Rodrigues’ rotation formula

From Rosetta Code
Rodrigues’ rotation formula is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Rotate a point about some axis by some angle using Rodrigues' rotation formula.


Reference


Ada

with Ada.Text_Io;
use  Ada.Text_Io;
with Ada.Numerics.Elementary_Functions;
use  Ada.Numerics.Elementary_Functions;
procedure Rodrigues is
   type Vector is record
      X, Y, Z : Float;
   end record;
   function Image (V : in Vector) return String is
     ('[' & V.X'Image & ',' & V.Y'Image & ',' & V.Z'Image & ']');
   -- Basic operations
   function "+" (V1, V2 : in Vector)           return Vector is ((V1.X + V2.X,
                                                                  V1.Y + V2.Y,
                                                                  V1.Z + V2.Z));
   function "*" (V : in Vector; A : in Float)  return Vector is ((V.X*A, V.Y*A, V.Z*A));
   function "/" (V : in Vector; A : in Float)  return Vector is (V*(1.0/A));
   function "*" (V1, V2 : in Vector)           return Float  is (-- dot-product
                                                                 (V1.X*V2.X + V1.Y*V2.Y + V1.Z*V2.Z));
   function Norm(V : in Vector)                return Float  is (Sqrt(V*V));
   function Normalize(V : in Vector)           return Vector is (V /Norm(V));
   function Cross_Product (V1, V2 : in Vector) return Vector is (-- cross-product
                                                                 (V1.Y*V2.Z - V1.Z*V2.Y,
                                                                  V1.Z*V2.X - V1.X*V2.Z,
                                                                  V1.X*V2.Y - V1.Y*V2.X));
   function Angle (V1, V2 : in Vector)         return Float  is (Arccos((V1*V2) / (Norm(V1)*Norm(V2))));
   -- Rodrigues' rotation formula
   function Rotate (V, Axis : in Vector;
                    Theta   : in Float) return Vector is
      K : constant Vector := Normalize(Axis);
   begin 
      return V*Cos(Theta) + Cross_Product(K,V)*Sin(Theta) + K*(K*V)*(1.0-Cos(Theta));
   end Rotate;
   --
   -- Rotate vector Source on Target
   Source : constant Vector := ( 0.0, 2.0, 1.0);
   Target : constant Vector := (-1.0, 2.0, 0.4);
begin
   Put_Line ("Vector     " & Image(Source));
   Put_Line ("rotated on " & Image(Target));
   Put_Line ("         = " & Image(Rotate(V     => Source,
                                          Axis  => Cross_Product(Source, Target),
                                          Theta => Angle(Source, Target))));
end Rodrigues;
Output:
Vector     [ 0.00000E+00, 2.00000E+00, 1.00000E+00]
rotated on [-1.00000E+00, 2.00000E+00, 4.00000E-01]
         = [-9.84374E-01, 1.96875E+00, 3.93750E-01]

ALGOL 68

Translation of: JavaScript
BEGIN # Rodrigues' Rotation Formula #
    MODE VECTOR = [ 3 ]REAL;
    MODE MATRIX = [ 3 ]VECTOR;
    PROC norm = ( VECTOR v )REAL: sqrt( ( v[1] * v[1] ) + ( v[2] * v[2] ) + ( v[3] * v[3] ) );
    PROC normalize = ( VECTOR v )VECTOR:
         BEGIN
            REAL length = norm( v );
            ( v[1] / length, v[2] / length, v[3] / length )
         END # normalize # ;
    PROC dot product = ( VECTOR v1, v2 )REAL: ( v1[1] * v2[1] ) + ( v1[2] * v2[2] ) + ( v1[3] * v2[3] );
    PROC cross product = ( VECTOR v1, v2 )VECTOR: ( ( v1[2] * v2[3] ) - ( v1[3] * v2[2] )
                                                  , ( v1[3] * v2[1] ) - ( v1[1] * v2[3] )
                                                  , ( v1[1] * v2[2] ) - ( v1[2] * v2[1] )
                                                  );
    PROC get angle = ( VECTOR v1, v2 )REAL: acos( dot product( v1, v2 ) / ( norm( v1 ) * norm( v2 ) ) );
    PROC matrix multiply = ( MATRIX m, VECTOR v )VECTOR: ( dot product( m[1], v )
                                                         , dot product( m[2], v )
                                                         , dot product( m[3], v )
                                                         );
    PROC a rotate = ( VECTOR p, v, REAL a )VECTOR:
         BEGIN
            REAL ca = cos( a ), sa = sin( a ), t = 1 - ca, x = v[1],  y = v[2], z = v[3];
            MATRIX r = ( ( ca + ( x*x*t ), ( x*y*t ) - ( z*sa ), ( x*z*t )  + ( y*sa ) )
                       , ( ( x*y*t ) + ( z*sa ), ca + ( y*y*t ), ( y*z*t ) - ( x*sa ) )
                       , ( ( z*x*t ) - ( y*sa ), ( z*y*t ) + ( x*sa ), ca + ( z*z*t ) )
                       );
            matrix multiply( r, p )
         END # a rotate # ;
    VECTOR v1  = ( 5, -6, 4 );
    VECTOR v2  = ( 8, 5, -30 );
    REAL   a   = get angle( v1, v2 );
    VECTOR cp  = cross product( v1, v2 );
    VECTOR ncp = normalize( cp );
    VECTOR np  = a rotate( v1, ncp, a );
    print( ( "( ", fixed( np[ 1 ], -10, 6 )
           , ", ", fixed( np[ 2 ], -10, 6 )
           , ", ", fixed( np[ 3 ], -10, 6 )
           , " )", newline
           )
         )
END
Output:
(   2.232221,   1.395138,  -8.370829 )

AutoHotkey

Translation of: JavaScript
v1 := [5,-6,4]
v2 := [8,5,-30]
a := getAngle(v1, v2)
cp := crossProduct(v1, v2)
ncp := normalize(cp)
np := aRotate(v1, ncp, a)
for i, v in np
    result .= v ", "
MsgBox % result := "[" Trim(result, ", ") "]"
return

norm(v) {
    return Sqrt(v[1]*v[1] + v[2]*v[2] + v[3]*v[3])
}
normalize(v) {
    length := norm(v)
    return [v[1]/length, v[2]/length, v[3]/length]
}
dotProduct(v1, v2) {
    return v1[1]*v2[1] + v1[2]*v2[2] + v1[3]*v2[3]
}
crossProduct(v1, v2) {
    return [v1[2]*v2[3] - v1[3]*v2[2], v1[3]*v2[1] - v1[1]*v2[3], v1[1]*v2[2] - v1[2]*v2[1]]
}
getAngle(v1, v2) {
    return ACos(dotProduct(v1, v2) / (norm(v1)*norm(v2)))
}
matrixMultiply(matrix, v) {
    return [dotProduct(matrix[1], v), dotProduct(matrix[2], v), dotProduct(matrix[3], v)]
}
aRotate(p, v, a) {
    ca:=Cos(a), sa:=Sin(a), t:=1-ca, x:=v[1], y:=v[2], z:=v[3]
    r := [[ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa]
    ,    [x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa]
    ,    [z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t]]
    return matrixMultiply(r, p)
}
Output:
[2.232221, 1.395138, -8.370829]

C

Translation of: JavaScript
#include <stdio.h>
#include <math.h>

typedef struct {
    double x, y, z;
} vector;

typedef struct {
    vector i, j, k;
} matrix;

double norm(vector v) {
    return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}

vector normalize(vector v){
    double length = norm(v);
    vector n = {v.x / length, v.y / length, v.z / length};
    return n;
}

double dotProduct(vector v1, vector v2) {
    return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
}

vector crossProduct(vector v1, vector v2) {
    vector cp = {v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x};
    return cp;
}

double getAngle(vector v1, vector v2) {
    return acos(dotProduct(v1, v2) / (norm(v1)*norm(v2)));
}

vector matrixMultiply(matrix m ,vector v) {
    vector mm = {dotProduct(m.i, v), dotProduct(m.j, v), dotProduct(m.k, v)};
    return mm;
}

vector aRotate(vector p, vector v, double a) {
    double ca = cos(a), sa = sin(a);
    double t = 1.0 - ca;
    double x = v.x, y = v.y, z = v.z;
    matrix r = {
        {ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa},
        {x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa},
        {z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t}
    };
    return matrixMultiply(r, p);
}

int main() {
    vector v1 = {5, -6, 4}, v2 = {8, 5, -30};
    double a = getAngle(v1, v2);
    vector cp = crossProduct(v1, v2);
    vector ncp = normalize(cp);
    vector np = aRotate(v1, ncp, a);
    printf("[%.13f, %.13f, %.13f]\n", np.x, np.y, np.z);
    return 0;
}
Output:
[2.2322210733082, 1.3951381708176, -8.3708290249059]

Factor

Note the following words already exist in Factor, which I have elected not to redefine:

Word Vocabulary Equivalent function in JavaScript (ES5) entry
normalize math.vectors normalize()
cross math.vectors crossProduct()
angle-between math.vectors getAngle()
mdotv math.matrices matrixMultiply()
Translation of: JavaScript
Works with: Factor version 0.99 2021-06-02
USING: grouping kernel math math.functions math.matrices
math.vectors prettyprint sequences sequences.generalizations ;

:: a-rotate ( p v a -- seq )
    a cos a sin :> ( ca sa )
    ca 1 - v first3 :> ( t x y z )
    x x t * * ca + x y t * * z sa * - x z t * * y sa * +
    x y t * * z sa * + ca y y t * * + y z t * * x sa * -
    z x t * * y sa * - z y t * * x sa * + ca z z t * * +
    9 narray 3 group p mdotv ;

{ 5 -6 4 } { 8 5 -30 }
dupd [ cross normalize ] [ angle-between ] 2bi a-rotate .
Output:
{ 2.232221073308229 1.395138170817642 -8.370829024905852 }

FreeBASIC

This example rotates the vector [-1, 2, -0.4] around the axis [-1, 2, 1] in increments of 18 degrees.

#define PI 3.14159265358979323

type vector
    'define a 3 dimensional vector data type
    x as double
    y as double
    z as double
end type

operator + ( a as vector, b as vector) as vector
    'vector addition
    dim as vector r
    r.x = a.x + b.x
    r.y = a.y + b.y
    r.z = a.z + b.z
    return r
end operator

operator * ( a as vector, b as vector ) as double
    'dot product
    return a.x*b.x + a.y*b.y + a.z*b.z
end operator

operator * ( c as double, a as vector ) as vector
    'multiplication of a scalar by a vector
    dim as vector r
    r.x = c*a.x
    r.y = c*a.y
    r.z = c*a.z
    return r
end operator

function hat( a as vector ) as vector
    'returns a unit vector in the direction of a
    return (1.0/sqr(a*a))*a
end function

operator ^ ( a as vector, b as vector ) as vector
    'cross product
    dim as vector r
    r.x = a.y*b.z - a.z*b.y
    r.y = a.z*b.x - a.x*b.z
    r.z = a.x*b.y - a.y*b.x
    return r
end operator

function rodrigues( v as vector, byval k as vector, theta as double ) as vector
    k = hat(k)
    return cos(theta)*v + sin(theta)*(k^v) + (1-cos(theta))*(k*v)*k
end function

dim as vector k, v, r
dim as double theta
k.x = 0  : k.y = 2  : k.z = 1
v.x = -1 : v.y = 2  : v.z = 0.4

print "Theta        rotated vector"
print "-----------------------------"
for theta = 0 to 2*PI step PI/10
    r = rodrigues( v, k, theta )
    print using "##.### [##.### ##.### ##.###]"; theta; r.x; r.y; r.z
next theta
Output:

Theta rotated vector ----------------------------- 0.000 [-1.000 2.000 0.400] 0.314 [-1.146 1.915 0.424] 0.628 [-1.269 1.818 0.495] 0.942 [-1.355 1.719 0.606] 1.257 [-1.397 1.629 0.745] 1.571 [-1.390 1.555 0.900] 1.885 [-1.335 1.505 1.055] 2.199 [-1.238 1.484 1.194] 2.513 [-1.107 1.494 1.305] 2.827 [-0.956 1.534 1.376] 3.142 [-0.800 1.600 1.400] 3.456 [-0.654 1.685 1.376] 3.770 [-0.531 1.782 1.305] 4.084 [-0.445 1.881 1.194] 4.398 [-0.403 1.971 1.055] 4.712 [-0.410 2.045 0.900] 5.027 [-0.465 2.095 0.745] 5.341 [-0.562 2.116 0.606] 5.655 [-0.693 2.106 0.495] 5.969 [-0.844 2.066 0.424] 6.283 [-1.000 2.000 0.400]

Go

Translation of: JavaScript
package main

import (
    "fmt"
    "math"
)

type vector [3]float64
type matrix [3]vector

func norm(v vector) float64 {
    return math.Sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2])
}

func normalize(v vector) vector {
    length := norm(v)
    return vector{v[0] / length, v[1] / length, v[2] / length}
}

func dotProduct(v1, v2 vector) float64 {
    return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]
}

func crossProduct(v1, v2 vector) vector {
    return vector{v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]}
}

func getAngle(v1, v2 vector) float64 {
    return math.Acos(dotProduct(v1, v2) / (norm(v1) * norm(v2)))
}

func matrixMultiply(m matrix, v vector) vector {
    return vector{dotProduct(m[0], v), dotProduct(m[1], v), dotProduct(m[2], v)}
}

func aRotate(p, v vector, a float64) vector {
    ca, sa := math.Cos(a), math.Sin(a)
    t := 1 - ca
    x, y, z := v[0], v[1], v[2]
    r := matrix{
        {ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa},
        {x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa},
        {z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t},
    }
    return matrixMultiply(r, p)
}

func main() {
    v1 := vector{5, -6, 4}
    v2 := vector{8, 5, -30}
    a := getAngle(v1, v2)
    cp := crossProduct(v1, v2)
    ncp := normalize(cp)
    np := aRotate(v1, ncp, a)
    fmt.Println(np)
}
Output:
[2.2322210733082275 1.3951381708176436 -8.370829024905852]

JavaScript

JavaScript: ES5

function norm(v) {
    return Math.sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
function normalize(v) {
    var length = norm(v);
    return [v[0]/length, v[1]/length, v[2]/length];
}
function dotProduct(v1, v2) {
    return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
function crossProduct(v1, v2) {
    return [v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]];
}
function getAngle(v1, v2) {
    return Math.acos(dotProduct(v1, v2) / (norm(v1)*norm(v2)));
}
function matrixMultiply(matrix, v) {
    return [dotProduct(matrix[0], v), dotProduct(matrix[1], v), dotProduct(matrix[2], v)];
}
function aRotate(p, v, a) {
    var ca = Math.cos(a), sa = Math.sin(a), t=1-ca, x=v[0], y=v[1], z=v[2];
    var r = [
        [ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa],
        [x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa],
        [z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t]
    ];
    return matrixMultiply(r, p);
}

var v1 = [5,-6,4];
var v2 = [8,5,-30];
var a = getAngle(v1, v2);
var cp = crossProduct(v1, v2);
var ncp = normalize(cp);
var np = aRotate(v1, ncp, a);
console.log(np);

JavaScript: ES6

(Returning a value directly and avoiding console.log, which is often defined by browser libraries,

but is not part of JavaScript's ECMAScript standards themselves, and is not available to all JavaScript interpreters)

(() => {
    "use strict";

    // --------------- RODRIGUES ROTATION ----------------

    const rodrigues = v1 =>
        v2 => aRotate(v1)(
            normalize(
                crossProduct(v1)(v2)
            )
        )(
            angle(v1)(v2)
        );

    // ---------------------- TEST -----------------------
    const main = () =>
        rodrigues([5, -6, 4])([8, 5, -30]);


    // ---------------- VECTOR FUNCTIONS -----------------
    const aRotate = p =>
        v => a => {
            const
                cosa = Math.cos(a),
                sina = Math.sin(a),
                t = 1 - cosa,
                [x, y, z] = v;

            return matrixMultiply([
                [
                    cosa + ((x ** 2) * t),
                    (x * y * t) - (z * sina),
                    (x * z * t) + (y * sina)
                ],
                [
                    (x * y * t) + (z * sina),
                    cosa + ((y ** 2) * t),
                    (y * z * t) - (x * sina)
                ],
                [
                    (z * x * t) - (y * sina),
                    (z * y * t) + (x * sina),
                    cosa + (z * z * t)
                ]
            ])(p);
        };


    const angle = v1 =>
        v2 => Math.acos(
            dotProduct(v1)(v2) / (
                norm(v1) * norm(v2)
            )
        );


    const crossProduct = xs =>
        // Cross product of two 3D vectors.
        ys => {
            const [x1, x2, x3] = xs;
            const [y1, y2, y3] = ys;

            return [
                (x2 * y3) - (x3 * y2),
                (x3 * y1) - (x1 * y3),
                (x1 * y2) - (x2 * y1)
            ];
        };


    const dotProduct = xs =>
        compose(
            sum,
            zipWith(a => b => a * b)(xs)
        );


    const matrixMultiply = matrix =>
        compose(
            flip(map)(matrix),
            dotProduct
        );


    const norm = v =>
        Math.sqrt(
            v.reduce((a, x) => a + (x ** 2), 0)
        );


    const normalize = v => {
        const len = norm(v);

        return v.map(x => x / len);
    };


    // --------------------- GENERIC ---------------------

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        // A function defined by the right-to-left
        // composition of all the functions in fs.
        fs.reduce(
            (f, g) => x => f(g(x)),
            x => x
        );


    // flip :: (a -> b -> c) -> b -> a -> c
    const flip = op =>
        // The binary function op with
        // its arguments reversed.
        x => y => op(y)(x);


    // map :: (a -> b) -> [a] -> [b]
    const map = f =>
        // The list obtained by applying f
        // to each element of xs.
        // (The image of xs under f).
        xs => [...xs].map(f);


    // sum :: [Num] -> Num
    const sum = xs =>
        // The numeric sum of all values in xs.
        xs.reduce((a, x) => a + x, 0);


    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
    const zipWith = f =>
        // A list constructed by zipping with a
        // custom function, rather than with the
        // default tuple constructor.
        xs => ys => xs.map(
            (x, i) => f(x)(ys[i])
        ).slice(
            0, Math.min(xs.length, ys.length)
        );


    return JSON.stringify(
        main(),
        null, 2
    );
})();
Output:
[
  2.2322210733082275,
  1.3951381708176431,
  -8.370829024905852
]

jq

Adapted from Wren

Works with: jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

In the comments, the term "vector" is used to mean a (JSON) array of numbers. Some of the functions have been generalized to work with vectors of arbitrary length.

# v1 and v2 should be vectors of the same length.
def dotProduct(v1; v2): [v1, v2] | transpose | map(.[0] * .[1]) | add;

# Input: a vector
def norm: dotProduct(.; .) | sqrt;

# Input: a vector
def normalize: norm as $n | map(./$n);

# v1 and v2 should be 3-vectors
def crossProduct(v1; v2):
     [v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]];

# v1 and v2 should be of equal length.
def getAngle(v1; v2):
   (dotProduct(v1; v2) / ((v1|norm) * (v2|norm)))|acos ;

# Input: a matrix (i.e. an array of same-length vectors)
# $v should be the same length as the vectors in the matrix
def matrixMultiply($v):
  map(dotProduct(.; $v)) ;

# $p - the point vector
# $v - the axis
# $a - the angle in radians
def aRotate($p; $v; $a):
    {ca: ($a|cos),
     sa: ($a|sin)}
    | .t = (1 - .ca)
    | .x = $v[0]
    | .y = $v[1]
    | .z = $v[2]
    | [
        [.ca + .x*.x*.t,    .x*.y*.t - .z*.sa, .x*.z*.t + .y*.sa],
        [.x*.y*.t + .z*.sa, .ca + .y*.y*.t,    .y*.z*.t - .x*.sa],
        [.z*.x*.t - .y*.sa, .z*.y*.t + .x*.sa, .ca + .z*.z*.t]
      ]
    | matrixMultiply($p) ;

def example:
    [5, -6,  4] as $v1
  | [8,  5,-30] as $v2
  | getAngle($v1; $v2) as $a
  | (crossProduct($v1; $v2) | normalize) as $ncp
  | aRotate($v1; $ncp; $a)
;

example
Output:
[2.2322210733082275,1.3951381708176436,-8.370829024905852]

Julia

Translation of: Perl
using LinearAlgebra # use builtin library for normalize, cross, dot
using JSON3

getangleradians(v1, v2) = acos(dot(v1, v2) / (norm(v1) * norm(v2)))

function rodrotate(pointvector, rotationvector, radians)
    ca, sa = cos(radians), sin(radians)
    t = 1 - ca
    x, y, z = rotationvector
    return [[ca + x * x * t, x * y * t - z * sa, x * z * t + y * sa]';
        [x * y * t + z * sa, ca + y * y * t, y * z * t - x * sa]';
        [z * x * t - y * sa, z * y * t + x * sa, ca + z * z * t]'] * pointvector
end

v1 = [5, -6, 4]
v2 = [8, 5, -30]
a = getangleradians(v1, v2)
cp = cross(v1, v2)
ncp = normalize(cp)
np = rodrotate(v1, ncp, a)
JSON3.write(np)  # "[2.2322210733082284,1.3951381708176411,-8.370829024905854]"

Nim

Translation of: Wren

Only changed most function names.

import math

type
  Vector = tuple[x, y, z: float]
  Matrix = array[3, Vector]

func norm(v: Vector): float =
  sqrt(v.x * v.x + v.y * v.y + v.z * v.z)

func normalized(v: Vector): Vector =
  let length = v.norm()
  result = (v.x / length, v.y / length, v.z / length)

func scalarProduct(v1, v2: Vector): float =
  v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

func vectorProduct(v1, v2: Vector): Vector =
  (v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x)

func angle(v1, v2: Vector): float =
  arccos(scalarProduct(v1, v2) / (norm(v1) * norm(v2)))

func `*`(m: Matrix; v: Vector): Vector =
  (scalarProduct(m[0], v), scalarProduct(m[1], v), scalarProduct(m[2], v))

func rotate(p, v: Vector; a: float): Vector =
  let ca = cos(a)
  let sa = sin(a)
  let t = 1 - ca
  let r = [(ca + v.x * v.x * t, v.x * v.y * t - v.z * sa, v.x * v.z * t + v.y * sa),
           (v.x * v.y * t + v.z * sa, ca + v.y * v.y * t, v.y * v.z * t - v.x * sa),
           (v.z * v.x * t - v.y * sa, v.z * v.y * t + v.x * sa, ca + v.z * v.z * t)]
  result = r * p

let
  v1 = (5.0, -6.0, 4.0)
  v2 = (8.0, 5.0, -30.0)
  a = angle(v1, v2)
  vp = vectorProduct(v1, v2)
  nvp = normalized(vp)
  np = v1.rotate(nvp, a)
echo np
Output:
(x: 2.232221073308228, y: 1.395138170817643, z: -8.370829024905852)

Perl

Task-specific

#!perl -w
use strict;
use Math::Trig; # acos
use JSON;
use constant PI => 3.14159265358979;

# Rodrigues' formula for vector rotation - see https://stackoverflow.com/questions/42358356/rodrigues-formula-for-vector-rotation

sub norm {
  my($v)=@_;
  return ($v->[0]*$v->[0] + $v->[1]*$v->[1] + $v->[2]*$v->[2]) ** 0.5;
}
sub normalize {
  my($v)=@_;
  my $length = &norm($v);
  return [$v->[0]/$length, $v->[1]/$length, $v->[2]/$length];
}
sub dotProduct {
  my($v1, $v2)=@_;
  return $v1->[0]*$v2->[0] + $v1->[1]*$v2->[1] + $v1->[2]*$v2->[2];
}
sub crossProduct {
  my($v1, $v2)=@_;
  return [$v1->[1]*$v2->[2] - $v1->[2]*$v2->[1], $v1->[2]*$v2->[0] - $v1->[0]*$v2->[2], $v1->[0]*$v2->[1] - $v1->[1]*$v2->[0]];
}
sub getAngle {
  my($v1, $v2)=@_;
  return acos(&dotProduct($v1, $v2) / (&norm($v1)*&norm($v2)))*180/PI;  # remove *180/PI to go back to radians
}
sub matrixMultiply {
  my($matrix, $v)=@_;
  return [&dotProduct($matrix->[0], $v), &dotProduct($matrix->[1], $v), &dotProduct($matrix->[2], $v)];
}
sub aRotate {
  my($p, $v, $a)=@_;    # point-to-rotate, vector-to-rotate-about, angle(degrees)
  my $ca = cos($a/180*PI);      # remove /180*PI to go back to radians
  my $sa = sin($a/180*PI);
  my $t=1-$ca;
  my($x,$y,$z)=($v->[0], $v->[1], $v->[2]);
  my $r = [
        [$ca + $x*$x*$t, $x*$y*$t - $z*$sa, $x*$z*$t + $y*$sa],
        [$x*$y*$t + $z*$sa, $ca + $y*$y*$t, $y*$z*$t - $x*$sa],
        [$z*$x*$t - $y*$sa, $z*$y*$t + $x*$sa, $ca + $z*$z*$t]
    ];
  return &matrixMultiply($r, $p);
}

my $v1 = [5,-6,4];
my $v2 = [8,5,-30];
my $a = &getAngle($v1, $v2);
my $cp = &crossProduct($v1, $v2);
my $ncp = &normalize($cp);
my $np = &aRotate($v1, $ncp, $a);

my $json=JSON->new->canonical; 

print $json->encode($np) . "\n";
Output:
[2.23222107330823,1.39513817081764,-8.37082902490585]

Generalized

use strict;
use warnings;
use feature <say signatures>;
no warnings 'experimental::signatures';

use Math::Trig;
use List::Util 'sum';
use constant PI => 2 * atan2(1, 0);

sub norm       ($v)       { sqrt sum map { $_*$_ } @$v }
sub normalize  ($v)       { [ map { $_ / norm $v } @$v ] }
sub dotProduct ($v1, $v2) { sum map { $v1->[$_] * $v2->[$_] } 0..$#$v1 }
sub getAngle   ($v1, $v2) { 180/PI * acos dotProduct($v1, $v2) / (norm($v1)*norm($v2)) }
sub mvMultiply ($m,  $v)  { [ map { dotProduct($_, $v) } @$m ] }
sub crossProduct ($v1, $v2) { 
    [$v1->[1]*$v2->[2] - $v1->[2]*$v2->[1], $v1->[2]*$v2->[0] - $v1->[0]*$v2->[2], $v1->[0]*$v2->[1] - $v1->[1]*$v2->[0]]
}

sub aRotate ( $p, $v, $a ) {
    my $ca = cos $a/180*PI;
    my $sa = sin $a/180*PI;
    my $t = 1 - $ca;
    my($x,$y,$z) = @$v;
    my $r = [
        [     $ca + $x*$x*$t, $x*$y*$t -   $z*$sa, $x*$z*$t +   $y*$sa],
        [$x*$y*$t +   $z*$sa,      $ca + $y*$y*$t, $y*$z*$t -   $x*$sa],
        [$z*$x*$t -   $y*$sa, $z*$y*$t +   $x*$sa,      $ca + $z*$z*$t]
    ];
    mvMultiply($r, $p)
}

my($v1,$v2) = ([5, -6, 4], [8, 5, -30]);
say join ' ', @{aRotate $v1, normalize(crossProduct $v1, $v2), getAngle $v1, $v2};
Output:
2.23222107330823 1.39513817081764 -8.37082902490585

Phix

Translation of: JavaScript
with javascript_semantics
function norm(sequence v)
    return sqrt(sum(sq_power(v,2)))
end function

function normalize(sequence v)
    return sq_div(v,norm(v))
end function

function dotProduct(sequence v1, v2)
    return sum(sq_mul(v1,v2))
end function

function crossProduct(sequence v1, v2)
    atom {v11,v12,v13} = v1,
         {v21,v22,v23} = v2
    return {v12*v23-v13*v22, v13*v21-v11*v23, v11*v22-v12*v21}
end function

function getAngle(sequence v1, v2)
    return arccos(dotProduct(v1, v2) / (norm(v1)*norm(v2)))
end function

function matrixMultiply(sequence matrix, v)
    return {dotProduct(matrix[1], v), dotProduct(matrix[2], v), dotProduct(matrix[3], v)}
end function

function aRotate(sequence p, v, atom a)
    atom ca = cos(a), sa = sin(a), t=1-ca, {x,y,z} =v
    sequence r = {{ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa},
                  {x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa},
                  {z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t}}
    return matrixMultiply(r, p)
end function
 
sequence v1 = {5,-6,4},
         v2 = {8,5,-30};
atom a = getAngle(v1, v2)
sequence cp = crossProduct(v1, v2),
        ncp = normalize(cp),
         np = aRotate(v1, ncp, a);
?np
Output:
{2.232221073,1.395138171,-8.370829025}

Processing

Translation of: C
//Aamrun, 30th June 2022

class Vector{
  private double x, y, z;

  public Vector(double x1,double y1,double z1){
    x = x1;
    y = y1;
    z = z1;
  }
  
  void printVector(int x,int y){
    text("( " + this.x + " )  \u00ee + ( " + this.y + " ) + \u0135 ( " + this.z + ") \u006b\u0302",x,y);
  }

  public double norm() {
    return Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
  }
  
  public Vector normalize(){
    double length = this.norm();
    return new Vector(this.x / length, this.y / length, this.z / length);
  }
  
  public double dotProduct(Vector v2) {
    return this.x*v2.x + this.y*v2.y + this.z*v2.z;
  }
  
  public Vector crossProduct(Vector v2) {
    return new Vector(this.y*v2.z - this.z*v2.y, this.z*v2.x - this.x*v2.z, this.x*v2.y - this.y*v2.x);
  }
  
  public double getAngle(Vector v2) {
    return Math.acos(this.dotProduct(v2) / (this.norm()*v2.norm()));
  }
  
  public Vector aRotate(Vector v, double a) {
    double ca = Math.cos(a), sa = Math.sin(a);
    double t = 1.0 - ca;
    double x = v.x, y = v.y, z = v.z;
    Vector[] r = {
        new Vector(ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa),
        new Vector(x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa),
        new Vector(z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t)
    };
    return new Vector(this.dotProduct(r[0]), this.dotProduct(r[1]), this.dotProduct(r[2]));
  }
}

void setup(){
  Vector v1 = new Vector(5d, -6d, 4d),v2 = new Vector(8d, 5d, -30d);
  double a = v1.getAngle(v2);
  Vector cp = v1.crossProduct(v2);
  Vector normCP = cp.normalize();
  Vector np = v1.aRotate(normCP,a);
  
  size(1200,600);
  fill(#000000);
  textSize(30);
  
  text("v1 = ",10,100);
  v1.printVector(60,100);
  text("v2 = ",10,150);
  v2.printVector(60,150);
  text("rV = ",10,200);
  np.printVector(60,200);
}

Raku

sub infix:<⋅> { [+] @^a »×« @^b }
sub norm      (@v) { sqrt @v⋅@v }
sub normalize (@v) { @v X/ @v.&norm }
sub getAngle  (@v1,@v2) { 180/π × acos (@v1⋅@v2) / (@v1.&norm × @v2.&norm) }

sub crossProduct ( @v1, @v2 ) {
    my \a = <1 2 0>; my \b = <2 0 1>;
    (@v1[a] »×« @v2[b]) »-« (@v1[b] »×« @v2[a])
}

sub aRotate ( @p, @v, $a ) {
    my \ca = cos $a/180×π;
    my \sa = sin $a/180×π;
    my \t = 1 - ca;
    my (\x,\y,\z) = @v;
    map { @p$_ },
        [   ca + x×x×t, x×y×t -  z×sa, x×z×t +  y×sa],
        [x×y×t +  z×sa,    ca + y×y×t, y×z×t -  x×sa],
        [z×x×t -  y×sa, z×y×t +  x×sa,    ca + z×z×t]
}

my @v1 = [5,-6,  4];
my @v2 = [8, 5,-30];
say join ' ', aRotate @v1, normalize(crossProduct @v1, @v2), getAngle @v1, @v2;
Output:
2.232221073308229 1.3951381708176411 -8.370829024905852

Alternately, differing mostly in style:

sub infix:<•> { sum @^v1 Z× @^v2 } # dot product

sub infix:<❌> (@v1, @v2) {         # cross product
    my \a = <1 2 0>; my \b = <2 0 1>;
    @v1[a] »×« @v2[b] »-« @v1[b] »×« @v2[a]
}

sub norm (*@v) { sqrt @v@v }

sub normal (*@v) { @v X/ @v.&norm }

sub angle-between (@v1, @v2) { acos( (@v1@v2) / (@v1.&norm × @v2.&norm) ) }

sub infix:<⁢> is equiv(&infix:<×>) { $^a × $^b } # invisible times

sub postfix:<°> (\d) { d × τ / 360 } # degrees to radians

sub rodrigues-rotate( @point, @axis,  ) {
    my ( \cos𝜃, \sin𝜃 ) = cis().reals;
    my ( \𝑥, \𝑦, \𝑧 )   = @axis;
    my \𝑡 = 1 - cos𝜃;

    map @point • *, [
       [ 𝑥²𝑡 + cos𝜃, 𝑦𝑥𝑡 - 𝑧sin𝜃, 𝑧𝑥𝑡 + 𝑦sin𝜃 ],
       [ 𝑥𝑦𝑡 + 𝑧sin𝜃, 𝑦²𝑡 + cos𝜃, 𝑧𝑦𝑡 - 𝑥sin𝜃 ],
       [ 𝑥𝑧𝑡 - 𝑦sin𝜃, 𝑦𝑧𝑡 + 𝑥sin𝜃, 𝑧²𝑡 + cos𝜃 ]
    ]
}

sub point-vector (@point, @vector) {
    rodrigues-rotate @point, normal(@point@vector), angle-between @point, @vector
}

put qq:to/TESTING/;
Task example - Point and composite axis / angle:
{ point-vector [5, -6, 4], [8, 5, -30] }

Perhaps more useful, (when calculating a range of motion for a robot appendage,
for example), feeding a point, axis of rotation and rotation angle separately;
since theoretically, the point vector and axis of rotation should be constant:

{
(0, 10, 20 ... 180).map( { # in degrees
    sprintf "Rotated %3d°: %.13f, %.13f, %.13f", $_,
    rodrigues-rotate [5, -6, 4], ([5, -6, 4] ❌ [8, 5, -30]).&normal, .°
}).join: "\n"
}
TESTING
Output:
Task example - Point and composite axis / angle:
2.232221073308228 1.3951381708176427 -8.370829024905852

Perhaps more useful, (when calculating a range of motion for a robot appendage,
for example), feeding a point, axis of rotation and rotation angle directly;
since theoretically, the point vector and axis of rotation should be constant:

Rotated   0°: 5.0000000000000, -6.0000000000000, 4.0000000000000
Rotated  10°: 5.7240554466526, -6.0975296976939, 2.6561853906284
Rotated  20°: 6.2741883650704, -6.0097890410223, 1.2316639322573
Rotated  30°: 6.6336832449081, -5.7394439854392, -0.2302810114435
Rotated  40°: 6.7916170161550, -5.2947088286573, -1.6852289831393
Rotated  50°: 6.7431909410900, -4.6890966233686, -3.0889721249495
Rotated  60°: 6.4898764214992, -3.9410085899762, -4.3988584118384
Rotated  70°: 6.0393702908772, -3.0731750048240, -5.5750876118134
Rotated  80°: 5.4053609500356, -2.1119645522518, -6.5819205958338
Rotated  90°: 4.6071124519719, -1.0865831254651, -7.3887652531624
Rotated 100°: 3.6688791733663, -0.0281864202486, -7.9711060171693
Rotated 110°: 2.6191688576205, 1.0310667150840, -8.3112487584187
Rotated 120°: 1.4898764214993, 2.0589914100238, -8.3988584118384
Rotated 130°: 0.3153148442246, 3.0243546928699, -8.2312730024418
Rotated 140°: -0.8688274150348, 3.8978244887705, -7.8135845280911
Rotated 150°: -2.0265707929363, 4.6528608599741, -7.1584842417190
Rotated 160°: -3.1227378427887, 5.2665224084086, -6.2858770340300
Rotated 170°: -4.1240220834695, 5.7201633384526, -5.2222766334692
Rotated 180°: -5.0000000000000, 6.0000000000000, -4.0000000000000

RPL

This is a direct transcription from Wikipedia's formula.

≪ DEG SWAP DUP ABS /           @ set degrees mode and normalize k
   → v θ k
   ≪ v θ COS *
      k v CROSS θ SIN * +
      k DUP v DOT * 1 θ COS - * +
      →NUM                     @ can be removed if using HP-28/48 ROM versions    
≫ ≫ 'ROTV' STO                @ ( vector axis-vector angle → rotated-vector )
[-1 2 .4] [0 2 1] 18 ROTV
Output:
[-1.11689243765 1.85005696279 .699886074428]

Wren

Translation of: JavaScript
var norm = Fn.new { |v| (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]).sqrt }

var normalize = Fn.new { |v|
    var length = norm.call(v)
    return [v[0]/length, v[1]/length, v[2]/length]
}

var dotProduct = Fn.new { |v1, v2| v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2] }

var crossProduct = Fn.new { |v1, v2|
    return [v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]]
}

var getAngle = Fn.new { |v1, v2| (dotProduct.call(v1, v2) / (norm.call(v1) * norm.call(v2))).acos }

var matrixMultiply = Fn.new { |matrix, v|
    return [dotProduct.call(matrix[0], v), dotProduct.call(matrix[1], v), dotProduct.call(matrix[2], v)]
}

var aRotate = Fn.new { |p, v, a|
    var ca = a.cos
    var sa = a.sin
    var t = 1 - ca
    var x = v[0]
    var y = v[1]
    var z = v[2]
    var r = [
        [ca + x*x*t, x*y*t - z*sa, x*z*t + y*sa],
        [x*y*t + z*sa, ca + y*y*t, y*z*t - x*sa],
        [z*x*t - y*sa, z*y*t + x*sa, ca + z*z*t]
    ]
    return matrixMultiply.call(r, p)
}

var v1 = [5, -6,  4]
var v2 = [8,  5,-30]
var a = getAngle.call(v1, v2)
var cp = crossProduct.call(v1, v2)
var ncp = normalize.call(cp)
var np = aRotate.call(v1, ncp, a)
System.print(np)
Output:
[2.2322210733082, 1.3951381708176, -8.3708290249059]