Nonogram solver: Difference between revisions

From Rosetta Code
Content deleted Content added
+ D entry
More pythonic and faster Python entry
Line 432: Line 432:
=={{header|Python}}==
=={{header|Python}}==
First fill cells by deduction, then search through all combinations. It could take up a huge amount of storage, depending on the board size.
First fill cells by deduction, then search through all combinations. It could take up a huge amount of storage, depending on the board size.
<lang python>from itertools import izip
<lang python># create all patterns of a row or col that match given runs

def genrow(w, s):
def gen_row(w, s):
"""Create all patterns of a row or col that match given runs."""
def gen_pad(w, n):
def gen_pad(w, n):
if n: return [[[2]*l] + r
if n:
for l in range(1,w-n+1)
return [[[2] * l] + r for l in xrange(1, w - n + 1)
for r in gen_pad(w-l, n-1) ]
for r in gen_pad(w - l, n - 1)]
return [[[2]*w]]
return [[[2] * w]]


def interlace(z, o):
def interlace(z, o):
Line 444: Line 446:
l[0::2] = z
l[0::2] = z
l[1::2] = o
l[1::2] = o
return reduce(lambda a,b: a + b, l)
return sum(l, [])

ones = [[1] * i for i in s]
return [interlace(x, ones)[1:-1]
for x in gen_pad(w - sum(s) + 2, len(s))]


ones = [[1]*i for i in s]
return [interlace(x, ones)[1:-1] for x in gen_pad(w - sum(s) + 2, len(s))]


# fix inevitable value of cells, and propagate
def deduce(hr, vr):
def deduce(hr, vr):
"""Fix inevitable value of cells, and propagate."""
def allowable(row):
def allowable(row):
return reduce(lambda a,b:[x|y for x,y in zip(a,b)], row)
return reduce(lambda a, b: [x | y for x, y in izip(a, b)], row)


def fits(a, b):
def fits(a, b):
return all([x&y for x,y in zip(a, b)])
return all(x & y for x, y in izip(a, b))


# see if any value in a given column is fixed; if so,
# See if any value in a given column is fixed;
# mark its corresponding row for future fixup
# if so, mark its corresponding row for future fixup.
def fix_col(n):
def fix_col(n):
del(fixable[-n-1])
fixable.remove(-n - 1)
c = [x[n] for x in can_do]
c = [x[n] for x in can_do]
cols[n] = [x for x in cols[n] if fits(x,c)]
cols[n] = [x for x in cols[n] if fits(x, c)]
for i,x in enumerate(allowable(cols[n])):
for i,x in enumerate(allowable(cols[n])):
v = x & can_do[i][n]
v = x & can_do[i][n]
if v == can_do[i][n]: continue
if v == can_do[i][n]:
fixable[i+1] = True
continue
fixable.add(i + 1)
can_do[i][n] = v
can_do[i][n] = v


# ditto, for rows
# Ditto, for rows.
def fix_row(n):
def fix_row(n):
del(fixable[n+1])
fixable.remove(n + 1)
c = can_do[n]
c = can_do[n]
rows[n] = [x for x in rows[n] if fits(x,c)]
rows[n] = [x for x in rows[n] if fits(x, c)]
for i,x in enumerate(allowable(rows[n])):
for i, x in enumerate(allowable(rows[n])):
v = x & can_do[n][i]
v = x & can_do[n][i]
if v == can_do[n][i]: continue
if v == can_do[n][i]:
fixable[-i-1] = True
continue
fixable.add(-i - 1)
can_do[n][i] = v
can_do[n][i] = v


def show_gram(m):
def show_gram(m):
# if there's 'x', something is wrong
# If there's 'x', something is wrong.
# if there's '?', needs more work
# If there's '?', needs more work.
for x in m: print ' '.join(["x#.?"[i] for i in x])
for x in m:
print '-' * (2*len(vr) - 1)
print " ".join("x#.?"[i] for i in x)
print '-' * (2 * len(vr) - 1)



w, h = len(vr), len(hr)
w, h = len(vr), len(hr)
fixable = {}
fixable = set()
rows = [genrow(w, x) for x in hr]
rows = [gen_row(w, x) for x in hr]
cols = [genrow(h, x) for x in vr]
cols = [gen_row(h, x) for x in vr]
can_do = [allowable(x) for x in rows]
can_do = [allowable(x) for x in rows]


# initially mark all columns for update
# initially mark all columns for update
for i in range(w): fixable[-i-1] = True
for i in xrange(w):
fixable.add(-i - 1)


while fixable:
while fixable:
i = fixable.keys()[0]
i = next(iter(fixable))
if i < 0: fix_col(-i-1)
if i < 0:
else: fix_row(i-1)
fix_col(-i - 1)
else:
fix_row(i - 1)


show_gram(can_do)
show_gram(can_do)


# return if solution is unique
# return if solution is unique
if all([can_do[i][j] in (1,2) for j in range(w) for i in range(h)]):
if all(can_do[i][j] in (1, 2) for j in xrange(w) for i in xrange(h)):
return
return
out = [0] * h


print "Solution not unique, doing exhaustive search:"
print "Solution not unique, doing exhaustive search:"
def try_all(n = 0, out = [0] * h):
def try_all(n = 0):
if n >= h:
if n >= h:
for j in range(w):
for j in xrange(w):
if [x[j] for x in out] not in cols[j]: return
if [x[j] for x in out] not in cols[j]:
return
show_gram(out)
show_gram(out)
return
return
Line 520: Line 531:
try_all()
try_all()



def solve(p):
def solve(p, show_runs=True):
s = [[[ord(c)-ord('A')+1 for c in w] for w in l.split()] for l in p.split('\n')]
s = [[[ord(c) - ord('A') + 1 for c in w] for w in l.split()]
print "Horizontal runs:", s[0]
for l in p.split('\n')]
print "Vertical runs:", s[1]
if show_runs:
print "Horizontal runs:", s[0]
print "Vertical runs:", s[1]
deduce(s[0], s[1])
deduce(s[0], s[1])
print "\n"
print "\n"


# read from file file
fn = 'nonogram_problems.txt'
for p in [x for x in open(fn).read().split('\n\n') if x]:
solve(p)


def main():
print "Extra example not solvable by deduction alone:"
# Read problems from file.
solve("B B A A\nB B A A")
fn = "nonogram_problems.txt"
for p in (x for x in open(fn).read().split("\n\n") if x):
solve(p)

print "Extra example not solvable by deduction alone:"
solve("B B A A\nB B A A")

print "Extra example where there's no solution:"
solve("B A A\nA A A")


main()</lang>
print "Extra example where there's no solution:"
solve("B A A\nA A A")</lang>
{{out}}
{{out}}
<pre>
<pre>

Revision as of 10:25, 31 March 2014

Nonogram solver is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Each row and column of a rectangular grid is annotated with the lengths of its distinct runs of occupied cells. Using only these lengths you should find one valid configuration of empty and occupied cells (or show a failure message):

Problem:                 Solution:

. . . . . . . .  3       . # # # . . . .  3
. . . . . . . .  2 1     # # . # . . . .  2 1
. . . . . . . .  3 2     . # # # . . # #  3 2
. . . . . . . .  2 2     . . # # . . # #  2 2
. . . . . . . .  6       . . # # # # # #  6
. . . . . . . .  1 5     # . # # # # # .  1 5
. . . . . . . .  6       # # # # # # . .  6
. . . . . . . .  1       . . . . # . . .  1
. . . . . . . .  2       . . . # # . . .  2
1 3 1 7 5 3 4 3          1 3 1 7 5 3 4 3
2 1 5 1                  2 1 5 1

The problem above could be represented by two lists of lists:

x = [[3], [2,1], [3,2], [2,2], [6], [1,5], [6], [1], [2]]
y = [[1,2], [3,1], [1,5], [7,1], [5], [3], [4], [3]]

A more compact representation of the same problem uses strings, where the letters represent the numbers, A=1, B=2, etc:

x = "C BA CB BB F AE F A B"
y = "AB CA AE GA E C D C"

For this task try to solve the problems read from a "nonogram_problems.txt" file, copied from this:

C BA CB BB F AE F A B
AB CA AE GA E C D C

F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC
D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA

CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC
BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC

E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G
E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM

More info:
http://en.wikipedia.org/wiki/Nonogram

This task is the problem n.98 of the "99 Prolog Problems" by Werner Hett (also thanks to Paul Singleton for the idea and the examples):
https://sites.google.com/site/prologsite/prolog-problems

Some Haskell solutions:
http://www.haskell.org/haskellwiki/99_questions/Solutions/98
http://twanvl.nl/blog/haskell/Nonograms

PicoLisp solution:
http://picolisp.com/5000/!wiki?99p98

Bonus Problem: generate nonograms with unique solutions, of desired height and width.

D

Translation of: Python

<lang d>import std.stdio, std.range, std.file, std.algorithm, std.array,

      std.string;

/// Create all patterns of a row or col that match given runs. int[][] genRow(in int w, /*in*/ int[] s) {

   static int[][][] genPad(in int w, in int n) pure nothrow {
       if (n) {
           typeof(return) result;
           foreach (immutable l; 1 .. w - n + 1)
               foreach (r; genPad(w - l, n - 1))
                   result ~= [[2].replicate(l)] ~ r;
           return result;
       } else
           return [[[2].replicate(w)]];
   }
   static int[] interlace(in int[][] z, in int[][] o) pure nothrow {
       assert(z.length == o.length + 1);
       typeof(return) result;
       foreach (immutable i; 0 .. z.length + o.length)
           result ~= (i % 2) ? o[i / 2] : z[i / 2];
       return result;
   }
   const ones = s.map!(i => [1].replicate(i)).array;
   return genPad(w - s.sum + 2, s.length)
          .map!(x => interlace(x, ones)[1.. $-1]).array;

}

// Fix inevitable value of cells, and propagate. void deduce(/*in*/ int[][] hr, /*in*/ int[][] vr) {

   static int[] allowable(/*in*/ int[][] row) pure /*nothrow*/ {
       return row.reduce!((a, b) => zip(a, b)
                           .map!(xy => xy[0] | xy[1]).array);
   }
   static bool fits(in int[] a, in int[] b) pure /*nothrow*/ {
       return zip(a, b).all!(xy => xy[0] & xy[1]);
   }
   immutable int w = vr.length;
   immutable int h = hr.length;
   bool[int] fixable; // A set.
   auto rows = hr.map!(x => genRow(w, x)).array;
   auto cols = vr.map!(x => genRow(h, x)).array;
   auto canDo = rows.map!allowable.array;
   // See if any value a given column is fixed; if so,
   // mark its corresponding row for future fixup.
   void fixCol(in int n) /*nothrow*/ {
       fixable.remove(-n - 1);
       /*const*/ auto c = canDo.map!(x => x[n]).array;
       cols[n] = cols[n].filter!(x => fits(x, c)).array;
       foreach (immutable i, immutable x; allowable(cols[n])) {
           immutable v = x & canDo[i][n];
           if (v == canDo[i][n])
               continue;
           fixable[i + 1] = true;
           canDo[i][n] = v;
       }
   }
   // Ditto, for rows.
   void fixRow(in int n) {
       fixable.remove(n + 1);
       /*const*/ auto c = canDo[n];
       rows[n] = rows[n].filter!(x => fits(x, c)).array;
       foreach (immutable i, immutable x; allowable(rows[n])) {
           immutable v = x & canDo[n][i];
           if (v == canDo[n][i])
               continue;
           fixable[-i - 1] = true;
           canDo[n][i] = v;
       }
   }
   void showGram(in int[][] m) {
       // If there's 'x', something is wrong.
       // If there's '?', needs more work.
       foreach (const x; m)
           writefln("%-(%c %)", x.map!(i => "x#.?"[i]));
       writeln("-".replicate(2 * vr.length - 1));
   }
   // Initially mark all columns for update.
   foreach (immutable i; 0 .. w)
       fixable[-i - 1] = true;
   while (fixable.length) {
       immutable i = fixable.byKey.front;
       if (i < 0)
           fixCol(-i - 1);
       else
           fixRow(i - 1);
   }
   showGram(canDo);
   // Return if solution is unique.
   if (cartesianProduct(h.iota, w.iota)
       .all!(ij => canDo[ij[0]][ij[1]] == 1 ||
                   canDo[ij[0]][ij[1]] == 2))
       return;
   "Solution not unique, doing exhaustive search:".writeln;
   auto out_ = new const(int)[][](h);
   void tryAll(in int n = 0) {
       if (n >= h) {
           foreach (immutable j; 0 .. w) {
               if (!cols[j].canFind(out_.map!(x => x[j]).array))
                   return;
           }
           showGram(out_);
           return;
       }
       foreach (const x; rows[n]) {
           out_[n] = x;
           tryAll(n + 1);
       }
   }
   tryAll;

}

void solve(in string p, in bool showRuns=true) {

   /*const*/ auto s = p.splitLines.map!(l => l.split.map!(w =>
       w.map!(c => int(c - 'A' + 1)).array).array).array;
       //w.map!(c => c - 'A' + 1))).to!(int[][][]);
   if (showRuns) {
       writeln("Horizontal runs: ", s[0]);
       writeln("Vertical runs: ", s[1]);
   }
   deduce(s[0], s[1]);
   writeln('\n');

}

void main() {

   // Read problems from file.
   immutable fn = "nonogram_problems.txt";
   foreach (p; fn.readText.split("\n\n").filter!(p => !p.empty))
       p.strip.solve;
   "Extra example not solvable by deduction alone:".writeln;
   "B B A A\nB B A A".solve;
   "Extra example where there is no solution:".writeln;
   "B A A\nA A A".solve;

}</lang>

Output:
Horizontal runs: [[3], [2, 1], [3, 2], [2, 2], [6], [1, 5], [6], [1], [2]]
Vertical runs: [[1, 2], [3, 1], [1, 5], [7, 1], [5], [3], [4], [3]]
. # # # . . . .
# # . # . . . .
. # # # . . # #
. . # # . . # #
. . # # # # # #
# . # # # # # .
# # # # # # . .
. . . . # . . .
. . . # # . . .
---------------


Horizontal runs: [[6], [3, 1, 3], [1, 3, 1, 3], [3, 14], [1, 1, 1], [1, 1, 2, 2], [5, 2, 2], [5, 1, 1], [5, 3, 3, 3], [8, 3, 3, 3]]
Vertical runs: [[4], [4], [1, 5], [3, 4], [1, 5], [1], [4, 1], [2, 2, 2], [3, 3], [1, 1, 2], [2, 1, 1], [1, 1, 2], [4, 1], [1, 1, 2], [1, 1, 1], [2, 1, 2], [1, 1, 1], [3, 4], [2, 2, 1], [4, 1]]
. . . . . . . . . . # # # # # # . . . .
. . . . . . . . # # # . # . . # # # . .
. . . # . . # # # . . . # . . . . # # #
. . # # # . # # # # # # # # # # # # # #
. . . # . . # . . . . . . . . . . . . #
. . # . # . # # . . . . . . . . . . # #
# # # # # . . # # . . . . . . . . # # .
# # # # # . . . # . . . . . . . . # . .
# # # # # . . # # # . # # # . # # # . .
# # # # # # # # . # # # . # # # . # # #
---------------------------------------


Horizontal runs: [[3, 1], [2, 4, 1], [1, 3, 3], [2, 4], [3, 3, 1, 3], [3, 2, 2, 1, 3], [2, 2, 2, 2, 2], [2, 1, 1, 2, 1, 1], [1, 2, 1, 4], [1, 1, 2, 2], [2, 2, 8], [2, 2, 2, 4], [1, 2, 2, 1, 1, 1], [3, 3, 5, 1], [1, 1, 3, 1, 1, 2], [2, 3, 1, 3, 3], [1, 3, 2, 8], [4, 3, 8], [1, 4, 2, 5], [1, 4, 2, 2], [4, 2, 5], [5, 3, 5], [4, 1, 1], [4, 2], [3, 3]]
Vertical runs: [[2, 3], [3, 1, 3], [3, 2, 1, 2], [2, 4, 4], [3, 4, 2, 4, 5], [2, 5, 2, 4, 6], [1, 4, 3, 4, 6, 1], [4, 3, 3, 6, 2], [4, 2, 3, 6, 3], [1, 2, 4, 2, 1], [2, 2, 6], [1, 1, 6], [2, 1, 4, 2], [4, 2, 6], [1, 1, 1, 1, 4], [2, 4, 7], [3, 5, 6], [3, 2, 4, 2], [2, 2, 2], [6, 3]]
. . . . # # # . # . . . . . . . . . . .
. . . . # # . # # # # . # . . . . . . .
. . . . # . # # # . # # # . . . . . . .
. . # # . # # # # . . . . . . . . . . .
. # # # . # # # . # . . . . # # # . . .
# # # . . # # . # # . . . # . # # # . .
# # . . # # . # # . . . . # # . # # . .
. . . . # # . # . # . . # # . # . # . .
. . . . # . # # . # . . . # # # # . . .
. . . . # . # . # # . . . . . # # . . .
. . . . . # # . # # . . # # # # # # # #
. . . . # # . # # . . . # # . . # # # #
. . . . # . # # . # # . # . . . # . . #
# # # . . # # # . # # # # # . . . . . #
# . # . # # # . # . . . . # . . . . # #
# # . . # # # . # . . . . # # # . # # #
. # . # # # . # # . # # # # # # # # . .
. # # # # . # # # . # # # # # # # # . .
. . . # . # # # # . # # . # # # # # . .
. . . # . # # # # . # # . . . # # . . .
. . . . # # # # . . # # . . . # # # # #
. . . # # # # # . # # # . . . # # # # #
. . . # # # # . # . . . . . . . . . . #
. . # # # # . # # . . . . . . . . . . .
. . # # # . # # # . . . . . . . . . . .
---------------------------------------


Horizontal runs: [[5], [2, 3, 2], [2, 5, 1], [2, 8], [2, 5, 11], [1, 1, 2, 1, 6], [1, 2, 1, 3], [2, 1, 1], [2, 6, 2], [15, 4], [10, 8], [2, 1, 4, 3, 6], [17], [17], [18], [1, 14], [1, 1, 14], [5, 9], [8], [7]]
Vertical runs: [[5], [3, 2], [2, 1, 2], [1, 1, 1], [1, 1, 1], [1, 3], [2, 2], [1, 3, 3], [1, 3, 3, 1], [1, 7, 2], [1, 9, 1], [1, 10], [1, 10], [1, 3, 5], [1, 8], [2, 1, 6], [3, 1, 7], [4, 1, 7], [6, 1, 8], [6, 10], [7, 10], [1, 4, 11], [1, 2, 11], [2, 12], [3, 13]]
. . . . . . . . . . . . . . . . . . . . # # # # #
. . # # . . . . . . . . . . . . . . # # # . . # #
. # # . . . . . . . . . . . . . . # # # # # . . #
# # . . . . . . . . . . . . . # # # # # # # # . .
# # . . . . # # # # # . # # # # # # # # # # # . .
# . # . . # # . . . . # . . . . # # # # # # . . .
# . . # # . . . . . # . . . . . . . # # # . . . .
# # . . . . . . . . # . . . . . . . . . . . . . #
. # # . . . . . # # # # # # . . . . . . . . . # #
. . # # # # # # # # # # # # # # # . . . . # # # #
. . . . . # # # # # # # # # # . . # # # # # # # #
. . . . # # . # . # # # # . # # # . . # # # # # #
. . . . . . . . # # # # # # # # # # # # # # # # #
. . . . . . . . # # # # # # # # # # # # # # # # #
. . . . . . . # # # # # # # # # # # # # # # # # #
. . . . . . . # . . . # # # # # # # # # # # # # #
. . . . . . . # . # . # # # # # # # # # # # # # #
. . . . . . . . # # # # # . . . # # # # # # # # #
. . . . . . . . . . . . . . . . . # # # # # # # #
. . . . . . . . . . . . . . . . . . # # # # # # #
-------------------------------------------------


Extra example not solvable by deduction alone:
Horizontal runs: [[2], [2], [1], [1]]
Vertical runs: [[2], [2], [1], [1]]
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
-------
Solution not unique, doing exhaustive search:
# # . .
# # . .
. . # .
. . . #
-------
# # . .
# # . .
. . . #
. . # .
-------
. # # .
# # . .
# . . .
. . . #
-------


Extra example where there is no solution:
Horizontal runs: [[2], [1], [1]]
Vertical runs: [[1], [1], [1]]
? # ?
? . ?
? . ?
-----
Solution not unique, doing exhaustive search:

The run-time with ldc2 compiler is about 0.58 seconds. The output is the same as the Python entry.

Prolog

Works with SWI-Prolog version 6.5.3
module(clpfd) is written by Markus Triska
Solution written by Lars Buitinck
Module solve-nonogram.pl <lang Prolog>/*

  • Nonogram/paint-by-numbers solver in SWI-Prolog. Uses CLP(FD),
  • in particular the automaton/3 (finite-state/RE) constraint.
  • Copyright (c) 2011 Lars Buitinck.
  • Do with this code as you like, but don't remove the copyright notice.
  • /
- use_module(library(clpfd)).

nono(RowSpec, ColSpec, Grid) :- rows(RowSpec, Grid), transpose(Grid, GridT), rows(ColSpec, GridT).

rows([], []). rows([C|Cs], [R|Rs]) :- row(C, R), rows(Cs, Rs).

row(Ks, Row) :- sum(Ks, #=, Ones), sum(Row, #=, Ones), arcs(Ks, Arcs, start, Final), append(Row, [0], RowZ), automaton(RowZ, [source(start), sink(Final)], [arc(start,0,start) | Arcs]).

% Make list of transition arcs for finite-state constraint. arcs([], [], Final, Final). arcs([K|Ks], Arcs, CurState, Final) :- gensym(state, NextState), ( K == 0 -> Arcs = [arc(CurState,0,CurState), arc(CurState,0,NextState) | Rest], arcs(Ks, Rest, NextState, Final) ; Arcs = [arc(CurState,1,NextState) | Rest], K1 #= K-1, arcs([K1|Ks], Rest, NextState, Final)).


make_grid(Grid, X, Y, Vars) :- length(Grid,X), make_rows(Grid, Y, Vars).

make_rows([], _, []). make_rows([R|Rs], Len, Vars) :- length(R, Len), make_rows(Rs, Len, Vars0), append(R, Vars0, Vars).

print([]). print([R|Rs]) :- print_row(R), print(Rs).

print_row([]) :- nl. print_row([X|R]) :- ( X == 0 -> write(' ') ; write('x')), print_row(R).

nonogram(Rows, Cols) :- length(Rows, X), length(Cols, Y), make_grid(Grid, X, Y, Vars), nono(Rows, Cols, Grid), label(Vars), print(Grid).

</lang> File nonogram.pl, used to read data in a file. <lang Prolog>nonogram :- open('C:/Users/Utilisateur/Documents/Prolog/Rosetta/nonogram/nonogram.txt', read, In, []), repeat, read_line_to_codes(In, Line_1), read_line_to_codes(In, Line_2), compute_values(Line_1, [], [], Lines), compute_values(Line_2, [], [], Columns), nonogram(Lines, Columns) , nl, nl, read_line_to_codes(In, end_of_file), close(In).

compute_values([], Current, Tmp, R) :- reverse(Current, R_Current), reverse([R_Current | Tmp], R).

compute_values([32 | T], Current, Tmp, R) :- !, reverse(Current, R_Current), compute_values(T, [], [R_Current | Tmp], R).

compute_values([X | T], Current, Tmp, R) :- V is X - 64, compute_values(T, [V | Current], Tmp, R). </lang>

Python

First fill cells by deduction, then search through all combinations. It could take up a huge amount of storage, depending on the board size. <lang python>from itertools import izip

def gen_row(w, s):

   """Create all patterns of a row or col that match given runs."""
   def gen_pad(w, n):
       if n:
           return [[[2] * l] + r for l in xrange(1, w - n + 1)
                                 for r in gen_pad(w - l, n - 1)]
       return [[[2] * w]]
   def interlace(z, o):
       l = [0] * (len(z) + len(o))
       l[0::2] = z
       l[1::2] = o
       return sum(l, [])
   ones = [[1] * i for i in s]
   return [interlace(x, ones)[1:-1]
           for x in gen_pad(w - sum(s) + 2, len(s))]


def deduce(hr, vr):

   """Fix inevitable value of cells, and propagate."""
   def allowable(row):
       return reduce(lambda a, b: [x | y for x, y in izip(a, b)], row)
   def fits(a, b):
       return all(x & y for x, y in izip(a, b))
   # See if any value in a given column is fixed;
   # if so, mark its corresponding row for future fixup.
   def fix_col(n):
       fixable.remove(-n - 1)
       c = [x[n] for x in can_do]
       cols[n] = [x for x in cols[n] if fits(x, c)]
       for i,x in enumerate(allowable(cols[n])):
           v = x & can_do[i][n]
           if v == can_do[i][n]:
               continue
           fixable.add(i + 1)
           can_do[i][n] = v
   # Ditto, for rows.
   def fix_row(n):
       fixable.remove(n + 1)
       c = can_do[n]
       rows[n] = [x for x in rows[n] if fits(x, c)]
       for i, x in enumerate(allowable(rows[n])):
           v = x & can_do[n][i]
           if v == can_do[n][i]:
               continue
           fixable.add(-i - 1)
           can_do[n][i] = v
   def show_gram(m):
       # If there's 'x', something is wrong.
       # If there's '?', needs more work.
       for x in m:
           print " ".join("x#.?"[i] for i in x)
       print '-' * (2 * len(vr) - 1)
   w, h = len(vr), len(hr)
   fixable = set()
   rows = [gen_row(w, x) for x in hr]
   cols = [gen_row(h, x) for x in vr]
   can_do = [allowable(x) for x in rows]
   # initially mark all columns for update
   for i in xrange(w):
       fixable.add(-i - 1)
   while fixable:
       i = next(iter(fixable))
       if i < 0:
           fix_col(-i - 1)
       else:
           fix_row(i - 1)
   show_gram(can_do)
   # return if solution is unique
   if all(can_do[i][j] in (1, 2) for j in xrange(w) for i in xrange(h)):
       return
   out = [0] * h
   print "Solution not unique, doing exhaustive search:"
   def try_all(n = 0):
       if n >= h:
           for j in xrange(w):
               if [x[j] for x in out] not in cols[j]:
                   return
           show_gram(out)
           return
       for x in rows[n]:
           out[n] = x
           try_all(n + 1)
   try_all()


def solve(p, show_runs=True):

   s = [[[ord(c) - ord('A') + 1 for c in w] for w in l.split()]
        for l in p.split('\n')]
   if show_runs:
       print "Horizontal runs:", s[0]
       print "Vertical runs:", s[1]
   deduce(s[0], s[1])
   print "\n"


def main():

   # Read problems from file.
   fn = "nonogram_problems.txt"
   for p in (x for x in open(fn).read().split("\n\n") if x):
       solve(p)
   print "Extra example not solvable by deduction alone:"
   solve("B B A A\nB B A A")
   print "Extra example where there's no solution:"
   solve("B A A\nA A A")

main()</lang>

Output:
Horizontal runs: [[3], [2, 1], [3, 2], [2, 2], [6], [1, 5], [6], [1], [2]]
Vertical runs: [[1, 2], [3, 1], [1, 5], [7, 1], [5], [3], [4], [3]]
. # # # . . . .
# # . # . . . .
. # # # . . # #
. . # # . . # #
. . # # # # # #
# . # # # # # .
# # # # # # . .
. . . . # . . .
. . . # # . . .
---------------
(...etc...)

Racket

See: Example:Nonogram solver/Racket