

end

-- POINT ----------------------------------------------------------------------- Point = {} function Point:new()

   local p = { y = 0, x = 0 }
   self.__index = self
   return setmetatable( p, self )

end function Point:set( x, y )

   self.x, self.y = x, y

end function Point:equals( o )

   return (o.x == self.x and o.y == self.y)

end function Point:print()

   print( self.x, self.y )

end

-- NODE ------------------------------------------------------------------------ Node = {} function Node:new()

   local n = { pos = Point:new(), parent = Point:new(), dist = 0, cost = 0 }
   self.__index = self
   return setmetatable( n, self )

end function Node:set( pt, parent, dist, cost )

   self.pos = pt
   self.parent = parent
   self.dist = dist
   self.cost = cost

end function Node:F()

   return ( self.dist + self.cost )

end

-- A-STAR ---------------------------------------------------------------------- local nbours = {

   {  1,  0, 1 }, {  0,  1, 1 }, {  1,  1, 1.4 }, {  1, -1, 1.4 }, 
   { -1, -1, 1.4 }, { -1,  1, 1.4 }, {  0, -1, 1 }, { -1,  0, 1 }

} local map = {

       1,1,1,1,1,1,1,1,1,1, 
       1,0,0,0,0,0,0,0,0,1,
       1,0,0,0,0,0,0,0,0,1,
       1,0,0,0,0,1,1,1,0,1,
       1,0,0,1,0,0,0,1,0,1,
       1,0,0,1,0,0,0,1,0,1,
       1,0,0,1,1,1,1,1,0,1,
       1,0,0,0,0,0,0,0,0,1,
       1,0,0,0,0,0,0,0,0,1,
       1,1,1,1,1,1,1,1,1,1 

} local open, closed, start, goal,

     mapW, mapH = Queue:new(), List:new(), Point:new(), Point:new(), 10, 10

start:set( 2, 2 ); goal:set( 9, 9 )

function hasNode( arr, pos )

   for nx, val in ipairs( arr ) do
       if val.pos:equals( pos ) then
           return nx
       end
   end
   return -1

end function isValid( pos )

   return pos.x > 0 and pos.x <= mapW 
          and pos.y > 0 and pos.y <= mapH 
          and map[pos.x + mapW * pos.y - mapW] == 0

end function calcDist( p1 )

   local x, y = goal.x - p1.x, goal.y - p1.y
   return math.abs( x ) + math.abs( y )

end function addToOpen( node )

   local nx
   for n = 1, 8 do
       nNode = Node:new()
       nNode.parent:set( node.pos.x, node.pos.y )
       nNode.pos:set( node.pos.x + nbours[n][1], node.pos.y + nbours[n][2] )
       nNode.cost = node.cost + nbours[n][3]
       nNode.dist = calcDist( nNode.pos )
       
       if isValid( nNode.pos ) then
           if nNode.pos:equals( goal ) then 
               closed:push( nNode )
               return true 
           end
           nx = hasNode( closed, nNode.pos )
           if nx < 0 then
               nx = hasNode( open, nNode.pos )
               if( nx < 0 ) or ( nx > 0 and nNode:F() < open[nx]:F() ) then
                   if( nx > 0 ) then 
                       table.remove( open, nx )
                   end
                   open:push( nNode )
               else
                   nNode = nil
               end
           end
       end
   end
   return false

end function makePath()

   local i, l = #closed, List:new()
   local node, parent = closed[i], nil
   l:push( node.pos )
   parent = node.parent
   while( i > 0 ) do
       i = i - 1
       node = closed[i]
       if node ~= nil and node.pos:equals( parent ) then
           l:push( node.pos )
           parent = node.parent
       end
   end
   print( string.format( "Cost: %d", #l - 1 ) )
   io.write( "Path: " )
   for i = #l, 1, -1 do
       map[l[i].x + mapW * l[i].y - mapW] = 2
       io.write( string.format( "(%d, %d) ", l[i].x, l[i].y ) )
   end
   print( "" )

end function aStar()

   local n = Node:new()
   n.dist = calcDist( start )
   n.pos:set( start.x, start.y )
   open:push( n )
   while( true ) do
       local node = open:getSmallestF()
       if node == nil then break end
       closed:push( node )
       if addToOpen( node ) == true then 
           makePath()
           return true 
       end
   end
   return false

end -- ENTRY POINT ----------------------------------------------------------------- if true == aStar() then

   local m
   for j = 1, mapH do
       for i = 1, mapW do
           m = map[i + mapW * j - mapW]
           if m == 0 then
               io.write( "." )
           elseif m == 1 then
               io.write( string.char(0xdb) )
           else
               io.write( "x" )
           end
       end
       io.write( "\n" )
   end

else

   print( "can not find a path!" )

end </lang>

Output:
Cost: 11
Path: (2, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (4, 8) (5, 9) (6, 9) (7, 9) (8, 9) (9, 9)
██████████
█x.......█
█.x......█
█.x..███.█
█.x█...█.█
█.x█...█.█
█.x█████.█
█..x.....█
█...xxxxx█
██████████

Phix

rows and columns are numbered 1 to 8. start position is {1,1} and end position is {8,8}. barriers are simply avoided, rather than costed at 100. Note that the 23 visited nodes does not count walls, but with them this algorithm exactly matches the 35 of Racket. <lang Phix>sequence grid = split(""" x:::::::

""",'\n')

constant permitted = {{-1,-1},{0,-1},{1,-1},

                     {-1, 0},       {1, 0},
                     {-1, 1},{0,+1},{1,+1}}

sequence key = {7,0}, -- chebyshev, cost

        moves = Template:1,1,
        data = {moves}

setd(key,data) bool found = false integer count = 0 while not found do

   if dict_size()=0 then ?"impossible" exit end if
   key = getd_partial_key(0)
   data = getd(key)
   moves = data[$]
   if length(data)=1 then
       deld(key)
   else
       data = data[1..$-1]
       putd(key,data)
   end if
   count += 1
   for i=1 to length(permitted) do
       sequence newpos = sq_add(moves[$],permitted[i])
       integer {nx,ny} = newpos
       if nx>=1 and nx<=8
       and ny>=1 and ny<=8
       and grid[nx,ny] = ':' then -- (unvisited)
           grid[nx,ny] = '.'
           sequence newkey = {max(8-nx,8-ny),key[2]+1},
                    newmoves = append(moves,newpos)
           if newpos = {8,8} then
               moves = newmoves
               found = true
               exit
           end if
           integer k = getd_index(newkey)
           if k=0 then
               data = {newmoves}
           else
               data = append(getd_by_index(k),newmoves)
           end if
           putd(newkey,data)
       end if
   end for

end while if found then

   printf(1,"visited %d nodes\ncost:%d\npath:",{count,length(moves)-1})
   ?moves
   for i=1 to length(moves) do
       integer {x,y} = moves[i]
       grid[x,y] = 'x'
   end for
   puts(1,join(grid,'\n'))

end if</lang>

Output:
visited 23 nodes
cost:11
path:{{1,1},{2,2},{3,3},{4,2},{5,2},{6,2},{7,3},{8,4},{8,5},{8,6},{8,7},{8,8}}
x......:
.x.....:
..x.###:
.x#...#:
.x#...#:
.x#####:
..x.....
:..xxxxx

Python

<lang python>from __future__ import print_function import matplotlib.pyplot as plt

class AStarGraph(object): #Define a class board like grid with two barriers

def __init__(self): self.barriers = [] self.barriers.append([(2,4),(2,5),(2,6),(3,6),(4,6),(5,6),(5,5),(5,4),(5,3),(5,2),(4,2),(3,2)])

def heuristic(self, start, goal): #Use Chebyshev distance heuristic if we can move one square either #adjacent or diagonal D = 1 D2 = 1 dx = abs(start[0] - goal[0]) dy = abs(start[1] - goal[1]) return D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)

def get_vertex_neighbours(self, pos): n = [] #Moves allow link a chess king for dx, dy in [(1,0),(-1,0),(0,1),(0,-1),(1,1),(-1,1),(1,-1),(-1,-1)]: x2 = pos[0] + dx y2 = pos[1] + dy if x2 < 0 or x2 > 7 or y2 < 0 or y2 > 7: continue n.append((x2, y2)) return n

def move_cost(self, a, b): for barrier in self.barriers: if b in barrier: return 100 #Extremely high cost to enter barrier squares return 1 #Normal movement cost

def AStarSearch(start, end, graph):

G = {} #Actual movement cost to each position from the start position F = {} #Estimated movement cost of start to end going via this position

#Initialize starting values G[start] = 0 F[start] = graph.heuristic(start, end)

closedVertices = set() openVertices = set([start]) cameFrom = {}

while len(openVertices) > 0: #Get the vertex in the open list with the lowest F score current = None currentFscore = None for pos in openVertices: if current is None or F[pos] < currentFscore: currentFscore = F[pos] current = pos

#Check if we have reached the goal if current == end: #Retrace our route backward path = [current] while current in cameFrom: current = cameFrom[current] path.append(current) path.reverse() return path, F[end] #Done!

#Mark the current vertex as closed openVertices.remove(current) closedVertices.add(current)

#Update scores for vertices near the current position for neighbour in graph.get_vertex_neighbours(current): if neighbour in closedVertices: continue #We have already processed this node exhaustively candidateG = G[current] + graph.move_cost(current, neighbour)

if neighbour not in openVertices: openVertices.add(neighbour) #Discovered a new vertex elif candidateG >= G[neighbour]: continue #This G score is worse than previously found

#Adopt this G score cameFrom[neighbour] = current G[neighbour] = candidateG H = graph.heuristic(neighbour, end) F[neighbour] = G[neighbour] + H

raise RuntimeError("A* failed to find a solution")

if __name__=="__main__": graph = AStarGraph() result, cost = AStarSearch((0,0), (7,7), graph) print ("route", result) print ("cost", cost) plt.plot([v[0] for v in result], [v[1] for v in result]) for barrier in graph.barriers: plt.plot([v[0] for v in barrier], [v[1] for v in barrier]) plt.xlim(-1,8) plt.ylim(-1,8) plt.show()</lang>

Output:
route [(0, 0), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 2), (7, 3), (6, 4), (7, 5), (6, 6), (7, 7)]
cost 11

Racket

This code is lifted from: this blog post. Read it, it's very good.

<lang racket>#lang scribble/lp @(chunk

 <graph-sig>
 (define-signature graph^
   (node? edge? node-edges edge-src edge-cost edge-dest)))

@(chunk

 <map-generation>
 (define (make-map N)
   ;; Jay's random algorithm
   ;; (build-matrix N N (λ (x y) (random 3)))
   ;; RC version
   (matrix [[0 0 0 0 0 0 0 0]
            [0 0 0 0 0 0 0 0]
            [0 0 0 0 1 1 1 0]
            [0 0 1 0 0 0 1 0]
            [0 0 1 0 0 0 1 0]
            [0 0 1 1 1 1 1 0]
            [0 0 0 0 0 0 0 0]
            [0 0 0 0 0 0 0 0]])))

@(chunk

 <map-graph-rep>
 (struct map-node (M x y) #:transparent)
 (struct map-edge (src dx dy dest)))

@(chunk

 <map-graph-cost>
 (define (edge-cost e)
   (match-define (map-edge _ _ _ (map-node M x y)) e)
   (match (matrix-ref M x y)
     [0  1]
     [1  100]
     [2 1000])))

@(chunk

 <map-graph-edges>
 (define (node-edges n)
   (match-define (map-node M x y) n)
   (append*
    (for*/list ([dx (in-list '(1 0 -1))]
                [dy (in-list '(1 0 -1))]
                #:when
                (and (not (and (zero? dx) (zero? dy)))
                     ;; RC -- allowed to move diagonally, so not this clause
                     ;;(or (zero? dx) (zero? dy))
                     ))
      (cond
        [(and (<= 0 (+ dx x) (sub1 (matrix-num-cols M)))
              (<= 0 (+ dy y) (sub1 (matrix-num-rows M))))
         (define dest (map-node M (+ dx x) (+ dy y)))
         (list (map-edge n dx dy dest))]
        [else
         empty])))))

@(chunk

 <a-star>
 (define (A* graph@ initial node-cost)
   (define-values/invoke-unit graph@ (import) (export graph^))
   (define count 0)
   <a-star-setup>
    
   (begin0
     (let/ec esc
       <a-star-loop>
       #f)
    
     (printf "visited ~a nodes\n" count))))

@(chunk

 <a-star-setup>
 <a-star-setup-closed>
 <a-star-setup-open>)

@(chunk

 <a-star-setup-closed>
 (define node->best-path (make-hash))
 (define node->best-path-cost (make-hash))     
 (hash-set! node->best-path      initial empty)
 (hash-set! node->best-path-cost initial 0))

@(chunk

 <a-star-setup-open>
 (define (node-total-estimate-cost n)
   (+ (node-cost n) (hash-ref node->best-path-cost n)))
 (define (node-cmp x y)
   (<= (node-total-estimate-cost x)
       (node-total-estimate-cost y)))
 (define open-set (make-heap node-cmp))
 (heap-add! open-set initial))

@(chunk

 <a-star-loop>
 (for ([x (in-heap/consume! open-set)])
   (set! count (add1 count))
   <a-star-loop-body>))

@(chunk

 <a-star-loop-stop?>
 (define h-x (node-cost x))
 (define path-x (hash-ref node->best-path x))
    
 (when (zero? h-x)
   (esc (reverse path-x))))

@(chunk

 <a-star-loop-body>
 <a-star-loop-stop?>
    
 (define g-x (hash-ref node->best-path-cost x))
 (for ([x->y (in-list (node-edges x))])
   (define y (edge-dest x->y))
   <a-star-loop-per-neighbor>))

@(chunk

 <a-star-loop-per-neighbor>
 (define new-g-y (+ g-x (edge-cost x->y)))
 (define old-g-y
   (hash-ref node->best-path-cost y +inf.0))
 (when (< new-g-y old-g-y)
   (hash-set! node->best-path-cost y new-g-y)
   (hash-set! node->best-path y (cons x->y path-x))
   (heap-add! open-set y)))

@(chunk

 <map-display>
 (define map-scale 15)
 (define (type-color ty)
   (match ty
     [0 "yellow"]
     [1 "green"]
     [2 "red"]))
 (define (cell-square ty)
   (square map-scale "solid" (type-color ty)))
 (define (row-image M row)
   (apply beside
          (for/list ([col (in-range (matrix-num-cols M))])
            (cell-square (matrix-ref M row col)))))
 (define (map-image M)
   (apply above
          (for/list ([row (in-range (matrix-num-rows M))])
            (row-image M row)))))

@(chunk

 <path-display-line>
 (define (edge-image-on e i)
   (match-define (map-edge (map-node _ sx sy) _ _ (map-node _ dx dy)) e)
   (add-line i
             (* (+ sy 0.5) map-scale) (* (+ sx 0.5) map-scale)
             (* (+ dy 0.5) map-scale) (* (+ dx 0.5) map-scale)
             "black")))

@(chunk

 <path-display>
 (define (path-image M path)
   (foldr edge-image-on (map-image M) path)))

@(chunk

 <map-graph>
 (define-unit map@
   (import) (export graph^)
    
   (define node? map-node?)
   (define edge? map-edge?)
   (define edge-src map-edge-src)
   (define edge-dest map-edge-dest)
    
   <map-graph-cost>
   <map-graph-edges>))

@(chunk

 <map-node-cost>
 (define ((make-node-cost GX GY) n)
   (match-define (map-node M x y) n)
   ;; Jay's
   #;(+ (abs (- x GX))
        (abs (- y GY)))
   ;; RC -- diagonal movement
   (max (abs (- x GX))
        (abs (- y GY)))))

@(chunk

 <map-example>
 (define N 8)
 (define random-M
   (make-map N))
 (define random-path
   (time
    (A* map@
        (map-node random-M 0 0)
        (make-node-cost (sub1 N) (sub1 N))))))

@(chunk

 <*>
 (require rackunit
          math/matrix
          racket/unit
          racket/match
          racket/list
          data/heap
          2htdp/image
          racket/runtime-path)
    
 <graph-sig>
    
 <map-generation>
 <map-graph-rep>
 <map-graph>
    
 <a-star>
    
 <map-node-cost>
 <map-example>
 (printf "path is ~a long\n" (length random-path))
 (printf "path is: ~a\n" (map (match-lambda
                                [(map-edge src dx dy dest)
                                 (cons dx dy)])
                              random-path))
    
 <map-display>
 <path-display-line>
 <path-display>
 (path-image random-M random-path))</lang>
Output:
visited 35 nodes
cpu time: 94 real time: 97 gc time: 15
path is 11 long
path is: ((1 . 1) (1 . 1) (1 . -1) (1 . 0) (1 . 0) (1 . 1) (1 . 1) (0 . 1) (-1 . 1) (1 . 1) (0 . 1))
.

A diagram is also output, but you'll need to run this in DrRacket to see it.

REXX

<lang rexx>/*REXX program solves the A* search problem for a (general) NxN grid. */ parse arg N sCol sRow . /*obtain optional arguments from the CL*/ if N== | N=="," then N=8 /*No grid size specified? Use default.*/ if sCol== | sCol=="," then sCol=1 /*No starting column given? " " */ if sRow== | sRow=="," then sRow=1 /* " " row " " " */ beg= '─0─' /*mark the start of the journey in grid*/ o.=.; p.=0 /*list of optimum start journey starts.*/ times=0 /*cntr/pos for number of optimizations.*/

             Pc = ' 1  1  0  0   1 -1 -1 -1 '   /*the possible column moves for a path.*/
             Pr = ' 1  0  1 -1  -1  0  1 -1 '   /* "      "     row     "    "  "   "  */

Pcm=words(Pc) /* [↑] optimized for moving right&down*/ $.=1e6; OK=0; min$=$. /*# possible directions; cost; solution*/ @Aa= " A* search algorithm on" /*a handy─dandy literal for the SAYs. */ flasher= '@. $. min$ N o. p. Pc. Pcm Pr. sCol sRow times' /*a literal list for EXPOSE.*/ call path 0 /*find a possible solution for the grid*/ @NxN= 'a ' N"x"N ' grid' /*a literal used for a SAY statement.*/ if OK then say 'A solution for the' @Aa @NxN "with a score of " @.N.N':'

      else say 'No'   @Aa   "solution for"     @NxN'.'

call show 1 /*invoke subroutine to display the grid*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ @: parse arg x,y,aChar; if arg()==3 then @.x.y=aChar; return @.x.y @p: parse arg x,y; if datatype(@.x.y, 'W') then return @.x.y<m-1; return 0 /*──────────────────────────────────────────────────────────────────────────────────────*/ barr: $=2.4 2.5 2.6 3.6 4.6 5.6 5.5 5.4 5.3 5.2 4.2 3.2 /*locations of barriers on grid*/

        do b=1  for words($);    _=word($, b);   parse var _ c '.' r;  call @ c+1,r+1,"█"
        end   /*b*/;             return

/*──────────────────────────────────────────────────────────────────────────────────────*/ move: procedure expose (flasher); parse arg m,col,row /*obtain move,col,row.*/

        do t=1  for Pcm;         nc=col + Pc.t;   nr=row + Pr.t /*a new path position. */
        if @.nc.nr==.  then do;  if opti()  then iterate        /*Costlier path?  Next.*/
                                 @.nc.nr=m;       p.1.m=nc nr   /*Empty?  A legal path.*/
                                 p.pcm.m=nr nc-1                /*used for a fast path.*/
                                 if nc==N  then if nr==N  then return 1   /*last move? */
                                 if move(m + 1,  nc, nr)  then return 1   /*  "    "   */
                                 @.nc.nr=.                      /*undo the above move. */
                            end                                 /*try a different move.*/
        end   /*t*/                                             /* [↑]  all moves tried*/
     return 0                                                   /*path isn't possible. */

/*──────────────────────────────────────────────────────────────────────────────────────*/ opti: ncm=nc-1; nrm=nr-1; if @p(ncm, nrm) then return 1

                                 if @p(ncm, nr )  then return 1
                                 if @p(nc,  nrm)  then return 1
     ncp=nc+1;   nrp=nr+1;       if @p(ncp, nr )  then return 1
                                 if @p(ncp, nrm)  then return 1
                                 if @p(nc,  nrp)  then return 1
                                 if @p(ncm, nrp)  then return 1
                                 if @p(ncp, nrp)  then return 1;         return 0

/*──────────────────────────────────────────────────────────────────────────────────────*/ path: parse arg z; t=times /*initial move can only be one of eight*/

       do #=1  for Pcm;          @.=            /*optimize for each degree of movement.*/
       if z\==0  then  if #\==z  then iterate   /*This a particular low─cost request ? */
            do c=1  for  N;    do r=1  for N;   @.c.r=.;   end  /*r*/
            end   /*c*/
       iCol=sCol;  iRow=sRow;  @.sCol.sRow= beg /*all path's initial starting  position*/
       call barr                                /*place the barriers on the grid.      */
       Pco=subword(Pc Pc, #, Pcm);  Pro=subword(Pr Pr, #, Pcm)
       parse var  Pco   Pc.1 Pc.2 Pc.3 Pc.4 Pc.5 Pc.6 Pc.7 Pc.8  /*possible directions.*/
       parse var  Pro   Pr.1 Pr.2 Pr.3 Pr.4 Pr.5 Pr.6 Pr.7 Pr.8  /*    "         "     */
            do o=1  for times;  parse var o.o c r;    @.c.r=o;     iRow=r;     iCol=c
            end   /*o*/
       fp=move(1+times, iCol, iRow);      sol=@N.N\==. & fp
       if sol  then do;    $.#=@.N.N            /*Found a solution?  Remember the cost.*/
                    OK=1;  min$=min(min$, $.#)
                    end
       end   /*#*/
     wp=1e7; wg=0;  do g=1  for Pcm; if $.g<wp & $.g>0 & t\=2  then do; wg=g; wp=$.g; end
                    end   /*g*/                 /* [↑]  find minimum non-zero path cost*/
     if wg==0  then wg=8                        /*Not found?  Then use last cost found.*/
     times=times + 1                            /*bump # times a marker has been placed*/
     o.times= p.wg.times                        /*remember this move location for PATH.*/
     if times<4  then call path 0               /*only do memoization for first 3 moves*/
     return

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: ind=left(, 9 * (n<18) ); say /*the indentation of the displayed grid*/

     _=substr(copies("┼───", N),2);  say ind translate('┌'_"┐", '┬', "┼")   /*grid top.*/
                                                /* [↓]  build a display for the grid.  */
      do   c=1  for N;          if c\==1 & arg(1)  then say  ind  '├'_"┤";     L=@.
        do r=1  for N; ?=@.c.r; if c ==N & r==N & ?\==.  then ?='end'; L=L"│"center(?, 3)
        end   /*r*/                             /*done with   rank   of the grid.      */
      say ind translate(L'│', , .)              /*display a     "     "  "    "        */
      end     /*c*/                             /*a 19x19 grid can be shown 80 columns.*/
    say ind translate('└'_"┘",'┴',"┼");  return /*display the very bottom of the grid. */</lang>
output   when using the default input:
A solution for the  A*  search algorithm on a  8x8  grid with a score of  11:

          ┌───┬───┬───┬───┬───┬───┬───┬───┐
          │─0─│   │   │   │   │   │   │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │ 1 │   │   │   │   │   │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │   │ 2 │   │ █ │ █ │ █ │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │ 3 │ █ │   │   │   │ █ │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │ 4 │ █ │   │   │   │ █ │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │ 5 │ █ │ █ │ █ │ █ │ █ │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │   │ 6 │   │   │   │   │   │
          ├───┼───┼───┼───┼───┼───┼───┼───┤
          │   │   │   │ 7 │ 8 │ 9 │10 │end│
          └───┴───┴───┴───┴───┴───┴───┴───┘

SequenceL

<lang sequencel> import <Utilities/Set.sl>; import <Utilities/Math.sl>; import <Utilities/Sequence.sl>;

Point ::= (x : int, y : int);

State ::= (open : Point(1), closed : Point(1), cameFrom : Point(2), estimate : int(2), actual : int(2));

allNeighbors := [(x : -1, y : -1), (x : 1, y : -1), (x : -1, y : 1), (x : 1, y : 1), (x : 0, y : -1), (x : -1, y : 0), (x : 0, y : 1), (x : 1, y : 0)];

defaultBarriers := [(x : 3, y : 5),(x : 3, y : 6),(x : 3, y : 7),(x : 4, y : 7), (x : 5, y : 7),(x : 6, y : 7),(x : 6, y : 6),(x : 6, y : 5),(x : 6, y : 4), (x : 6, y : 3),(x : 5, y : 3),(x : 4, y : 3)];

defaultWidth := 8; defaultHeight := 8;

main(args(2)) := aStar(defaultWidth, defaultHeight, defaultBarriers, (x : 1, y : 1), (x : defaultWidth, y : defaultHeight));

aStar(width, height, barriers(1), start, end) := let newEstimate[i,j] := heuristic(start, end) when i = start.x and j = start.y else 0 foreach i within 1...width, j within 1 ... height; newActual[i,j] := 0 foreach i within 1...width, j within 1...height; newCameFrom[i,j] := (x : 0, y : 0) foreach i within 1...width, j within 1...height;

searchResults := search((open : [start], closed : [], estimate : newEstimate, actual : newActual, cameFrom : newCameFrom), barriers, end); shortestPath := path(searchResults.cameFrom, start, end) ++ [end]; in "No Path Found" when size(searchResults.open) = 0 else "Path: " ++ toString(shortestPath) ++ "\nCost:" ++ toString(searchResults.actual[end.x, end.y]) ++ "\nMap:\n" ++ join(appendNT(drawMap(barriers,shortestPath,width, height),"\n"));

path(cameFrom(2), start, current) := let next := cameFrom[current.x, current.y]; in [] when current = start else path(cameFrom, start, next) ++ [next];

drawMap(barriers(1), path(1), width, height)[i,j] := '#' when elementOf((x:i, y:j), barriers) else 'X' when elementOf((x:i, y:j), path) else '.' foreach i within 1 ... width, j within 1 ... height;

search(state, barriers(1), end) := let nLocation := smallestEstimate(state.open, state.estimate, 2, 1, state.estimate[state.open[1].x, state.open[1].y]); n := state.open[nLocation]; neighbors := createNeighbors(n, allNeighbors, size(state.actual), size(state.actual[1])); startState := (open : state.open[1...nLocation-1] ++ state.open[nLocation+1 ... size(state.open)], closed : state.closed ++ [n], cameFrom : state.cameFrom, estimate : state.estimate, actual : state.actual); newState := findOpenNeighbors(n, startState, barriers, end, neighbors); in state when size(state.open) = 0 else state when n = end else search(newState, barriers, end);

smallestEstimate(open(1), estimate(2), index, minIndex, minEstimate) := let newEstimate := estimate[open[index].x, open[index].y]; in minIndex when index > size(open) else smallestEstimate(open, estimate, index + 1, minIndex, minEstimate) when newEstimate > minEstimate else smallestEstimate(open, estimate, index + 1, index, newEstimate);

findOpenNeighbors(n, state, barriers(1), end, neighbors(1)) := let neighbor := head(neighbors); cost := 1 + n.cost; candidate := state.actual[n.x, n.y] + calculateCost(barriers, n, neighbor); in state when size(neighbors) = 0 else findOpenNeighbors(n, state, barriers, end, tail(neighbors)) when elementOf(neighbor, state.closed) else findOpenNeighbors(n, state, barriers, end, tail(neighbors)) when elementOf(neighbor, state.open) and candidate >= state.actual[neighbor.x, neighbor.y] else findOpenNeighbors(n, (open : state.open ++ [neighbor], closed : state.closed, cameFrom : setMap(state.cameFrom, neighbor, n), estimate : setMap(state.estimate, neighbor, candidate + heuristic(neighbor, end)), actual : setMap(state.actual, neighbor, candidate)), barriers, end, tail(neighbors));

createNeighbors(n, p, w, h) := let x := n.x + p.x; y := n.y + p.y; in (x : x, y : y) when x >= 1 and x <= w and y >= 1 and y <= h;

calculateCost(barriers(1), start, end) := 100 when elementOf(end, barriers) else 1;

heuristic(start, end) := let dx := abs(start.x - end.x); dy := abs(start.y - end.y); in (dx + dy) - min(dx, dy);

setMap(map(2), point, value)[i,j] := value when point.x = i and point.y = j else map[i,j] foreach i within 1 ... size(map), j within 1 ... size(map[1]); </lang>

Output  
Path: [(x:1,y:1),(x:2,y:2),(x:3,y:3),(x:4,y:2),(x:5,y:2),(x:6,y:2),(x:7,y:3),(x:7,y:4),(x:7,y:5),(x:7,y:6),(x:7,y:7),(x:8,y:8)]
Cost:11
Map:
X.......
.X......
..X.###.
.X#...#.
.X#...#.
.X#####.
..XXXXX.
.......X

Sidef

Translation of: Python

<lang ruby>class AStarGraph {

   has barriers = [
       [2,4],[2,5],[2,6],[3,6],[4,6],[5,6],[5,5],[5,4],[5,3],[5,2],[4,2],[3,2]
   ]
   method heuristic(start, goal) {
       var (D1 = 1, D2 = 1)
       var dx = abs(start[0] - goal[0])
       var dy = abs(start[1] - goal[1])
       (D1 * (dx + dy)) + ((D2 - 2*D1) * Math.min(dx, dy))
   }
   method get_vertex_neighbours(pos) {
       gather {
           for dx, dy in [[1,0],[-1,0],[0,1],[0,-1],[1,1],[-1,1],[1,-1],[-1,-1]] {
               var x2 = (pos[0] + dx)
               var y2 = (pos[1] + dy)
               (x2<0 || x2>7 || y2<0 || y2>7) && next
               take([x2, y2])
           }
       }
   }
   method move_cost(_a, b) {
       barriers.contains(b) ? 100 : 1
   }

}

func AStarSearch(start, end, graph) {

   var G = Hash()
   var F = Hash()
   G{start} = 0
   F{start} = graph.heuristic(start, end)
   var closedVertices = []
   var openVertices = [start]
   var cameFrom = Hash()
   while (openVertices) {
       var current = nil
       var currentFscore = Inf
       for pos in openVertices {
           if (F{pos} < currentFscore) {
               currentFscore = F{pos}
               current = pos
           }
       }
       if (current == end) {
           var path = [current]
           while (cameFrom.contains(current)) {
               current = cameFrom{current}
               path << current
           }
           path.flip!
           return (path, F{end})
       }
       openVertices.remove(current)
       closedVertices.append(current)
       for neighbour in (graph.get_vertex_neighbours(current)) {
           if (closedVertices.contains(neighbour)) {
               next
           }
           var candidateG = (G{current} + graph.move_cost(current, neighbour))
           if (!openVertices.contains(neighbour)) {
               openVertices.append(neighbour)
           }
           elsif (candidateG >= G{neighbour}) {
               next
           }
           cameFrom{neighbour} = current
           G{neighbour} = candidateG
           var H = graph.heuristic(neighbour, end)
           F{neighbour} = (G{neighbour} + H)
       }
   }
   die "A* failed to find a solution"

}

var graph = AStarGraph() var (route, cost) = AStarSearch([0,0], [7,7], graph)

var w = 10 var h = 10

var grid = h.of { w.of { "." } } for y in (^h) { grid[y][0] = "█"; grid[y][-1] = "█" } for x in (^w) { grid[0][x] = "█"; grid[-1][x] = "█" }

for x,y in (graph.barriers) { grid[x+1][y+1] = "█" } for x,y in (route) { grid[x+1][y+1] = "x" }

grid.each { .join.say }

say "Path cost #{cost}: #{route}"</lang>

Output:
██████████
█x.......█
█.x......█
█..x.███.█
█.x█...█.█
█.x█...█.█
█.x█████.█
█..xxxxx.█
█.......x█
██████████
Path cost 11: [[0, 0], [1, 1], [2, 2], [3, 1], [4, 1], [5, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [7, 7]]

zkl

Translation of: Python

<lang zkl> // we use strings as hash keys: (x,y)-->"x,y", keys are a single pair fcn toKey(xy){ xy.concat(",") }

fcn AStarSearch(start,end,graph){

  G:=Dictionary(); # Actual movement cost to each position from the start position
  F:=Dictionary(); # Estimated movement cost of start to end going via this position
     #Initialize starting values
  kstart:=toKey(start);
  G[kstart]=0;
  F[kstart]=graph.heuristic(start,end);
  closedVertices,openVertices,cameFrom := List(),List(start),Dictionary();

  while(openVertices){
     # Get the vertex in the open list with the lowest F score
     current,currentFscore := Void, Void;
     foreach pos in (openVertices){
        kpos:=toKey(pos);
        if(current==Void or F[kpos]<currentFscore)

currentFscore,current = F[kpos],pos;

# Check if we have reached the goal if(current==end){ # Yes! Retrace our route backward path,kcurrent := List(current),toKey(current); while(current = cameFrom.find(kcurrent)){ path.append(current); kcurrent=toKey(current); } return(path.reverse(),F[toKey(end)]) # Done! }

# Mark the current vertex as closed openVertices.remove(current); if(not closedVertices.holds(current)) closedVertices.append(current);

# Update scores for vertices near the current position foreach neighbor in (graph.get_vertex_neighbors(current)){ if(closedVertices.holds(neighbor)) continue; # We have already processed this node exhaustively kneighbor:=toKey(neighbor); candidateG:=G[toKey(current)] + graph.move_cost(current, neighbor);

if(not openVertices.holds(neighbor)) openVertices.append(neighbor); # Discovered a new vertex else if(candidateG>=G[kneighbor]) continue; # This G score is worse than previously found

# Adopt this G score cameFrom[kneighbor]=current; G[kneighbor]=candidateG; F[kneighbor]=G[kneighbor] + graph.heuristic(neighbor,end); }

     }
  } // while
  throw(Exception.AssertionError("A* failed to find a solution"));

}</lang> <lang zkl>class [static] AStarGraph{ # Define a class board like grid with barriers

  var [const] barriers =
     T(        T(3,2),T(4,2),T(5,2),   // T is RO List

T(5,3), T(2,4), T(5,4), T(2,5), T(5,5), T(2,6),T(3,6),T(4,6),T(5,6) );

  fcn heuristic(start,goal){  // (x,y),(x,y)
  # Use Chebyshev distance heuristic if we can move one square either
  # adjacent or diagonal
     D,D2,dx,dy := 1,1, (start[0] - goal[0]).abs(), (start[1] - goal[1]).abs();
     D*(dx + dy) + (D2 - 2*D)*dx.min(dy);
  }
  fcn get_vertex_neighbors([(x,y)]){      # Move like a chess king
     var moves=Walker.cproduct([-1..1],[-1..1]).walk();  // 8 moves + (0,0)
     moves.pump(List,'wrap([(dx,dy)]){

x2,y2 := x + dx, y + dy; if((dx==dy==0) or x2 < 0 or x2 > 7 or y2 < 0 or y2 > 7) Void.Skip; else T(x2,y2);

     })
  }
  fcn move_cost(a,b){  // ( (x,y),(x,y) )
     if(barriers.holds(b))

return(100); # Extremely high cost to enter barrier squares

     1 # Normal movement cost
  }

}</lang> <lang zkl>graph:=AStarGraph; route,cost := AStarSearch(T(0,0), T(7,7), graph); println("Route: ", route.apply(fcn(xy){ String("(",toKey(xy),")") }).concat(",")); println("Cost: ", cost);

  // graph the solution:

grid:=(10).pump(List,List.createLong(10," ").copy); foreach x,y in (graph.barriers){ grid[x][y]="#" } foreach x,y in (route){ grid[x][y]="+" } grid[0][0] = "S"; grid[7][7] = "E"; foreach line in (grid){ println(line.concat()) }</lang>

Output:
Route: (0,0),(1,1),(2,2),(3,1),(4,0),(5,1),(6,2),(7,3),(7,4),(7,5),(7,6),(7,7)
Cost: 11
S         
 +        
  + ###   
 +#   #   
+ #   #   
 +#####   
  +       
   ++++E