Jump to content

Safe primes and unsafe primes

From Rosetta Code
Revision as of 08:39, 12 September 2019 by rosettacode>Horst.h (recover Pascal Version)
Task
Safe primes and unsafe primes
You are encouraged to solve this task according to the task description, using any language you may know.
Definitions
  •   A   safe prime   is a prime   p   and where   (p-1)/2   is also prime.
  •   The corresponding prime  (p-1)/2   is known as a   Sophie Germain   prime.
  •   An   unsafe prime   is a prime   p   and where   (p-1)/2   isn't   a prime.
  •   An   unsafe prime   is a prime that   isn't   a   safe   prime.


Task
  •   Find and display (on one line) the first   35   safe primes.
  •   Find and display the   count   of the safe primes below   1,000,000.
  •   Find and display the   count   of the safe primes below 10,000,000.
  •   Find and display (on one line) the first   40   unsafe primes.
  •   Find and display the   count   of the unsafe primes below   1,000,000.
  •   Find and display the   count   of the unsafe primes below 10,000,000.
  •   (Optional)   display the   counts   and   "below numbers"   with commas.

Show all output here.


Related Task


Also see



C#

Works with: C sharp version 7

<lang csharp>using static System.Console; using System; using System.Collections; using System.Collections.Generic; using System.Linq;

public static class SafePrimes {

   public static void Main() {
       HashSet<int> primes = Primes(10_000_000).ToHashSet();
       WriteLine("First 35 safe primes:");
       WriteLine(string.Join(" ", primes.Where(IsSafe).Take(35)));
       WriteLine($"There are {primes.TakeWhile(p => p < 1_000_000).Count(IsSafe):n0} safe primes below {1_000_000:n0}");
       WriteLine($"There are {primes.TakeWhile(p => p < 10_000_000).Count(IsSafe):n0} safe primes below {10_000_000:n0}");
       WriteLine("First 40 unsafe primes:");
       WriteLine(string.Join(" ", primes.Where(IsUnsafe).Take(40)));
       WriteLine($"There are {primes.TakeWhile(p => p < 1_000_000).Count(IsUnsafe):n0} unsafe primes below {1_000_000:n0}");
       WriteLine($"There are {primes.TakeWhile(p => p < 10_000_000).Count(IsUnsafe):n0} unsafe primes below {10_000_000:n0}");
       bool IsSafe(int prime) => primes.Contains(prime / 2);
       bool IsUnsafe(int prime) => !primes.Contains(prime / 2);
   }
   //Method from maths library
   static IEnumerable<int> Primes(int bound) {
       if (bound < 2) yield break;
       yield return 2;
       BitArray composite = new BitArray((bound - 1) / 2);
       int limit = ((int)(Math.Sqrt(bound)) - 1) / 2;
       for (int i = 0; i < limit; i++) {
           if (composite[i]) continue;
           int prime = 2 * i + 3;
           yield return prime;
           for (int j = (prime * prime - 2) / 2; j < composite.Count; j += prime) composite[j] = true;
       }
       for (int i = limit; i < composite.Count; i++) {
           if (!composite[i]) yield return 2 * i + 3;
       }
   }

}</lang>

Output:
First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
There are 4,324 safe primes below 1,000,000
There are 30,657 safe primes below 10,000,000
First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
There are 74,174 unsafe primes below 1,000,000
There are 633,922 unsafe primes below 10,000,000

F#

This task uses Extensible Prime Generator (F#)<lang fsharp> pCache |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.take 35 |> Seq.iter (printf "%d ") </lang>

Output:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

<lang fsharp> printfn "There are %d safe primes less than 1000000" (pCache |> Seq.takeWhile(fun n->n<1000000) |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.length) </lang>

Output:
There are 4324 safe primes less than 10000000

<lang fsharp> printfn "There are %d safe primes less than 10000000" (pCache |> Seq.takeWhile(fun n->n<10000000) |> Seq.filter(fun n->isPrime((n-1)/2)) |> Seq.length) </lang>

Output:
There are 30657 safe primes less than 10000000

<lang fsharp> pCache |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.take 40 |> Seq.iter (printf "%d ") </lang>

Output:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

<lang fsharp> printfn "There are %d unsafe primes less than 1000000" (pCache |> Seq.takeWhile(fun n->n<1000000) |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.length);; </lang>

Output:
There are 74174 unsafe primes less than 1000000

<lang fsharp> printfn "There are %d unsafe primes less than 10000000" (pCache |> Seq.takeWhile(fun n->n<10000000) |> Seq.filter(fun n->not (isPrime((n-1)/2))) |> Seq.length);; </lang>

Output:
There are 633922 unsafe primes less than 10000000

Factor

Much like the Perl 6 example, this program uses an in-built primes generator to efficiently obtain the first ten million primes. If memory is a concern, it wouldn't be unreasonable to perform primality tests on the (odd) numbers below ten million, however. <lang factor>USING: fry interpolate kernel literals math math.primes sequences tools.memory.private ; IN: rosetta-code.safe-primes

CONSTANT: primes $[ 10,000,000 primes-upto ]

safe/unsafe ( -- safe unsafe )
   primes [ 1 - 2/ prime? ] partition ;
count< ( seq n -- str ) '[ _ < ] count commas ;
seq>commas ( seq -- str ) [ commas ] map " " join ;
stats ( seq n -- head count1 count2 )
   '[ _ head seq>commas ] [ 1e6 count< ] [ 1e7 count< ] tri ;

safe/unsafe [ 35 ] [ 40 ] bi* [ stats ] 2bi@

[I First 35 safe primes: ${5} Safe prime count below 1,000,000: ${4} Safe prime count below 10,000,000: ${3}

First 40 unsafe primes: ${2} Unsafe prime count below 1,000,000: ${1} Unsafe prime count below 10,000,000: ${} I]</lang>

Output:
First 35 safe primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
Safe prime count below  1,000,000: 4,324
Safe prime count below 10,000,000: 30,657

First 40 unsafe primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Unsafe prime count below  1,000,000: 74,174
Unsafe prime count below 10,000,000: 633,922

FreeBASIC

<lang freebasic>' version 19-01-2019 ' compile with: fbc -s console

Const As UInteger max = 10000000 Dim As UInteger i, j, sc1, usc1, sc2, usc2 Dim As String safeprimes, unsafeprimes Dim As UByte sieve()

ReDim sieve(max) ' 0 = prime, 1 = no prime sieve(0) = 1 : sieve(1) = 1

For i = 4 To max Step 2

   sieve(i) = 1

Next For i = 3 To Sqr(max) +1 Step 2

   If sieve(i) = 0 Then
       For j = i * i To max Step i * 2
           sieve(j) = 1
       Next
   End If

Next

usc1 = 1 : unsafeprimes = "2" For i = 3 To 3001 Step 2

   If sieve(i) = 0 Then
       If sieve(i \ 2) = 0 Then
           sc1 += 1
           If sc1 <= 35 Then
               safeprimes += " " + Str(i)
           End If
       Else
           usc1 += 1
           If usc1 <= 40 Then
               unsafeprimes +=  " " + Str(i)
           End If
       End If
   End If

Next

For i = 3003 To max \ 10 Step 2

   If sieve(i) = 0 Then
       If sieve(i \ 2) = 0 Then
           sc1 += 1
       Else
           usc1 += 1
       End If
   End If

Next

sc2 = sc1 : usc2 = usc1 For i = max \ 10 +1 To max Step 2

   If sieve(i) = 0 Then
       If sieve(i \ 2) = 0  Then
           sc2 += 1
       Else
           usc2 += 1
       End If
   End If

Next

Print "the first 35 Safeprimes are: "; safeprimes Print Print "the first 40 Unsafeprimes are: "; unsafeprimes Print Print " Safeprimes Unsafeprimes" Print " Below ---------------------------" Print Using "##########, "; max \ 10; sc1; usc1 Print Using "##########, "; max  ; sc2; usc2

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
the first 35 Safeprimes are:  5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

the first 40 Unsafeprimes are:  2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

                  Safeprimes     Unsafeprimes
    Below         ---------------------------
  1,000,000            4,324           74,174
 10,000,000           30,657          633,922

Go

<lang go>package main

import "fmt"

func sieve(limit uint64) []bool {

   limit++
   // True denotes composite, false denotes prime.
   c := make([]bool, limit) // all false by default
   c[0] = true
   c[1] = true
   // apart from 2 all even numbers are of course composite
   for i := uint64(4); i < limit; i += 2 {
       c[i] = true
   }
   p := uint64(3) // Start from 3.
   for {
       p2 := p * p
       if p2 >= limit {
           break
       }
       for i := p2; i < limit; i += 2 * p {
           c[i] = true
       }
       for {
           p += 2
           if !c[p] {
               break
           }
       }
   }
   return c

}

func commatize(n int) string {

   s := fmt.Sprintf("%d", n)
   if n < 0 {
       s = s[1:]
   }
   le := len(s)
   for i := le - 3; i >= 1; i -= 3 {
       s = s[0:i] + "," + s[i:]
   }
   if n >= 0 {
       return s
   }
   return "-" + s

}

func main() {

   // sieve up to 10 million
   sieved := sieve(1e7)
   var safe = make([]int, 35)
   count := 0
   for i := 3; count < 35; i += 2 {
       if !sieved[i] && !sieved[(i-1)/2] {
           safe[count] = i
           count++
       }
   }
   fmt.Println("The first 35 safe primes are:\n", safe, "\n")
   count = 0
   for i := 3; i < 1e6; i += 2 {
       if !sieved[i] && !sieved[(i-1)/2] {
           count++
       }
   }
   fmt.Println("The number of safe primes below 1,000,000 is", commatize(count), "\n")
   for i := 1000001; i < 1e7; i += 2 {
       if !sieved[i] && !sieved[(i-1)/2] {
           count++
       }
   }
   fmt.Println("The number of safe primes below 10,000,000 is", commatize(count), "\n")
   unsafe := make([]int, 40)
   unsafe[0] = 2 // since (2 - 1)/2 is not prime
   count = 1
   for i := 3; count < 40; i += 2 {
       if !sieved[i] && sieved[(i-1)/2] {
           unsafe[count] = i
           count++
       }
   }
   fmt.Println("The first 40 unsafe primes are:\n", unsafe, "\n")
   count = 1
   for i := 3; i < 1e6; i += 2 {
       if !sieved[i] && sieved[(i-1)/2] {
           count++
       }
   }
   fmt.Println("The number of unsafe primes below 1,000,000 is", commatize(count), "\n")
   for i := 1000001; i < 1e7; i += 2 {
       if !sieved[i] && sieved[(i-1)/2] {
           count++
       }
   }
   fmt.Println("The number of unsafe primes below 10,000,000 is", commatize(count), "\n")

}</lang>

Output:
The first 35 safe primes are:
 [5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619] 

The number of safe primes below 1,000,000 is 4,324 

The number of safe primes below 10,000,000 is 30,657 

The first 40 unsafe primes are:
 [2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233] 

The number of unsafe primes below 1,000,000 is 74,174 

The number of unsafe primes below 10,000,000 is 633,922 

J

   NB. play around a bit to get primes less than ten million
   p:inv 10000000
664579

   p:664579
10000019

   PRIMES =: p:i.664579
   10 {. PRIMES
2 3 5 7 11 13 17 19 23 29

   {: PRIMES
9999991


   primeQ =: 1&p:
   safeQ =: primeQ@:-:@:<:
   Filter =: (#~`)(`:6)

   SAFE =: safeQ Filter PRIMES

   NB. first thirty-five safe primes
   (32+3) {. SAFE
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
   

   NB. first forty unsafe primes
   (33+7) {. PRIMES -. SAFE
   2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
   

   NB. tally of safe primes less than ten million
   # SAFE
30657
   

   NB. tally of safe primes below a million
   # 1000000&>Filter SAFE
4324
   

   NB. tally of perilous primes below ten million
   UNSAFE =: PRIMES -. SAFE

   # UNSAFE
633922
   

   NB. tally of these below one million
   K =: 1 : 'm * 1000'
   +/ UNSAFE < 1 K K
74174
   

Essentially we have <lang J> primeQ =: 1&p: safeQ =: primeQ@:-:@:<: Filter =: (#~`)(`:6) K =: adverb def 'm * 1000' PRIMES =: i.&.:(p:inv) 10 K K SAFE =: safeQ Filter PRIMES UNSAFE =: PRIMES -. SAFE </lang> The rest of the display is mere window dressing.

Java

<lang java>public class SafePrimes {

   public static void main(String... args) {
       // Use Sieve of Eratosthenes to find primes
       int SIEVE_SIZE = 10_000_000;
       boolean[] isComposite = new boolean[SIEVE_SIZE];
       // It's really a flag indicating non-prime, but composite usually applies
       isComposite[0] = true;
       isComposite[1] = true;
       for (int n = 2; n < SIEVE_SIZE; n++) {
           if (isComposite[n]) {
               continue;
           }
           for (int i = n * 2; i < SIEVE_SIZE; i += n) {
               isComposite[i] = true;
           }
       }
       
       int oldSafePrimeCount = 0;
       int oldUnsafePrimeCount = 0;
       int safePrimeCount = 0;
       int unsafePrimeCount = 0;
       StringBuilder safePrimes = new StringBuilder();
       StringBuilder unsafePrimes = new StringBuilder();
       int safePrimesStrCount = 0;
       int unsafePrimesStrCount = 0;
       for (int n = 2; n < SIEVE_SIZE; n++) {
           if (n == 1_000_000) {
               oldSafePrimeCount = safePrimeCount;
               oldUnsafePrimeCount = unsafePrimeCount;
           }
           if (isComposite[n]) {
               continue;
           }
           boolean isUnsafe = isComposite[(n - 1) >>> 1];
           if (isUnsafe) {
               if (unsafePrimeCount < 40) {
                   if (unsafePrimeCount > 0) {
                       unsafePrimes.append(", ");
                   }
                   unsafePrimes.append(n);
                   unsafePrimesStrCount++;
               }
               unsafePrimeCount++;
           }
           else {
               if (safePrimeCount < 35) {
                   if (safePrimeCount > 0) {
                       safePrimes.append(", ");
                   }
                   safePrimes.append(n);
                   safePrimesStrCount++;
               }
               safePrimeCount++;
           }
       }
       
       System.out.println("First " + safePrimesStrCount + " safe primes: " + safePrimes.toString());
       System.out.println("Number of safe primes below 1,000,000: " + oldSafePrimeCount);
       System.out.println("Number of safe primes below 10,000,000: " + safePrimeCount);
       System.out.println("First " + unsafePrimesStrCount + " unsafe primes: " + unsafePrimes.toString());
       System.out.println("Number of unsafe primes below 1,000,000: " + oldUnsafePrimeCount);
       System.out.println("Number of unsafe primes below 10,000,000: " + unsafePrimeCount);
       
       return;
   }

}</lang>

Output:
First 35 safe primes: 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619
Number of safe primes below 1,000,000: 4324
Number of safe primes below 10,000,000: 30657
First 40 unsafe primes: 2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233
Number of unsafe primes below 1,000,000: 74174
Number of unsafe primes below 10,000,000: 633922

Julia

<lang julia>using Primes, Formatting

function parseprimelist()

   primelist = primes(2, 10000000)
   safeprimes = Vector{Int64}()
   unsafeprimes = Vector{Int64}()
   for p in primelist
       if isprime(div(p - 1, 2))
           push!(safeprimes, p)
       else
           push!(unsafeprimes, p)
       end
   end
   println("The first 35 unsafe primes are: ", safeprimes[1:35])
   println("There are ", format(sum(map(x -> x < 1000000, safeprimes)), commas=true), " safe primes less than 1 million.")
   println("There are ", format(length(safeprimes), commas=true), " safe primes less than 10 million.")    
   println("The first 40 unsafe primes are: ", unsafeprimes[1:40])
   println("There are ", format(sum(map(x -> x < 1000000, unsafeprimes)), commas=true), " unsafe primes less than 1 million.")
   println("There are ", format(length(unsafeprimes), commas=true), " unsafe primes less than 10 million.")

end

parseprimelist()

</lang>

Output:

The first 35 unsafe primes are: [5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619] There are 4,324 safe primes less than 1 million. There are 30,657 safe primes less than 10 million. The first 40 unsafe primes are: [2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233] There are 74,174 unsafe primes less than 1 million. There are 633,922 unsafe primes less than 10 million.


Kotlin

Translation of: Go

<lang scala>// Version 1.2.70

fun sieve(limit: Int): BooleanArray {

   // True denotes composite, false denotes prime.
   val c = BooleanArray(limit + 1) // all false by default
   c[0] = true
   c[1] = true
   // apart from 2 all even numbers are of course composite
   for (i in 4..limit step 2) c[i] = true
   var p = 3 // start from 3
   while (true) {
       val p2 = p * p
       if (p2 > limit) break
       for (i in p2..limit step 2 * p) c[i] = true
       while (true) {
           p += 2
           if (!c[p]) break
       }
   }
   return c

}

fun main(args: Array<String>) {

   // sieve up to 10 million
   val sieved = sieve(10_000_000)
   val safe = IntArray(35)
   var count = 0
   var i = 3
   while (count < 35) {
       if (!sieved[i] && !sieved[(i - 1) / 2]) safe[count++] = i
       i += 2
   }
   println("The first 35 safe primes are:")
   println(safe.joinToString(" ","[", "]\n"))
   count = 0
   for (j in 3 until 1_000_000 step 2) {
       if (!sieved[j] && !sieved[(j - 1) / 2]) count++
   }
   System.out.printf("The number of safe primes below 1,000,000 is %,d\n\n", count)
   for (j in 1_000_001 until 10_000_000 step 2) {
       if (!sieved[j] && !sieved[(j - 1) / 2]) count++
   }
   System.out.printf("The number of safe primes below 10,000,000 is %,d\n\n", count)
   val unsafe = IntArray(40)
   unsafe[0] = 2  // since (2 - 1)/2 is not prime
   count = 1
   i = 3
   while (count < 40) {
       if (!sieved[i] && sieved[(i - 1) / 2]) unsafe[count++] = i
       i += 2
   }
   println("The first 40 unsafe primes are:")
   println(unsafe.joinToString(" ","[", "]\n"))
   count = 1
   for (j in 3 until 1_000_000 step 2) {
       if (!sieved[j] && sieved[(j - 1) / 2]) count++
   }
   System.out.printf("The number of unsafe primes below 1,000,000 is %,d\n\n", count)
   for (j in 1_000_001 until 10_000_000 step 2) {
       if (!sieved[j] && sieved[(j - 1) / 2]) count++
   }
   System.out.printf("The number of unsafe primes below 10,000,000 is %,d\n\n", count)

}</lang>

Output:
The first 35 safe primes are:
[5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619]

The number of safe primes below 1,000,000 is 4,324

The number of safe primes below 10,000,000 is 30,657

The first 40 unsafe primes are:
[2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233]

The number of unsafe primes below 1,000,000 is 74,174

The number of unsafe primes below 10,000,000 is 633,922

Maple

<lang Maple>showSafePrimes := proc(n::posint) local prime_list, k; prime_list := [5]; for k to n - 1 do

 prime_list := [op(prime_list), NumberTheory:-NextSafePrime(prime_list[-1])]; 

end do; return prime_list; end proc;

countSafePrimes := proc(n::posint) local counts, prime; counts := 0; prime := 5; while prime < n do prime := NumberTheory:-NextSafePrime(prime);

 counts := counts + 1; 

end do; return counts; end proc;

countUnsafePrimes := proc(n::posint) local safe_counts, total; safe_counts := countSafePrimes(n); total := NumberTheory:-PrimeCounting(n); return total - safe_counts; end proc;

showSafePrimes(35); showSafePrimes(40); countSafePrimes(1000000); countSafePrimes(10000000); countUnsafePrimes(1000000); countUnsafePrimes(10000000);</lang>

Output:
[5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
[5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063]
4324
30657
74174
633922

Pascal

Works with: Free Pascal

Using unit mp_prime of Wolfgang Erhardt ( RIP ) , of which I use two sieve, to simplify things. Generating small primes and checked by the second, which starts to run 2x ahead.Sieving of consecutive prime number is much faster than primality check. <lang pascal>program Sophie; { Find and count Sophie Germain primes } { uses unit mp_prime out of mparith of Wolfgang Ehrhardt

 http://wolfgang-ehrhardt.de/mp_intro.html }

{$APPTYPE CONSOLE} uses

mp_prime,sysutils; 

var

 pS0,pS1:TSieve;  

procedure SafeOrNoSavePrimeOut(totCnt:NativeInt;CntSafe:boolean); var

 cnt,pr,pSG,testPr : NativeUint;

begin

 prime_sieve_reset(pS0,1);
 prime_sieve_reset(pS1,1);
 cnt := 0;

// memorize prime of the sieve, because sometimes prime_sieve_next(pS1) is to far ahead.

 testPr := prime_sieve_next(pS1);
 IF CntSafe then  
 Begin
   writeln('First ',totCnt,' safe primes');  
   repeat
     pr := prime_sieve_next(pS0);
     pSG := 2*pr+1;
     while testPr< pSG do
       testPr := prime_sieve_next(pS1);
     if pSG = testPr then
     begin
       write(pSG,',');
       inc(cnt);
     end; 
   until cnt >= totCnt
 end  
 else
 Begin
   writeln('First ',totCnt,' unsafe primes');  
   repeat
     pr := prime_sieve_next(pS0);
     pSG := (pr-1) DIV 2;
     while testPr< pSG do
       testPr := prime_sieve_next(pS1);
     if pSG <> testPr then
     begin
       write(pr,',');
       inc(cnt);
     end; 
   until cnt >= totCnt; 
 end;  
 writeln(#8,#32);  

end;

function CountSafePrimes(Limit:NativeInt):NativeUint; var

 cnt,pr,pSG,testPr : NativeUint;

begin

 prime_sieve_reset(pS0,1);
 prime_sieve_reset(pS1,1);
 cnt := 0;
 testPr := 0;
 repeat
   pr := prime_sieve_next(pS0);
   pSG := 2*pr+1;
   while testPr< pSG do
     testPr := prime_sieve_next(pS1);
   if pSG = testPr then
     inc(cnt);
 until pSG >= Limit; 
 CountSafePrimes := cnt;

end;

procedure CountSafePrimesOut(Limit:NativeUint); Begin

 writeln('there are ',CountSafePrimes(limit),' safe primes out of ',
         primepi32(limit),' primes up to ',Limit);

end;

procedure CountUnSafePrimesOut(Limit:NativeUint); var

 prCnt: NativeUint;

Begin

 prCnt := primepi32(limit);
 writeln('there are ',prCnt-CountSafePrimes(limit),' unsafe primes out of ',
         prCnt,' primes up to ',Limit);

end;

var

 T1,T0 : INt64;

begin

 T0 :=gettickcount64; 
 prime_sieve_init(pS0,1);
 prime_sieve_init(pS1,1);

//Find and display (on one line) the first 35 safe primes.

 SafeOrNoSavePrimeOut(35,true);

//Find and display the count of the safe primes below 1,000,000.

 CountSafePrimesOut(1000*1000);

//Find and display the count of the safe primes below 10,000,000.

 CountSafePrimesOut(10*1000*1000);  

//Find and display (on one line) the first 40 unsafe primes.

 SafeOrNoSavePrimeOut(40,false);

//Find and display the count of the unsafe primes below 1,000,000.

 CountUnSafePrimesOut(1000*1000);

//Find and display the count of the unsafe primes below 10,000,000.

 CountUnSafePrimesOut(10*1000*1000);
 writeln;
 CountSafePrimesOut(1000*1000*1000);        
 T1 :=gettickcount64; 
 writeln('runtime ',T1-T0,' ms');

end.</lang>

Output:
First 35 safe primes
5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619
there are 4324 safe primes out of 78498 primes up to 1000000
there are 30657 safe primes out of 664579 primes up to 10000000
First 40 unsafe primes
2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233
there are 74174 unsafe primes out of 78498 primes up to 1000000
there are 633922 unsafe primes out of 664579 primes up to 10000000
there are 1775676 safe primes out of 50847534 primes up to 1000000000
runtime 2797 ms

Perl

The module ntheory does fast prime generation and testing.

Library: ntheory

<lang perl>use ntheory qw(forprimes is_prime);

my $upto = 1e7; my %class = ( safe => [], unsafe => [2] );

forprimes {

   push @{$class{ is_prime(($_-1)>>1) ? 'safe' : 'unsafe' }}, $_;

} 3, $upto;

for (['safe', 35], ['unsafe', 40]) {

   my($type, $quantity) = @$_;
   print  "The first $quantity $type primes are:\n";
   print join(" ", map { comma($class{$type}->[$_-1]) } 1..$quantity), "\n";
   for my $q ($upto/10, $upto) {
       my $n = scalar(grep { $_ <= $q } @{$class{$type}});
       printf "The number of $type primes up to %s: %s\n", comma($q), comma($n);
   }

}

sub comma {

   (my $s = reverse shift) =~ s/(.{3})/$1,/g;
   $s =~ s/,(-?)$/$1/;
   $s = reverse $s;

}</lang>

Output:
The first 35 safe primes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619
The number of safe primes up to 1,000,000: 4,324
The number of safe primes up to 10,000,000: 30,657
The first 40 unsafe primes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
The number of unsafe primes up to 1,000,000: 74,174
The number of unsafe primes up to 10,000,000: 633,922

Perl 6

Works with: Rakudo version 2018.08

Perl 6 has a built-in method .is-prime to test for prime numbers. It's great for testing individual numbers or to find/filter a few thousand numbers, but when you are looking for millions, it becomes a drag. No fear, the Perl 6 ecosystem has a fast prime sieve module available which can produce 10 million primes in a few seconds. Once we have the primes, it is just a small matter of filtering and formatting them appropriately.

<lang perl6>sub comma { $^i.flip.comb(3).join(',').flip }

use Math::Primesieve;

my $sieve = Math::Primesieve.new;

my @primes = $sieve.primes(10_000_000);

my %filter = @primes.Set;

my $primes = @primes.classify: { %filter{($_ - 1)/2} ?? 'safe' !! 'unsafe' };

for 'safe', 35, 'unsafe', 40 -> $type, $quantity {

   say "The first $quantity $type primes are:";
   say $primes{$type}[^$quantity]».,
   say "The number of $type primes up to {comma $_}: ",
   comma $primes{$type}.first(* > $_, :k) // +$primes{$type} for 1e6, 1e7;
   say ;

}</lang>

Output:
The first 35 safe primes are:
(5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1,019 1,187 1,283 1,307 1,319 1,367 1,439 1,487 1,523 1,619)
The number of safe primes up to 1,000,000: 4,324
The number of safe primes up to 10,000,000: 30,657

The first 40 unsafe primes are:
(2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233)
The number of unsafe primes up to 1,000,000: 74,174
The number of unsafe primes up to 10,000,000: 633,922

Phix

using Extensible_prime_generator#Phix <lang Phix>while sieved<10_000_000 do

   add_block()

end while sequence safe = {}, unsafe = {} procedure filter_range(integer lo, hi)

   for i=lo to hi do
       integer p = primes[i]
       if p>2 and is_prime((p-1)/2) then
           safe &= p
       else
           unsafe &= p
       end if
   end for

end procedure integer k = abs(binary_search(1_000_000,primes)),

       l = abs(binary_search(10_000_000,primes))

filter_range(1,k-1) integer ls = length(safe), lu = length(unsafe) filter_range(k,l-1) printf(1,"The first 35 safe primes: %s\n",{sprint(safe[1..35])}) printf(1,"Count of safe primes below 1,000,000: %,d\n",ls) printf(1,"Count of safe primes below 10,000,000: %,d\n",length(safe)) printf(1,"The first 40 unsafe primes: %s\n",{sprint(unsafe[1..40])}) printf(1,"Count of unsafe primes below 1,000,000: %,d\n",lu) printf(1,"Count of unsafe primes below 10,000,000: %,d\n",length(unsafe))</lang>

Output:
The first 35 safe primes: {5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619}
Count of safe primes below 1,000,000: 4,324
Count of safe primes below 10,000,000: 30,657
The first 40 unsafe primes: {2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233}
Count of unsafe primes below 1,000,000: 74,174
Count of unsafe primes below 10,000,000: 633,922

Python

<lang Python> primes =[] sp =[] usp=[] n = 10000000 if 2<n:

   primes.append(2)

for i in range(3,n+1,2):

   for j in primes:
       if(j>i/2) or (j==primes[-1]):
           primes.append(i)
           if((i-1)/2) in primes:
               sp.append(i)
               break
           else:
               usp.append(i)
               break
       if (i%j==0):
           break

print('First 35 safe primes are:\n' , sp[:35]) print('There are '+str(len(sp[:1000000]))+' safe primes below 1,000,000') print('There are '+str(len(sp))+' safe primes below 10,000,000') print('First 40 unsafe primes:\n',usp[:40]) print('There are '+str(len(usp[:1000000]))+' unsafe primes below 1,000,000') print('There are '+str(len(usp))+' safe primes below 10,000,000') </lang>

Output:
First 35 safe primes: 
[5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619]
There are 4,234 safe primes below 1,000,000
There are 30,657 safe primes below 10,000,000
First 40 unsafe primes: 
[2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233]
There are 74,174 unsafe primes below 1,000,000
There are 633,922 unsafe primes below 10,000,000

REXX

<lang rexx>/*REXX program lists a sequence (or a count) of ──safe── or ──unsafe── primes. */ parse arg N kind _ . 1 . okind; upper kind /*obtain optional arguments from the CL*/ if N== | N=="," then N= 35 /*Not specified? Then assume default.*/ if kind== | kind=="," then kind= 'SAFE' /* " " " " " */ if _\== then call ser 'too many arguments specified.' if kind\=='SAFE' & kind\=='UNSAFE' then call ser 'invalid 2nd argument: ' okind if kind =='UNSAFE' then safe= 0; else safe= 1 /*SAFE is a binary value for function.*/ w = linesize() - 1 /*obtain the useble width of the term. */ tell= (N>0); @.=; N= abs(N) /*N is negative? Then don't display. */ !.=0;  !.1=2;  !.2=3;  !.3=5;  !.4=7;  !.5=11;  !.6=13;  !.7=17;  !.8=19; #= 8 @.=; @.2=1; @.3=1; @.5=1; @.7=1; @.11=1; @.13=1; @.17=1; @.19=1; start= # + 1 m= 0; lim=0 /*# is the number of low primes so far*/ $=; do i=1 for # while lim<=N; j= !.i /* [↓] find primes, and maybe show 'em*/

       call safeUnsafe;      $= strip($)        /*go see if other part of a KIND prime.*/
       end   /*i*/                              /* [↑]  allows faster loop (below).    */
                                                /* [↓]  N:  default lists up to 35 #'s.*/
  do j=!.#+2  by 2  while  lim<N                /*continue on with the next odd prime. */
  if j // 3 == 0  then iterate                  /*is this integer a multiple of three? */
  parse var  j      -1  _                     /*obtain the last decimal digit of  J  */
  if _      == 5  then iterate                  /*is this integer a multiple of five?  */
  if j // 7 == 0  then iterate                  /* "   "     "    "     "     " seven? */
  if j //11 == 0  then iterate                  /* "   "     "    "     "     " eleven?*/
  if j //13 == 0  then iterate                  /* "   "     "    "     "     "  13 ?  */
  if j //17 == 0  then iterate                  /* "   "     "    "     "     "  17 ?  */
  if j //19 == 0  then iterate                  /* "   "     "    "     "     "  19 ?  */
                                                /* [↓]  divide by the primes.   ___    */
           do k=start  to #  while !.k * !.k<=j /*divide  J  by other primes ≤ √ J     */
           if j // !.k ==0   then iterate j     /*÷ by prev. prime?  ¬prime     ___    */
           end   /*k*/                          /* [↑]   only divide up to     √ J     */
  #= # + 1                                      /*bump the count of number of primes.  */
  !.#= j;                     @.j= 1            /*define a prime  and  its index value.*/
  call safeUnsafe                               /*go see if other part of a KIND prime.*/
  end   /*j*/
                                                /* [↓]  display number of primes found.*/

if $\== then say $ /*display any residual primes in $ list*/ say if tell then say commas(m)' ' kind "primes found."

        else say commas(m)' '     kind    "primes found below or equal to "    commas(N).

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ add: m= m+1; lim= m; if \tell & j>N then do; lim= j; m= m-1; end; else call app; return 1 app: if tell then if length($ j)>w then do; say $; $ =j; end; else $= $ j; return 1 ser: say; say; say '***error***' arg(1); say; say; exit 13 /*tell error message. */ commas: parse arg _; do jc=length(_)-3 to 1 by -3; _=insert(',', _, jc); end; return _ /*──────────────────────────────────────────────────────────────────────────────────────*/ safeUnsafe: ?= (j-1) % 2 /*obtain the other part of KIND prime. */

           if safe  then if @.? ==   then return 0             /*not a    safe prime.*/
                                       else return add()         /*is  "      "    "   */
                    else if @.? ==   then return add()         /*is  an unsafe prime.*/
                                       else return 0             /*not  "   "      "   */</lang>

This REXX program makes use of   LINESIZE   REXX program (or BIF) which is used to determine the screen width (or linesize) of the terminal (console).   Some REXXes don't have this BIF.

The   LINESIZE.REX   REXX program is included here   ───►   LINESIZE.REX.


output   when using the default input of:     35
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

35  SAFE primes found.
output   when using the input:     -1000000
30,657  SAFE primes found below or equal to  1,000,000.
output   when using the input:     -10000000
633,922  SAFE primes found below or equal to  10,000,000.
output   when using the input:     40   unsafe
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

40  UNSAFE primes found.
output   when using the input:     -1000000   unsafe
4,324  SAFE primes found below or equal to  1,000,000.
output   when using the input:     -10000000   unsafe
74,174  SAFE primes found below or equal to  10,000,000.

Ruby

<lang ruby>require "prime" class Integer

 def safe_prime? #assumes prime
   ((self-1)/2).prime?
 end

end

def format_parts(n)

 partitions = Prime.each(n).partition(&:safe_prime?).map(&:count)
 "There are %d safes and %d unsafes below #{n}."% partitions

end

puts "First 35 safe-primes:" p Prime.each.lazy.select(&:safe_prime?).take(35).to_a puts format_parts(1_000_000), "\n"

puts "First 40 unsafe-primes:" p Prime.each.lazy.reject(&:safe_prime?).take(40).to_a puts format_parts(10_000_000) </lang>

Output:
First 35 safe-primes:
[5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619]
There are 4324 safes and 74174 unsafes below 1000000.

First 40 unsafe-primes:
[2, 3, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 181, 191, 193, 197, 199, 211, 223, 229, 233]
There are 30657 safes and 633922 unsafes below 10000000.

Sidef

<lang ruby>func is_safeprime(p) {

   is_prime(p) && is_prime((p-1)/2)

}

func is_unsafeprime(p) {

   is_prime(p) && !is_prime((p-1)/2)

}

func safeprime_count(from, to) {

   from..to -> count_by(is_safeprime)

}

func unsafeprime_count(from, to) {

   from..to -> count_by(is_unsafeprime)

}

say "First 35 safe-primes:" say (1..Inf -> lazy.grep(is_safeprime).first(35).join(' ')) say say "First 40 unsafe-primes:" say (1..Inf -> lazy.grep(is_unsafeprime).first(40).join(' ')) say say "There are #{safeprime_count(1, 1e6)} safe-primes bellow 10^6" say "There are #{unsafeprime_count(1, 1e6)} unsafe-primes bellow 10^6" say say "There are #{safeprime_count(1, 1e7)} safe-primes bellow 10^7" say "There are #{unsafeprime_count(1, 1e7)} unsafe-primes bellow 10^7"</lang>

Output:
First 35 safe-primes:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619

First 40 unsafe-primes:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233

There are 4324 safe-primes bellow 10^6
There are 74174 unsafe-primes bellow 10^6

There are 30657 safe-primes bellow 10^7
There are 633922 unsafe-primes bellow 10^7

Simula

<lang simula> BEGIN

   CLASS BOOLARRAY(N); INTEGER N;
   BEGIN
       BOOLEAN ARRAY DATA(0:N-1);
   END BOOLARRAY;
   CLASS INTARRAY(N); INTEGER N;
   BEGIN
       INTEGER ARRAY DATA(0:N-1);
   END INTARRAY;
   REF(BOOLARRAY) PROCEDURE SIEVE(LIMIT);
       INTEGER LIMIT;
   BEGIN
       REF(BOOLARRAY) C;
       INTEGER P, P2;
       LIMIT := LIMIT+1;
       COMMENT TRUE DENOTES COMPOSITE, FALSE DENOTES PRIME. ;
       C :- NEW BOOLARRAY(LIMIT); COMMENT ALL FALSE BY DEFAULT ;
       C.DATA(0) := TRUE;
       C.DATA(1) := TRUE;
       COMMENT APART FROM 2 ALL EVEN NUMBERS ARE OF COURSE COMPOSITE ;
       FOR I := 4 STEP 2 UNTIL LIMIT-1 DO
           C.DATA(I) := TRUE;
       COMMENT START FROM 3. ;
       P := 3;
       WHILE TRUE DO BEGIN
           P2 := P * P;
           IF P2 >= LIMIT THEN BEGIN
               GO TO OUTER_BREAK;
           END;
           I := P2;
           WHILE I < LIMIT DO BEGIN
               C.DATA(I) := TRUE;
               I := I + 2 * P;
           END;
           WHILE TRUE DO BEGIN
               P := P + 2;
               IF NOT C.DATA(P) THEN BEGIN
                   GO TO INNER_BREAK;
               END;
           END;
           INNER_BREAK:
       END;
       OUTER_BREAK:
       SIEVE :- C;
   END SIEVE;
   COMMENT MAIN BLOCK ;
   REF(BOOLARRAY) SIEVED;
   REF(INTARRAY) UNSAFE, SAFE;
   INTEGER I, COUNT;
   COMMENT SIEVE UP TO 10 MILLION ;
   SIEVED :- SIEVE(10000000);
   SAFE :- NEW INTARRAY(35);
   COUNT := 0;
   I := 3;
   WHILE COUNT < 35 DO BEGIN
       IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN BEGIN
           SAFE.DATA(COUNT) := I;
           COUNT := COUNT+1;
       END;
       I := I+2;
   END;
   OUTTEXT("THE FIRST 35 SAFE PRIMES ARE:");
   OUTIMAGE;
   OUTCHAR('[');
   FOR I := 0 STEP 1 UNTIL 35-1 DO BEGIN
       IF I>0 THEN OUTCHAR(' ');
       OUTINT(SAFE.DATA(I), 0);
   END;
   OUTCHAR(']');
   OUTIMAGE;
   OUTIMAGE;
   COUNT := 0;
   FOR I := 3 STEP 2 UNTIL 1000000 DO BEGIN
       IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN BEGIN
           COUNT := COUNT+1;
       END;
   END;
   OUTTEXT("THE NUMBER OF SAFE PRIMES BELOW 1,000,000 IS ");
   OUTINT(COUNT, 0);
   OUTIMAGE;
   OUTIMAGE;
   FOR I := 1000001 STEP 2 UNTIL 10000000 DO BEGIN
       IF NOT SIEVED.DATA(I) AND NOT SIEVED.DATA((I-1)//2) THEN
           COUNT := COUNT+1;
   END;
   OUTTEXT("THE NUMBER OF SAFE PRIMES BELOW 10,000,000 IS ");
   OUTINT(COUNT, 0);
   OUTIMAGE;
   OUTIMAGE;
   UNSAFE :- NEW INTARRAY(40);
   UNSAFE.DATA(0) := 2; COMMENT SINCE (2 - 1)/2 IS NOT PRIME ;
   COUNT := 1;
   I := 3;
   WHILE COUNT < 40 DO BEGIN
       IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN BEGIN
           UNSAFE.DATA(COUNT) := I;
           COUNT := COUNT+1;
       END;
       I := I+2;
   END;
   OUTTEXT("THE FIRST 40 UNSAFE PRIMES ARE:");
   OUTIMAGE;
   OUTCHAR('[');
   FOR I := 0 STEP 1 UNTIL 40-1 DO BEGIN
       IF I>0 THEN OUTCHAR(' ');
       OUTINT(UNSAFE.DATA(I), 0);
   END;
   OUTCHAR(']');
   OUTIMAGE;
   OUTIMAGE;
   COUNT := 1;
   FOR I := 3 STEP 2 UNTIL 1000000 DO BEGIN
       IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN
           COUNT := COUNT+1;
   END;
   OUTTEXT("THE NUMBER OF UNSAFE PRIMES BELOW 1,000,000 IS ");
   OUTINT(COUNT, 0);
   OUTIMAGE;
   OUTIMAGE;
   FOR I := 1000001 STEP 2 UNTIL 10000000 DO BEGIN
       IF NOT SIEVED.DATA(I) AND SIEVED.DATA((I-1)//2) THEN
           COUNT := COUNT+1;
   END;
   OUTTEXT("THE NUMBER OF UNSAFE PRIMES BELOW 10,000,000 IS ");
   OUTINT(COUNT, 0);
   OUTIMAGE;


END </lang>

Output:
THE FIRST 35 SAFE PRIMES ARE:
[5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839
863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619]

THE NUMBER OF SAFE PRIMES BELOW 1,000,000 IS 4324

THE NUMBER OF SAFE PRIMES BELOW 10,000,000 IS 30657

THE FIRST 40 UNSAFE PRIMES ARE:
[2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137
 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233]

THE NUMBER OF UNSAFE PRIMES BELOW 1,000,000 IS 74174

THE NUMBER OF UNSAFE PRIMES BELOW 10,000,000 IS 633922

Visual Basic .NET

Translation of: C#

Dependent on using .NET Core 2.1 or 2.0, or .NET Framework 4.7.2

<lang vbnet>Imports System.Console

Namespace safety

   Module SafePrimes
       Dim pri_HS As HashSet(Of Integer) = Primes(10_000_000).ToHashSet()
       Sub Main()
           For Each UnSafe In {False, True} : Dim n As Integer = If(UnSafe, 40, 35)
               WriteLine($"The first {n} {If(UnSafe, "un", "")}safe primes are:")
               WriteLine(String.Join(" ", pri_HS.Where(Function(p) UnSafe Xor
                                                           pri_HS.Contains(p \ 2)).Take(n)))
           Next : Dim limit As Integer = 1_000_000 : Do
               Dim part = pri_HS.TakeWhile(Function(l) l < limit),
                sc As Integer = part.Count(Function(p) pri_HS.Contains(p \ 2))
               WriteLine($"Of the primes below {limit:n0}: {sc:n0} are safe, and {part.Count() -
                         sc:n0} are unsafe.") : If limit = 1_000_000 Then limit *= 10 Else Exit Do
           Loop
       End Sub
       Private Iterator Function Primes(ByVal bound As Integer) As IEnumerable(Of Integer)
           If bound < 2 Then Return
           Yield 2
           Dim composite As BitArray = New BitArray((bound - 1) \ 2)
           Dim limit As Integer = (CInt((Math.Sqrt(bound))) - 1) \ 2
           For i As Integer = 0 To limit - 1 : If composite(i) Then Continue For
               Dim prime As Integer = 2 * i + 3 : Yield prime
               Dim j As Integer = (prime * prime - 2) \ 2
               While j < composite.Count : composite(j) = True : j += prime : End While
           Next
           For i As integer = limit To composite.Count - 1 : If Not composite(i) Then Yield 2 * i + 3
           Next
       End Function
   End Module

End Namespace</lang> If not using the latest version of the System.Linq namespace, you can implement the Enumerable.ToHashSet() method by adding <lang vbnet>Imports System.Runtime.CompilerServices</lang> to the top and this module inside the safety namespace:<lang vbnet> Module Extensions

       <Extension()>
       Function ToHashSet(Of T)(ByVal src As IEnumerable(Of T), ByVal Optional _
                                IECmp As IEqualityComparer(Of T) = Nothing) As HashSet(Of T)
           Return New HashSet(Of T)(src, IECmp)
       End Function
   End Module</lang>
Output:
The first 35 safe primes are:
5 7 11 23 47 59 83 107 167 179 227 263 347 359 383 467 479 503 563 587 719 839 863 887 983 1019 1187 1283 1307 1319 1367 1439 1487 1523 1619
The first 40 unsafe primes are:
2 3 13 17 19 29 31 37 41 43 53 61 67 71 73 79 89 97 101 103 109 113 127 131 137 139 149 151 157 163 173 181 191 193 197 199 211 223 229 233
Of the primes below 1,000,000: 4,324 are safe, and 74,174 are unsafe.
Of the primes below 10,000,000: 30,657 are safe, and 633,922 are unsafe.

zkl

Using GMP (GNU Multiple Precision Arithmetic Library, probabilistic primes), because it is easy and fast to generate primes.

Extensible prime generator#zkl could be used instead. <lang zkl>var [const] BI=Import("zklBigNum"); // libGMP // saving 664,578 primes (vs generating them on the fly) seems a bit overkill

fcn safePrime(p){ ((p-1)/2).probablyPrime() } // p is a BigInt prime

fcn safetyList(sN,nsN){

  p,safe,notSafe := BI(2),List(),List();
  do{ 
     if(safePrime(p)) safe.append(p.toInt()) else notSafe.append(p.toInt()); 
     p.nextPrime();
  }while(safe.len()<sN or notSafe.len()<nsN);
  println("The first %d   safe primes are: %s".fmt(sN,safe[0,sN].concat(",")));
  println("The first %d unsafe primes are: %s".fmt(nsN,notSafe[0,nsN].concat(",")));

}(35,40);</lang>

Output:
The first 35   safe primes are: 5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619
The first 40 unsafe primes are: 2,3,13,17,19,29,31,37,41,43,53,61,67,71,73,79,89,97,101,103,109,113,127,131,137,139,149,151,157,163,173,181,191,193,197,199,211,223,229,233

safetyList could also be written as: <lang zkl>println("The first %d safe primes are: %s".fmt(N:=35,

  Walker(BI(1).nextPrime)  // gyrate (vs Walker.filter) because p mutates
    .pump(N,String,safePrime,Void.Filter,String.fp1(","))));

println("The first %d unsafe primes are: %s".fmt(N=40,

  Walker(BI(1).nextPrime)	// or save as List
    .pump(N,List,safePrime,'==(False),Void.Filter,"toInt").concat(",")));</lang>

Time to count: <lang zkl>fcn safetyCount(N,s=0,ns=0,p=BI(2)){

  do{ 
     if(safePrime(p)) s+=1; else ns+=1;
     p.nextPrime()
  }while(p<N);
  println("The number of   safe primes below %10,d is %7,d".fmt(N,s));
  println("The number of unsafe primes below %10,d is %7,d".fmt(N,ns));
  return(s,ns,p);

}

s,ns,p := safetyCount(1_000_000); println(); safetyCount(10_000_000,s,ns,p);</lang>

Output:
The number of   safe primes below  1,000,000 is   4,324
The number of unsafe primes below  1,000,000 is  74,174

The number of   safe primes below 10,000,000 is  30,657
The number of unsafe primes below 10,000,000 is 633,922
Cookies help us deliver our services. By using our services, you agree to our use of cookies.