Hashtron inference

From Rosetta Code
Task
Hashtron inference
You are encouraged to solve this task according to the task description, using any language you may know.

Hashtron classifier inference

Description

This task involves implementing a Hashtron classifier inference function. Hashtron classifier program can be machine learned to calculate arbitrary finite computable functions or sets (Given enough CPU time and RAM). The Hashtron classifier takes a command and a number of bits to infer, using a provided program configuration. The inference function for the test will generate a pseudo-random n-bits output. The inference function for the square root demo will generate a square root of a command in range: 0 <= command < 256.

Examples

Test demo

Given the following program configuration and input command:

Program configuration:

Input command:

42

Number of bits:

64

Program:

[[0,2]]

The inference function should process the input and generate the following 64-bit output:

14106184687260844995

Square root demo

Given the following program configuration and input command:

Program configuration:

Input command: A byte (integer) to take square root of.

Number of bits:

4

Program:

[[8776,79884], [12638,1259], [9953,1242], [4658,1228], [5197,1210], [12043,1201],
[6892,1183], [7096,1168], [10924,1149], [5551,1136], [5580,1123], [3735,1107],
[3652,1091], [12191,1076], [14214,1062], [13056,1045], [14816,1031], [15205,1017],
[10736,1001], [9804,989], [13081,974], [6706,960], [13698,944], [14369,928],
[16806,917], [9599,906], [9395,897], [4885,883], [10237,870], [10676,858],
[18518,845], [2619,833], [13715,822], [11065,810], [9590,799], [5747,785],
[2627,776], [8962,764], [5575,750], [3448,738], [5731,725], [9434,714],
[3163,703], [3307,690], [3248,678], [3259,667], [3425,657], [3506,648],
[3270,639], [3634,627], [3077,617], [3511,606], [27159,597], [27770,589],
[28496,580], [28481,571], [29358,562], [31027,552], [30240,543], [30643,534],
[31351,527], [31993,519], [32853,510], [33078,502], [33688,495], [29732,487],
[29898,480], [29878,474], [26046,468], [26549,461], [28792,453], [26101,446],
[32971,439], [29704,432], [23193,426], [29509,421], [27079,415], [32453,409],
[24737,404], [25725,400], [23755,395], [52538,393], [53242,386], [19609,380],
[26492,377], [24566,358], [31163,368], [57174,363], [26639,364], [31365,357],
[60918,350], [21235,338], [28072,322], [28811,314], [27571,320], [17635,309],
[51968,169], [54367,323], [60541,254], [26732,270], [52457,157], [27181,276],
[19874,227], [22797,320], [59346,271], [25496,260], [54265,231], [22281,250],
[42977,318], [26008,240], [87604,142], [94647,314], [52292,157], [20999,216],
[89253,316], [22746,29], [68338,312], [22557,317], [110904,104], [70975,285],
[51835,277], [51871,313], [132221,228], [18522,290], [68512,285], [118816,302],
[150865,268], [68871,273], [68139,290], [84984,285], [150693,266], [396047,272],
[84923,269], [215562,258], [68015,248], [247689,235], [214471,229], [264395,221],
[263287,212], [280193,201], [108065,194], [263616,187], [148609,176], [263143,173],
[378205,162], [312547,154], [50400,147], [328927,140], [279217,132], [181111,127],
[672098,118], [657196,113], [459383,111], [833281,105], [520281,102], [755397,95],
[787994,91], [492444,82], [1016592,77], [656147,71], [819893,66], [165531,61],
[886503,57], [1016551,54], [3547827,49], [14398170,43], [395900,41], [4950628,37],
[11481175,33], [100014881,30], [8955328,31], [11313984,27], [13640855,23],
[528553762,21], [63483027,17], [952477,8], [950580,4], [918378,2], [918471,1]]

The inference function should process the input and generate the square root of the input byte.


ALGOL 68

Works with: ALGOL 68G version Any - tested with release 3.0.3.win32
Translation of: Go – with some changes to make defining the program more convenient for Algol 68, also includes the square root program, as in the Julia, Wren, etc.. samples

In Algol 68, the standard bit manipulation operations are not defined for integers, but for the BITS type. This sample implements operators to handle bit manipulation with integers. These operators also handle bit manipulation with negative numbers - which is not allowed in the standard Algol 68 operators (presumably to avoid getting different results depending on how negative numbers are represented - at the time Algol 68 was defined, two's complement possibly wasn't as universal as it is now).

Because Algol 68 doesn't have unsigned types, integers larger than 64 bits are required. This uses Algol 68G's LONG INT which is 128 bits in version 3 and big enough to hold 35 digits in version 2.

BEGIN # Hashtron Inference - translated from the Go sample #

    # operators, modes, etc., to allow bit manipulation on unsigned INT values #
    # as Algol 68 doesn't have unsigned integers and we need to have values    #
    # bigger than 2^63, we use LONG INT (128 bit in Algol 68G)                 #
    # adjust to suit for other implementations                                 #
    MODE HINT = LONG INT;        # needs to be big enoungh for 2^63 + 1 #
    MODE HBIT = LONG BITS;
    HBIT b32  = 16rffffffff;     # 32-bit mask #
    OP   TOBITS = ( HINT a )HBIT: IF a >= 0 THEN BIN a ELSE NOT BIN ( - ( a + 1 ) ) FI;
    OP   TOBITS = ( INT  a )HBIT: TOBITS HINT( a );
    OP   TOINT  = ( HBIT a )HINT: IF 1 ELEM a THEN - ( ABS NOT a + 1 ) ELSE ABS a FI;
    PRIO ANDAB  = 1, ORAB = 1, XORAB = 1;
    OP   ANDAB  = ( REF HINT a, HINT b )REF HINT: a := TOINT ( TOBITS a AND TOBITS b );
    OP   ANDAB  = ( REF HINT a, INT  b )REF HINT: a ANDAB HINT( b );
    OP   ANDAB  = ( REF HINT a, HBIT b )REF HINT: a := TOINT ( TOBITS a AND b );
    OP   ORAB   = ( REF HINT a, HINT b )REF HINT: a := TOINT ( TOBITS a OR  TOBITS b );
    OP   XORAB  = ( REF HINT a, HINT b )REF HINT: a := TOINT ( TOBITS a XOR TOBITS b );
    OP   SHL    = ( HINT a, INT  b )HINT: TOINT ( TOBITS a SHL b );
    OP   SHL    = ( INT  a, INT  b )HINT: TOINT ( TOBITS HINT( a ) SHL b );
    OP   SHR    = ( HINT a, INT  b )HINT: TOINT ( TOBITS a SHR b );
    OP   OR     = ( HINT a, HINT b )HINT: TOINT ( TOBITS a OR TOBITS b );
    OP   AND    = ( HINT a, HBIT b )HINT: TOINT ( TOBITS a AND b );

    MODE PGM = STRUCT( INT low, high );
    PRIO H   = 9;
    OP   H   = ( INT a, b )PGM: ( a, b );

    PROC hash = ( HINT n, s, max )HINT:
         BEGIN
            # Mixing stage, mix input with salt using subtraction #
            HINT m := ( n - s ) AND b32;

            # Hashing stage, use xor shift with prime coefficients #
            m XORAB ( m SHL  2 ) AND b32;
            m XORAB ( m SHL  3 ) AND b32;
            m XORAB ( m SHR  5 ) AND b32;
            m XORAB ( m SHR  7 ) AND b32;
            m XORAB ( m SHL 11 ) AND b32;
            m XORAB ( m SHL 13 ) AND b32;
            m XORAB ( m SHR 17 ) AND b32;
            m XORAB ( m SHL 19 ) AND b32;

            # Mixing stage 2, mix input with salt using addition #
            m +:= s ANDAB b32;

            # Modular stage using Lemire's fast alternative to modulo reduction #
            ( ( m * max ) SHR 32 ) AND b32
         END # hash # ;

    PROC inference = ( HINT command, INT nbits, []PGM program in )HINT:
         IF   UPB program in < LWB program in
         THEN # the program is empty # 0
         ELSE
            HINT out := 0;
            # Iterate over the bits #
            []PGM program = program in[ AT 0 ];
            FOR j FROM 0 TO nbits - 1 DO
                HINT input := command OR ( j SHL 16 );
                PGM  pr0   = program[ 0 ];
                HINT ss    = low OF pr0;
                HINT maxx := high OF pr0;
                input := hash( input, ss, maxx );
                FOR i FROM 1 TO UPB program DO
                    PGM  pri = program[ i ];
                    HINT s   = low OF pri, max = high OF pri;
                    maxx   -:= max;
                    input   := hash( input, s, maxx )
                OD;
                input ANDAB 1;
                IF input /= 0 THEN
                    out ORAB 1 SHL j
                FI
            OD;
            out
         FI # inference # ;

    print( ( "Test Demo: ", whole( inference( 42, 64, 0H2 ), 0 ), newline ) );

    []PGM sq root
        = (     8776H79884,  12638H1259,  9953H1242,    4658H1228,    5197H1210
          ,    12043H1201,    6892H1183,  7096H1168,   10924H1149,    5551H1136
          ,     5580H1123,    3735H1107,  3652H1091,   12191H1076,   14214H1062
          ,    13056H1045,   14816H1031, 15205H1017,   10736H1001,    9804H989
          ,    13081H974,     6706H960,  13698H944,    14369H928,    16806H917
          ,     9599H906,     9395H897,   4885H883,    10237H870,    10676H858
          ,    18518H845,     2619H833,  13715H822,    11065H810,     9590H799
          ,     5747H785,     2627H776,   8962H764,     5575H750,     3448H738
          ,     5731H725,     9434H714,   3163H703,     3307H690,     3248H678
          ,     3259H667,     3425H657,   3506H648,     3270H639,     3634H627
          ,     3077H617,     3511H606,  27159H597,    27770H589,    28496H580
          ,    28481H571,    29358H562,  31027H552,    30240H543,    30643H534
          ,    31351H527,    31993H519,  32853H510,    33078H502,    33688H495
          ,    29732H487,    29898H480,  29878H474,    26046H468,    26549H461
          ,    28792H453,    26101H446,  32971H439,    29704H432,    23193H426
          ,    29509H421,    27079H415,  32453H409,    24737H404,    25725H400
          ,    23755H395,    52538H393,  53242H386,    19609H380,    26492H377
          ,    24566H358,    31163H368,  57174H363,    26639H364,    31365H357
          ,    60918H350,    21235H338,  28072H322,    28811H314,    27571H320
          ,    17635H309,    51968H169,  54367H323,    60541H254,    26732H270
          ,    52457H157,    27181H276,  19874H227,    22797H320,    59346H271
          ,    25496H260,    54265H231,  22281H250,    42977H318,    26008H240
          ,    87604H142,    94647H314,  52292H157,    20999H216,    89253H316
          ,    22746H29,     68338H312,  22557H317,   110904H104,    70975H285
          ,    51835H277,    51871H313, 132221H228,    18522H290,    68512H285
          ,   118816H302,   150865H268,  68871H273,    68139H290,    84984H285
          ,   150693H266,   396047H272,  84923H269,   215562H258,    68015H248
          ,   247689H235,   214471H229, 264395H221,   263287H212,   280193H201
          ,   108065H194,  263616H187,  148609H176,   263143H173,   378205H162
          ,   312547H154,   50400H147,  328927H140,   279217H132,   181111H127
          ,   672098H118,  657196H113,  459383H111,   833281H105,   520281H102
          ,   755397H95,   787994H91,   492444H82,   1016592H77,    656147H71
          ,   819893H66,   165531H61,   886503H57,   1016551H54,   3547827H49
          , 14398170H43,   395900H41,  4950628H37,  11481175H33, 100014881H30
          ,  8955328H31, 11313984H27, 13640855H23, 528553762H21,  63483027H17
          ,   952477H8,    950580H4,    918378H2,     918471H1
          );
    print( ( newline, "Square root demo for commands in [0..255]:", newline ) );
    FOR i FROM 0 TO 255 DO
        print( ( whole( inference( i, 4, sq root ), -3 ) ) );
        IF ( i + 1 ) MOD 16 = 0 THEN print( ( newline ) ) FI
    OD

END
Output:
Test Demo: 14106184687260844995

Square root demo for commands in [0..255]:
  0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3
  4  4  4  4  4  4  4  4  4  5  5  5  5  5  5  5
  5  5  5  5  6  6  6  6  6  6  6  6  6  6  6  6
  6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
  8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
  9  9  9  9 10 10 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11
 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13
 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14
 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

C++

#include <cstdint>
#include <iomanip>
#include <iostream>
#include <vector>

uint32_t hash(const uint32_t& number, const uint32_t& salt, const uint32_t& max_value) {
	// Mixing stage 1, mix 'number' with 'salt' using subtraction
	uint64_t m = ( number - salt ) & 0xFFFFFFFF;

	// Hashing stage, use xor shift with prime coefficients
	m ^= ( m <<  2 ) & 0xFFFFFFFF;
	m ^= ( m <<  3 ) & 0xFFFFFFFF;
	m ^= ( m >>  5 ) & 0xFFFFFFFF;
	m ^= ( m >>  7 ) & 0xFFFFFFFF;
	m ^= ( m << 11 ) & 0xFFFFFFFF;
	m ^= ( m << 13 ) & 0xFFFFFFFF;
	m ^= ( m >> 17 ) & 0xFFFFFFFF;
	m ^= ( m << 19 ) & 0xFFFFFFFF;

	// Mixing stage 2, mix 'number' with 'salt' using addition
	m += salt;
	m &= 0xFFFFFFFF;

	// Modular stage using Lemire's fast alternative to modulo reduction
	return ( ( m * max_value ) >> 32 ) & 0xFFFFFFFF;
}

uint64_t inference(const uint32_t& command, const uint32_t& bits, const std::vector<std::vector<uint32_t>>& program) {
	uint64_t result = 0;

	if ( program.size() == 0 ) {
		return result;
	}

	for ( uint32_t j = 0; j < bits; ++j ) {
		uint64_t number = command  | ( j << 16 );
		const uint32_t salt_1 = program[0][0];
		uint32_t max_value = program[0][1];
		number = hash(number, salt_1, max_value);

		for ( uint32_t i = 1; i < program.size(); ++i ) {
			const uint32_t salt_2 = program[i][0];
			const uint32_t max = program[i][1];
			max_value -= max;
			number = hash(number, salt_2, max_value);
		}

		number &= 1;
		if ( number != 0 ) {
			result |= ( static_cast<uint64_t>(1) << j );
		}
	}
	return result;
}

int main() {
	uint32_t command = 42;
	uint32_t bits = 64;
	std::vector<std::vector<uint32_t>> program = { { 0, 2 } };
	std::cout << "Test demo: " << inference(command, bits, program) << std::endl << std::endl;

	bits = 4;
	program = {
		{ 8776, 79884 }, { 12638, 1259 }, { 9953, 1242 }, { 4658, 1228 }, { 5197, 1210 }, { 12043, 1201 },
		{ 6892, 1183 }, { 7096, 1168 }, { 10924, 1149 }, { 5551, 1136 }, { 5580, 1123 }, { 3735, 1107 },
		{ 3652, 1091 }, { 12191, 1076 }, { 14214, 1062 }, { 13056, 1045 }, { 14816, 1031 }, { 15205, 1017 },
		{ 10736, 1001 }, { 9804, 989 }, { 13081, 974 }, { 6706, 960 }, { 13698, 944 }, { 14369, 928 },
		{ 16806, 917 }, { 9599, 906 }, { 9395, 897 }, { 4885, 883 }, { 10237, 870 }, { 10676, 858 },
		{ 18518, 845 }, { 2619, 833 }, { 13715, 822 }, { 11065, 810 }, { 9590, 799 }, { 5747, 785 },
		{ 2627, 776 }, { 8962, 764 }, { 5575, 750 }, { 3448, 738 }, { 5731, 725 }, { 9434, 714 },
		{ 3163, 703 }, { 3307, 690 }, { 3248, 678 }, { 3259, 667 }, { 3425, 657 }, { 3506, 648 },
		{ 3270, 639 }, { 3634, 627 }, { 3077, 617 }, { 3511, 606 }, { 27159, 597 }, { 27770, 589 },
		{ 28496, 580 }, { 28481, 571 }, { 29358, 562 }, { 31027, 552 }, { 30240, 543 }, { 30643, 534 },
		{ 31351, 527 }, { 31993, 519 }, { 32853, 510 }, { 33078, 502 }, { 33688, 495 }, { 29732, 487 },
		{ 29898, 480 }, { 29878, 474 }, { 26046, 468 }, { 26549, 461 }, { 28792, 453 }, { 26101, 446 },
		{ 32971, 439 }, { 29704, 432 }, { 23193, 426 }, { 29509, 421 }, { 27079, 415 }, { 32453, 409 },
		{ 24737, 404 }, { 25725, 400 }, { 23755, 395 }, { 52538, 393 }, { 53242, 386 }, { 19609, 380 },
		{ 26492, 377 }, { 24566, 358 }, { 31163, 368 }, { 57174, 363 }, { 26639, 364 }, { 31365, 357 },
		{ 60918, 350 }, { 21235, 338 }, { 28072, 322 }, { 28811, 314 }, { 27571, 320 }, { 17635, 309 },
		{ 51968, 169 }, { 54367, 323 }, { 60541, 254 }, { 26732, 270 }, { 52457, 157 }, { 27181, 276 },
		{ 19874, 227 }, { 22797, 320 }, { 59346, 271 }, { 25496, 260 }, { 54265, 231 }, { 22281, 250 },
		{ 42977, 318 }, { 26008, 240 }, { 87604, 142 }, { 94647, 314 }, { 52292, 157 }, { 20999, 216 },
		{ 89253, 316 }, { 22746, 29 }, { 68338, 312 }, { 22557, 317 }, { 110904, 104 }, { 70975, 285 },
		{ 51835, 277 }, { 51871, 313 }, { 132221, 228 }, { 18522, 290 }, { 68512, 285 }, { 118816, 302 },
		{ 150865, 268 }, { 68871, 273 }, { 68139, 290 }, { 84984, 285 }, { 150693, 266 }, { 396047, 272 },
		{ 84923, 269 }, { 215562, 258 }, { 68015, 248 }, { 247689, 235 }, { 214471, 229 }, { 264395, 221 },
		{ 263287, 212 }, { 280193, 201 }, { 108065, 194 }, { 263616, 187 }, { 148609, 176 }, { 263143, 173 },
		{ 378205, 162 }, { 312547, 154 }, { 50400, 147 }, { 328927, 140 }, { 279217, 132 }, { 181111, 127 },
		{ 672098, 118 }, { 657196, 113 }, { 459383, 111 }, { 833281, 105 }, { 520281, 102 }, { 755397, 95 },
		{ 787994, 91 }, { 492444, 82 }, { 1016592, 77 }, { 656147, 71 }, { 819893, 66 }, { 165531, 61 },
		{ 886503, 57 }, { 1016551, 54 }, { 3547827, 49 }, { 14398170, 43 }, { 395900, 41 }, { 4950628, 37 },
		{ 11481175, 33 }, { 100014881, 30 }, { 8955328, 31 }, { 11313984, 27 }, { 13640855, 23 },
		{ 528553762, 21 }, { 63483027, 17 }, { 952477, 8 }, { 950580, 4 },  {918378, 2 }, { 918471, 1 }
	};

	std::cout << "Square root demo for commands in 0..255:" << std::endl;
	for ( command = 0; command < 256; ++command ) {
		std::cout << std::setw(2) << inference(command, bits, program) << ( ( command % 16 == 15 ) ? "\n" : " " );
	}
}
Output:
Test demo: 14106184687260844995

Square root demo for commands in 0..255:
 0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3
 4  4  4  4  4  4  4  4  4  5  5  5  5  5  5  5
 5  5  5  5  6  6  6  6  6  6  6  6  6  6  6  6
 6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
 8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
 9  9  9  9 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

FreeBASIC

This example is incomplete. output missing Please ensure that it meets all task requirements and remove this message.
Function hash(n As Ulongint, s As Ulongint, max As Ulongint) As Ulongint
    Dim As Ulongint k = &hFFFFFFFF
    ' Mixing stage, mix input with salt using subtraction
    Dim As Ulongint m = (n - s) And k
    ' Hashing stage, use xor shift with prime coefficients
    m Xor= ((m Shl 2)  And k)
    m Xor= ((m Shl 3)  And k)
    m Xor= ((m Shr 5)  And k)
    m Xor= ((m Shr 7)  And k)
    m Xor= ((m Shl 11) And k)
    m Xor= ((m Shl 13) And k)
    m Xor= ((m Shr 17) And k)
    m Xor= ((m Shl 19) And k)
    ' Mixing stage 2, mix input with salt using addition
    m = (m + s) And k
    ' Modular stage using Lemire's fast alternative to modulo reduction
    Return ((m * max) Shr 32) And k
End Function

Function inference(comando As Ulongint, bits As Integer, program() As Ulong) As Ulongint
    Dim As Ulongint salida = 0
    ' Check if the program is empty
    If Ubound(program) = -1 Then Return salida
    ' Iterate over the bits
    For j As Integer = 0 To bits - 1
        Dim As Ulongint entrada = comando Or (j Shl 16)
        Dim As Ulongint ss = program(0)
        Dim As Ulongint maxx = program(1)
        entrada = hash(entrada, ss, maxx)
        For i As Integer = 1 To Ubound(program)
            Dim As Ulongint s = program(i)
            Dim As Ulongint max = program(i + 1)
            maxx -= max
            entrada = hash(entrada, s, maxx)
        Next i
        entrada And= 1
        If entrada <> 0 Then salida Or= (1 Shl j)
    Next j
    Return salida
End Function

Dim As Ulong program(1) = {0, 2}
Print "Test demo:"
Print inference(42, 64, program())

Sleep

Go

package main

func Inference(command uint32, bits byte, program [][2]uint32) (out uint64) {
	// Check if the program is empty
	if len(program) == 0 {
		return
	}

	// Iterate over the bits
	for j := byte(0); j < bits; j++ {
		var input = command | (uint32(j) << 16)
		var ss, maxx = program[0][0], program[0][1]
		input = Hash(input, ss, maxx)
		for i := 1; i < len(program); i++ {
			var s, max = program[i][0], program[i][1]
			maxx -= max
			input = Hash(input, s, maxx)
		}
		input &= 1
		if input != 0 {
			out |= 1 << j
		}
	}
	return
}

func Hash(n uint32, s uint32, max uint32) uint32 {
	// Mixing stage, mix input with salt using subtraction
	var m = n - s

	// Hashing stage, use xor shift with prime coefficients
	m ^= m << 2
	m ^= m << 3
	m ^= m >> 5
	m ^= m >> 7
	m ^= m << 11
	m ^= m << 13
	m ^= m >> 17
	m ^= m << 19

	// Mixing stage 2, mix input with salt using addition
	m += s

	// Modular stage using Lemire's fast alternative to modulo reduction
	return uint32((uint64(m) * uint64(max)) >> 32)
}

func main() {
	println(Inference(42, 64, [][2]uint32{{0, 2}}))
}

https://go.dev/play/p/AsmOzKWx7jB

Output:
14106184687260844995
0 0
1 1
2 1
3 1
4 2
5 2
6 2
7 2
8 2
9 3
10 3
11 3
12 3
13 3
14 3
15 3
16 4
17 4
18 4
19 4
20 4
21 4
22 4
23 4
24 4
25 5
26 5
27 5
28 5
29 5
30 5
31 5
32 5
33 5
34 5
35 5
36 6
37 6
38 6
39 6
40 6
41 6
42 6
43 6
44 6
45 6
46 6
47 6
48 6
49 7
50 7
51 7
52 7
53 7
54 7
55 7
56 7
57 7
58 7
59 7
60 7
61 7
62 7
63 7
64 8
65 8
66 8
67 8
68 8
69 8
70 8
71 8
72 8
73 8
74 8
75 8
76 8
77 8
78 8
79 8
80 8
81 9
82 9
83 9
84 9
85 9
86 9
87 9
88 9
89 9
90 9
91 9
92 9
93 9
94 9
95 9
96 9
97 9
98 9
99 9
100 10
101 10
102 10
103 10
104 10
105 10
106 10
107 10
108 10
109 10
110 10
111 10
112 10
113 10
114 10
115 10
116 10
117 10
118 10
119 10
120 10
121 11
122 11
123 11
124 11
125 11
126 11
127 11
128 11
129 11
130 11
131 11
132 11
133 11
134 11
135 11
136 11
137 11
138 11
139 11
140 11
141 11
142 11
143 11
144 12
145 12
146 12
147 12
148 12
149 12
150 12
151 12
152 12
153 12
154 12
155 12
156 12
157 12
158 12
159 12
160 12
161 12
162 12
163 12
164 12
165 12
166 12
167 12
168 12
169 13
170 13
171 13
172 13
173 13
174 13
175 13
176 13
177 13
178 13
179 13
180 13
181 13
182 13
183 13
184 13
185 13
186 13
187 13
188 13
189 13
190 13
191 13
192 13
193 13
194 13
195 13
196 14
197 14
198 14
199 14
200 14
201 14
202 14
203 14
204 14
205 14
206 14
207 14
208 14
209 14
210 14
211 14
212 14
213 14
214 14
215 14
216 14
217 14
218 14
219 14
220 14
221 14
222 14
223 14
224 14
225 15
226 15
227 15
228 15
229 15
230 15
231 15
232 15
233 15
234 15
235 15
236 15
237 15
238 15
239 15
240 15
241 15
242 15
243 15
244 15
245 15
246 15
247 15
248 15
249 15
250 15
251 15
252 15
253 15
254 15
255 15

Java

public class Main {
	
    public static long inference(int command, int bits, int[][] program) {
        long out = 0;

        // Check if the program is empty
        if ( program.length == 0 ) {
            return out;
        }

        // Iterate over the bits
        for ( int j = 0; j < bits; j++ ) {
            int input = command | ( j << 16);
            int ss = program[0][0];
            int maxx = program[0][1];
            input = hash(input, ss, maxx);
            for ( int i = 1; i < program.length; i++ ) {
                int s = program[i][0];
                int max = program[i][1];
                maxx -= max;
                input = hash(input, s, maxx);
            }
            input &= 1;
            if (input != 0) {
            	out |= (long)1 << (long) j;
            }
        }
        return out;
    }
    
    public static int hash(int n, int s, int max_val) {
        // Mixing stage, mix input with salt using subtraction
        long m = (n - s) & 0xFFFFFFFFL;
        
        // Hashing stage, use xor shift with prime coefficients
        m ^= (m << 2) & 0xFFFFFFFFL;
        m ^= (m << 3) & 0xFFFFFFFFL;
        m ^= (m >> 5) & 0xFFFFFFFFL;
        m ^= (m >> 7) & 0xFFFFFFFFL;
        m ^= (m << 11) & 0xFFFFFFFFL;
        m ^= (m << 13) & 0xFFFFFFFFL;
        m ^= (m >> 17) & 0xFFFFFFFFL;
        m ^= (m << 19) & 0xFFFFFFFFL;
        
        // Mixing stage 2, mix input with salt using addition
        m += s;
        m &= 0xFFFFFFFFL;
        
        // Modular stage using Lemire's fast alternative to modulo reduction
        return (int) ( ( ( m * max_val ) >>> 32 ) & 0xFFFFFFFFL );
    }

    public static void main(String[] args) {
        int command = 42;
        int[][] program = { { 0, 2 } }; // Example program
	    int bits = 64;
        long result = inference(command, bits, program);
        System.out.println(Long.toUnsignedString(result));
    }
}

Both Demos

public final class HashtronInference {
	
	public static void main(String[] args) {		
        int command = 42;        
	    int bits = 64;
	    int[][] program = { { 0, 2 } };
        long result = inference(command, bits, program);
        System.out.println("Test demo: " + Long.toUnsignedString(result));
        System.out.println();           
        
        bits = 4;
        program = new int[][] {
    	    { 8776, 79884 }, { 12638, 1259 }, { 9953, 1242 }, { 4658, 1228 }, { 5197, 1210 }, { 12043, 1201 },
    	    { 6892, 1183 }, { 7096, 1168 }, { 10924, 1149 }, { 5551, 1136 }, { 5580, 1123 }, { 3735, 1107 },
    	    { 3652, 1091 }, { 12191, 1076 }, { 14214, 1062 }, { 13056, 1045 }, { 14816, 1031 }, { 15205, 1017 },
    	    { 10736, 1001 }, { 9804, 989 }, { 13081, 974 }, { 6706, 960 }, { 13698, 944 }, { 14369, 928 },
    	    { 16806, 917 }, { 9599, 906 }, { 9395, 897 }, { 4885, 883 }, { 10237, 870 }, { 10676, 858 },
    	    { 18518, 845 }, { 2619, 833 }, { 13715, 822 }, { 11065, 810 }, { 9590, 799 }, { 5747, 785 },
    	    { 2627, 776 }, { 8962, 764 }, { 5575, 750 }, { 3448, 738 }, { 5731, 725 }, { 9434, 714 },
    	    { 3163, 703 }, { 3307, 690 }, { 3248, 678 }, { 3259, 667 }, { 3425, 657 }, { 3506, 648 },
    	    { 3270, 639 }, { 3634, 627 }, { 3077, 617 }, { 3511, 606 }, { 27159, 597 }, { 27770, 589 },
    	    { 28496, 580 }, { 28481, 571 }, { 29358, 562 }, { 31027, 552 }, { 30240, 543 }, { 30643, 534 },
    	    { 31351, 527 }, { 31993, 519 }, { 32853, 510 }, { 33078, 502 }, { 33688, 495 }, { 29732, 487 },
    	    { 29898, 480 }, { 29878, 474 }, { 26046, 468 }, { 26549, 461 }, { 28792, 453 }, { 26101, 446 },
    	    { 32971, 439 }, { 29704, 432 }, { 23193, 426 }, { 29509, 421 }, { 27079, 415 }, { 32453, 409 },
    	    { 24737, 404 }, { 25725, 400 }, { 23755, 395 }, { 52538, 393 }, { 53242, 386 }, { 19609, 380 },
    	    { 26492, 377 }, { 24566, 358 }, { 31163, 368 }, { 57174, 363 }, { 26639, 364 }, { 31365, 357 },
    	    { 60918, 350 }, { 21235, 338 }, { 28072, 322 }, { 28811, 314 }, { 27571, 320 }, { 17635, 309 },
    	    { 51968, 169 }, { 54367, 323 }, { 60541, 254 }, { 26732, 270 }, { 52457, 157 }, { 27181, 276 },
    	    { 19874, 227 }, { 22797, 320 }, { 59346, 271 }, { 25496, 260 }, { 54265, 231 }, { 22281, 250 },
    	    { 42977, 318 }, { 26008, 240 }, { 87604, 142 }, { 94647, 314 }, { 52292, 157 }, { 20999, 216 },
    	    { 89253, 316 }, { 22746, 29 }, { 68338, 312 }, { 22557, 317 }, { 110904, 104 }, { 70975, 285 },
    	    { 51835, 277 }, { 51871, 313 }, { 132221, 228 }, { 18522, 290 }, { 68512, 285 }, { 118816, 302 },
    	    { 150865, 268 }, { 68871, 273 }, { 68139, 290 }, { 84984, 285 }, { 150693, 266 }, { 396047, 272 },
    	    { 84923, 269 }, { 215562, 258 }, { 68015, 248 }, { 247689, 235 }, { 214471, 229 }, { 264395, 221 },
    	    { 263287, 212 }, { 280193, 201 }, { 108065, 194 }, { 263616, 187 }, { 148609, 176 }, { 263143, 173 },
    	    { 378205, 162 }, { 312547, 154 }, { 50400, 147 }, { 328927, 140 }, { 279217, 132 }, { 181111, 127 },
    	    { 672098, 118 }, { 657196, 113 }, { 459383, 111 }, { 833281, 105 }, { 520281, 102 }, { 755397, 95 },
    	    { 787994, 91 }, { 492444, 82 }, { 1016592, 77 }, { 656147, 71 }, { 819893, 66 }, { 165531, 61 },
    	    { 886503, 57 }, { 1016551, 54 }, { 3547827, 49 }, { 14398170, 43 }, { 395900, 41 }, { 4950628, 37 },
    	    { 11481175, 33 }, { 100014881, 30 }, { 8955328, 31 }, { 11313984, 27 }, { 13640855, 23 },
    	    { 528553762, 21 }, { 63483027, 17 }, { 952477, 8 }, { 950580, 4 },  {918378, 2 }, { 918471, 1 }
    	};
   	
    	System.out.println("Square root demo for commands in 0..255:");
        for ( command = 0; command < 256; command++ ) {
        	System.out.print(
        		String.format("%2d%s", inference(command, bits, program), ( command % 16 == 15 ) ? "\n" : " " ));
        } 
    }
	
    public static long inference(int command, int bits, int[][] program) {
        long result = 0;

        if ( program.length == 0 ) {
            return result;
        }

        for ( int j = 0; j < bits; j++ ) {
        	int number = command | ( j << 16 );
            final int saltOne = program[0][0];
            int maxValue = program[0][1];
            number = hash(number, saltOne, maxValue);
            for ( int i = 1; i < program.length; i++ ) {
                final int saltTwo = program[i][0];
                final int max = program[i][1];
                maxValue -= max;
                number = hash(number, saltTwo, maxValue);
            }
             
            number &= 1;
            if ( number != 0 ) {
            	result |= ( 1L << j );
            }
        }        
        return result;
    }
    
    public static int hash(int number, int salt, int maxValue) {
        // Mixing stage 1, mix 'number' with 'salt' using subtraction
        long m = ( number - salt ) & 0xFFFFFFFFL;
        
        // Hashing stage, use xor shift with prime coefficients
        m ^= ( m <<  2 ) & 0xFFFFFFFFL;
        m ^= ( m <<  3 ) & 0xFFFFFFFFL;
        m ^= ( m >>  5 ) & 0xFFFFFFFFL;
        m ^= ( m >>  7 ) & 0xFFFFFFFFL;
        m ^= ( m << 11 ) & 0xFFFFFFFFL;
        m ^= ( m << 13 ) & 0xFFFFFFFFL;
        m ^= ( m >> 17 ) & 0xFFFFFFFFL;
        m ^= ( m << 19 ) & 0xFFFFFFFFL;
        
        // Mixing stage 2, mix 'number' with 'salt' using addition
        m += salt;
        m &= 0xFFFFFFFFL;
        
        // Modular stage using Lemire's fast alternative to modulo reduction
        return (int) ( ( ( m * maxValue ) >>> 32 ) & 0xFFFFFFFFL );
    }

}
Output:
Test demo: 14106184687260844995

Square root demo for commands in 0..255:
 0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3
 4  4  4  4  4  4  4  4  4  5  5  5  5  5  5  5
 5  5  5  5  6  6  6  6  6  6  6  6  6  6  6  6
 6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
 8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
 9  9  9  9 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Julia

Translation of: Python
function hash(n, s, max_val)
    # Mixing stage, mix input with salt using subtraction
    m = (n - s) & 0xFFFFFFFF
    # Hashing stage, use xor shift with prime coefficients
    m ⊻= (m << 2) & 0xFFFFFFFF
    m ⊻= (m << 3) & 0xFFFFFFFF
    m ⊻= (m >> 5) & 0xFFFFFFFF
    m ⊻= (m >> 7) & 0xFFFFFFFF
    m ⊻= (m << 11) & 0xFFFFFFFF
    m ⊻= (m << 13) & 0xFFFFFFFF
    m ⊻= (m >> 17) & 0xFFFFFFFF
    m ⊻= (m << 19) & 0xFFFFFFFF
    # Mixing stage 2, mix input with salt using addition
    m += s
    m &= 0xFFFFFFFF
    # Modular stage using Lemire's fast alternative to modulo reduction
    return ((m * max_val) >> 32) & 0xFFFFFFFF
end

function inference(command, bits, program)
    out = UInt(0)
    # Check if the program is empty
    length(program) == 0 && return out
    # Iterate over the bits
    for j in 0:bits-1
        input_val = command | (j << 16)
        ss, maxx = program[begin]
        input_val = hash(input_val, ss, maxx)
        for i in firstindex(program)+1:lastindex(program)
            s, max_val = program[i]
            maxx -= max_val
            input_val = hash(input_val, s, maxx)
        end
        if isodd(input_val)
            out |= 1 << j
        end
    end
    return out
end

println(inference(42, 64, [[0, 2]]))
for i in 0x0:0xff
    println(i, " ", inference(i, 4, [
        [8776, 79884], [12638, 1259], [9953, 1242], [4658, 1228], [5197, 1210], [12043, 1201],
        [6892, 1183], [7096, 1168], [10924, 1149], [5551, 1136], [5580, 1123], [3735, 1107],
        [3652, 1091], [12191, 1076], [14214, 1062], [13056, 1045], [14816, 1031], [15205, 1017],
        [10736, 1001], [9804, 989], [13081, 974], [6706, 960], [13698, 944], [14369, 928],
        [16806, 917], [9599, 906], [9395, 897], [4885, 883], [10237, 870], [10676, 858],
        [18518, 845], [2619, 833], [13715, 822], [11065, 810], [9590, 799], [5747, 785],
        [2627, 776], [8962, 764], [5575, 750], [3448, 738], [5731, 725], [9434, 714],
        [3163, 703], [3307, 690], [3248, 678], [3259, 667], [3425, 657], [3506, 648],
        [3270, 639], [3634, 627], [3077, 617], [3511, 606], [27159, 597], [27770, 589],
        [28496, 580], [28481, 571], [29358, 562], [31027, 552], [30240, 543], [30643, 534],
        [31351, 527], [31993, 519], [32853, 510], [33078, 502], [33688, 495], [29732, 487],
        [29898, 480], [29878, 474], [26046, 468], [26549, 461], [28792, 453], [26101, 446],
        [32971, 439], [29704, 432], [23193, 426], [29509, 421], [27079, 415], [32453, 409],
        [24737, 404], [25725, 400], [23755, 395], [52538, 393], [53242, 386], [19609, 380],
        [26492, 377], [24566, 358], [31163, 368], [57174, 363], [26639, 364], [31365, 357],
        [60918, 350], [21235, 338], [28072, 322], [28811, 314], [27571, 320], [17635, 309],
        [51968, 169], [54367, 323], [60541, 254], [26732, 270], [52457, 157], [27181, 276],
        [19874, 227], [22797, 320], [59346, 271], [25496, 260], [54265, 231], [22281, 250],
        [42977, 318], [26008, 240], [87604, 142], [94647, 314], [52292, 157], [20999, 216],
        [89253, 316], [22746, 29], [68338, 312], [22557, 317], [110904, 104], [70975, 285],
        [51835, 277], [51871, 313], [132221, 228], [18522, 290], [68512, 285], [118816, 302],
        [150865, 268], [68871, 273], [68139, 290], [84984, 285], [150693, 266], [396047, 272],
        [84923, 269], [215562, 258], [68015, 248], [247689, 235], [214471, 229], [264395, 221],
        [263287, 212], [280193, 201], [108065, 194], [263616, 187], [148609, 176], [263143, 173],
        [378205, 162], [312547, 154], [50400, 147], [328927, 140], [279217, 132], [181111, 127],
        [672098, 118], [657196, 113], [459383, 111], [833281, 105], [520281, 102], [755397, 95],
        [787994, 91], [492444, 82], [1016592, 77], [656147, 71], [819893, 66], [165531, 61],
        [886503, 57], [1016551, 54], [3547827, 49], [14398170, 43], [395900, 41], [4950628, 37],
        [11481175, 33], [100014881, 30], [8955328, 31], [11313984, 27], [13640855, 23],
        [528553762, 21], [63483027, 17], [952477, 8], [950580, 4], [918378, 2], [918471, 1],
    ]))
end
Output:

Same as Go example.

Phix

Translation of: Wren

This sort of thing is generally quite painful in Phix, since it will insist on things like zero minus one being -1 rather than some huge positive number... you certainly have to take some care it always uses unsigned masking, especially since Phix doesn't really have any such thing as unsigned ints.

requires(64)
constant U32 = #FFFFFFFF

function hashtron(integer n, s, mx)
    // Mixing stage, mix input with salt using subtraction
    atom m = (n-s) && U32
   
    // Hashing stage, use xor shift with prime coefficients
    for p in {-2,-3,+5,+7,-11,-13,+17,-19} do
        m = xor_bitsu(m,shift_bits(m,p) && U32)
    end for

    // Mixing stage 2, mix input with salt using addition
    m = m+s && U32

    // Modular stage using Lemire's fast alternative to modulo reduction
    return (m * mx) >> 32
end function

function inference(integer cmd, bits, sequence program)
    atom out = 0
    if length(program) then
        for j=0 to bits-1 do
            integer {ss, maxx} = program[1],
              input = hashtron(cmd||(j<<16), ss, maxx)
            for p in program from 2 do
                maxx -= p[2]
                input = hashtron(input, p[1], maxx)
            end for
            if odd(input) then
                out = or_bitsu(out,1<<j)
            end if
        end for
    end if
    return out
end function

constant program = {
    {8776,79884}, {12638,1259}, {9953,1242}, {4658,1228}, {5197,1210}, {12043,1201},
    {6892,1183}, {7096,1168}, {10924,1149}, {5551,1136}, {5580,1123}, {3735,1107},
    {3652,1091}, {12191,1076}, {14214,1062}, {13056,1045}, {14816,1031}, {15205,1017},
    {10736,1001}, {9804,989}, {13081,974}, {6706,960}, {13698,944}, {14369,928},
    {16806,917}, {9599,906}, {9395,897}, {4885,883}, {10237,870}, {10676,858},
    {18518,845}, {2619,833}, {13715,822}, {11065,810}, {9590,799}, {5747,785},
    {2627,776}, {8962,764}, {5575,750}, {3448,738}, {5731,725}, {9434,714},
    {3163,703}, {3307,690}, {3248,678}, {3259,667}, {3425,657}, {3506,648},
    {3270,639}, {3634,627}, {3077,617}, {3511,606}, {27159,597}, {27770,589},
    {28496,580}, {28481,571}, {29358,562}, {31027,552}, {30240,543}, {30643,534},
    {31351,527}, {31993,519}, {32853,510}, {33078,502}, {33688,495}, {29732,487},
    {29898,480}, {29878,474}, {26046,468}, {26549,461}, {28792,453}, {26101,446},
    {32971,439}, {29704,432}, {23193,426}, {29509,421}, {27079,415}, {32453,409},
    {24737,404}, {25725,400}, {23755,395}, {52538,393}, {53242,386}, {19609,380},
    {26492,377}, {24566,358}, {31163,368}, {57174,363}, {26639,364}, {31365,357},
    {60918,350}, {21235,338}, {28072,322}, {28811,314}, {27571,320}, {17635,309},
    {51968,169}, {54367,323}, {60541,254}, {26732,270}, {52457,157}, {27181,276},
    {19874,227}, {22797,320}, {59346,271}, {25496,260}, {54265,231}, {22281,250},
    {42977,318}, {26008,240}, {87604,142}, {94647,314}, {52292,157}, {20999,216},
    {89253,316}, {22746,29}, {68338,312}, {22557,317}, {110904,104}, {70975,285},
    {51835,277}, {51871,313}, {132221,228}, {18522,290}, {68512,285}, {118816,302},
    {150865,268}, {68871,273}, {68139,290}, {84984,285}, {150693,266}, {396047,272},
    {84923,269}, {215562,258}, {68015,248}, {247689,235}, {214471,229}, {264395,221},
    {263287,212}, {280193,201}, {108065,194}, {263616,187}, {148609,176}, {263143,173},
    {378205,162}, {312547,154}, {50400,147}, {328927,140}, {279217,132}, {181111,127},
    {672098,118}, {657196,113}, {459383,111}, {833281,105}, {520281,102}, {755397,95},
    {787994,91}, {492444,82}, {1016592,77}, {656147,71}, {819893,66}, {165531,61},
    {886503,57}, {1016551,54}, {3547827,49}, {14398170,43}, {395900,41}, {4950628,37},
    {11481175,33}, {100014881,30}, {8955328,31}, {11313984,27}, {13640855,23},
    {528553762,21}, {63483027,17}, {952477,8}, {950580,4}, {918378,2}, {918471,1}
}

printf(1,"Test demo:\n")
printf(1,"%d\n\n",inference(42, 64, {{0, 2}}))

sequence res = apply(true,inference,{tagset(255,0),4,{program}})
res = join_by(res,1,16," ",fmt:="%2d")
printf(1,"Square root demo for commands in [0, 255]:\n%s",res)
Output:
Test demo:
14106184687260844995

Square root demo for commands in [0, 255]:
 0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3
 4  4  4  4  4  4  4  4  4  5  5  5  5  5  5  5
 5  5  5  5  6  6  6  6  6  6  6  6  6  6  6  6
 6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
 8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
 9  9  9  9 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

PHP

This example is incomplete. output missing Please ensure that it meets all task requirements and remove this message.
// define hashtron hash
$hash = function($n, $s, $max) {
    // Ensure the inputs are treated as unsigned 32-bit integers
    $n = $n & 0xFFFFFFFF;
    $s = $s & 0xFFFFFFFF;
    $max = $max & 0xFFFFFFFF;

    // Mixing stage, mix input with salt using subtraction
    $m = ($n - $s) & 0xFFFFFFFF;

    // Hashing stage, use xor shift with prime coefficients
    $m ^= ($m << 2) & 0xFFFFFFFF;
    $m ^= ($m << 3) & 0xFFFFFFFF;
    $m ^= ($m >> 5) & 0xFFFFFFFF;
    $m ^= ($m >> 7) & 0xFFFFFFFF;
    $m ^= ($m << 11) & 0xFFFFFFFF;
    $m ^= ($m << 13) & 0xFFFFFFFF;
    $m ^= ($m >> 17) & 0xFFFFFFFF;
    $m ^= ($m << 19) & 0xFFFFFFFF;

    // Mixing stage 2, mix input with salt using addition
    $m = ($m + $s) & 0xFFFFFFFF;

    // Modular stage using multiply-shift trick
    // Cast to 64-bit integer for multiplication
    $result = ((($m & 0xFFFFFFFF) * ($max & 0xFFFFFFFF)) >> 32) & 0xFFFFFFFF;

    return $result;
};


// define hashtron inference
$infer = function($command, $bits, $program) {
    global $hash;
    $out = 0;
   
    $programLength = count($program);
    if ($programLength == 0) {
        return $out;
    }

    for ($j = 0; $j < $bits; $j++) {
        $input = ($command & 0xFFFFFFFF) | (($j & 0xFF) << 16);

        $ss = $program[0][0];
        $maxx = $program[0][1];

        $input = $hash($input, $ss, $maxx);

        for ($i = 1; $i < $programLength; $i++) {
            $s = $program[$i][0];
            $max = $program[$i][1];
            $maxx -= $max;

            $input = $hash($input, $s, $maxx);
        }

        $input &= 1;
        if ($input != 0) {
            $out |= 1 << $j;
        }
    }

    return $out;
};

Python

def hash(n, s, max_val):
    # Mixing stage, mix input with salt using subtraction
    m = (n - s) & 0xFFFFFFFF
    # Hashing stage, use xor shift with prime coefficients
    m ^= (m << 2) & 0xFFFFFFFF
    m ^= (m << 3) & 0xFFFFFFFF
    m ^= (m >> 5) & 0xFFFFFFFF
    m ^= (m >> 7) & 0xFFFFFFFF
    m ^= (m << 11) & 0xFFFFFFFF
    m ^= (m << 13) & 0xFFFFFFFF
    m ^= (m >> 17) & 0xFFFFFFFF
    m ^= (m << 19) & 0xFFFFFFFF
    # Mixing stage 2, mix input with salt using addition
    m += s
    m &= 0xFFFFFFFF
    # Modular stage using Lemire's fast alternative to modulo reduction
    return ((m * max_val) >> 32) & 0xFFFFFFFF


def inference(command, bits, program):
    out = 0
    # Check if the program is empty
    if len(program) == 0:
        return out
    # Iterate over the bits
    for j in range(bits):
        input_val = command | (j << 16)
        ss, maxx = program[0]
        input_val = hash(input_val, ss, maxx)
        for i in range(1, len(program)):
            s, max_val = program[i]
            maxx -= max_val
            input_val = hash(input_val, s, maxx)
        input_val &= 1
        if input_val != 0:
            out |= 1 << j
    return out

print(inference(42,64,[[0,2]]))
Output:
14106184687260844995

Raku

Translation of #Phix and Go

# 20240530 Raku programming solution

sub Inference($command, $bits, @program) {
   my  $out = 0;

   return $out unless @program.Bool;

   for ^$bits -> $j { # Iterate over the bits
      my $input = $command +| ($j +< 16);
      $input = Hashtron($input, @program[0][0], my $maxx = @program[0][1]);
      for @program[1..*] -> ($s, $max) {
         $input = Hashtron($input, $s, $maxx -= $max);
      }
      if ( $input +&= 1 ) != 0 { $out +|= 1 +< $j }
   }
   return $out;
}

sub Hashtron($n, $s, $max) {
   # Mixing stage, mix input with salt using subtraction
   my $m = $n - $s;

   # Hashing stage, use xor shift with prime coefficients
   for <-2 -3 +5 +7 -11 -13 +17 -19> -> $p {
      $m = ($m +^ ($m +> $p)) +& 0xFFFFFFFF; 
   }

   # Mixing stage 2, mix input with salt using addition
   $m = ($m + $s) +& 0xFFFFFFFF;

   # Modular stage using Lemire's fast alternative to modulo reduction
   return (($m * $max) +> 32) +& 0xFFFFFFFF;
}

sub MAIN() {
   say Inference(42, 64, (<0 2>,));

   for 0..^256 -> $i {
      say "$i ", Inference($i, 4, (
         <8776 79884>, <12638 1259>, <9953 1242>, <4658 1228>, <5197 1210>,
         <12043 1201>, <6892 1183>, <7096 1168>, <10924 1149>, <5551 1136>, 
         <5580 1123>, <3735 1107>, <3652 1091>, <12191 1076>, <14214 1062>, 
         <13056 1045>, <14816 1031>, <15205 1017>, <10736 1001>, <9804 989>, 
         <13081 974>, <6706 960>, <13698 944>, <14369 928>, <16806 917>, 
         <9599 906>, <9395 897>, <4885 883>, <10237 870>, <10676 858>,
         <18518 845>, <2619 833>, <13715 822>, <11065 810>, <9590 799>, 
         <5747 785>, <2627 776>, <8962 764>, <5575 750>, <3448 738>, 
         <5731 725>, <9434 714>, <3163 703>, <3307 690>, <3248 678>, 
         <3259 667>, <3425 657>, <3506 648>, <3270 639>, <3634 627>, 
         <3077 617>, <3511 606>, <27159 597>, <27770 589>, <28496 580>, 
         <28481 571>, <29358 562>, <31027 552>, <30240 543>, <30643 534>,
         <31351 527>, <31993 519>, <32853 510>, <33078 502>, <33688 495>, 
         <29732 487>, <29898 480>, <29878 474>, <26046 468>, <26549 461>, 
         <28792 453>, <26101 446>, <32971 439>, <29704 432>, <23193 426>, 
         <29509 421>, <27079 415>, <32453 409>, <24737 404>, <25725 400>, 
         <23755 395>, <52538 393>, <53242 386>, <19609 380>, <26492 377>, 
         <24566 358>, <31163 368>, <57174 363>, <26639 364>, <31365 357>,
         <60918 350>, <21235 338>, <28072 322>, <28811 314>, <27571 320>, 
         <17635 309>, <51968 169>, <54367 323>, <60541 254>, <26732 270>, 
         <52457 157>, <27181 276>, <19874 227>, <22797 320>, <59346 271>, 
         <25496 260>, <54265 231>, <22281 250>, <42977 318>, <26008 240>, 
         <87604 142>, <94647 314>, <52292 157>, <20999 216>, <89253 316>, 
         <22746 29>, <68338 312>, <22557 317>, <110904 104>, <70975 285>,
         <51835 277>, <51871 313>, <132221 228>, <18522 290>, <68512 285>, 
         <118816 302>, <150865 268>, <68871 273>, <68139 290>, <84984 285>, 
         <150693 266>, <396047 272>, <84923 269>, <215562 258>, <68015 248>, 
         <247689 235>, <214471 229>, <264395 221>, <263287 212>, <280193 201>, 
         <108065 194>, <263616 187>, <148609 176>, <263143 173>, <378205 162>, 
         <312547 154>, <50400 147>, <328927 140>, <279217 132>, <181111 127>,
         <672098 118>, <657196 113>, <459383 111>, <833281 105>, <520281 102>, 
         <755397 95>, <787994 91>, <492444 82>, <1016592 77>, <656147 71>, 
         <819893 66>, <165531 61>, <886503 57>, <1016551 54>, <3547827 49>, 
         <14398170 43>, <395900 41>, <4950628 37>, <11481175 33>, 
         <100014881 30>, <8955328 31>, <11313984 27>, <13640855 23>,
         <528553762 21>, <63483027 17>, <952477 8>, <950580 4>, <918378 2>, 
         <918471 1> )
      ) 
   } 
}

You may Attempt This Online!

Output:
14106184687260844995
0 0
1 1
2 1
3 1
4 2
5 2
6 2
7 2
8 2
9 3
10 3
11 3
12 3
13 3
14 3
15 3
16 4
17 4
18 4
19 4
20 4
21 4
22 4
23 4
24 4
25 5
26 5
27 5
28 5
29 5
30 5
31 5
32 5
33 5
34 5
35 5
36 6
37 6
38 6
39 6
40 6
41 6
42 6
43 6
44 6
45 6
46 6
47 6
48 6
49 7
50 7
51 7
52 7
53 7
54 7
55 7
56 7
57 7
58 7
59 7
60 7
61 7
62 7
63 7
64 8
65 8
66 8
67 8
68 8
69 8
70 8
71 8
72 8
73 8
74 8
75 8
76 8
77 8
78 8
79 8
80 8
81 9
82 9
83 9
84 9
85 9
86 9
87 9
88 9
89 9
90 9
91 9
92 9
93 9
94 9
95 9
96 9
97 9
98 9
99 9
100 10
101 10
102 10
103 10
104 10
105 10
106 10
107 10
108 10
109 10
110 10
111 10
112 10
113 10
114 10
115 10
116 10
117 10
118 10
119 10
120 10
121 11
122 11
123 11
124 11
125 11
126 11
127 11
128 11
129 11
130 11
131 11
132 11
133 11
134 11
135 11
136 11
137 11
138 11
139 11
140 11
141 11
142 11
143 11
144 12
145 12
146 12
147 12
148 12
149 12
150 12
151 12
152 12
153 12
154 12
155 12
156 12
157 12
158 12
159 12
160 12
161 12
162 12
163 12
164 12
165 12
166 12
167 12
168 12
169 13
170 13
171 13
172 13
173 13
174 13
175 13
176 13
177 13
178 13
179 13
180 13
181 13
182 13
183 13
184 13
185 13
186 13
187 13
188 13
189 13
190 13
191 13
192 13
193 13
194 13
195 13
196 14
197 14
198 14
199 14
200 14
201 14
202 14
203 14
204 14
205 14
206 14
207 14
208 14
209 14
210 14
211 14
212 14
213 14
214 14
215 14
216 14
217 14
218 14
219 14
220 14
221 14
222 14
223 14
224 14
225 15
226 15
227 15
228 15
229 15
230 15
231 15
232 15
233 15
234 15
235 15
236 15
237 15
238 15
239 15
240 15
241 15
242 15
243 15
244 15
245 15
246 15
247 15
248 15
249 15
250 15
251 15
252 15
253 15
254 15
255 15

Wren

Translation of: Python
Library: Wren-long
Library: Wren-fmt
import "./long" for ULong
import "./fmt" for Fmt

var hash = Fn.new { |n, s, max|
    // 32 bit mask
    var k = 0xFFFFFFFF

	// Mixing stage, mix input with salt using subtraction
    var m = (n - s) & k

	// Hashing stage, use xor shift with prime coefficients
	m = m ^ ((m << 2)  & k)
	m = m ^ ((m << 3)  & k)
    m = m ^ ((m >> 5)  & k)
	m = m ^ ((m >> 7)  & k)
	m = m ^ ((m << 11) & k)
	m = m ^ ((m << 13) & k)
	m = m ^ ((m >> 17) & k)
	m = m ^ ((m << 19) & k)

    // Mixing stage 2, mix input with salt using addition
	m = (m + s) & k

	// Modular stage using Lemire's fast alternative to modulo reduction
	return ((ULong.new(m) * ULong.new(max)) >> 32).toSmall & k
}

var inference = Fn.new { |command, bits, program|
    var out = ULong.zero

    // Check if the program is empty
    if (program.count == 0) return out

    // Iterate over the bits
    for (j in 0...bits) {
        var input = command | (j << 16)
        var ss = program[0][0]
        var maxx = program [0][1]
        input = hash.call(input, ss, maxx)
        for (i in 1...program.count) {
            var s = program[i][0]
            var max = program[i][1]
            maxx = maxx - max
            input = hash.call(input, s, maxx)
        }
        input = input & 1
        if (input != 0) out = out | (ULong.one << j)
    }
    return out
}

System.print("Test demo:")
var program = [[0, 2]]
System.print(inference.call(42, 64, program))

program = [
    [8776,79884], [12638,1259], [9953,1242], [4658,1228], [5197,1210], [12043,1201],
    [6892,1183], [7096,1168], [10924,1149], [5551,1136], [5580,1123], [3735,1107],
    [3652,1091], [12191,1076], [14214,1062], [13056,1045], [14816,1031], [15205,1017],
    [10736,1001], [9804,989], [13081,974], [6706,960], [13698,944], [14369,928],
    [16806,917], [9599,906], [9395,897], [4885,883], [10237,870], [10676,858],
    [18518,845], [2619,833], [13715,822], [11065,810], [9590,799], [5747,785],
    [2627,776], [8962,764], [5575,750], [3448,738], [5731,725], [9434,714],
    [3163,703], [3307,690], [3248,678], [3259,667], [3425,657], [3506,648],
    [3270,639], [3634,627], [3077,617], [3511,606], [27159,597], [27770,589],
    [28496,580], [28481,571], [29358,562], [31027,552], [30240,543], [30643,534],
    [31351,527], [31993,519], [32853,510], [33078,502], [33688,495], [29732,487],
    [29898,480], [29878,474], [26046,468], [26549,461], [28792,453], [26101,446],
    [32971,439], [29704,432], [23193,426], [29509,421], [27079,415], [32453,409],
    [24737,404], [25725,400], [23755,395], [52538,393], [53242,386], [19609,380],
    [26492,377], [24566,358], [31163,368], [57174,363], [26639,364], [31365,357],
    [60918,350], [21235,338], [28072,322], [28811,314], [27571,320], [17635,309],
    [51968,169], [54367,323], [60541,254], [26732,270], [52457,157], [27181,276],
    [19874,227], [22797,320], [59346,271], [25496,260], [54265,231], [22281,250],
    [42977,318], [26008,240], [87604,142], [94647,314], [52292,157], [20999,216],
    [89253,316], [22746,29], [68338,312], [22557,317], [110904,104], [70975,285],
    [51835,277], [51871,313], [132221,228], [18522,290], [68512,285], [118816,302],
    [150865,268], [68871,273], [68139,290], [84984,285], [150693,266], [396047,272],
    [84923,269], [215562,258], [68015,248], [247689,235], [214471,229], [264395,221],
    [263287,212], [280193,201], [108065,194], [263616,187], [148609,176], [263143,173],
    [378205,162], [312547,154], [50400,147], [328927,140], [279217,132], [181111,127],
    [672098,118], [657196,113], [459383,111], [833281,105], [520281,102], [755397,95],
    [787994,91], [492444,82], [1016592,77], [656147,71], [819893,66], [165531,61],
    [886503,57], [1016551,54], [3547827,49], [14398170,43], [395900,41], [4950628,37],
    [11481175,33], [100014881,30], [8955328,31], [11313984,27], [13640855,23],
    [528553762,21], [63483027,17], [952477,8], [950580,4], [918378,2], [918471,1]
]
System.print("\nSquare root demo for commands in [0, 255]:")
Fmt.tprint("$2i", (0..255).map { |i| inference.call(i, 4, program) }, 16)
Output:
Test demo:
14106184687260844995

Square root demo for commands in [0, 255]:
 0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3
 4  4  4  4  4  4  4  4  4  5  5  5  5  5  5  5
 5  5  5  5  6  6  6  6  6  6  6  6  6  6  6  6
 6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
 8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
 9  9  9  9 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15