Deconvolution/2D+
You are encouraged to solve this task according to the task description, using any language you may know.
This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in dimensions of two functions
taking -tuples of integers to real numbers as the function
also taking -tuples of integers to reals and satisfying
for all -tuples of integers . Assume and (and therefore ) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists , , and .
For this task, implement a function (or method, procedure, subroutine, etc.) deconv
to perform deconvolution (i.e., the inverse of convolution) by solving for given and . (See Deconvolution/1D for details.)
- The function should work for of arbitrary length in each dimension (i.e., not hard coded or constant) and of any length up to that of in the corresponding dimension.
- The
deconv
function will need to be parameterized by the dimension unless the dimension can be inferred from the data structures representing and . - There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
- Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of with is and that the deconvolution of with is . Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2] f: [ 6, -9, -7, -5] g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [ [-8, 1, -7, -2, -9, 4], [4, 5, -5, 2, 7, -1], [-6, -3, -3, -6, 9, 5]] f: [ [-5, 2, -2, -6, -7], [9, 7, -6, 5, -7], [1, -1, 9, 2, -7], [5, 9, -9, 2, -5], [-8, 5, -2, 8, 5]] g: [ [40, -21, 53, 42, 105, 1, 87, 60, 39, -28], [-92, -64, 19, -167, -71, -47, 128, -109, 40, -21], [58, 85, -93, 37, 101, -14, 5, 37, -76, -56], [-90, -135, 60, -125, 68, 53, 223, 4, -36, -48], [78, 16, 7, -199, 156, -162, 29, 28, -103, -10], [-62, -89, 69, -61, 66, 193, -61, 71, -8, -30], [48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [ [[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]], [[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]] f: [ [[-9, 5, -8], [3, 5, 1]], [[-1, -7, 2], [-5, -6, 6]], [[8, 5, 8],[-2, -6, -4]]] g: [ [ [54, 42, 53, -42, 85, -72], [45, -170, 94, -36, 48, 73], [-39, 65, -112, -16, -78, -72], [6, -11, -6, 62, 49, 8]], [ [-57, 49, -23, 52, -135, 66], [-23, 127, -58, -5, -118, 64], [87, -16, 121, 23, -41, -12], [-19, 29, 35, -148, -11, 45]], [ [-55, -147, -146, -31, 55, 60], [-88, -45, -28, 46, -26, -144], [-12, -107, -34, 150, 249, 66], [11, -15, -34, 27, -78, -50]], [ [56, 67, 108, 4, 2, -48], [58, 67, 89, 32, 32, -8], [-42, -31, -103, -30, -23, -8], [6, 4, -26, -10, 26, 12]]]
C
Very tedious code: unpacks 2D or 3D matrix into a vector with padding, do 1D FFT, then pack result back into matrix.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
double PI;
typedef double complex cplx;
void _fft(cplx buf[], cplx out[], int n, int step)
{
if (step < n) {
_fft(out, buf, n, step * 2);
_fft(out + step, buf + step, n, step * 2);
for (int i = 0; i < n; i += 2 * step) {
cplx t = cexp(-I * PI * i / n) * out[i + step];
buf[i / 2] = out[i] + t;
buf[(i + n)/2] = out[i] - t;
}
}
}
void fft(cplx buf[], int n)
{
cplx out[n];
for (int i = 0; i < n; i++) out[i] = buf[i];
_fft(buf, out, n, 1);
}
/* pad array length to power of two */
cplx *pad_two(double g[], int len, int *ns)
{
int n = 1;
if (*ns) n = *ns;
else while (n < len) n *= 2;
cplx *buf = calloc(sizeof(cplx), n);
for (int i = 0; i < len; i++) buf[i] = g[i];
*ns = n;
return buf;
}
void deconv(double g[], int lg, double f[], int lf, double out[], int row_len) {
int ns = 0;
cplx *g2 = pad_two(g, lg, &ns);
cplx *f2 = pad_two(f, lf, &ns);
fft(g2, ns);
fft(f2, ns);
cplx h[ns];
for (int i = 0; i < ns; i++) h[i] = g2[i] / f2[i];
fft(h, ns);
for (int i = 0; i < ns; i++) {
if (cabs(creal(h[i])) < 1e-10)
h[i] = 0;
}
for (int i = 0; i > lf - lg - row_len; i--)
out[-i] = h[(i + ns) % ns]/32;
free(g2);
free(f2);
}
double* unpack2(void *m, int rows, int len, int to_len)
{
double *buf = calloc(sizeof(double), rows * to_len);
for (int i = 0; i < rows; i++)
for (int j = 0; j < len; j++)
buf[i * to_len + j] = ((double(*)[len])m)[i][j];
return buf;
}
void pack2(double * buf, int rows, int from_len, int to_len, void *out)
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < to_len; j++)
((double(*)[to_len])out)[i][j] = buf[i * from_len + j] / 4;
}
void deconv2(void *g, int row_g, int col_g, void *f, int row_f, int col_f, void *out) {
double *g2 = unpack2(g, row_g, col_g, col_g);
double *f2 = unpack2(f, row_f, col_f, col_g);
double ff[(row_g - row_f + 1) * col_g];
deconv(g2, row_g * col_g, f2, row_f * col_g, ff, col_g);
pack2(ff, row_g - row_f + 1, col_g, col_g - col_f + 1, out);
free(g2);
free(f2);
}
double* unpack3(void *m, int x, int y, int z, int to_y, int to_z)
{
double *buf = calloc(sizeof(double), x * to_y * to_z);
for (int i = 0; i < x; i++)
for (int j = 0; j < y; j++) {
for (int k = 0; k < z; k++)
buf[(i * to_y + j) * to_z + k] =
((double(*)[y][z])m)[i][j][k];
}
return buf;
}
void pack3(double * buf, int x, int y, int z, int to_y, int to_z, void *out)
{
for (int i = 0; i < x; i++)
for (int j = 0; j < to_y; j++)
for (int k = 0; k < to_z; k++)
((double(*)[to_y][to_z])out)[i][j][k] =
buf[(i * y + j) * z + k] / 4;
}
void deconv3(void *g, int gx, int gy, int gz, void *f, int fx, int fy, int fz, void *out) {
double *g2 = unpack3(g, gx, gy, gz, gy, gz);
double *f2 = unpack3(f, fx, fy, fz, gy, gz);
double ff[(gx - fx + 1) * gy * gz];
deconv(g2, gx * gy * gz, f2, fx * gy * gz, ff, gy * gz);
pack3(ff, gx - fx + 1, gy, gz, gy - fy + 1, gz - fz + 1, out);
free(g2);
free(f2);
}
int main()
{
PI = atan2(1,1) * 4;
double h[2][3][4] = {
{{-6, -8, -5, 9}, {-7, 9, -6, -8}, { 2, -7, 9, 8}},
{{ 7, 4, 4, -6}, { 9, 9, 4, -4}, {-3, 7, -2, -3}}
};
int hx = 2, hy = 3, hz = 4;
double f[3][2][3] = { {{-9, 5, -8}, { 3, 5, 1}},
{{-1, -7, 2}, {-5, -6, 6}},
{{ 8, 5, 8}, {-2, -6, -4}} };
int fx = 3, fy = 2, fz = 3;
double g[4][4][6] = {
{ { 54, 42, 53, -42, 85, -72}, { 45,-170, 94, -36, 48, 73},
{-39, 65,-112, -16, -78, -72}, { 6, -11, -6, 62, 49, 8} },
{ {-57, 49, -23, 52, -135, 66},{-23, 127, -58, -5, -118, 64},
{ 87, -16, 121, 23, -41, -12},{-19, 29, 35,-148, -11, 45} },
{ {-55, -147, -146, -31, 55, 60},{-88, -45, -28, 46, -26,-144},
{-12, -107, -34, 150, 249, 66},{ 11, -15, -34, 27, -78, -50} },
{ { 56, 67, 108, 4, 2,-48},{ 58, 67, 89, 32, 32, -8},
{-42, -31,-103, -30,-23, -8},{ 6, 4, -26, -10, 26, 12}
}
};
int gx = 4, gy = 4, gz = 6;
double h2[gx - fx + 1][gy - fy + 1][gz - fz + 1];
deconv3(g, gx, gy, gz, f, fx, fy, fz, h2);
printf("deconv3(g, f):\n");
for (int i = 0; i < gx - fx + 1; i++) {
for (int j = 0; j < gy - fy + 1; j++) {
for (int k = 0; k < gz - fz + 1; k++)
printf("%g ", h2[i][j][k]);
printf("\n");
}
if (i < gx - fx) printf("\n");
}
double f2[gx - hx + 1][gy - hy + 1][gz - hz + 1];
deconv3(g, gx, gy, gz, h, hx, hy, hz, f2);
printf("\ndeconv3(g, h):\n");
for (int i = 0; i < gx - hx + 1; i++) {
for (int j = 0; j < gy - hy + 1; j++) {
for (int k = 0; k < gz - hz + 1; k++)
printf("%g ", f2[i][j][k]);
printf("\n");
}
if (i < gx - hx) printf("\n");
}
}
/* two-D case; since task doesn't require showing it, it's commented out */
/*
int main()
{
PI = atan2(1,1) * 4;
double h[][6] = { {-8, 1, -7, -2, -9, 4},
{4, 5, -5, 2, 7, -1},
{-6, -3, -3, -6, 9, 5} };
int hr = 3, hc = 6;
double f[][5] = { {-5, 2, -2, -6, -7},
{9, 7, -6, 5, -7},
{1, -1, 9, 2, -7},
{5, 9, -9, 2, -5},
{-8, 5, -2, 8, 5} };
int fr = 5, fc = 5;
double g[][10] = {
{40, -21, 53, 42, 105, 1, 87, 60, 39, -28},
{-92, -64, 19, -167, -71, -47, 128, -109, 40, -21},
{58, 85, -93, 37, 101, -14, 5, 37, -76, -56},
{-90, -135, 60, -125, 68, 53, 223, 4, -36, -48},
{78, 16, 7, -199, 156, -162, 29, 28, -103, -10},
{-62, -89, 69, -61, 66, 193, -61, 71, -8, -30},
{48, -6, 21, -9, -150, -22, -56, 32, 85, 25} };
int gr = 7, gc = 10;
double h2[gr - fr + 1][gc - fc + 1];
deconv2(g, gr, gc, f, fr, fc, h2);
for (int i = 0; i < gr - fr + 1; i++) {
for (int j = 0; j < gc - fc + 1; j++)
printf(" %g", h2[i][j]);
printf("\n");
}
double f2[gr - hr + 1][gc - hc + 1];
deconv2(g, gr, gc, h, hr, hc, f2);
for (int i = 0; i < gr - hr + 1; i++) {
for (int j = 0; j < gc - hc + 1; j++)
printf(" %g", f2[i][j]);
printf("\n");
}
}*/
Output
deconv3(g, f):
-6 -8 -5 9
-7 9 -6 -8
2 -7 9 8
7 4 4 -6
9 9 4 -4
-3 7 -2 -3
deconv3(g, h):
-9 5 -8
3 5 1
-1 -7 2
-5 -6 6
8 5 8
-2 -6 -4
C++
#include <cmath>
#include <complex>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <numbers>
#include <vector>
struct Return_Value {
int32_t power_of_two;
std::vector<std::complex<double>> list;
};
template <typename T>
void print_vector(const std::vector<T>& list) {
std::cout << "[";
for ( uint32_t i = 0; i < list.size() - 1; ++i ) {
std::cout << list[i] << ", ";
}
std::cout << list.back() << "]";
}
template <typename T>
void print_2D_vector(const std::vector<std::vector<T>>& lists) {
std::cout << "[";
for ( uint32_t i = 0; i < lists.size() - 1; ++i ) {
print_vector(lists[i]); std::cout << ", ";
}
print_vector(lists.back()); std::cout << "]";
}
template <typename T>
void print_3D_vector(const std::vector<std::vector<std::vector<T>>>& lists) {
std::cout << "[";
for ( uint32_t i = 0; i < lists.size() - 1; ++i ) {
print_2D_vector(lists[i]); std::cout << ", ";
}
print_2D_vector(lists.back()); std::cout << "]" << std::endl;
}
Return_Value pad_and_complexify(const std::vector<int32_t>& list, const int32_t& power_of_two) {
const int32_t padded_vector_size = ( power_of_two == 0 ) ?
1 << static_cast<int32_t>(std::ceil(std::log(list.size()) / std::log(2))) : power_of_two;
std::vector<std::complex<double>> padded_vector(padded_vector_size, std::complex<double>(0.0, 0.0));
for ( int32_t i = 0; i < padded_vector_size; ++i ) {
padded_vector[i] = ( i < static_cast<int32_t>(list.size()) ) ?
std::complex(static_cast<double>(list[i]), 0.0) : std::complex<double>(0.0, 0.0);
}
return Return_Value(padded_vector_size, padded_vector);
}
std::vector<std::vector<int32_t>> pack_2D(const std::vector<int32_t>& to_pack, const uint64_t& to_pack_X,
const uint64_t& to_pack_Y, const int32_t& convolved_Y) {
std::vector<std::vector<int32_t>> packed = { to_pack_X, std::vector<int32_t>(to_pack_Y, 0) };
for ( uint64_t i = 0; i < to_pack_X; ++i ) {
for ( uint64_t j = 0; j < to_pack_Y; ++j ) {
packed[i][j] = to_pack[i * convolved_Y + j] / 4;
}
}
return packed;
}
std::vector<std::vector<std::vector<int32_t>>> pack_3D(const std::vector<int32_t>& to_pack,
const uint64_t& to_pack_X, const uint64_t& to_pack_Y, const uint64_t to_pack_Z,
const int32_t& convolved_Y, const int32_t& convolved_Z) {
std::vector<std::vector<std::vector<int32_t>>> packed =
{ to_pack_X, std::vector<std::vector<int32_t>>(to_pack_Y, std::vector<int32_t>(to_pack_Z, 0)) };
for ( uint64_t i = 0; i < to_pack_X; ++i ) {
for ( uint64_t j = 0; j < to_pack_Y; ++j ) {
for ( uint64_t k = 0; k < to_pack_Z; ++k ) {
packed[i][j][k] = to_pack[( i * convolved_Y + j ) * convolved_Z + k] / 4;
}
}
}
return packed;
}
std::vector<int32_t> unpack_2D(const std::vector<std::vector<int32_t>>& to_unpack,
const int32_t& convolved_Y) {
std::vector<int32_t> unpacked(to_unpack.size() * convolved_Y, 0);
for ( uint32_t i = 0; i < to_unpack.size(); ++i ) {
for ( uint32_t j = 0; j < to_unpack[0].size(); ++j ) {
unpacked[i * convolved_Y + j] = to_unpack[i][j];
}
}
return unpacked;
}
std::vector<int32_t> unpack_3D(const std::vector<std::vector<std::vector<int32_t>>>& to_unpack,
const int32_t& convolved_Y, const int32_t& convolved_Z) {
std::vector<int32_t> unpacked(to_unpack.size() * convolved_Y * convolved_Z, 0);
for ( uint64_t i = 0; i < to_unpack.size(); ++i ) {
for ( uint64_t j = 0; j < to_unpack[0].size(); ++j ) {
for ( uint64_t k = 0; k < to_unpack[0][0].size(); ++k ) {
unpacked[( i * convolved_Y + j ) * convolved_Z + k] = to_unpack[i][j][k];
}
}
}
return unpacked;
}
void fft(std::vector<std::complex<double>>& deconvolution1D, std::vector<std::complex<double>>& result,
const int32_t& power_of_two, const int32_t& step, const int32_t& start) {
if ( step < power_of_two ) {
fft(result, deconvolution1D, power_of_two, 2 * step, start);
fft(result, deconvolution1D, power_of_two, 2 * step, start + step);
for ( int32_t j = 0; j < power_of_two; j += 2 * step ) {
const double theta = -std::numbers::pi * j / power_of_two;
std::complex<double> t = std::complex<double>(std::cos(theta), std::sin(theta)) * result[j + step + start];
deconvolution1D[( j / 2 ) + start] = result[j + start] + t;
deconvolution1D[( ( j + power_of_two ) / 2 ) + start] = result[j + start] - t;
}
}
}
std::vector<std::complex<double>> fft(std::vector<std::complex<double>>& deconvolution1D,
const int32_t& powerOfTwo) {
std::vector<std::complex<double>> result(deconvolution1D);
fft(deconvolution1D, result, powerOfTwo, 1, 0);
return result;
}
std::vector<int32_t> deconvolution(const std::vector<int32_t>& convolved, const int32_t& convolved_size,
const std::vector<int32_t>& remove, const int32_t& remove_size,
const int32_t& convolved_row_size, const int32_t& remain_size) {
int32_t power_of_two = 0;
Return_Value convoluted_result = pad_and_complexify(convolved, power_of_two);
std::vector<std::complex<double>> convoluted_padded = convoluted_result.list;
Return_Value remove_result = pad_and_complexify(remove, convoluted_result.power_of_two);
std::vector<std::complex<double>> remove_padded = remove_result.list;
power_of_two = remove_result.power_of_two;
fft(convoluted_padded, power_of_two);
fft(remove_padded, power_of_two);
std::vector<std::complex<double>> quotient(power_of_two, std::complex<double>(0.0, 0.0));
for ( int32_t i = 0; i < power_of_two; ++i ) {
quotient[i] = convoluted_padded[i] / remove_padded[i];
}
fft(quotient, power_of_two);
for ( int32_t i = 0; i < power_of_two; ++i ) {
if ( std::abs(quotient[i].real()) < 0.000'000'000'1 ) {
quotient[i] = std::complex<double>(0.0, 0.0);
}
}
std::vector<int32_t> remain_vector(remain_size, 0);
int32_t i = 0;
while ( i > remove_size - convolved_size - convolved_row_size ) {
remain_vector[-i] = std::lround((
quotient[( i + power_of_two ) % power_of_two] / std::complex(32.0, 0.0)).real());
i -= 1;
}
return remain_vector;
}
std::vector<int32_t> deconvolution_1D(const std::vector<int32_t>& convolved,
const std::vector<int32_t>& remove) {
return deconvolution(convolved, convolved.size(), remove, remove.size(),
1 , convolved.size() - remove.size() + 1);
}
std::vector<std::vector<int32_t>> deconvolution_2D(const std::vector<std::vector<int32_t>>& convolved,
const std::vector<std::vector<int32_t>>& toRemove) {
std::vector<int32_t> convolved_1D = unpack_2D(convolved, convolved[0].size());
std::vector<int32_t> toRemove_1D = unpack_2D(toRemove, convolved[0].size());
std::vector<int32_t> toRemain_1D = deconvolution(convolved_1D, convolved.size() * convolved[0].size(),
toRemove_1D, toRemove.size() * convolved[0].size(),
convolved[0].size(), ( convolved[0].size() - toRemove[0].size() + 1 ) * convolved[0].size());
return pack_2D(toRemain_1D, convolved.size() - toRemove.size() + 1,
convolved[0].size() - toRemove[0].size() + 1, convolved[0].size());
}
std::vector<std::vector<std::vector<int32_t>>> deconvolution_3D(
const std::vector<std::vector<std::vector<int32_t>>>& convolved,
const std::vector<std::vector<std::vector<int32_t>>>& toRemove) {
const int32_t cX = convolved.size();
const int32_t cY = convolved[0].size();
const int32_t cZ = convolved[0][0].size();
const int32_t rX = toRemove.size();
const int32_t rY = toRemove[0].size();
const int32_t rZ = toRemove[0][0].size();
const std::vector<int32_t> convolved_1D = unpack_3D(convolved, cY, cZ);
const std::vector<int32_t> toRemove_1D = unpack_3D(toRemove, cY, cZ);
const std::vector<int32_t> toRemain_1D = deconvolution(convolved_1D, cX * cY * cZ,
toRemove_1D, rX * cY * cZ, cY * cZ, ( cX - rX + 1 ) * cY * cZ);
return pack_3D(toRemain_1D, cX - rX + 1, cY - rY + 1, cZ - rZ + 1, cY, cZ);
}
int main() {
const std::vector<int32_t> f1 = { -3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1 };
const std::vector<int32_t> g1 =
{ 24, 75, 71, -34, 3, 22, -45, 23, 245, 25, 52, 25, -67, -96, 96, 31, 55, 36, 29, -43, -7 };
const std::vector<int32_t> h1 = { -8, -9, -3, -1, -6, 7 };
const std::vector<std::vector<int32_t>> f2 = { { -5, 2, -2, -6, -7 },
{ 9, 7, -6, 5, -7 },
{ 1, -1, 9, 2, -7 },
{ 5, 9, -9, 2, -5 },
{ -8, 5, -2, 8, 5 } };
const std::vector<std::vector<int32_t>> g2 =
{ { 40, -21, 53, 42, 105, 1, 87, 60, 39, -28 },
{ -92, -64, 19, -167, -71, -47, 128, -109, 40, -21 },
{ 58, 85, -93, 37, 101, -14, 5, 37, -76, -56 },
{ -90, -135, 60, -125, 68, 53, 223, 4, -36, -48 },
{ 78, 16, 7, -199, 156, -162, 29, 28, -103, -10 },
{ -62, -89, 69, -61, 66, 193, -61, 71, -8, -30 },
{ 48, -6, 21, -9, -150, -22, -56, 32, 85, 25 } };
const std::vector<std::vector<int32_t>> h2 = { { -8, 1, -7, -2, -9, 4 },
{ 4, 5, -5, 2, 7, -1 },
{ -6, -3, -3, -6, 9, 5 } };
const std::vector<std::vector<std::vector<int32_t>>> f3 = { { { -9, 5, -8 }, { 3, 5, 1 } },
{ { -1, -7, 2 }, { -5, -6, 6 } },
{ { 8, 5, 8 }, { -2, -6, -4 } } };
const std::vector<std::vector<std::vector<int32_t>>> g3 =
{ { { 54, 42, 53, -42, 85, -72 },
{ 45, -170, 94, -36, 48, 73 },
{ -39, 65, -112, -16, -78, -72 },
{ 6, -11, -6, 62, 49, 8 } },
{ { -57, 49, -23, 52, -135, 66 },
{ -23, 127, -58, -5, -118, 64 },
{ 87, -16, 121, 23, -41, -12 },
{ -19, 29, 35, -148, -11, 45 } },
{ { -55, -147, -146, -31, 55, 60 },
{ -88, -45, -28, 46, -26, -144 },
{ -12, -107, -34, 150, 249, 66 },
{ 11, -15, -34, 27, -78, -50 } },
{ { 56, 67, 108, 4, 2, -48 },
{ 58, 67, 89, 32, 32, -8 },
{ -42, -31, -103, -30, -23, -8 },
{ 6, 4, -26, -10, 26, 12 } } };
const std::vector<std::vector<std::vector<int32_t>>> h3 = { { { -6, -8, -5, 9 },
{ -7, 9, -6, -8 },
{ 2, -7, 9, 8 } },
{ { 7, 4, 4, -6 },
{ 9, 9, 4, -4 },
{ -3, 7, -2, -3 } } };
const std::vector<int32_t> H1 = deconvolution_1D(g1, f1);
std::cout << "deconvolution1D(g1, f1) = "; print_vector(H1); std::cout << std::endl;
std::cout << "H1 = h1 ? " << std::boolalpha << ( H1 == h1 ) << std::endl << std::endl;
const std::vector<int32_t> F1 = deconvolution_1D(g1, h1);
std::cout << "deconvolution1D(g1, h1) = "; print_vector(F1); std::cout << std::endl;
std::cout << "F1 = f1 ? " << ( F1 == f1 ) << std::endl << std::endl;
const std::vector<std::vector<int32_t>> H2 = deconvolution_2D(g2, f2);
std::cout << "deconvolution2D(g2, f2) = "; print_2D_vector(H2); std::cout << std::endl;
std::cout << "H2 = h2 ? " << ( H2 == h2 ) << std::endl << std::endl;
const std::vector<std::vector<int32_t>> F2 = deconvolution_2D(g2, h2);
std::cout << "deconvolution2D(g2, h2) = "; print_2D_vector(F2); std::cout << std::endl;
std::cout << "F2 = f2 ? " << ( F2 == f2 ) << std::endl << std::endl;
const std::vector<std::vector<std::vector<int32_t>>> H3 = deconvolution_3D(g3, f3);
std::cout << "deconvolution3D(g3, f3) = "; print_3D_vector(H3);
std::cout << "H3 = h3 ? " << ( H3 == h3 ) << std::endl << std::endl;
const std::vector<std::vector<std::vector<int32_t>>> F3 = deconvolution_3D(g3, h3);
std::cout << "deconvolution3D(g3, h3) = "; print_3D_vector(F3);
std::cout << "F3 = f3 ? " << ( F3 == f3 ) << std::endl;
}
- Output:
deconvolution1D(g1, f1) = [-8, -9, -3, -1, -6, 7] H1 = h1 ? true deconvolution1D(g1, h1) = [-3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1] F1 = f1 ? true deconvolution2D(g2, f2) = [[-8, 1, -7, -2, -9, 4], [4, 5, -5, 2, 7, -1], [-6, -3, -3, -6, 9, 5]] H2 = h2 ? true deconvolution2D(g2, h2) = [[-5, 2, -2, -6, -7], [9, 7, -6, 5, -7], [1, -1, 9, 2, -7], [5, 9, -9, 2, -5], [-8, 5, -2, 8, 5]] F2 = f2 ? true deconvolution3D(g3, f3) = [[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]], [[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]] H3 = h3 ? true deconvolution3D(g3, h3) = [[[-9, 5, -8], [3, 5, 1]], [[-1, -7, 2], [-5, -6, 6]], [[8, 5, 8], [-2, -6, -4]]] F3 = f3 ? true
D
import std.stdio, std.conv, std.algorithm, std.numeric, std.range;
class M(T) {
private size_t[] dim;
private size_t[] subsize;
private T[] d;
this(size_t[] dimension...) pure nothrow {
setDimension(dimension);
d[] = 0; // init each entry to zero;
}
M!T dup() {
auto m = new M!T(dim);
return m.set1DArray(d);
}
M!T setDimension(size_t[] dimension ...) pure nothrow {
foreach (const e; dimension)
assert(e > 0, "no zero dimension");
dim = dimension.dup;
subsize = dim.dup;
foreach (immutable i; 0 .. dim.length)
subsize[i] = reduce!q{a * b}(1, dim[i + 1 .. $]);
immutable dlength = dim[0] * subsize[0];
if (d.length != dlength)
d = new T[dlength];
return this;
}
M!T set1DArray(in T[] t ...) pure nothrow @nogc {
auto minLen = min(t.length, d.length);
d[] = 0;
d[0 .. minLen] = t[0 .. minLen];
return this;
}
size_t[] seq2idx(in size_t seq) const pure nothrow {
size_t acc = seq, tmp;
size_t[] idx;
foreach (immutable e; subsize) {
idx ~= tmp = acc / e;
acc = acc - tmp * e; // same as % (mod) e.
}
return idx;
}
size_t size() const pure nothrow @nogc @property {
return d.length;
}
size_t rank() const pure nothrow @nogc @property {
return dim.length;
}
size_t[] shape() const pure nothrow @property { return dim.dup; }
T[] raw() const pure nothrow @property { return d.dup; }
bool checkBound(size_t[] idx ...) const pure nothrow @nogc {
if (idx.length > dim.length)
return false;
foreach (immutable i, immutable dm; idx)
if (dm >= dim[i])
return false;
return true;
}
T opIndex(size_t[] idx ...) const pure nothrow @nogc {
assert(checkBound(idx), "OOPS");
return d[dotProduct(idx, subsize)];
}
T opIndexAssign(T v, size_t[] idx ...) pure nothrow @nogc {
assert(checkBound(idx), "OOPS");
d[dotProduct(idx, subsize)] = v;
return v;
}
override bool opEquals(Object o) const pure {
const rhs = to!(M!T)(o);
return dim == rhs.dim && d == rhs.d;
}
int opApply(int delegate(ref size_t[]) dg) const {
size_t[] yieldIdx;
foreach (immutable i; 0 .. d.length) {
yieldIdx = seq2idx(i);
if (dg(yieldIdx))
break;
}
return 0;
}
int opApply(int delegate(ref size_t[], ref T) dg) {
size_t idx1d = 0;
foreach (idx; this) {
if (dg(idx, d[idx1d++]))
break;
}
return 0;
}
// _this_ is h, rhs is f, output g.
M!T convolute(M!T rhs) const pure nothrow {
auto dm = dim.dup;
dm[] += rhs.dim[] - 1;
M!T m = new M!T(dm); // dm will be reused as m's idx.
auto bound = m.size;
foreach (immutable i; 0 .. d.length) {
auto thisIdx = seq2idx(i);
foreach (immutable j; 0 .. rhs.d.length) {
dm[] = thisIdx[] + rhs.seq2idx(j)[];
immutable midx1d = dotProduct(dm, m.subsize);
if (midx1d < bound)
m.d[midx1d] += d[i] * rhs.d[j];
else
break; // Bound reach, OK to break.
}
}
return m;
}
// _this_ is g, rhs is f, output is h.
M!T deconvolute(M!T rhs) const pure nothrow {
auto dm = dim.dup;
foreach (i, e; dm)
assert(e + 1 > rhs.dim[i],
"deconv : dimensions is zero or negative");
dm[] -= (rhs.dim[] - 1);
auto m = new M!T(dm); // dm will be reused as rhs' idx.
foreach (immutable i; 0 .. m.size) {
auto idx = m.seq2idx(i);
m.d[i] = this[idx];
foreach (immutable j; 0 .. i) {
immutable jdx = m.seq2idx(j);
dm[] = idx[] - jdx[];
if (rhs.checkBound(dm))
m.d[i] -= m.d[j] * rhs[dm];
}
m.d[i] /= rhs.d[0];
}
return m;
}
override string toString() const pure { return d.text; }
}
auto fold(T)(T[] arr, ref size_t[] d) pure {
if (d.length == 0)
d ~= arr.length;
static if (is(T U : U[])) { // Is arr an array of arrays?
assert(arr.length > 0, "no empty dimension");
d ~= arr[0].length;
foreach (e; arr)
assert(e.length == arr[0].length, "Not rectangular");
return fold(arr.reduce!q{a ~ b}, d);
} else {
assert(arr.length == d.reduce!q{a * b}, "Not same size");
return arr;
}
}
auto arr2M(T)(T a) pure {
size_t[] dm;
auto d = fold(a, dm);
alias E = ElementType!(typeof(d));
auto m = new M!E(dm);
m.set1DArray(d);
return m;
}
void main() {
alias Mi = M!int;
auto hh = [[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]];
auto ff = [[[-9, 5, -8], [3, 5, 1]],[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]];
auto h = arr2M(hh);
auto f = arr2M(ff);
const g = h.convolute(f);
writeln("g == f convolute h ? ", g == f.convolute(h));
writeln("h == g deconv f ? ", h == g.deconvolute(f));
writeln("f == g deconv h ? ", f == g.deconvolute(h));
writeln(" f = ", f);
writeln("g deconv h = ", g.deconvolute(h));
}
todo(may be not :): pretty print & convert to normal D array
- Output:
g == f convolute h ? true h == g deconv f ? true f == g deconv h ? true f = [-9, 5, -8, 3, 5, 1, -1, -7, 2, -5, -6, 6, 8, 5, 8, -2, -6, -4] g deconv h = [-9, 5, -8, 3, 5, 1, -1, -7, 2, -5, -6, 6, 8, 5, 8, -2, -6, -4]
Go
package main
import (
"fmt"
"math"
"math/cmplx"
)
func fft(buf []complex128, n int) {
out := make([]complex128, n)
copy(out, buf)
fft2(buf, out, n, 1)
}
func fft2(buf, out []complex128, n, step int) {
if step < n {
fft2(out, buf, n, step*2)
fft2(out[step:], buf[step:], n, step*2)
for j := 0; j < n; j += 2 * step {
fj, fn := float64(j), float64(n)
t := cmplx.Exp(-1i*complex(math.Pi, 0)*complex(fj, 0)/complex(fn, 0)) * out[j+step]
buf[j/2] = out[j] + t
buf[(j+n)/2] = out[j] - t
}
}
}
/* pad slice length to power of two */
func padTwo(g []float64, le int, ns *int) []complex128 {
n := 1
if *ns != 0 {
n = *ns
} else {
for n < le {
n *= 2
}
}
buf := make([]complex128, n)
for i := 0; i < le; i++ {
buf[i] = complex(g[i], 0)
}
*ns = n
return buf
}
func deconv(g []float64, lg int, f []float64, lf int, out []float64, rowLe int) {
ns := 0
g2 := padTwo(g, lg, &ns)
f2 := padTwo(f, lf, &ns)
fft(g2, ns)
fft(f2, ns)
h := make([]complex128, ns)
for i := 0; i < ns; i++ {
h[i] = g2[i] / f2[i]
}
fft(h, ns)
for i := 0; i < ns; i++ {
if math.Abs(real(h[i])) < 1e-10 {
h[i] = 0
}
}
for i := 0; i > lf-lg-rowLe; i-- {
out[-i] = real(h[(i+ns)%ns] / 32)
}
}
func unpack2(m [][]float64, rows, le, toLe int) []float64 {
buf := make([]float64, rows*toLe)
for i := 0; i < rows; i++ {
for j := 0; j < le; j++ {
buf[i*toLe+j] = m[i][j]
}
}
return buf
}
func pack2(buf []float64, rows, fromLe, toLe int, out [][]float64) {
for i := 0; i < rows; i++ {
for j := 0; j < toLe; j++ {
out[i][j] = buf[i*fromLe+j] / 4
}
}
}
func deconv2(g [][]float64, rowG, colG int, f [][]float64, rowF, colF int, out [][]float64) {
g2 := unpack2(g, rowG, colG, colG)
f2 := unpack2(f, rowF, colF, colG)
ff := make([]float64, (rowG-rowF+1)*colG)
deconv(g2, rowG*colG, f2, rowF*colG, ff, colG)
pack2(ff, rowG-rowF+1, colG, colG-colF+1, out)
}
func unpack3(m [][][]float64, x, y, z, toY, toZ int) []float64 {
buf := make([]float64, x*toY*toZ)
for i := 0; i < x; i++ {
for j := 0; j < y; j++ {
for k := 0; k < z; k++ {
buf[(i*toY+j)*toZ+k] = m[i][j][k]
}
}
}
return buf
}
func pack3(buf []float64, x, y, z, toY, toZ int, out [][][]float64) {
for i := 0; i < x; i++ {
for j := 0; j < toY; j++ {
for k := 0; k < toZ; k++ {
out[i][j][k] = buf[(i*y+j)*z+k] / 4
}
}
}
}
func deconv3(g [][][]float64, gx, gy, gz int, f [][][]float64, fx, fy, fz int, out [][][]float64) {
g2 := unpack3(g, gx, gy, gz, gy, gz)
f2 := unpack3(f, fx, fy, fz, gy, gz)
ff := make([]float64, (gx-fx+1)*gy*gz)
deconv(g2, gx*gy*gz, f2, fx*gy*gz, ff, gy*gz)
pack3(ff, gx-fx+1, gy, gz, gy-fy+1, gz-fz+1, out)
}
func main() {
f := [][][]float64{
{{-9, 5, -8}, {3, 5, 1}},
{{-1, -7, 2}, {-5, -6, 6}},
{{8, 5, 8}, {-2, -6, -4}},
}
fx, fy, fz := len(f), len(f[0]), len(f[0][0])
g := [][][]float64{
{{54, 42, 53, -42, 85, -72}, {45, -170, 94, -36, 48, 73},
{-39, 65, -112, -16, -78, -72}, {6, -11, -6, 62, 49, 8}},
{{-57, 49, -23, 52, -135, 66}, {-23, 127, -58, -5, -118, 64},
{87, -16, 121, 23, -41, -12}, {-19, 29, 35, -148, -11, 45}},
{{-55, -147, -146, -31, 55, 60}, {-88, -45, -28, 46, -26, -144},
{-12, -107, -34, 150, 249, 66}, {11, -15, -34, 27, -78, -50}},
{{56, 67, 108, 4, 2, -48}, {58, 67, 89, 32, 32, -8},
{-42, -31, -103, -30, -23, -8}, {6, 4, -26, -10, 26, 12},
},
}
gx, gy, gz := len(g), len(g[0]), len(g[0][0])
h := [][][]float64{
{{-6, -8, -5, 9}, {-7, 9, -6, -8}, {2, -7, 9, 8}},
{{7, 4, 4, -6}, {9, 9, 4, -4}, {-3, 7, -2, -3}},
}
hx, hy, hz := gx-fx+1, gy-fy+1, gz-fz+1
h2 := make([][][]float64, hx)
for i := 0; i < hx; i++ {
h2[i] = make([][]float64, hy)
for j := 0; j < hy; j++ {
h2[i][j] = make([]float64, hz)
}
}
deconv3(g, gx, gy, gz, f, fx, fy, fz, h2)
fmt.Println("deconv3(g, f):\n")
for i := 0; i < hx; i++ {
for j := 0; j < hy; j++ {
for k := 0; k < hz; k++ {
fmt.Printf("% .10g ", h2[i][j][k])
}
fmt.Println()
}
if i < hx-1 {
fmt.Println()
}
}
kx, ky, kz := gx-hx+1, gy-hy+1, gz-hz+1
f2 := make([][][]float64, kx)
for i := 0; i < kx; i++ {
f2[i] = make([][]float64, ky)
for j := 0; j < ky; j++ {
f2[i][j] = make([]float64, kz)
}
}
deconv3(g, gx, gy, gz, h, hx, hy, hz, f2)
fmt.Println("\ndeconv(g, h):\n")
for i := 0; i < kx; i++ {
for j := 0; j < ky; j++ {
for k := 0; k < kz; k++ {
fmt.Printf("% .10g ", f2[i][j][k])
}
fmt.Println()
}
if i < kx-1 {
fmt.Println()
}
}
}
- Output:
deconv3(g, f): -6 -8 -5 9 -7 9 -6 -8 2 -7 9 8 7 4 4 -6 9 9 4 -4 -3 7 -2 -3 deconv(g, h): -9 5 -8 3 5 1 -1 -7 2 -5 -6 6 8 5 8 -2 -6 -4
J
Actually it is a matter of setting up the linear equations and then solving them.
Implementation:
deconv3 =: 4 : 0
sz =. x >:@-&$ y NB. shape of z
poi =. ,<"1 ($y) ,"0/&(,@i.) sz NB. pair of indexes
t=. /: sc=: , <@(+"1)/&(#: ,@i.)/ ($y),:sz NB. order of ,y
T0=. (<"0,x) ,:~ (]/:"1 {.)&.> (<, y) ({:@] ,: ({"1~ {.))&.> sc <@|:@:>/.&(t&{) poi NB. set of boxed equations
T1=. (,x),.~(<0 #~ */sz) (({:@])`({.@])`[})&> {.T0 NB. set of linear equations
sz $ 1e_8 round ({:"1 %. }:"1) T1
)
round=: [ * <.@%~
Data:
h1=: _8 2 _9 _2 9 _8 _2
f1=: 6 _9 _7 _5
g1=: _48 84 _16 95 125 _70 7 29 54 10
h2=: ".;._2]0 :0
_8 1 _7 _2 _9 4
4 5 _5 2 7 _1
_6 _3 _3 _6 9 5
)
f2=: ".;._2]0 :0
_5 2 _2 _6 _7
9 7 _6 5 _7
1 _1 9 2 _7
5 9 _9 2 _5
_8 5 _2 8 5
)
g2=: ".;._2]0 :0
40 _21 53 42 105 1 87 60 39 _28
_92 _64 19 _167 _71 _47 128 _109 40 _21
58 85 _93 37 101 _14 5 37 _76 _56
_90 _135 60 _125 68 53 223 4 _36 _48
78 16 7 _199 156 _162 29 28 _103 _10
_62 _89 69 _61 66 193 _61 71 _8 _30
48 _6 21 _9 _150 _22 _56 32 85 25
)
h3=: ".;._1;._2]0 :0
/ _6 _8 _5 9/ _7 9 _6 _8/ 2 _7 9 8
/ 7 4 4 _6/ 9 9 4 _4/ _3 7 _2 _3
)
f3=: ".;._1;._2]0 :0
/ _9 5 _8/ 3 5 1
/ _1 _7 2/ _5 _6 6
/ 8 5 8/_2 _6 _4
)
g3=: ".;._2;._1]0 :0
/ 54 42 53 _42 85 _72
45 _170 94 _36 48 73
_39 65 _112 _16 _78 _72
6 _11 _6 62 49 8
/ _57 49 _23 52 _135 66
_23 127 _58 _5 _118 64
87 _16 121 23 _41 _12
_19 29 35 _148 _11 45
/ _55 _147 _146 _31 55 60
_88 _45 _28 46 _26 _144
_12 _107 _34 150 249 66
11 _15 _34 27 _78 _50
/ 56 67 108 4 2 _48
58 67 89 32 32 _8
_42 _31 _103 _30 _23 _8
6 4 _26 _10 26 12
)
Tests:
h1 -: g1 deconv3 f1
1
h2 -: g2 deconv3 f2
1
h3 -: g3 deconv3 f3 NB. -: checks for matching structure and data
1
Java
import java.util.Arrays;
public final class Deconvolution {
public static void main(String[] args) {
final int[] f1 = { -3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1 };
final int[] g1 =
{ 24, 75, 71, -34, 3, 22, -45, 23, 245, 25, 52, 25, -67, -96, 96, 31, 55, 36, 29, -43, -7 };
final int[] h1 = { -8, -9, -3, -1, -6, 7 };
final int[][] f2 = { { -5, 2, -2, -6, -7 },
{ 9, 7, -6, 5, -7 },
{ 1, -1, 9, 2, -7 },
{ 5, 9, -9, 2, -5 },
{ -8, 5, -2, 8, 5 } };
final int[][] g2 = { { 40, -21, 53, 42, 105, 1, 87, 60, 39, -28 },
{ -92, -64, 19, -167, -71, -47, 128, -109, 40, -21 },
{ 58, 85, -93, 37, 101, -14, 5, 37, -76, -56 },
{ -90, -135, 60, -125, 68, 53, 223, 4, -36, -48 },
{ 78, 16, 7, -199, 156, -162, 29, 28, -103, -10 },
{ -62, -89, 69, -61, 66, 193, -61, 71, -8, -30 },
{ 48, -6, 21, -9, -150, -22, -56, 32, 85, 25 } };
final int[][] h2 = { { -8, 1, -7, -2, -9, 4 },
{ 4, 5, -5, 2, 7, -1 },
{ -6, -3, -3, -6, 9, 5 } };
final int[][][] f3 = { { { -9, 5, -8 }, { 3, 5, 1 } },
{ { -1, -7, 2 }, { -5, -6, 6 } },
{ { 8, 5, 8 }, { -2, -6, -4 } } };
final int[][][] g3 = { { { 54, 42, 53, -42, 85, -72 },
{ 45, -170, 94, -36, 48, 73 },
{ -39, 65, -112, -16, -78, -72 },
{ 6, -11, -6, 62, 49, 8 } },
{ { -57, 49, -23, 52, -135, 66 },
{ -23, 127, -58, -5, -118, 64 },
{ 87, -16, 121, 23, -41, -12 },
{ -19, 29, 35, -148, -11, 45 } },
{ { -55, -147, -146, -31, 55, 60 },
{ -88, -45, -28, 46, -26, -144 },
{ -12, -107, -34, 150, 249, 66 },
{ 11, -15, -34, 27, -78, -50 } },
{ { 56, 67, 108, 4, 2, -48 },
{ 58, 67, 89, 32, 32, -8 },
{ -42, -31, -103, -30, -23, -8 },
{ 6, 4, -26, -10, 26, 12 } } };
final int[][][] h3 = { { { -6, -8, -5, 9 },
{ -7, 9, -6, -8 },
{ 2, -7, 9, 8 } },
{ { 7, 4, 4, -6 },
{ 9, 9, 4, -4 },
{ -3, 7, -2, -3 } } };
int[] H1 = deconvolution1D(g1, f1);
System.out.println("deconvolution1D(g1, f1) = " + Arrays.toString(H1));
System.out.println("H1 = h1 ? " + Arrays.equals(H1, h1));
System.out.println();
int[] F1 = deconvolution1D(g1, h1);
System.out.println("deconvolution1D(g1, h1) = " + Arrays.toString(F1));
System.out.println("F1 = f1 ? " + Arrays.equals(F1, f1));
System.out.println();
int[][] H2 = deconvolution2D(g2, f2);
System.out.println("deconvolution2D(g2, f2) = " + Arrays.deepToString(H2));
System.out.println("H2 = h2 ? " + Arrays.deepEquals(H2, h2));
System.out.println();
int[][] F2 = deconvolution2D(g2, h2);
System.out.println("deconvolution2D(g2, h2) = " + Arrays.deepToString(F2));
System.out.println("F2 = f2 ? " + Arrays.deepEquals(F2, f2));
System.out.println();
int[][][] H3 = deconvolution3D(g3, f3);
System.out.println("deconvolution3D(g3, f3) = " + Arrays.deepToString(H3));
System.out.println("H3 = h3 ? " + Arrays.deepEquals(H3, h3));
System.out.println();
int[][][] F3 = deconvolution3D(g3, h3);
System.out.println("deconvolution3D(g3, h3) = " + Arrays.deepToString(F3));
System.out.println("F3 = f3 ? " + Arrays.deepEquals(F3, f3));
}
private static int[] deconvolution1D(int[] convolved, int[] toRemove) {
return deconvolution(convolved, convolved.length, toRemove, toRemove.length,
1 , convolved.length - toRemove.length + 1);
}
private static int[][] deconvolution2D(int[][] convolved, int[][] toRemove) {
int[] convolvedArray = unpack2D(convolved, convolved[0].length);
int[] toRemoveArray = unpack2D(toRemove, convolved[0].length);
int[] toRemainArray = deconvolution(convolvedArray, convolved.length * convolved[0].length,
toRemoveArray, toRemove.length * convolved[0].length,
convolved[0].length, ( convolved[0].length - toRemove[0].length + 1 ) * convolved[0].length);
return pack2D(toRemainArray, convolved.length - toRemove.length + 1,
convolved[0].length - toRemove[0].length + 1, convolved[0].length);
}
private static int[][][] deconvolution3D(int[][][] convolved, int[][][] toRemove) {
final int cX = convolved.length;
final int cY = convolved[0].length;
final int cZ = convolved[0][0].length;
final int rX = toRemove.length;
final int rY = toRemove[0].length;
final int rZ = toRemove[0][0].length;
int[] convolvedArray = unpack3D(convolved, cY, cZ);
int[] toRemoveArray = unpack3D(toRemove, cY, cZ);
int[] toRemainArray = deconvolution(convolvedArray, cX * cY * cZ,
toRemoveArray, rX * cY * cZ, cY * cZ, ( cX - rX + 1 ) * cY * cZ);
return pack3D(toRemainArray, cX - rX + 1, cY - rY + 1, cZ - rZ + 1, cY, cZ);
}
private static int[] deconvolution(int[] convolvedArray, int convolvedLength,
int[] toRemoveArray, int toRemoveLength,
int convolvedRowLength, int toRemainLength) {
int powerOfTwo = 0;
ReturnValue convolvedResult = padAndComplexify(convolvedArray, powerOfTwo);
Complex[] convolvedPadded = convolvedResult.array;
ReturnValue toRemoveResult = padAndComplexify(toRemoveArray, convolvedResult.powerOfTwo);
Complex[] toRemovePadded = toRemoveResult.array;
powerOfTwo = toRemoveResult.powerOfTwo;
fft(convolvedPadded, powerOfTwo);
fft(toRemovePadded, powerOfTwo);
Complex[] quotient = new Complex[powerOfTwo];
for ( int i = 0; i < powerOfTwo; i++ ) {
quotient[i] = convolvedPadded[i].divide(toRemovePadded[i]);
}
fft(quotient, powerOfTwo);
for ( int i = 0; i < powerOfTwo; i++ ) {
if ( Math.abs(quotient[i].real()) < 0.000_000_000_1 ) {
quotient[i] = Complex.ZERO;
}
}
int[] toRemainArray = new int[toRemainLength];
int i = 0;
while ( i > toRemoveLength - convolvedLength - convolvedRowLength ) {
toRemainArray[-i] = Math.toIntExact(Math.round(
quotient[( i + powerOfTwo ) % powerOfTwo].divide(32).real()));
i -= 1;
}
return toRemainArray;
}
private static Complex[] fft(Complex[] deconvolution1D, int powerOfTwo) {
Complex[] result = Arrays.copyOf(deconvolution1D, deconvolution1D.length);
fft(deconvolution1D, result, powerOfTwo, 1, 0);
return result;
}
private static void fft(Complex[] deconvolution1D, Complex[] result,
int powerOfTwo, int step, int start) {
if ( step < powerOfTwo ) {
fft(result, deconvolution1D, powerOfTwo, 2 * step, start);
fft(result, deconvolution1D, powerOfTwo, 2 * step, start + step);
for ( int j = 0; j < powerOfTwo; j += 2 * step ) {
final double theta = -Math.PI * j / powerOfTwo;
Complex t = new Complex(Math.cos(theta), Math.sin(theta)).multiply(result[j + step + start]);
deconvolution1D[( j / 2 ) + start] = result[j + start].add(t);
deconvolution1D[( ( j + powerOfTwo ) / 2 ) + start] = result[j + start].subtract(t);
}
}
}
private static int[] unpack2D(int[][] toUnpack, int convolvedY) {
int[] unpacked = new int[toUnpack.length * convolvedY];
for ( int i = 0; i < toUnpack.length; i++ ) {
for ( int j = 0; j < toUnpack[0].length; j++ ) {
unpacked[i * convolvedY + j] = toUnpack[i][j];
}
}
return unpacked;
}
private static int[] unpack3D(int[][][] toUnpack, int convolvedY, int convolvedZ) {
int[] unpacked = new int[toUnpack.length * convolvedY * convolvedZ];
for ( int i = 0; i < toUnpack.length; i++ ) {
for ( int j = 0; j < toUnpack[0].length; j++ ) {
for ( int k = 0; k < toUnpack[0][0].length; k++ ) {
unpacked[( i * convolvedY + j ) * convolvedZ + k] = toUnpack[i][j][k];
}
}
}
return unpacked;
}
private static int[][] pack2D(int[] toPack, int toPackX, int toPackY, int convolvedY) {
int[][] packed = new int[toPackX][toPackY];
for ( int i = 0; i < toPackX; i++ ) {
for ( int j = 0; j < toPackY; j++ ) {
packed[i][j] = toPack[i * convolvedY + j] / 4;
}
}
return packed;
}
private static int[][][] pack3D(int[] toPack, int toPackX, int toPackY, int toPackZ,
int convolvedY, int convolvedZ) {
int[][][] packed = new int[toPackX][toPackY][toPackZ];
for ( int i = 0; i < toPackX; i++ ) {
for ( int j = 0; j < toPackY; j++ ) {
for ( int k = 0; k < toPackZ; k++ ) {
packed[i][j][k] = toPack[( i * convolvedY + j ) * convolvedZ + k] / 4;
}
}
}
return packed;
}
private static ReturnValue padAndComplexify(int[] array, int powerOfTwo) {
final int paddedArrayLength = ( powerOfTwo == 0 ) ?
Integer.highestOneBit(array.length - 1) << 1 : powerOfTwo;
Complex[] paddedArray = new Complex[paddedArrayLength];
for ( int i = 0; i < paddedArrayLength; i++ ) {
paddedArray[i] = ( i < array.length ) ? new Complex(array[i], 0.0) : Complex.ZERO;
}
return new ReturnValue(paddedArrayLength, paddedArray);
}
private static record ReturnValue(int powerOfTwo, Complex[] array) {}
}
final class Complex {
public Complex(double aReal, double aImag) {
real = aReal;
imag = aImag;
}
public Complex add(Complex other) {
return new Complex(real + other.real, imag + other.imag);
}
public Complex subtract(Complex other) {
return new Complex(real - other.real, imag - other.imag);
}
public Complex multiply(Complex other) {
return new Complex(real * other.real - imag * other.imag, imag * other.real + real * other.imag);
}
public Complex divide(int n) {
return new Complex(real / n, imag / n);
}
public Complex divide(Complex other) {
final double rr = real * other.real + imag * other.imag;
final double ii = imag * other.real - real * other.imag;
final double norm = other.real * other.real + other.imag * other.imag;
return new Complex(rr / norm, ii / norm);
}
public double real() {
return real;
}
public static final Complex ZERO = new Complex(0.0, 0.0);
private final double real;
private final double imag;
}
- Output:
deconvolution1D(g1, f1) = [-8, -9, -3, -1, -6, 7] H1 = h1 ? true deconvolution1D(g1, h1) = [-3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1] F1 = f1 ? true deconvolution2D(g2, f2) = [[-8, 1, -7, -2, -9, 4], [4, 5, -5, 2, 7, -1], [-6, -3, -3, -6, 9, 5]] H2 = h2 ? true deconvolution2D(g2, h2) = [[-5, 2, -2, -6, -7], [9, 7, -6, 5, -7], [1, -1, 9, 2, -7], [5, 9, -9, 2, -5], [-8, 5, -2, 8, 5]] F2 = f2 ? true deconvolution3D(g3, f3) = [[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]], [[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]] H3 = h3 ? true deconvolution3D(g3, h3) = [[[-9, 5, -8], [3, 5, 1]], [[-1, -7, 2], [-5, -6, 6]], [[8, 5, 8], [-2, -6, -4]]] F3 = f3 ? true
Julia
Julia has a deconv() function that works on Julia's builtin multidimensional arrays, but not on the nested type 2D and 3D arrays used in the task. So, the solution function, deconvn(), sets up repackaging for 1D fft. The actual solving work is done on one line of ifft/fft, and the rest of the code is merely to repackage the nested arrays.
using FFTW, DSP
const h1 = [-8, 2, -9, -2, 9, -8, -2]
const f1 = [ 6, -9, -7, -5]
const g1 = [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
const h2nested = [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
const f2nested = [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
const g2nested = [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
const h3nested = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
const f3nested = [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
const g3nested = [
[ [54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[ [-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[ [-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[ [56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
function flatnested2d(a, siz)
ret = zeros(Int, prod(siz))
for i in 1:length(a), j in 1:length(a[1])
ret[siz[2] * (i - 1) + j] = a[i][j]
end
Float64.(ret)
end
function flatnested3d(a, siz)
ret = zeros(Int, prod(siz))
for i in 1:length(a), j in 1:length(a[1]), k in 1:length(a[1][1])
ret[siz[2] * siz[3] * (i - 1) + siz[3] * (j - 1) + k] = a[i][j][k]
end
Float64.(ret)
end
topow2(siz) = map(x -> nextpow(2, x), siz)
deconv1d(f1, g1) = Int.(round.(deconv(Float64.(g1), Float64.(f1))))
function deconv2d(f2, g2, xd2)
siz = topow2([length(g2), length(g2[1])])
h2 = Int.(round.(real.(ifft(fft(flatnested2d(g2, siz)) ./ fft(flatnested2d(f2, siz))))))
[[h2[siz[2] * (i - 1) + j] for j in 1:xd2[2]] for i in 1:xd2[1]]
end
function deconv3d(f3, g3, xd3)
siz = topow2([length(g3), length(g3[1]), length(g3[1][1])])
h3 = Int.(round.(real.(ifft(fft(flatnested3d(g3, siz)) ./ fft(flatnested3d(f3, siz))))))
[[[h3[siz[2] * siz[3] *(i - 1) + siz[3] * (j - 1) + k] for k in 1:xd3[3]]
for j in 1:xd3[2]] for i in 1:xd3[1]]
end
deconvn(f, g, tup=()) = length(tup) < 2 ? deconv1d(f, g) :
length(tup) == 2 ? deconv2d(f, g, tup) :
length(tup) == 3 ? deconv3d(f, g, tup) :
println("Array nesting > 3D not supported")
deconvn(f1, g1) # 1D
deconvn(f2nested, g2nested, (length(h2nested), length(h2nested[1]))) # 2D
println(deconvn(f3nested, g3nested,
(length(h3nested), length(h3nested[1]), length(h3nested[1][1])))) # 3D
- Output:
Array{Array{Int64,1},1}[[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]], [[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
Mathematica / Wolfram Language
Round[ListDeconvolve[{6, -9, -7, -5}, {-48, 84, -16, 95, 125, -70, 7, 29, 54, 10}, Method -> "Wiener"]]
Round[ListDeconvolve[{{-5, 2, -2, -6, -7}, {9, 7, -6, 5, -7}, {1, -1, 9, 2, -7}, {5, 9, -9, 2, -5}, {-8, 5, -2, 8, 5}},
{{40, -21, 53, 42, 105, 1, 87, 60, 39, -28}, {-92, -64, 19, -167, -71, -47, 128, -109, 40, -21},
{58, 85, -93, 37, 101, -14, 5, 37, -76, -56}, {-90, -135, 60, -125, 68, 53, 223, 4, -36, -48},
{78, 16, 7, -199, 156, -162, 29, 28, -103, -10}, {-62, -89, 69, -61, 66, 193, -61, 71, -8, -30},
{48, -6, 21, -9, -150, -22, -56, 32, 85, 25}}, Method -> "Wiener"]]
Round[ListDeconvolve [{{{-9, 5, -8}, {3, 5, 1}}, {{-1, -7, 2}, {-5, -6, 6}}, {{8, 5, 8}, {-2, -6, -4}}},
{{{54, 42, 53, -42, 85, -72}, {45, -170, 94, -36, 48, 73}, {-39, 65, -112, -16, -78, -72},
{6, -11, -6, 62, 49, 8}}, {{-57, 49, -23, 52, -135, 66}, {-23, 127, -58, -5, -118, 64}, {87, -16, 121, 23, -41, -12},
{-19, 29, 35, -148, -11, 45}}, {{-55, -147, -146, -31, 55, 60}, {-88, -45, -28, 46, -26, -144},
{-12, -107, -34, 150, 249, 66}, {11, -15, -34, 27, -78, -50}}, {{56, 67, 108, 4, 2, -48}, {58, 67, 89, 32, 32, -8},
{-42, -31, -103, -30, -23, -8}, {6, 4, -26, -10, 26, 12}}}, Method -> "Wiener"]]
- Output:
The built-in ListDeconvolve function pads output to the same dimensions as the original data...
{-8, 2, -9, -2, 9, -8, -2, 0, 0, 0} {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, -8, 1, -7, -2, -9, 4, 0, 0}, {0, 0, 4, 5, -5, 2, 7, -1, 0, 0}, {0, 0, -6, -3, -3, -6, 9, 5, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}} {{{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}, {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}, {{-6, -8, -5, 9, 0, 0}, {-7, 9, -6, -8, 0, 0}, {2, -7, 9, 8, 0, 0}, {0, 0, 0, 0, 0, 0}}, {{7, 4, 4, -6, 0, 0}, {9, 9, 4, -4, 0, 0}, {-3, 7, -2, -3, 0, 0}, {0, 0, 0, 0, 0, 0}}}
Nim
import sequtils, typetraits
type Size = uint64
type M[T: SomeNumber] = object
dims: seq[Size]
subsizes: seq[Size]
data: seq[T]
####################################################################################################
# Miscellaneous.
func dotProduct[T: SomeNumber](a, b: openArray[T]): T =
assert a.len == b.len
for i in 0..a.high:
result += a[i] * b[i]
####################################################################################################
# Operations on M objects.
func setDimensions(m: var M; dimensions: varargs[Size]) =
for dim in dimensions:
if dim == 0:
raise newException(IndexDefect, "wrong dimension: 0")
m.dims = @dimensions
m.subsizes = m.dims
for i in 0..dimensions.high:
m.subsizes[i] = m.dims[(i+1)..^1].foldl(a * b, Size(1))
let dlength = m.dims[0] * m.subsizes[0]
if Size(m.data.len) != dlength:
m.data.setLen(dlength)
#---------------------------------------------------------------------------------------------------
func initM(m: var M; dimensions: varargs[Size]) =
m.setDimensions(dimensions)
#---------------------------------------------------------------------------------------------------
func set1DArray(m: var M; t: varargs[m.T]) =
let minLen = min(m.data.len, t.len)
m.data.setLen(minLen)
m.data[0..<minLen] = t[0..<minLen]
#---------------------------------------------------------------------------------------------------
func seqToIdx(m: M; s: Size): seq[Size] =
var acc = s
for subsize in m.subsizes:
result.add(acc div subsize)
acc = acc mod subsize
#---------------------------------------------------------------------------------------------------
template size(m: M): Size = Size(m.data.len)
#---------------------------------------------------------------------------------------------------
func checkBounds(m: M; indexes: varargs[Size]): bool =
if indexes.len > m.dims.len:
return false
for i, dim in indexes:
if dim >= m.dims[i]:
return false
result = true
#---------------------------------------------------------------------------------------------------
func `[]`(m: M; indexes: varargs[Size]): m.T =
if not m.checkBounds(indexes):
raise newException(IndexDefect, "index out of range: " & $indexes)
m.data[dotProduct(indexes, m.subsizes)]
#---------------------------------------------------------------------------------------------------
func `[]=`(m: M; indexes: varargs[int]; val: m.T) =
if not m.checkBounds(indexes):
raise newException(IndexDefect, "index out of range: " & $indexes)
m.data[dotProduct(indexes, m.subsizes)] = val
#---------------------------------------------------------------------------------------------------
func `==`(a, b: M): bool = a.dims == b.dims and a.data == b.data
#---------------------------------------------------------------------------------------------------
func `$`(m: M): string = $m.data
####################################################################################################
# Convolution/deconvolution.
func convolute(h, f: M): M =
## Result is "g".
var dims = h.dims
for i in 0..dims.high:
dims[i] += f.dims[i] - 1
result.initM(dims)
let bound = result.size
for i in 0..<h.size:
let hIndexes = h.seqToIdx(i)
for j in 0..<f.size:
let fIndexes = f.seqToIdx(j)
for k in 0..dims.high:
dims[k] = hIndexes[k] + fIndexes[k]
let idx1d = dotProduct(dims, result.subsizes)
if idx1d < bound:
result.data[idx1d] += h.data[i] * f.data[j]
else:
break # Bound reached.
#---------------------------------------------------------------------------------------------------
func deconvolute(g, f: M): M =
## Result is "h".
var dims = g.dims
for i, d in dims:
if d + 1 <= f.dims[i]:
raise newException(IndexDefect, "a dimension is zero or negative")
for i in 0..dims.high:
dims[i] -= f.dims[i] - 1
result.initM(dims)
for i in 0..<result.size:
let iIndexes = result.seqToIdx(i)
result.data[i] = g[iIndexes]
for j in 0..<i:
let jIndexes = result.seqToIdx(j)
for k in 0..dims.high:
dims[k] = iIndexes[k] - jIndexes[k]
if f.checkBounds(dims):
result.data[i] -= result.data[j] * f[dims]
when result.T is SomeInteger:
result.data[i] = result.data[i] div f.data[0]
else:
result.data[i] /= f.data[0]
####################################################################################################
# Transformation of a sequence into an M object.
func fold[T](a: seq[T]; d: var seq[Size]): auto =
if d.len == 0:
d.add(Size(a.len))
when a.elementType is seq:
if a.len == 0:
raise newException(ValueError, "empty dimension")
d.add(Size(a[0].len))
for elem in a:
if elem.len != a[0].len:
raise newException(ValueError, "not rectangular")
result = fold(a.foldl(a & b), d)
else:
if Size(a.len) != d.foldl(a * b):
raise newException(ValueError, "not same size")
result = a
#---------------------------------------------------------------------------------------------------
func arrtoM[T](a: T): auto =
var dims: seq[Size]
let d = fold(a, dims)
var res: M[d.elementType]
res.initM(dims)
res.set1DArray(d)
return res
#———————————————————————————————————————————————————————————————————————————————————————————————————
const H = @[ @[ @[-6, -8, -5, 9], @[-7, 9, -6, -8], @[ 2, -7, 9, 8] ],
@[ @[ 7, 4, 4, -6], @[ 9, 9, 4, -4], @[-3, 7, -2, -3] ] ]
const F = @[ @[ @[-9, 5, -8], @[ 3, 5, 1] ],
@[ @[-1, -7, 2], @[-5, -6, 6] ],
@[ @[ 8, 5, 8], @[-2, -6, -4] ] ]
let h = arrToM(H)
let f = arrToM(F)
let g = h.convolute(f)
echo "g == f convolute h ? ", g == f.convolute(h)
echo "h == g deconv f ? ", h == g.deconvolute(f)
echo "f == g deconv h ? ", f == g.deconvolute(h)
echo " f = ", f
echo "g deconv f = ", g.deconvolute(h)
- Output:
g == f convolute h ? true h == g deconv f ? true f == g deconv h ? true f = @[-9, 5, -8, 3, 5, 1, -1, -7, 2, -5, -6, 6, 8, 5, 8, -2, -6, -4] g deconv f = @[-9, 5, -8, 3, 5, 1, -1, -7, 2, -5, -6, 6, 8, 5, 8, -2, -6, -4]
Perl
use feature 'say';
use ntheory qw/forsetproduct/;
# Deconvolution of N dimensional matrices
sub deconvolve_N {
our @g; local *g = shift;
our @f; local *f = shift;
my @df = shape(@f);
my @dg = shape(@g);
my @hsize;
push @hsize, $dg[$_] - $df[$_] + 1 for 0..$#df;
my @toSolve = map { [row(\@g, \@f, \@hsize, $_)] } coords(shape(@g));
rref( \@toSolve );
my @h;
my $n = 0;
for (coords(@hsize)) {
my($k,$j,$i) = split ' ', $_;
$h[$i][$j][$k] = $toSolve[$n++][-1];
}
@h;
}
sub row {
our @g; local *g = shift;
our @f; local *f = shift;
our @hsize; local *hsize = shift;
my @gc = reverse split ' ', shift;
my @row;
my @fdim = shape(@f);
for (coords(@hsize)) {
my @hc = reverse split ' ', $_;
my @fc;
for my $i (0..$#hc) {
my $window = $gc[$i] - $hc[$i];
push(@fc, $window), next if 0 <= $window && $window < $fdim[$i];
}
push @row, $#fc == $#hc ? $f [$fc[0]] [$fc[1]] [$fc[2]] : 0;
}
push @row, $g [$gc[0]] [$gc[1]] [$gc[2]];
return @row;
}
sub rref {
our @m; local *m = shift;
@m or return;
my ($lead, $rows, $cols) = (0, scalar(@m), scalar(@{$m[0]}));
foreach my $r (0 .. $rows - 1) {
$lead < $cols or return;
my $i = $r;
until ($m[$i][$lead])
{++$i == $rows or next;
$i = $r;
++$lead == $cols and return;}
@m[$i, $r] = @m[$r, $i];
my $lv = $m[$r][$lead];
$_ /= $lv foreach @{ $m[$r] };
my @mr = @{ $m[$r] };
foreach my $i (0 .. $rows - 1)
{$i == $r and next;
($lv, my $n) = ($m[$i][$lead], -1);
$_ -= $lv * $mr[++$n] foreach @{ $m[$i] };}
++$lead;}
}
# Constructs an AoA of coordinates to all elements of N dimensional array
sub coords {
my(@dimensions) = reverse @_;
my(@ranges,@coords);
push @ranges, [0..$_-1] for @dimensions;
forsetproduct { push @coords, "@_" } @ranges;
@coords;
}
sub shape {
my(@dim);
push @dim, scalar @_;
push @dim, shape(@{$_[0]}) if 'ARRAY' eq ref $_[0];
@dim;
}
# Pretty printer for N dimensional arrays
# Assumes if first element in level is an array, then all are
sub pretty_print {
my($i, @a) = @_;
if ('ARRAY' eq ref $a[0]) {
say ' 'x$i, '[';
pretty_print($i+2, @$_) for @a;
say ' 'x$i, ']', $i ? ',' : '';
} else {
say ' 'x$i, '[', sprintf("@{['%5s'x@a]}",@a), ']', $i ? ',' : '';
}
}
my @f = (
[
[ -9, 5, -8 ],
[ 3, 5, 1 ],
],
[
[ -1, -7, 2 ],
[ -5, -6, 6 ],
],
[
[ 8, 5, 8 ],
[ -2, -6, -4 ],
]
);
my @g = (
[
[ 54, 42, 53, -42, 85, -72 ],
[ 45,-170, 94, -36, 48, 73 ],
[ -39, 65,-112, -16, -78, -72 ],
[ 6, -11, -6, 62, 49, 8 ],
],
[
[ -57, 49, -23, 52,-135, 66 ],
[ -23, 127, -58, -5,-118, 64 ],
[ 87, -16, 121, 23, -41, -12 ],
[ -19, 29, 35,-148, -11, 45 ],
],
[
[ -55,-147,-146, -31, 55, 60 ],
[ -88, -45, -28, 46, -26,-144 ],
[ -12,-107, -34, 150, 249, 66 ],
[ 11, -15, -34, 27, -78, -50 ],
],
[
[ 56, 67, 108, 4, 2, -48 ],
[ 58, 67, 89, 32, 32, -8 ],
[ -42, -31,-103, -30, -23, -8 ],
[ 6, 4, -26, -10, 26, 12 ],
]
);
my @h = deconvolve_N( \@g, \@f );
my @ff = deconvolve_N( \@g, \@h );
my $d = scalar shape(@g);
print "${d}D arrays:\n";
print "h =\n";
pretty_print(0,@h);
print "\nff =\n";
pretty_print(0,@ff);
- Output:
3D arrays: h = [ [ [ -6 -8 -5 9], [ -7 9 -6 -8], [ 2 -7 9 8], ], [ [ 7 4 4 -6], [ 9 9 4 -4], [ -3 7 -2 -3], ], ] ff = [ [ [ -9 5 -8], [ 3 5 1], ], [ [ -1 -7 2], [ -5 -6 6], ], [ [ 8 5 8], [ -2 -6 -4], ], ]
Phix
Quite frankly I'm fairly astonished that it actually works...
(be warned this contains an exciting mix of 0- and 1- based indexes)
-- demo\rosetta\Deconvolution.exw with javascript_semantics function m_size(sequence m) -- -- returns the size of a matrix as a list of lengths -- sequence res = {} object me = m while sequence(me) do res &= length(me) me = me[1] end while return res end function function make_coordset(sequence size) -- -- returns all points in the matrix, in zero-based indexes, -- eg {{0,0,0}..{3,3,5}} for a 4x4x6 matrix [96 in total] -- sequence res = {} integer count = product(size) for i=0 to count-1 do sequence coords = {} integer j = i for s=length(size) to 1 by -1 do integer dimension = size[s] coords &= mod(j,dimension) j = floor(j/dimension) end for coords = reverse(coords) res = append(res,coords) end for return res end function function row(sequence g, f, gs, gc, fs, hs) -- --# Assembles a row, which is one of the simultaneous equations that needs --# to be solved by reducing the whole set to reduced row echelon form. Note --# that each row describes the equation for a single cell of the 'g' function. --# --# Arguments: --# g The "result" matrix of the convolution being undone. --# h The known "input" matrix of the convolution being undone. --# gs The size descriptor of 'g', passed as argument for efficiency. --# gc The coordinate in 'g' that we are generating the equation for. --# fs The size descriptor of 'f', passed as argument for efficiency. --# hs The size descriptor of 'h' (the unknown "input" matrix), passed --# as argument for efficiency. -- sequence row = {}, coords = make_coordset(hs) for i=1 to length(coords) do sequence hc = coords[i] object fn = f for k=1 to length(gc) do integer d = gc[k]-hc[k] if d<0 or d>=fs[k] then fn = 0 exit end if fn = fn[d+1] end for row = append(row,fn) end for object gn = g for i=1 to length(gc) do gn = gn[gc[i]+1] end for row = append(row,gn) return row end function function toRREF(sequence m) -- -- [renamed] copy of Reduced_row_echelon_form.htm#Phix -- plus one small tweak, as noted below, exit->return, -- not that said seems to make any actual difference. -- integer lead = 1, rows = length(m), cols = length(m[1]) m = deep_copy(m) for r=1 to rows do if lead>=cols then exit end if integer i = r while m[i][lead]=0 do i += 1 if i=rows then i = r lead += 1 -- if lead=cols then exit end if if lead=cols then return m end if end if end while sequence mi = deep_copy(m[r]), mr = sq_div(m[i],m[i][lead]) m[i] = mi m[r] = mr for j=1 to rows do if j!=r then m[j] = sq_sub(m[j],sq_mul(m[j][lead],m[r])) end if end for lead += 1 end for return m end function function lset(sequence h, sequence idx, object v) -- helper routine: store v somewhere deep inside h h = deep_copy(h) integer i1 = idx[1]+1 if length(idx)=1 then h[i1] = v else h[i1] = lset(h[i1],idx[2..$],v) end if return h end function function deconvolve(sequence g, f) -- --# Deconvolve a pair of matrixes. Solves for 'h' such that 'g = f convolve h'. --# --# Arguments: --# g The matrix of data to be deconvolved. --# f The matrix describing the convolution to be removed. -- -- Compute the sizes of the various matrixes involved. sequence gsize = m_size(g), fsize = m_size(f), hsize = sq_add(sq_sub(gsize,fsize),1) -- Prepare the set of simultaneous equations to solve sequence toSolve = {}, coords = make_coordset(gsize) for i=1 to length(coords) do toSolve = append(toSolve,row(g,f,gsize,coords[i],fsize,hsize)) end for -- Solve the equations sequence solved = toRREF(toSolve) -- Create a result matrix of the right size object h = 0 for i=length(hsize) to 1 by -1 do h = repeat(h,hsize[i]) end for -- Fill the results from the equations into the result matrix coords = make_coordset(hsize) for i=1 to length(coords) do h = lset(h,coords[i],solved[i][$]) end for return h end function constant f1 = { 6, -9, -7, -5}, g1 = {-48, 84, -16, 95, 125, -70, 7, 29, 54, 10}, h1 = {-8, 2, -9, -2, 9, -8, -2} if deconvolve(g1, f1)!=h1 then ?9/0 end if if deconvolve(g1, h1)!=f1 then ?9/0 end if constant f2 = {{-5, 2,-2,-6,-7}, { 9, 7,-6, 5,-7}, { 1,-1, 9, 2,-7}, { 5, 9,-9, 2,-5}, {-8, 5,-2, 8, 5}}, g2 = {{ 40, -21, 53, 42, 105, 1, 87, 60, 39, -28}, {-92, -64, 19,-167, -71, -47, 128,-109, 40, -21}, { 58, 85,-93, 37, 101, -14, 5, 37, -76, -56}, {-90,-135, 60,-125, 68, 53, 223, 4, -36, -48}, { 78, 16, 7,-199, 156,-162, 29, 28,-103, -10}, {-62, -89, 69, -61, 66, 193, -61, 71, -8, -30}, { 48, -6, 21, -9,-150, -22, -56, 32, 85, 25}}, h2 = {{-8, 1,-7,-2,-9, 4}, { 4, 5,-5, 2, 7,-1}, {-6,-3,-3,-6, 9, 5}} if deconvolve(g2, f2)!=h2 then ?9/0 end if if deconvolve(g2, h2)!=f2 then ?9/0 end if constant f3 = {{{-9, 5, -8}, { 3, 5, 1}}, {{-1, -7, 2}, {-5, -6, 6}}, {{ 8, 5, 8}, {-2, -6, -4}}}, g3 = {{{ 54, 42, 53, -42, 85, -72}, { 45,-170, 94, -36, 48, 73}, {-39, 65,-112, -16, -78, -72}, { 6, -11, -6, 62, 49, 8}}, {{-57, 49, -23, 52,-135, 66}, {-23, 127, -58, -5,-118, 64}, { 87, -16, 121, 23, -41, -12}, {-19, 29, 35,-148, -11, 45}}, {{-55,-147,-146, -31, 55, 60}, {-88, -45, -28, 46, -26,-144}, {-12,-107, -34, 150, 249, 66}, { 11, -15, -34, 27, -78, -50}}, {{ 56, 67, 108, 4, 2, -48}, { 58, 67, 89, 32, 32, -8}, {-42, -31,-103, -30, -23, -8}, { 6, 4, -26, -10, 26, 12}}}, h3 = {{{ -6, -8, -5, 9}, { -7, 9, -6, -8}, { 2, -7, 9, 8}}, {{ 7, 4, 4, -6}, { 9, 9, 4, -4}, { -3, 7, -2, -3}}} if deconvolve(g3, f3)!=h3 then ?9/0 end if if deconvolve(g3, h3)!=f3 then ?9/0 end if ppOpt({pp_Nest,2,pp_IntFmt,"%3d"}) pp(deconvolve(g3, f3)) pp(deconvolve(g3, h3))
- Output:
{{{ -6, -8, -5, 9}, { -7, 9, -6, -8}, { 2, -7, 9, 8}}, {{ 7, 4, 4, -6}, { 9, 9, 4, -4}, { -3, 7, -2, -3}}} {{{ -9, 5, -8}, { 3, 5, 1}}, {{ -1, -7, 2}, { -5, -6, 6}}, {{ 8, 5, 8}, { -2, -6, -4}}}
The version shipped in demo\rosetta contains the full 5 test sets: note that 5D takes a minute or two to complete.
Python
Tested on all 5 test cases.
Blows up with divide by zero error on 4d deconv(g,f) because the fft(f) returns 0 for a sample. This shows the limits of doing a deconvolution with fft.
https://math.stackexchange.com/questions/380720/is-deconvolution-simply-division-in-frequency-domain
"""
https://rosettacode.org/wiki/Deconvolution/2D%2B
Working on 3 dimensional example using test data from the
RC task.
Python fft:
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
"""
import numpy
import pprint
h = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f = [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g = [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
def trim_zero_empty(x):
"""
Takes a structure that represents an n dimensional example.
For a 2 dimensional example it will be a list of lists.
For a 3 dimensional one it will be a list of list of lists.
etc.
Actually these are multidimensional numpy arrays but I was thinking
in terms of lists.
Returns the same structure without trailing zeros in the inner
lists and leaves out inner lists with all zeros.
"""
if len(x) > 0:
if type(x[0]) != numpy.ndarray:
# x is 1d array
return list(numpy.trim_zeros(x))
else:
# x is a multidimentional array
new_x = []
for l in x:
tl = trim_zero_empty(l)
if len(tl) > 0:
new_x.append(tl)
return new_x
else:
# x is empty list
return x
def deconv(a, b):
"""
Returns function c such that b * c = a.
https://en.wikipedia.org/wiki/Deconvolution
"""
# Convert larger polynomial using fft
ffta = numpy.fft.fftn(a)
# Get it's shape so fftn will expand
# smaller polynomial to fit.
ashape = numpy.shape(a)
# Convert smaller polynomial with fft
# using the shape of the larger one
fftb = numpy.fft.fftn(b,ashape)
# Divide the two in frequency domain
fftquotient = ffta / fftb
# Convert back to polynomial coefficients using ifft
# Should give c but with some small extra components
c = numpy.fft.ifftn(fftquotient)
# Get rid of imaginary part and round up to 6 decimals
# to get rid of small real components
trimmedc = numpy.around(numpy.real(c),decimals=6)
# Trim zeros and eliminate
# empty rows of coefficients
cleanc = trim_zero_empty(trimmedc)
return cleanc
print("deconv(g,h)=")
pprint.pprint(deconv(g,h))
print(" ")
print("deconv(g,f)=")
pprint.pprint(deconv(g,f))
Output:
deconv(g,h)= [[[-9.0, 5.0, -8.0], [3.0, 5.0, 1.0]], [[-1.0, -7.0, 2.0], [-5.0, -6.0, 6.0]], [[8.0, 5.0, 8.0], [-2.0, -6.0, -4.0]]] deconv(g,f)= [[[-6.0, -8.0, -5.0, 9.0], [-7.0, 9.0, -6.0, -8.0], [2.0, -7.0, 9.0, 8.0]], [[7.0, 4.0, 4.0, -6.0], [9.0, 9.0, 4.0, -4.0], [-3.0, 7.0, -2.0, -3.0]]]
Raku
(formerly Perl 6)
Translation of Tcl.
# Deconvolution of N dimensional matrices.
sub deconvolve-N ( @g, @f ) {
my @hsize = @g.shape »-« @f.shape »+» 1;
my @toSolve = coords(@g.shape).map:
{ [row(@g, @f, $^coords, @hsize)] };
my @solved = rref( @toSolve );
my @h;
for flat coords(@hsize) Z @solved[*;*-1] -> $_, $v {
@h.AT-POS(|$_) = $v;
}
@h
}
# Construct a row for each value in @g to be sent to the simultaneous equation solver
sub row ( @g, @f, @gcoord, $hsize ) {
my @row;
@gcoord = @gcoord[(^@f.shape)]; # clip extraneous values
for coords( $hsize ) -> @hc {
my @fcoord;
for ^@hc -> $i {
my $window = @gcoord[$i] - @hc[$i];
@fcoord.push($window) and next if 0 ≤ $window < @f.shape[$i];
last;
}
@row.push: @fcoord == @hc ?? @f.AT-POS(|@fcoord) !! 0;
}
@row.push: @g.AT-POS(|@gcoord);
@row
}
# Constructs an AoA of coordinates to all elements of N dimensional array
sub coords ( @dim ) {
@[reverse $_ for [X] ([^$_] for reverse @dim)]
}
# Reduced Row Echelon Form simultaneous equation solver
# Can handle over-specified systems (N unknowns in N + M equations)
sub rref (@m) {
@m = trim-system @m;
my ($lead, $rows, $cols) = 0, @m, @m[0];
for ^$rows -> $r {
return @m unless $lead < $cols;
my $i = $r;
until @m[$i;$lead] {
next unless ++$i == $rows;
$i = $r;
return @m if ++$lead == $cols;
}
@m[$i, $r] = @m[$r, $i] if $r != $i;
@m[$r] »/=» $ = @m[$r;$lead];
for ^$rows -> $n {
next if $n == $r;
@m[$n] »-=» @m[$r] »×» (@m[$n;$lead] // 0);
}
++$lead;
}
@m
}
# Reduce to N equations in N unknowns; a no-op unless rows > cols
sub trim-system (@m) {
return @m unless @m ≥ @m[0];
my (\vars, @t) = @m[0] - 1;
for ^vars -> \lead {
for ^@m -> \row {
@t.append: @m.splice(row, 1) and last if @m[row;lead];
}
}
while @t < vars and @m { @t.push: shift @m }
@t
}
# Pretty printer for N dimensional arrays
# Assumes if first element in level is an array, then all are
sub pretty-print ( @array, $indent = 0 ) {
if @array[0] ~~ Array {
say ' ' x $indent,"[";
pretty-print( $_, $indent + 2 ) for @array;
say ' ' x $indent, "]{$indent??','!!''}";
} else {
say ' ' x $indent, "[{say_it(@array)} ]{$indent??','!!''}";
}
sub say_it ( @array ) { return join ",", @array».fmt("%4s"); }
}
my @f[3;2;3] = (
[
[ -9, 5, -8 ],
[ 3, 5, 1 ],
],
[
[ -1, -7, 2 ],
[ -5, -6, 6 ],
],
[
[ 8, 5, 8 ],
[ -2, -6, -4 ],
]
);
my @g[4;4;6] = (
[
[ 54, 42, 53, -42, 85, -72 ],
[ 45,-170, 94, -36, 48, 73 ],
[ -39, 65,-112, -16, -78, -72 ],
[ 6, -11, -6, 62, 49, 8 ],
],
[
[ -57, 49, -23, 52,-135, 66 ],
[ -23, 127, -58, -5,-118, 64 ],
[ 87, -16, 121, 23, -41, -12 ],
[ -19, 29, 35,-148, -11, 45 ],
],
[
[ -55,-147,-146, -31, 55, 60 ],
[ -88, -45, -28, 46, -26,-144 ],
[ -12,-107, -34, 150, 249, 66 ],
[ 11, -15, -34, 27, -78, -50 ],
],
[
[ 56, 67, 108, 4, 2, -48 ],
[ 58, 67, 89, 32, 32, -8 ],
[ -42, -31,-103, -30, -23, -8 ],
[ 6, 4, -26, -10, 26, 12 ],
]
);
say "# {+@f.shape}D array:";
my @h = deconvolve-N( @g, @f );
say "h =";
pretty-print( @h );
my @h-shaped[2;3;4] = @(deconvolve-N( @g, @f ));
my @ff = deconvolve-N( @g, @h-shaped );
say "\nff =";
pretty-print( @ff );
Output:
# 3D array: h = [ [ [ -6, -8, -5, 9 ], [ -7, 9, -6, -8 ], [ 2, -7, 9, 8 ], ], [ [ 7, 4, 4, -6 ], [ 9, 9, 4, -4 ], [ -3, 7, -2, -3 ], ], ] ff = [ [ [ -9, 5, -8 ], [ 3, 5, 1 ], ], [ [ -1, -7, 2 ], [ -5, -6, 6 ], ], [ [ 8, 5, 8 ], [ -2, -6, -4 ], ], ]
Tcl
The trick to doing this (without using a library to do all the legwork for you) is to recast the higher-order solutions into solutions in the 1D case. This is done by regarding an n-dimensional address as a coding of a 1-D address.
package require Tcl 8.5
namespace path {::tcl::mathfunc ::tcl::mathop}
# Utility to extract the number of dimensions of a matrix
proc rank m {
for {set rank 0} {[llength $m] > 1} {incr rank} {
set m [lindex $m 0]
}
return $rank
}
# Utility to get the size of a matrix, as a list of lengths
proc size m {
set r [rank $m]
set index {}
set size {}
for {set i 0} {$i<$r} {incr i} {
lappend size [llength [lindex $m $index]]
lappend index 0
}
return $size
}
# Utility that iterates over the space of coordinates within a matrix.
#
# Arguments:
# var The name of the variable (in the caller's context) to set to each
# coordinate.
# size The size of matrix whose coordinates are to be iterated over.
# body The script to evaluate (in the caller's context) for each coordinate,
# with the variable named by 'var' set to the coordinate for the particular
# iteration.
proc loopcoords {var size body} {
upvar 1 $var v
set count [* {*}$size]
for {set i 0} {$i < $count} {incr i} {
set coords {}
set j $i
for {set s $size} {[llength $s]} {set s [lrange $s 0 end-1]} {
set dimension [lindex $s end]
lappend coords [expr {$j % $dimension}]
set j [expr {$j / $dimension}]
}
set v [lreverse $coords]
uplevel 1 $body
}
}
# Assembles a row, which is one of the simultaneous equations that needs
# to be solved by reducing the whole set to reduced row echelon form. Note
# that each row describes the equation for a single cell of the 'g' function.
#
# Arguments:
# g The "result" matrix of the convolution being undone.
# h The known "input" matrix of the convolution being undone.
# gs The size descriptor of 'g', passed as argument for efficiency.
# gc The coordinate in 'g' that we are generating the equation for.
# fs The size descriptor of 'f', passed as argument for efficiency.
# hs The size descriptor of 'h' (the unknown "input" matrix), passed
# as argument for efficiency.
proc row {g f gs gc fs hs} {
loopcoords hc $hs {
set fc {}
set ok 1
foreach a $gc b $fs c $hc {
set d [expr {$a - $c}]
if {$d < 0 || $d >= $b} {
set ok 0
break
}
lappend fc $d
}
if {$ok} {
lappend row [lindex $f $fc]
} else {
lappend row 0
}
}
return [lappend row [lindex $g $gc]]
}
# Utility for converting a matrix to Reduced Row Echelon Form
# From http://rosettacode.org/wiki/Reduced_row_echelon_form#Tcl
proc toRREF {m} {
set lead 0
set rows [llength $m]
set cols [llength [lindex $m 0]]
for {set r 0} {$r < $rows} {incr r} {
if {$cols <= $lead} {
break
}
set i $r
while {[lindex $m $i $lead] == 0} {
incr i
if {$rows == $i} {
set i $r
incr lead
if {$cols == $lead} {
# Tcl can't break out of nested loops
return $m
}
}
}
# swap rows i and r
foreach j [list $i $r] row [list [lindex $m $r] [lindex $m $i]] {
lset m $j $row
}
# divide row r by m(r,lead)
set val [lindex $m $r $lead]
for {set j 0} {$j < $cols} {incr j} {
lset m $r $j [/ [double [lindex $m $r $j]] $val]
}
for {set i 0} {$i < $rows} {incr i} {
if {$i != $r} {
# subtract m(i,lead) multiplied by row r from row i
set val [lindex $m $i $lead]
for {set j 0} {$j < $cols} {incr j} {
lset m $i $j \
[- [lindex $m $i $j] [* $val [lindex $m $r $j]]]
}
}
}
incr lead
}
return $m
}
# Deconvolve a pair of matrixes. Solves for 'h' such that 'g = f convolve h'.
#
# Arguments:
# g The matrix of data to be deconvolved.
# f The matrix describing the convolution to be removed.
# type Optional description of the type of data expected. Defaults to 32-bit
# integer data; use 'double' for floating-point data.
proc deconvolve {g f {type int}} {
# Compute the sizes of the various matrixes involved.
set gsize [size $g]
set fsize [size $f]
foreach gs $gsize fs $fsize {
lappend hsize [expr {$gs - $fs + 1}]
}
# Prepare the set of simultaneous equations to solve
set toSolve {}
loopcoords coords $gsize {
lappend toSolve [row $g $f $gsize $coords $fsize $hsize]
}
# Solve the equations
set solved [toRREF $toSolve]
# Make a dummy result matrix of the right size
set h 0
foreach hs [lreverse $hsize] {set h [lrepeat $hs $h]}
# Fill the results from the equations into the result matrix
set idx 0
loopcoords coords $hsize {
lset h $coords [$type [lindex $solved $idx end]]
incr idx
}
return $h
}
Demonstrating how to use for the 3-D case:
# A pretty-printer
proc pretty matrix {
set size [rank $matrix]
if {$size == 1} {
return \[[join $matrix ", "]\]
} elseif {$size == 2} {
set out ""
foreach row $matrix {
append out " " [pretty $row] ",\n"
}
return \[[string trimleft [string trimright $out ,\n]]\]
}
set rowout {}
foreach row $matrix {append rowout [pretty $row] ,\n}
set rowout2 {}
foreach row [split [string trimright $rowout ,\n] \n] {
append rowout2 " " $row \n
}
return \[\n[string trimright $rowout2 \n]\n\]
}
# The 3D test data
set f {
{{-9 5 -8} {3 5 1}}
{{-1 -7 2} {-5 -6 6}}
{{8 5 8} {-2 -6 -4}}
}
set g {
{
{54 42 53 -42 85 -72}
{45 -170 94 -36 48 73}
{-39 65 -112 -16 -78 -72}
{6 -11 -6 62 49 8}}
{
{-57 49 -23 52 -135 66}
{-23 127 -58 -5 -118 64}
{87 -16 121 23 -41 -12}
{-19 29 35 -148 -11 45}}
{
{-55 -147 -146 -31 55 60}
{-88 -45 -28 46 -26 -144}
{-12 -107 -34 150 249 66}
{11 -15 -34 27 -78 -50}}
{
{56 67 108 4 2 -48}
{58 67 89 32 32 -8}
{-42 -31 -103 -30 -23 -8}
{6 4 -26 -10 26 12}}
}
# Now do the deconvolution and print it out
puts h:\ [pretty [deconvolve $g $f]]
Output:
h: [ [[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]], [[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]
Ursala
This is done mostly with list operations that are either primitive or standard library functions in the language (e.g., zipp
, zipt
, and pad
). The equations are solved by
the dgelsd
function from the Lapack library.
The break
function breaks a long list into a sequence of sublists according to a given template, and the band
function is taken from the Deconvolution/1D solution.
#import std
#import nat
break = ~&r**+ zipt*+ ~&lh*~+ ~&lzyCPrX|\+ -*^|\~&tK33 :^/~& 0!*t
band = pad0+ ~&rSS+ zipt^*D(~&r,^lrrSPT/~<K33tx zipt^/~&r ~&lSNyCK33+ zipp0)^/~&rx ~&B->NlNSPC ~&bt
deconv = # takes a natural number n to the n-dimensional deconvolution function
~&?\math..div! iota; ~&!*; @h|\; (~&al^?\~&ar break@alh2faltPrXPRX)^^(
~&B->NlC~&bt*++ gang@t+ ~~*,
lapack..dgelsd^^(
(~&||0.!**+ ~&B^?a\~&Y@a ^lriFhNSS2iDrlYSK7LS2SL2rQ/~&alt band@alh2faltPrDPMX)^|\~&+ gang,
@t =>~&l ~&L+@r))
The equations tend to become increasingly sparse in higher dimensions, so the following alternative implementation uses the sparse matrix solver from the UMFPACK library instead of Lapack, which is also callable in Ursala, adjusted as shown for the different calling convention.
deconv = # takes a number n to the n-dimensional deconvolution function
~&?\math..div! iota; ~&!*; @h|\; -+
//+ ~&al^?\~&ar @alh2faltPrXPRX @liX ~&arr2arl2arrh3falrbt2XPRXlrhPCrtPCPNfallrrPXXPRCQNNCq,
^^/-+~&B->NlC~&bt*+,gang@t,~~*+- (umf..di_a_trp^/~&DSLlrnPXrmPXS+num@lmS ^niK10mS/num@r ~&lnS)^^(
gang; ^|\~&; //+ -+
^niK10/~& @NnmlSPASX ~&r->lL @lrmK2K8SmtPK20PPPX ^/~&rrnS2lC ~&rnPrmPljASmF@rrmhPSPlD,
num+ ~&B^?a\~&Y@a -+
~&l?\~&r *=r ~&K7LS+ * (*D ^\~&rr sum@lrlPX)^*D\~&r product^|/~& successor@zhl,
^/~&alt @alh2faltPrDPMX -+
~&rFS+ num*rSS+ zipt^*D/~&r ^lrrSPT/~<K33tx zipt^/~&r ~&lSNyCK33+ zipp0,
^/~&rx ~&B->NlNSPC ~&bt+-+-+-,
@t =>~&l ~&L+@r)+-
UMFPACK doesn't solve systems with more equations than unknowns, so the system is pruned to a square matrix by first selecting an equation containing only a single variable, then selecting one from those remaining that contains only a single variable not already selected, and so on until all variables are covered, with any remaining unselected equations discarded. A random selection is made whenever there is a choice. This method will cope with larger data sets than feasible using dense and overdetermined matrices, but is less robust in the presence of noise. However, some improvement may be possible by averaging the results over several runs. Here is a test program.
h = <<<-6.,-8.,-5.,9.>,<-7.,9.,-6.,-8.>,<2.,-7.,9.,8.>>,<<7.,4.,4.,-6.>,<9.,9.,4.,-4.>,<-3.,7.,-2.,-3.>>>
f = <<<-9.,5.,-8.>,<3.,5.,1.>>,<<-1.,-7.,2.>,<-5.,-6.,6.>>,<<8.,5.,8.>,<-2.,-6.,-4.>>>
g =
<
<
<54.,42.,53.,-42.,85.,-72.>,
<45.,-170.,94.,-36.,48.,73.>,
<-39.,65.,-112.,-16.,-78.,-72.>,
<6.,-11.,-6.,62.,49.,8.>>,
<
<-57.,49.,-23.,52.,-135.,66.>,
<-23.,127.,-58.,-5.,-118.,64.>,
<87.,-16.,121.,23.,-41.,-12.>,
<-19.,29.,35.,-148.,-11.,45.>>,
<
<-55.,-147.,-146.,-31.,55.,60.>,
<-88.,-45.,-28.,46.,-26.,-144.>,
<-12.,-107.,-34.,150.,249.,66.>,
<11.,-15.,-34.,27.,-78.,-50.>>,
<
<56.,67.,108.,4.,2.,-48.>,
<58.,67.,89.,32.,32.,-8.>,
<-42.,-31.,-103.,-30.,-23.,-8.>,
<6.,4.,-26.,-10.,26.,12.>>>
#cast %eLLLm
test =
<
'h': deconv3(g,f),
'f': deconv3(g,h)>
output:
< 'h': < < < -6.000000e+00, -8.000000e+00, -5.000000e+00, 9.000000e+00>, < -7.000000e+00, 9.000000e+00, -6.000000e+00, -8.000000e+00>, < 2.000000e+00, -7.000000e+00, 9.000000e+00, 8.000000e+00>>, < < 7.000000e+00, 4.000000e+00, 4.000000e+00, -6.000000e+00>, < 9.000000e+00, 9.000000e+00, 4.000000e+00, -4.000000e+00>, < -3.000000e+00, 7.000000e+00, -2.000000e+00, -3.000000e+00>>>, 'f': < < <-9.000000e+00,5.000000e+00,-8.000000e+00>, <3.000000e+00,5.000000e+00,1.000000e+00>>, < <-1.000000e+00,-7.000000e+00,2.000000e+00>, <-5.000000e+00,-6.000000e+00,6.000000e+00>>, < <8.000000e+00,5.000000e+00,8.000000e+00>, <-2.000000e+00,-6.000000e+00,-4.000000e+00>>>>
Wren
import "./complex" for Complex
import "./fmt" for Fmt
var fft2 // recursive
fft2 = Fn.new { |buf, out, n, step, start|
if (step < n) {
fft2.call(out, buf, n, step*2, start)
fft2.call(out, buf, n, step*2, start + step)
var j = 0
while (j < n) {
var t = (Complex.imagMinusOne * Num.pi * j / n).exp * out[j+step+start]
buf[(j/2).floor + start] = out[j+start] + t
buf[((j+n)/2).floor + start] = out[j+start] - t
j = j + 2 * step
}
}
}
var fft = Fn.new { |buf, n|
var out = List.filled(n, null)
for (i in 0...n) out[i] = buf[i]
fft2.call(buf, out, n, 1, 0)
}
/* pad list length to power of two */
var padTwo = Fn.new { |g, le, nsl|
var n = 1
var ns = nsl[0]
if (ns != 0) {
n = ns
} else {
while (n < le) n = n * 2
}
var buf = List.filled(n, Complex.zero)
for (i in 0...le) buf[i] = Complex.new(g[i], 0)
nsl[0] = n
return buf
}
var deconv = Fn.new { |g, lg, f, lf, out, rowLe|
var ns = 0
var nsl = [ns]
var g2 = padTwo.call(g, lg, nsl)
var f2 = padTwo.call(f, lf, nsl)
ns = nsl[0]
fft.call(g2, ns)
fft.call(f2, ns)
var h = List.filled(ns, null)
for (i in 0...ns) h[i] = g2[i] / f2[i]
fft.call(h, ns)
for (i in 0...ns) {
if (h[i].real.abs < 1e-10) h[i] = Complex.zero
}
var i = 0
while (i > lf-lg-rowLe) {
out[-i] = (h[(i+ns)%ns]/32).real
i = i - 1
}
}
var unpack2 = Fn.new { |m, rows, le, toLe|
var buf = List.filled(rows*toLe, 0)
for (i in 0...rows) {
for (j in 0...le) buf[i*toLe+j] = m[i][j]
}
return buf
}
var pack2 = Fn.new { |buf, rows, fromLe, toLe, out|
for (i in 0...rows) {
for (j in 0...toLe) out[i][j] = buf[i*fromLe+j] / 4
}
}
var deconv2 = Fn.new { |g, rowG, colG, f, rowF, colF, out|
var g2 = unpack2.call(g, rowG, colG, colG)
var f2 = unpack2.call(f, rowF, colF, colG)
var ff = List.filled((rowG-rowF+1)*colG, 0)
deconv.call(g2, rowG*colG, f2, rowF*colG, ff, colG)
pack2.call(ff, rowG-rowF+1, colG, colG-colF+1, out)
}
var unpack3 = Fn.new { |m, x, y, z, toY, toZ|
var buf = List.filled(x*toY*toZ, 0)
for (i in 0...x) {
for (j in 0...y) {
for (k in 0...z) {
buf[(i*toY+j)*toZ+k] = m[i][j][k]
}
}
}
return buf
}
var pack3 = Fn.new { |buf, x, y, z, toY, toZ, out|
for (i in 0...x) {
for (j in 0...toY) {
for (k in 0...toZ) {
out[i][j][k] = buf[(i*y+j)*z+k] / 4
}
}
}
}
var deconv3 = Fn.new { |g, gx, gy, gz, f, fx, fy, fz, out|
var g2 = unpack3.call(g, gx, gy, gz, gy, gz)
var f2 = unpack3.call(f, fx, fy, fz, gy, gz)
var ff = List.filled((gx-fx+1)*gy*gz, 0)
deconv.call(g2, gx*gy*gz, f2, fx*gy*gz, ff, gy*gz)
pack3.call(ff, gx-fx+1, gy, gz, gy-fy+1, gz-fz+1, out)
}
var f = [
[[-9, 5, -8], [ 3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[ 8, 5, 8], [-2, -6, -4]]
]
var fx = f.count
var fy = f[0].count
var fz = f[0][0].count
var g = [
[[ 54, 42, 53, -42, 85, -72], [45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72], [6, -11, -6, 62, 49, 8]],
[[-57, 49, -23, 52, -135, 66], [-23, 127, -58, -5, -118, 64],
[ 87, -16, 121, 23, -41, -12], [-19, 29, 35, -148, -11, 45]],
[[-55, -147, -146, -31, 55, 60], [-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66], [11, -15, -34, 27, -78, -50]],
[[ 56, 67, 108, 4, 2, -48], [58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8], [6, 4, -26, -10, 26, 12]]
]
var gx = g.count
var gy = g[0].count
var gz = g[0][0].count
var h = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [ 2, -7, 9, 8]],
[[ 7, 4, 4, -6], [ 9, 9, 4, -4], [-3, 7, -2, -3]]
]
var hx = gx - fx + 1
var hy = gy - fy + 1
var hz = gz - fz + 1
var h2 = List.filled(hx, null)
for (i in 0...hx) {
h2[i] = List.filled(hy, 0)
for (j in 0...hy) h2[i][j] = List.filled(hz, 0)
}
deconv3.call(g, gx, gy, gz, f, fx, fy, fz, h2)
System.print("deconv3(g, f):\n")
for (i in 0...hx) {
for (j in 0...hy) {
for (k in 0...hz) Fmt.write("$9.6h ", h2[i][j][k])
System.print()
}
if (i < hx-1) System.print()
}
var kx = gx - hx + 1
var ky = gy - hy + 1
var kz = gz - hz + 1
var f2 = List.filled(kx, null)
for (i in 0...kx) {
f2[i] = List.filled(ky, 0)
for (j in 0...ky) f2[i][j] = List.filled(kz, 0)
}
deconv3.call(g, gx, gy, gz, h, hx, hy, hz, f2)
System.print("\ndeconv3(g, h):\n")
for (i in 0...kx) {
for (j in 0...ky) {
for (k in 0...kz) Fmt.write("$9.6h ", f2[i][j][k])
System.print()
}
if (i < kx-1) System.print()
}
- Output:
deconv3(g, f): -6 -8 -5 9 -7 9 -6 -8 2 -7 9 8 7 4 4 -6 9 9 4 -4 -3 7 -2 -3 deconv3(g, h): -9 5 -8 3 5 1 -1 -7 2 -5 -6 6 8 5 8 -2 -6 -4