Carmichael lambda function

From Rosetta Code
Carmichael lambda function is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Background

The Carmichael function, or Carmichael lambda function, is a function in number theory. The Carmichael lambda λ(n) of a positive integer n is the smallest positive integer m such that

holds for every integer coprime to n.

The Carmichael lambda function can be iterated, that is, called repeatedly on its result. If this iteration is performed k times, this is considered the k-iterated Carmichael lambda function. Thus, λ(λ(n)) would be the 2-iterated lambda function. With repeated, sufficiently large but finite k-iterations, the iterated Carmichael function will eventually compute as 1 for all positive integers n.

Task
  • Write a function to obtain the Carmichael lamda of a positive integer. If the function is supplied by a core library of the language, this also may be used.
  • Write a function to count the number of iterations k of the k-iterated lambda function needed to get to a value of 1. Show the value of λ(n) and the number of k-iterations for integers from 1 to 25.
  • Find the lowest integer for which the value of iterated k is i, for i from 1 to 15.


Stretch task (an extension of the third task above)
  • Find, additionally, for i from 16 to 25, the lowest integer n for which the number of iterations k of the Carmichael lambda function from n to get to 1 is i.


See also


Mathematica|Wolfram Language

Translation of: Python
IteratedToOne[i_] := Module[{k = 0, iter = i}, 
  While[iter > 1, iter = CarmichaelLambda[iter];
   k++;];
  k]
Print["Listing of (n, lambda(n), k for iteration to 1) for integers from 1 to 25:"];
Do[lam = CarmichaelLambda[i];
 k = IteratedToOne[i];
 If[Mod[i, 5] == 0, Print[{i, lam, k}], Print[{i, lam, k}, "  "]], {i, 1, 25}]

upTo = 20;
maxToTest = 100000000000;
firsts = Table[0, {upTo + 1}];
firsts[[1]] = 1;

Print["\nIterations to 1     n   lambda(n)\n=================================="];
Print[StringForm["``     ``     ``", 0, 1, 1]];

Do[n = IteratedToOne[i];
 If[0 < n <= upTo && firsts[[n + 1]] == 0, firsts[[n + 1]] = i;
  j = If[n < 1, 0, CarmichaelLambda[i]];
  Print[StringForm["``     ``     ``", n, i, j]];
  If[n >= upTo, Break[]];], {i, 2, maxToTest}]
Output:
Listing of (n, lambda(n), k for iteration to 1) for integers from 1 to 25:
{1, 1, 0}  
{2, 1, 1}  
{3, 2, 2}  
{4, 2, 2}  
{5, 4, 3}
{6, 2, 2}  
{7, 6, 3}  
{8, 2, 2}  
{9, 6, 3}  
{10, 4, 3}
{11, 10, 4}  
{12, 2, 2}  
{13, 12, 3}  
{14, 6, 3}  
{15, 4, 3}
{16, 4, 3}  
{17, 16, 4}  
{18, 6, 3}  
{19, 18, 4}  
{20, 4, 3}
{21, 6, 3}  
{22, 10, 4}  
{23, 22, 5}  
{24, 2, 2}  
{25, 20, 4}
Iterations to 1     n   lambda(n)
==================================
0     1     1
1     2     1
2     3     2
3     5     4
4     11     10
5     23     22
6     47     46
7     283     282
8     719     718
9     1439     1438
10     2879     2878
11     34549     34548
12     138197     138196
13     531441     354294
14     1594323     1062882
15     4782969     3188646

Phix

with javascript_semantics
function lambda(sequence pk)
    integer {p,k} = pk, res = phi(power(p,k))
    return iff(p=2 and k>=3 ? res/2 : res)
end function

function reduced_totient(integer n)
    sequence p = prime_powers(n)
    for i,pk in p do
        p[i] = lambda(pk)
    end for
    return lcm(p)
-- alt: neater but ~2* slower
--  return lcm(apply(prime_powers(n),lambda))
end function

function k_iter(integer i)
    return iff(i>1?1+k_iter(reduced_totient(i)):0)
end function

function ident(integer i) return i end function

sequence n = tagset(25)
for i,d in {"n","eulers_totient","reduced_totient","k"} do
    sequence r = apply(n,{ident,phi,reduced_totient,k_iter}[i])
    printf(1,"%17s: %s\n",{d,join(r," ",fmt:="%2d")})
end for

atom t0 = time()
printf(1,"\n k           i   lambda(i)\n")
printf(1,  "==========================\n")
integer i = 1
for k=0 to iff(platform()=JS?12:15) do -- (keep JS < 3s)
    while k_iter(i)!=k do i += 1 end while
    printf(1,"%2d %,9d %,9d\n",{k,i,reduced_totient(i)})
end for
?elapsed(time()-t0)
Output:
                n:  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
   eulers_totient:  1  1  2  2  4  2  6  4  6  4 10  4 12  6  8  8 16  6 18  8 12 10 22  8 20
  reduced_totient:  1  1  2  2  4  2  6  2  6  4 10  2 12  6  4  4 16  6 18  4  6 10 22  2 20
                k:  0  1  2  2  3  2  3  2  3  3  4  2  3  3  3  3  4  3  4  3  3  4  5  2  4

 k           i   lambda(i)
==========================
 0           1           1
 1           2           1
 2           3           2
 3           5           4
 4          11          10
 5          23          22
 6          47          46
 7         283         282
 8         719         718
 9       1,439       1,438
10       2,879       2,878
11      34,549      34,548
12     138,197     138,196
13     531,441     354,294
14   1,594,323   1,062,882
15   4,782,969   3,188,646
"2 minutes and 27s"

stretch

16  14,348,907   9,565,938
17  43,046,721  28,697,814

I estimate that took ~47mins, at which point I killed it.
The Python code took 13mins 58 secs to get to 15, on the same box.

Python

Python has the Carmichael function in the SymPy library, where it is called reduced_totient.

from sympy import reduced_totient

def iterated_to_one(i):
    """ return k for the k-fold iterated lambda function where k is the first time iteration reaches 1 """
    k = 0
    while i > 1:
        i = reduced_totient(i)
        k += 1
    return k


if __name__ == "__main__":
    print("Listing of (n, lambda(n), k for iteration to 1) for integers from 1 to 25:")
    for i in range(1, 26):
        lam = reduced_totient(i)
        k = iterated_to_one(i)
        print(f'({i}, {lam}, {k})', end = '\n' if i % 5 == 0 else '  ')

    UP_TO = 20
    MAX_TO_TEST = 100_000_000_000
    FIRSTS = [0] * (UP_TO + 1)
    FIRSTS[0] = 1

    print('\nIterations to 1     n   lambda(n)\n==================================')
    print('   0                1          1')
    for i in range(2, MAX_TO_TEST):
        n = iterated_to_one(i)
        if 0 < n <= UP_TO and FIRSTS[n] == 0:
            FIRSTS[n] = i
            j = 0 if n < 1 else int(reduced_totient(i))
            print(f"{n:>4}{i:>17}{j:>11}")    
            if n >= UP_TO:
                break
Output:
Listing of (n, lambda(n), k for iteration to 1) for integers from 1 to 25:
(1, 1, 0)  (2, 1, 1)  (3, 2, 2)  (4, 2, 2)  (5, 4, 3)
(6, 2, 2)  (7, 6, 3)  (8, 2, 2)  (9, 6, 3)  (10, 4, 3)
(11, 10, 4)  (12, 2, 2)  (13, 12, 3)  (14, 6, 3)  (15, 4, 3)
(16, 4, 3)  (17, 16, 4)  (18, 6, 3)  (19, 18, 4)  (20, 4, 3)
(21, 6, 3)  (22, 10, 4)  (23, 22, 5)  (24, 2, 2)  (25, 20, 4)

Iterations to 1     n   lambda(n)
==================================
   0                1          1
   1                2          1
   2                3          2
   3                5          4
   4               11         10
   5               23         22
   6               47         46
   7              283        282
   8              719        718
   9             1439       1438
  10             2879       2878
  11            34549      34548
  12           138197     138196
  13           531441     354294
  14          1594323    1062882
  15          4782969    3188646
  16         14348907    9565938
  17         43046721   28697814
  18         86093443   86093442
  19        258280327  258280326
  20        688747547  688747546

Raku

Translation of: Wren
# 20240228 Raku programming solution

use Prime::Factor;

sub phi(Int $p, Int $r) { return $p**($r - 1) * ($p - 1) }

sub CarmichaelLambda(Int $n) {

   state %cache = 1 => 1, 2 => 1, 4 => 2;

   sub CarmichaelHelper(Int $p, Int $r) {
      my Int $n = $p ** $r;
      return %cache{$n} if %cache{$n}:exists;
      return %cache{$n} = $p > 2 ?? phi($p, $r) !! phi($p, $r - 1)
   }

   if $n < 1 { die "'n' must be a positive integer." }
   return %cache{$n} if %cache{$n}:exists;
   if ( my %pps = prime-factors($n).Bag ).elems == 1 { 
      my ($p, $r) = %pps.kv>>.Int;
      return %cache{$n} = $p > 2 ?? phi($p, $r) !! phi($p, $r - 1)
   }
   return [lcm] %pps.kv.map: -> $k, $v { CarmichaelHelper($k.Int, $v) } 
}

sub iteratedToOne($i is copy) {
   my $k = 0;
   while $i > 1 { $i = CarmichaelLambda($i) andthen $k++ } 
   return $k
}

say " n   λ   k";
say "----------";
for 1..25 -> $n {
   printf "%2d  %2d  %2d\n", $n, CarmichaelLambda($n), iteratedToOne($n)
}

say "\nIterations to 1       i     lambda(i)";
say "=====================================";
say "   0                  1            1";

my ($maxI, $maxN) = 5e6, 10; # for N=15, takes around 47 minutes with an i5-10500T
my @found = True, |( False xx $maxN );
for 1 .. $maxI -> $i {
   unless @found[ my $n = iteratedToOne($i) ] {
      printf "%4d %18d %12d\n", $n, $i, CarmichaelLambda($i);
      @found[$n] = True andthen ( last if $n == $maxN )
   }
}
Output:

Same as Wren example .. and it is probably 30X times slower 😅

Wren

Library: Wren-math
Library: Wren-fmt

Takes about 88 seconds on my machine (Core i7) to get up to n = 15 for the third part of the task, so haven't attempted the stretch goal.

import "./math" for Int
import "./fmt" for Fmt

var primePows = Fn.new { |n|
    var factPows = []
    var pf = Int.primeFactors(n)
    var currFact = pf[0]
    var count = 1
    for (fact in pf.skip(1)) {
        if (fact != currFact) {
            factPows.add([currFact, count])
            currFact = fact
            count = 1
        } else {
            count = count + 1
        }
    }
    factPows.add([currFact, count])
    return factPows
}

var phi = Fn.new { |p, r| p.pow(r-1) * (p - 1) }

var cache = { 1: 1, 2: phi.call(2, 1), 4: phi.call(2, 2) }

var CarmichaelHelper = Fn.new { |p, r|
    var n = p.pow(r)
    if (cache.containsKey(n)) return cache[n]
    if (p > 2) return cache[n] = phi.call(p, r)
    return cache[n] = phi.call(p, r - 1)
}

var CarmichaelLambda = Fn.new { |n|
    if (n < 1) Fiber.abort("'n' must be a positive integer.")
    if (cache.containsKey(n)) return cache[n]
    var pps = primePows.call(n)
    if (pps.count == 1) {
        var p = pps[0][0]
        var r = pps[0][1]
        if (p > 2) return cache[n] = phi.call(p, r)
        return cache[n] = phi.call(p, r - 1)       
    }
    var a = []
    for (pp in pps) a.add(CarmichaelHelper.call(pp[0], pp[1]))
    return cache[n] = Int.lcm(a)
}

var iteratedToOne = Fn.new { |i|
    var k = 0
    while (i > 1) {
        i = CarmichaelLambda.call(i)
        k = k + 1
    }
    return k
}

System.print(" n   λ   k")
System.print("----------")
for (n in 1..25) {
    var lambda = CarmichaelLambda.call(n)
    var k = iteratedToOne.call(n)
    Fmt.print("$2d  $2d  $2d", n, lambda, k)
}

System.print("\nIterations to 1       i     lambda(i)")
System.print("=====================================")
System.print("   0                  1            1")
var maxI = 5 * 1e6
var maxN = 15
var found = List.filled(maxN + 1, false)
found[0] = true
var i = 1
while (i <= maxI) {
    var n = iteratedToOne.call(i)
    if (!found[n]) {
        found[n] = true
        var lambda = CarmichaelLambda.call(i)
        Fmt.print("$4d $,18d $,12d", n, i, lambda)
        if (n == maxN) break
    }
    i = i + 1
}
Output:
 n   λ   k
----------
 1   1   0
 2   1   1
 3   2   2
 4   2   2
 5   4   3
 6   2   2
 7   6   3
 8   2   2
 9   6   3
10   4   3
11  10   4
12   2   2
13  12   3
14   6   3
15   4   3
16   4   3
17  16   4
18   6   3
19  18   4
20   4   3
21   6   3
22  10   4
23  22   5
24   2   2
25  20   4

Iterations to 1       i     lambda(i)
=====================================
   0                  1            1
   1                  2            1
   2                  3            2
   3                  5            4
   4                 11           10
   5                 23           22
   6                 47           46
   7                283          282
   8                719          718
   9              1,439        1,438
  10              2,879        2,878
  11             34,549       34,548
  12            138,197      138,196
  13            531,441      354,294
  14          1,594,323    1,062,882
  15          4,782,969    3,188,646