Miller–Rabin primality test

From Rosetta Code
Revision as of 16:33, 18 May 2011 by rosettacode>CRGreathouse (→‎{{header|PARI/GP}}: make functions use the same interface)
Task
Miller–Rabin primality test
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Miller–Rabin primality test. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

The Miller–Rabin primality test or Rabin–Miller primality test is a primality test: an algorithm which determines whether a given number is prime or not. The algorithm, as modified by Michael O. Rabin to avoid the generalized Riemann hypothesis, is a probabilistic algorithm.

The pseudocode, from Wikipedia is:

Input: n > 2, an odd integer to be tested for primality;
       k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n − 1 as 2s·d with d odd by factoring powers of 2 from n − 1
LOOP: repeat k times:
   pick a randomly in the range [2, n − 1]
   xad mod n
   if x = 1 or x = n − 1 then do next LOOP
   for r = 1 .. s − 1
      xx2 mod n
      if x = 1 then return composite
      if x = n − 1 then do next LOOP
   return composite
return probably prime
  • The nature of the test involves big numbers, so the use of "big numbers" libraries (or similar features of the language of your choice) are suggested, but not mandatory.
  • Deterministic variants of the test exist and can be implemented as extra (not mandatory to complete the task)

Ada

It's easy to get overflows doing exponential calculations. Therefore I implemented my own function for that.

For Number types >= 2**64 you may have to use an external library.

<lang Ada>with Ada.Text_IO; with Ada.Numerics.Discrete_Random;

procedure Miller_Rabin is

  -- New Type for Number, for easy swapping with bigger type if necessary.
  -- Limit to 2**48 for now, since Discrete_Random in GNAT GPL 2010 doesn't
  -- guarantee statistical properties for size > 48.
  -- RM requires them to be guaranteed only up to 2**15.
  type Number is mod 2**48;
  package Num_IO is new Ada.Text_IO.Modular_IO (Number);
  package Pos_IO is new Ada.Text_IO.Integer_IO (Positive);
  type Result_Type is (Composite, Probably_Prime);
  function Is_Prime (N : Number; K : Positive := 10)
                     return Result_Type
  is
     subtype Number_Range is Number range 2 .. N - 1;
     package Random is new Ada.Numerics.Discrete_Random (Number_Range);
     function Mod_Exp (Base, Exponent, Modulus : Number) return Number is
        Result : Number := 1;
     begin
        for E in 1 .. Exponent loop
           Result := Result * Base mod Modulus;
        end loop;
        return Result;
     end Mod_Exp;
     Generator : Random.Generator;
     D : Number := N - 1;
     S : Natural := 0;
     X : Number;
  begin
     -- exclude 2 and even numbers
     if N = 2 then
        return Probably_Prime;
     elsif N mod 2 = 0 then
        return Composite;
     end if;
     -- write N-1 as 2**S * D, with D mod 2 /= 0
     while D mod 2 = 0 loop
        D := D / 2;
        S := S + 1;
     end loop;
     -- initialize RNG
     Random.Reset (Generator);
     for Loops in 1 .. K loop
        X := Mod_Exp(Random.Random (Generator), D, N);
        if X /= 1 and X /= N - 1 then
           Inner : for R in 1 .. S - 1 loop
              X := Mod_Exp (X, 2, N);
              if X = 1 then return Composite; end if;
              exit Inner when X = N - 1;
           end loop Inner;
           if X /= N - 1 then return Composite; end if;
        end if;
     end loop;
     return Probably_Prime;
  end Is_Prime;
  -- start main procedure
  N : Number;
  K : Positive;

begin

  for I in 2 .. 1000 loop
     if Is_Prime (Number(I)) = Probably_Prime then
        Ada.Text_IO.Put (Integer'Image (I));
     end if;
  end loop;
  Ada.Text_IO.Put_Line (".");
  Ada.Text_IO.Put ("Enter a Number: ");
  Num_IO.Get (N);
  Ada.Text_IO.Put ("Enter the count of loops: ");
  Pos_IO.Get (K);
  Ada.Text_IO.Put_Line ("What is it? " & Result_Type'Image (Is_Prime (N, K)));

end Miller_Rabin;</lang>

Output:

 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997.
Enter a Number: 1234567
Enter the count of loops: 20
What is it? COMPOSITE

ALGOL 68

Translation of: python
Works with: ALGOL 68 version Standard - with preludes manually inserted
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

<lang algol68>MODE LINT=LONG INT; MODE LOOPINT = INT;

MODE POWMODSTRUCT = LINT; PR READ "prelude/pow_mod.a68" PR;

PROC miller rabin = (LINT n, LOOPINT k)BOOL: (

   IF n<=3 THEN TRUE
   ELIF NOT ODD n THEN FALSE
   ELSE
       LINT d := n - 1;
       INT s := 0;
       WHILE NOT ODD d DO
           d := d OVER 2;
           s +:= 1
       OD;
       TO k DO
           LINT a := 2 + ENTIER (random*(n-3));
           LINT x :=  pow mod(a, d, n);
           IF x /= 1 THEN
               TO s DO
                   IF x = n-1 THEN done FI;
                   x := x*x %* n
               OD;
               else: IF x /= n-1 THEN return false FI;
               done: EMPTY
           FI
       OD;
       TRUE EXIT
       return false: FALSE
   FI

);

FOR i FROM 937 TO 1000 DO

 IF miller rabin(i, 10) THEN
   print((" ",whole(i,0)))
 FI

OD</lang> Sample output:

 937 941 947 953 967 971 977 983 991 997

AutoHotkey

ahk forum: discussion <lang AutoHotkey>MsgBox % MillerRabin(999983,10) ; 1 MsgBox % MillerRabin(999809,10) ; 1 MsgBox % MillerRabin(999727,10) ; 1 MsgBox % MillerRabin(52633,10)  ; 0 MsgBox % MillerRabin(60787,10)  ; 0 MsgBox % MillerRabin(999999,10) ; 0 MsgBox % MillerRabin(999995,10) ; 0 MsgBox % MillerRabin(999991,10) ; 0

MillerRabin(n,k) { ; 0: composite, 1: probable prime (n < 2**31)

  d := n-1, s := 0
  While !(d&1)
     d>>=1, s++
  Loop %k% {
     Random a, 2, n-2 ; if n < 4,759,123,141, it is enough to test a = 2, 7, and 61.
     x := PowMod(a,d,n)
     If (x=1 || x=n-1)
        Continue
     Cont := 0
     Loop % s-1 {
        x := PowMod(x,2,n)
        If (x = 1)
           Return 0
        If (x = n-1) {
           Cont = 1
           Break
        }
     }
     IfEqual Cont,1, Continue
     Return 0
  }
  Return 1

}

PowMod(x,n,m) { ; x**n mod m

  y := 1, i := n, z := x
  While i>0
     y := i&1 ? mod(y*z,m) : y, z := mod(z*z,m), i >>= 1
  Return y

}</lang>

bc

Requires a bc with long names.

Works with: OpenBSD bc

(A previous version worked with GNU bc.) <lang bc>seed = 1 /* seed of the random number generator */ scale = 0

/* Random number from 0 to 32767. */ define rand() {

 /* Cheap formula (from POSIX) for random numbers of low quality. */
 seed = (seed * 1103515245 + 12345) % 4294967296
 return ((seed / 65536) % 32768)

}

/* Random number in range [from, to]. */ define rangerand(from, to) {

 auto b, h, i, m, n, r
 m = to - from + 1
 h = length(m) / 2 + 1  /* want h iterations of rand() % 100 */
 b = 100 ^ h % m        /* want n >= b */
 while (1) {
   n = 0                /* pick n in range [b, 100 ^ h) */
   for (i = h; i > 0; i--) {
     r = rand()
     while (r < 68) { r = rand(); }  /* loop if the modulo bias */
     n = (n * 100) + (r % 100)       /* append 2 digits to n */
   }
   if (n >= b) { break; }  /* break unless the modulo bias */
 }
 return (from + (n % m))

}


/* n is probably prime? */ define miller_rabin_test(n, k) {

 auto d, r, a, x, s
 if (n <= 3) { return (1); }
 if ((n % 2) == 0) { return (0); }
 /* find s and d so that d * 2^s = n - 1 */
 d = n - 1
 s = 0
 while((d % 2) == 0) {
    d /= 2
    s += 1
 }
 while (k-- > 0) {
   a = rangerand(2, n - 2)
   x = (a ^ d) % n
   if (x != 1) {
     for (r = 0; r < s; r++) {
       if (x == (n - 1)) { break; }
       x = (x * x) % n
     }
     if (x != (n - 1)) {
       return (0)
     }
   }
 }
 return (1)

}

for (i = 1; i < 1000; i++) {

 if (miller_rabin_test(i, 10) == 1) {
   i
 }

} quit</lang>

C

Library: GMP

miller-rabin.h

<lang c>#ifndef _MILLER_RABIN_H_

  1. define _MILLER_RABIN_H
  2. include <gmp.h>

bool miller_rabin_test(mpz_t n, int j);

  1. endif</lang>

miller-rabin.c

Translation of: Fortran

For decompose (and header primedecompose.h), see Prime decomposition.

<lang c>#include <stdbool.h>

  1. include <gmp.h>
  2. include "primedecompose.h"
  1. define MAX_DECOMPOSE 100

bool miller_rabin_test(mpz_t n, int j) {

 bool res;
 mpz_t f[MAX_DECOMPOSE];
 mpz_t s, d, a, x, r;
 mpz_t n_1, n_3;
 gmp_randstate_t rs;
 int l=0, k;
 res = false;
 gmp_randinit_default(rs);
 mpz_init(s); mpz_init(d);
 mpz_init(a); mpz_init(x); mpz_init(r);
 mpz_init(n_1); mpz_init(n_3);
 if ( mpz_cmp_si(n, 3) <= 0 ) { // let us consider 1, 2, 3 as prime
   gmp_randclear(rs);
   return true;
 }
 if ( mpz_odd_p(n) != 0 ) {
   mpz_sub_ui(n_1, n, 1);         //  n-1
   mpz_sub_ui(n_3, n, 3);         //  n-3
   l = decompose(n_1, f);
   mpz_set_ui(s, 0);
   mpz_set_ui(d, 1);
   for(k=0; k < l; k++) {
     if ( mpz_cmp_ui(f[k], 2) == 0 ) 

mpz_add_ui(s, s, 1);

     else

mpz_mul(d, d, f[k]);

   }                             // 2^s * d = n-1
   while(j-- > 0) {
     mpz_urandomm(a, rs, n_3);     // random from 0 to n-4
     mpz_add_ui(a, a, 2);          // random from 2 to n-2
     mpz_powm(x, a, d, n);
     if ( mpz_cmp_ui(x, 1) == 0 ) continue;
     mpz_set_ui(r, 0);
     while( mpz_cmp(r, s) < 0 ) {

if ( mpz_cmp(x, n_1) == 0 ) break; mpz_powm_ui(x, x, 2, n); mpz_add_ui(r, r, 1);

     }
     if ( mpz_cmp(x, n_1) == 0 ) continue;
     goto flush; // woops
   }
   res = true;
 }

flush:

 for(k=0; k < l; k++) mpz_clear(f[k]);
 mpz_clear(s); mpz_clear(d);
 mpz_clear(a); mpz_clear(x); mpz_clear(r);
 mpz_clear(n_1); mpz_clear(n_3);
 gmp_randclear(rs);
 return res;

}</lang>

Testing

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  3. include <gmp.h>
  4. include "miller-rabin.h"
  1. define PREC 10
  2. define TOP 4000

int main() {

 mpz_t num;
 mpz_init(num);
 mpz_set_ui(num, 1);
 
 while ( mpz_cmp_ui(num, TOP) < 0 ) {
   if ( miller_rabin_test(num, PREC) ) {
     gmp_printf("%Zd maybe prime\n", num);
   } /*else {
     gmp_printf("%Zd not prime\n", num);
     }*/ // remove the comment iff you're interested in
         // sure non-prime.
   mpz_add_ui(num, num, 1);
 }
 mpz_clear(num);
 return EXIT_SUCCESS;

}</lang>

C#

<lang C sharp|C#> public static class RabinMiller {

   public static bool isPrime(int p)
   {

if(p<2)

       {

return false;

       }

if(p!=2 && p%2==0)

       {

return false;

       }

int s=p-1; while(s%2==0)

       {

s>>=1;

       }

for (int i = 1; i < 11;i++)

       {
           Random r = new Random();
           double a = r.Next((int)p - 1) + 1;
           int temp = s;
           int mod = (int)Math.Pow(a, (double)temp) % p;
           while(temp!=p-1 && mod!=1 && mod!=p-1)
           {

mod=(mod*mod)%p; temp=temp*2;

           }

if(mod!=p-1 && temp%2==0)

           {

return false;

           }
       }

return true;

   }

} </lang>

Common Lisp

<lang lisp>(defun factor-out (number divisor)

 "Return two values R and E such that NUMBER = DIVISOR^E * R,
 and R is not divisible by DIVISOR."
 (do ((e 0 (1+ e))
      (r number (/ r divisor)))
     ((/= (mod r divisor) 0) (values r e))))

(defun mult-mod (x y modulus) (mod (* x y) modulus))

(defun expt-mod (base exponent modulus)

 "Fast modular exponentiation by repeated squaring."
 (labels ((expt-mod-iter (b e p)
            (cond ((= e 0) p)
                  ((evenp e)
                   (expt-mod-iter (mult-mod b b modulus)
                                  (/ e 2)
                                  p))
                  (t
                   (expt-mod-iter b
                                  (1- e)
                                  (mult-mod b p modulus))))))
   (expt-mod-iter base exponent 1)))

(defun random-in-range (lower upper)

 "Return a random integer from the range [lower..upper]."
 (+ lower (random (+ (- upper lower) 1))))

(defun miller-rabin-test (n k)

 "Test N for primality by performing the Miller-Rabin test K times.
 Return NIL if N is composite, and T if N is probably prime."
 (cond ((= n 1)   nil)
       ((< n 4)     t)
       ((evenp n) nil)
       (t
        (multiple-value-bind (d s) (factor-out (- n 1) 2)
          (labels ((strong-liar? (a)
                     (let ((x (expt-mod a d n)))
                       (or (= x 1)
                           (loop repeat s
                                 for y = x then (mult-mod y y n)
                                 thereis (= y (- n 1)))))))
            (loop repeat k
                  always (strong-liar? (random-in-range 2 (- n 2)))))))))</lang>
CL-USER> (last (loop for i from 1 to 1000
                     when (miller-rabin-test i 10)
                     collect i)
               10)
(937 941 947 953 967 971 977 983 991 997)

D

<lang d>import std.random;

bool isProbablePrime(long n, int k) {

   if (n < 2 || n % 2 == 0) 
       return n == 2;
   long d = n - 1;
   long s = 0;
   while (d % 2 == 0) {
       d /= 2;
       s++;
   }
   bool isComposite(long a) {
       if (modpow(a, d, n) == 1)
           return false;
       foreach (i; 0 .. s + 1) {
           if (modpow(a, 2^^i * d, n) == n - 1)
               return false; 
       }
       return true;
   }
   foreach (_; 0 .. k + 1) {
       if (isComposite(uniform(2, n)))
           return false;
   }
   return true;

}

long modpow(long b, long e, long m) {

   long result = 1;
   while (e > 0) {
       if ((e & 1) == 1) {
           result = (result * b) % m;
       }
       b = (b * b) % m;
       e >>= 1;
   }
   return result;

}</lang>

E

<lang e>def millerRabinPrimalityTest(n :(int > 0), k :int, random) :boolean {

 if (n <=> 2 || n <=> 3) { return true }
 if (n <=> 1 || n %% 2 <=> 0) { return false }
 var d := n - 1
 var s := 0
 while (d %% 2 <=> 0) {
   d //= 2
   s += 1
 }
 for _ in 1..k {
    def nextTrial := __continue
    def a := random.nextInt(n - 3) + 2     # [2, n - 2] = [0, n - 4] + 2 = [0, n - 3) + 2
    var x := a**d %% n                     # Note: Will do optimized modular exponentiation
    if (x <=> 1 || x <=> n - 1) { nextTrial() }
    for _ in 1 .. (s - 1) {
       x := x**2 %% n
       if (x <=> 1) { return false }
       if (x <=> n - 1) { nextTrial() }
    }
    return false
 }
 return true

}</lang>

<lang e>for i ? (millerRabinPrimalityTest(i, 1, entropy)) in 4..1000 {

 print(i, " ")

} println()</lang>

Fortran

Works with: Fortran version 95

For the module PrimeDecompose, see Prime decomposition.

<lang fortran>module Miller_Rabin

 use PrimeDecompose
 implicit none
 integer, parameter :: max_decompose = 100
 private :: int_rrand, max_decompose

contains

 function int_rrand(from, to)
   integer(huge) :: int_rrand
   integer(huge), intent(in) :: from, to
   real :: o
   call random_number(o)
   int_rrand = floor(from + o * real(max(from,to) - min(from, to)))
 end function int_rrand
 function miller_rabin_test(n, k) result(res)
   logical :: res
   integer(huge), intent(in) :: n
   integer, intent(in) :: k
   
   integer(huge), dimension(max_decompose) :: f
   integer(huge)                     :: s, d, i, a, x, r
   res = .true.
   f = 0
   if ( (n <= 2) .and. (n > 0) ) return
   if ( mod(n, 2) == 0 ) then
      res = .false.
      return
   end if
   call find_factors(n-1, f)
   s = count(f == 2)
   d = (n-1) / (2 ** s)
   loop:  do i = 1, k
      a = int_rrand(2_huge, n-2)
      x = mod(a ** d, n)
      
      if ( x == 1 ) cycle
      do r = 0, s-1
         if ( x == ( n - 1 ) ) cycle loop
         x = mod(x*x, n)
      end do
      if ( x == (n-1) ) cycle
      res = .false.
      return
   end do loop
   res = .true.
 end function miller_rabin_test

end module Miller_Rabin</lang>

Testing

<lang fortran>program TestMiller

 use Miller_Rabin
 implicit none
 integer, parameter :: prec = 30
 integer(huge) :: i
 ! this is limited since we're not using a bignum lib
 call do_test( (/ (i, i=1, 29) /) )

contains

 subroutine do_test(a)
   integer(huge), dimension(:), intent(in) :: a
   integer               :: i
   
   do i = 1, size(a,1)
      print *, a(i), miller_rabin_test(a(i), prec)
   end do
 end subroutine do_test
 

end program TestMiller</lang>

Possible improvements: create bindings to the GMP library, change integer(huge) into something like type(huge_integer), write a lots of interfaces to allow to use big nums naturally (so that the code will be unchanged, except for the changes said above)

Go

Go has it in the standard library. ProbablyPrime

Haskell

Works with: Haskell version 6.10.4
  • Ideas taken from Primality proving
  • Functions witns and isMillerRabinPrime follow closely the code outlined in J/Essays
  • A useful powerMod function is taken from [1]

Another Miller Rabin test can be found in D. Amos's Haskell for Math module Primes.hs

<lang Haskell>import System.Random import Data.List import Control.Monad import Control.Arrow

primesTo100 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

powerMod :: (Integral a, Integral b) => a -> a -> b -> a powerMod m _ 0 = 1 powerMod m x n | n > 0 = join (flip f (n - 1)) x `rem` m where

 f _ 0 y = y
 f a d y = g a d where
   g b i | even i    = g (b*b `rem` m) (i `quot` 2)
         | otherwise = f b (i-1) (b*y `rem` m)

witns :: (Num a, Ord a, Random a) => Int -> a -> IO [a] witns x y = do

    g <- newStdGen 
    let r = [9080191, 4759123141, 2152302898747, 3474749600383, 341550071728321]
        fs = [[31,73],[2,7,61],[2,3,5,7,11],[2,3,5,7,11,13],[2,3,5,7,11,13,17]]
    if  y >= 341550071728321
     then return $ take x $ randomRs (2,y-1) g
      else return $ snd.head.dropWhile ((<= y).fst) $ zip r fs

isMillerRabinPrime :: Integer -> IO Bool isMillerRabinPrime n | n `elem` primesTo100 = return True

                    | otherwise = do
   let pn = pred n
       e = uncurry (++) . second(take 1) . span even . iterate (`div` 2) $ pn
       try = return . all (\a -> let c = map (powerMod n a) e in
                                 pn `elem` c || last c == 1)
   witns 100 n >>= try</lang>

Testing in GHCi:

*~> isMillerRabinPrime 4547337172376300111955330758342147474062293202868155909489
True

*~> isMillerRabinPrime 4547337172376300111955330758342147474062293202868155909393
False

*~> filterM isMillerRabinPrime [2..1000]>>= print. dropWhile(<=900)
[907,911,919,929,937,941,946,947,953,967,971,977,983,991,997]

Icon and Unicon

The following code works in both languages: <lang unicon>procedure main()

  every writes(primeTest(901 to 1000, 10)," ")
  write()

end

procedure primeTest(n, k)

   if n   = 2 then return n
   if n%2 = 0 then fail
   s := 0
   d := n-1
   while (d%2 ~= 0, s+:=1, d/:=2)
   every (1 to k, x := ((2+?(n-2))^d)%n) do {
       if x = (1 | (n-1)) then next
       every (1 to s-1, x := (x^2)%n) do {
           if x = 1 then fail
           if x = n-1 then break next
           }
       fail
       }
   return n

end</lang>

Sample run:

->mrpt
907 911 919 929 937 941 947 953 967 971 977 983 991 997 
->

J

See Primality Tests essay on the J wiki.

Java

The Miller-Rabin primality test is part of the standard library (java.math.BigInteger)

<lang java>import java.math.BigInteger;

public class MillerRabinPrimalityTest {

 public static void main(String[] args)
 {
   BigInteger n = new BigInteger(args[0]);
   int certainty = Integer.parseInt(args[1]);
   System.out.println(n.toString() + " is " + (n.isProbablePrime(certainty) ? "probably prime" : "composite"));
 }

}</lang>

Sample output:

java MillerRabinPrimalityTest 123456791234567891234567 1000000
123456791234567891234567 is probably prime

PARI/GP

Built-in test: <lang parigp>MR(n,k)=ispseudoprime(n,k);</lang>

Custom function: <lang parigp>sprp(n,b)={ my(s = valuation(n-1, 2), d = Mod(b, n)^(n >> s)); if (d == 1, return(1)); for(i=1,s-1, if (d == -1, return(1)); d = d^2; ); d == -1 };

MR(n,k)={

 for(i=1,k,
   if(!sprp(n,random(n-2)+2), return(0))
 );
 1

};</lang>

A basic deterministic test can be obtained by an appeal to the ERH (as proposed by Gary Miller) and a result of Eric Bach. Calculations of Jan Feitsma can be used to speed calculations below 264 (by a factor of about 250). <lang parigp>A006945=[9, 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 341550071728321, 3825123056546413051] Miller(n)={

 if (n%2 == 0, return(n == 2)); \\ Handle even numbers
 if (n < 3, return(0)); \\ Handle 0, 1, and negative numbers
 if (n < 1<<64,
   \\ Feitsma
   for(i=1,#A006945,
     if (n < A006945[i], return(1));
     if(!sprp(n, prime(i)), return(0));
   );
   sprp(n,31)&sprp(n,37)
 ,
   \\ Miller + Bach
   for(b=2,2*log(n)^2,
     if(!sprp(n, b), return(0))
   );
   1
 )

};</lang>

Perl

<lang perl>use bigint; sub is_prime {

       my ($n,$k) = @_;
       return 1 if $n == 2;
       return 0 if $n < 2 or $n % 2 == 0;
       $d = $n - 1;
       $s = 0;
       while(!($d % 2))
       {
               $d /= 2;
               $s++;
       }
  LOOP: for(1..$k)
       {
               $a = 2 + int(rand($n-2));
               $x = ($a**$d) % $n;
               next if $x == 1 or $x == $n-1;
               for(1..$s-1)
               {
                       $x = ($x**2) % $n;
                       return 0 if $x == 1;
                       next LOOP if $x == $n-1;
               }
               return 0;
       }
       return 1;

}

print join ", ", grep { is_prime $_,10 }(1..1000);</lang>

PicoLisp

<lang PicoLisp>(de longRand (N)

  (use (R D)
     (while (=0 (setq R (abs (rand)))))
     (until (> R N)
        (unless (=0 (setq D (abs (rand))))
           (setq R (* R D)) ) )
     (% R N) ) )

(de **Mod (X Y N)

  (let M 1
     (loop
        (when (bit? 1 Y)
           (setq M (% (* M X) N)) )
        (T (=0 (setq Y (>> 1 Y)))
           M )
        (setq X (% (* X X) N)) ) ) )

(de _prim? (N D S)

  (use (A X R)
     (while (> 2 (setq A (longRand N))))
     (setq R 0  X (**Mod A D N))
     (loop
        (T
           (or
              (and (=0 R) (= 1 X))
              (= X (dec N)) )
           T )
        (T
           (or
              (and (> R 0) (= 1 X))
              (>= (inc 'R) S) )
           NIL )
        (setq X (% (* X X) N)) ) ) )

(de prime? (N K)

  (default K 50)
  (and
     (> N 1)
     (bit? 1 N)
     (let (D (dec N)  S 0)
        (until (bit? 1 D)
           (setq
              D  (>> 1 D)
              S  (inc S) ) )
        (do K
           (NIL (_prim? N D S))
           T ) ) ) )</lang>

Output:

: (filter '((I) (prime? I)) (range 937 1000))
-> (937 941 947 953 967 971 977 983 991 997)

: (prime? 4547337172376300111955330758342147474062293202868155909489)
-> T

: (prime? 4547337172376300111955330758342147474062293202868155909393)
-> NIL

PureBasic

<lang PureBasic>Enumeration

 #Composite
 #Probably_prime

EndEnumeration

Procedure Miller_Rabin(n, k)

 Protected d=n-1, s, x, r
 If n=2
   ProcedureReturn #Probably_prime
 ElseIf n%2=0 Or n<2
   ProcedureReturn #Composite
 EndIf
 While d%2=0
   d/2
   s+1
 Wend
 While k>0
   k-1
   x=Int(Pow(2+Random(n-4),d))%n
   If x=1 Or x=n-1: Continue: EndIf
   For r=1 To s-1
     x=(x*x)%n
     If x=1: ProcedureReturn #Composite: EndIf
     If x=n-1: Break: EndIf
   Next
   If x<>n-1: ProcedureReturn #Composite: EndIf 
 Wend
 ProcedureReturn #Probably_prime

EndProcedure</lang>

Python

<lang python> import random

_mrpt_num_trials = 5 # number of bases to test

def is_probable_prime(n):

   """
   Miller-Rabin primality test.
   A return value of False means n is certainly not prime. A return value of
   True means n is very likely a prime.
   >>> is_probable_prime(1)
   Traceback (most recent call last):
       ...
   AssertionError
   >>> is_probable_prime(2)
   True
   >>> is_probable_prime(3)
   True
   >>> is_probable_prime(4)
   False
   >>> is_probable_prime(5)
   True
   >>> is_probable_prime(123456789)
   False
   >>> primes_under_1000 = [i for i in range(2, 1000) if is_probable_prime(i)]
   >>> len(primes_under_1000)
   168
   >>> primes_under_1000[-10:]
   [937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
   >>> is_probable_prime(6438080068035544392301298549614926991513861075340134\

3291807343952413826484237063006136971539473913409092293733259038472039\ 7133335969549256322620979036686633213903952966175107096769180017646161\ 851573147596390153)

   True
   >>> is_probable_prime(7438080068035544392301298549614926991513861075340134\

3291807343952413826484237063006136971539473913409092293733259038472039\ 7133335969549256322620979036686633213903952966175107096769180017646161\ 851573147596390153)

   False
   """
   assert n >= 2
   # special case 2
   if n == 2:
       return True
   # ensure n is odd
   if n % 2 == 0:
       return False
   # write n-1 as 2**s * d
   # repeatedly try to divide n-1 by 2
   s = 0
   d = n-1
   while True:
       quotient, remainder = divmod(d, 2)
       if remainder == 1:
           break
       s += 1
       d = quotient
   assert(2**s * d == n-1)
   # test the base a to see whether it is a witness for the compositeness of n
   def try_composite(a):
       if pow(a, d, n) == 1:
           return False
       for i in range(s):
           if pow(a, 2**i * d, n) == n-1:
               return False
       return True # n is definitely composite
   for i in range(_mrpt_num_trials):
       a = random.randrange(2, n)
       if try_composite(a):
           return False
   return True # no base tested showed n as composite

</lang>

REXX

With a K of 1, there seems to be a not uncommon number of failures, but
with a K ≥ 2, the failures are rare,
with a K ≥ 3, rare as hen's teeth.

This would be in the same vein as: 3 is prime, 5 is prime, 7 is prime, all odd numbers are prime. <lang rexx> /*REXX program puts Miller-Rabin primality test through its paces. */

arg limit accur . /*get some arguments (if any). */ if limit== | limit==',' then limit=1000 /*maybe assume LIMIT default*/ if accur== | accur==',' then accur=10 /* " " ACCUR " */ numeric digits max(200,2*limit) /*we're dealing with some biggies*/ tell=accur<0 /*show primes if K is negative.*/ accur=abs(accur) /*now, make K postive. */ call suspenders /*suspenders now, belt later... */ primePi=# /*save the count of (real) primes*/ say "They're" primePi 'primes <=' limit /*might as well crow a wee bit.*/ say /*nothing wrong with whitespace. */

 do a=2 to accur                      /*(skipping 1)  do range of  K's.*/
 say copies('-',79)                   /*show separator for the eyeballs*/
 mrp=0                                /*prime counter for this pass.   */
   do z=1 for limit                   /*now, let's get busy and crank. */
   p=Miller_Rabin(z,a)                /*invoke and pray...             */
   if p==0 then iterate               /*Not prime?   Then try another. */
   mrp=mrp+1                          /*well, found another one, by gum*/
   if tell then say z,                /*maybe should do a show & tell ?*/
             'is prime according to Miller-Rabin primality test with K='a
   if !.z\==0 then iterate
   say '[K='k"] " z "isn't prime !"   /*oopsy-doopsy and whoopsy-daisy!*/
   end
 say 'for 1-->'limit", K="k', Miller-Rabin primality test found' mrp,
         'primes {out of' primePi"}"
 end

exit


/*─────────────────────────────────────Miller-Rabin primality test.─────*/ /*─────────────────────────────────────Rabin-Miller (also known as)─────*/ Miller_Rabin: procedure; parse arg n,k if n==2 then return 1 /*special case of an even prime. */ if n<2 | n//2==0 then return 0 /*check for low, or even number. */ d=n-1 nL=n-1 /*saves a bit of time, down below*/ s=0

 do while d//2==0;  d=d%2;  s=s+1;  end
   do k
   a=random(2,nL)
   x=(a**d)//n                        /*this number can get big fast.  */
   if x==1 | x==nL then iterate
       do r=1 for s-1
       x=(x*x)//n
       if x==1 then return 0          /*definately it's not prime.     */
       if x==nL then leave
       end
   if x\==nL then return 0
   end
                                      /*maybe it is, maybe it ain't ...*/

return 1 /*coulda/woulda/shoulda be prime.*/


/*─────────────────────────────────────SUSPENDERS subroutine────────────*/ suspenders: @.=0; !.=0 /*crank up the ole prime factory.*/ @.1=2; @.2=3; @.3=5; #=3 /*prime the pump with low primes.*/ !.2=1; !.3=1; !.5=1 /*and don't forget the water jar.*/

  do j=@.#+2 by 2 to limit            /*just process the odd integers. */
      do k=2 while @.k**2<=j          /*let's do the ole primality test*/
      if j//@.k==0 then iterate j     /*the Greek way, in days of yore.*/
      end   /*k*/                     /*a useless comment, but hey!!   */
  #=#+1                               /*bump the prime counter.        */
  @.#=j                               /*keep priming the prime pump.   */
  !.j=1                               /*and keep filling the water jar.*/
  end       /*j*/                     /*this comment not left blank.   */

return /*whew! All done with the primes*/ </lang> Output when using the input of:

10000  10
They're 1229 primes <= 10000

-------------------------------------------------------------------------------
[K=2]  2701 isn't prime !
for 1-->10000, K=2, Miller-Rabin primality test found 1230 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=2, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=3, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=4, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=5, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=6, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=7, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=8, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=9, Miller-Rabin primality test found 1229 primes {out of 1229}
-------------------------------------------------------------------------------
for 1-->10000, K=10, Miller-Rabin primality test found 1229 primes {out of 1229}

Ruby

<lang ruby>def miller_rabin_prime?(n,k)

 return true if n == 2
 return false if n < 2 or n % 2 == 0
 d = n - 1
 s = 0
 while d % 2 == 0
   d /= 2
   s += 1
 end
 k.times do
   a = 2 + rand(n-4)
   x = (a**d) % n
   next if x == 1 or x == n-1
   for r in (1 .. s-1)
     x = (x**2) % n
     return false if x == 1
     break if x == n-1
   end
   return false if x != n-1
 end
 true  # probably

end

p primes = (1..100).find_all {|i| miller_rabin_prime?(i,10)}</lang>

[2, 3, 5, 7, 11, 13, 17, ..., 971, 977, 983, 991, 997]

Smalltalk

Works with: GNU Smalltalk

Smalltalk handles big numbers naturally and trasparently (the parent class Integer has many subclasses, and a subclass is picked according to the size of the integer that must be handled) <lang smalltalk>Integer extend [

 millerRabinTest: kl [ |k| k := kl.
   self <= 3 
     ifTrue: [ ^true ]
     ifFalse: [
        (self even)
          ifTrue: [ ^false ]
          ifFalse: [ |d s|
             d := self - 1.
             s := 0.
             [ (d rem: 2) == 0 ]
                whileTrue: [
                  d := d / 2.
                  s := s + 1.
                ].
             [ k:=k-1. k >= 0 ]
                whileTrue: [ |a x r|
                   a := Random between: 2 and: (self - 2).
                   x := (a raisedTo: d) rem: self.
                   ( x = 1 )
                     ifFalse: [ |r|

r := -1.

                         [ r := r + 1. (r < s) & (x ~= (self - 1)) ]
                         whileTrue: [
                    	    x := (x raisedTo: 2) rem: self
                         ].
                       ( x ~= (self - 1) ) ifTrue: [ ^false ]
                     ]
                ].
             ^true
          ]
     ]        
 ] 

].</lang>

<lang smalltalk>1 to: 1000 do: [ :n |

  (n millerRabinTest: 10) ifTrue: [ n printNl ]

].</lang>

Tcl

Use Tcl 8.5 for large integer support <lang tcl>package require Tcl 8.5

proc miller_rabin {n k} {

   if {$n <= 3} {return true}
   if {$n % 2 == 0} {return false}

   # write n - 1 as 2^s·d with d odd by factoring powers of 2 from n − 1
   set d [expr {$n - 1}]
   set s 0
   while {$d % 2 == 0} {
       set d [expr {$d / 2}]
       incr s
   }

   while {$k > 0} {
       incr k -1
       set a [expr {2 + int(rand()*($n - 4))}]
       set x [expr {($a ** $d) % $n}]
       if {$x == 1 || $x == $n - 1} continue
       for {set r 1} {$r < $s} {incr r} {
           set x [expr {($x ** 2) % $n}]
           if {$x == 1} {return false}
           if {$x == $n - 1} break
       }

if {$x != $n-1} {return false}

   }
   return true

}

for {set i 1} {$i < 1000} {incr i} {

   if {[miller_rabin $i 10]} {
       puts $i
   }

}</lang> produces

1
2
3
5
7
11
...
977
983
991
997