Blum integer

From Rosetta Code
Revision as of 22:37, 22 May 2023 by Thundergnat (talk | contribs) (→‎{{header|Raku}}: Add a Raku example)
Blum integer is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Definition

A positive integer n is a Blum integer if n = p x q is a semi-prime for which p and q are distinct primes congruent to 3 mod 4. In other words, p and q must be of the form 4t + 3 where t is some non-negative integer.

Example

21 is a Blum integer because it has two prime factors: 3 (= 4 x 0 + 3) and 7 (= 4 x 1 + 3).

Task

Find and show on this page the first 50 Blum integers.

Also show the 26,828th.

Stretch

Find and show the 100,000th, 200,000th, 300,000th and 400,000th Blum integers.

For the first 400,000 Blum integers, show the percentage distribution by final decimal digit (to 3 decimal places). Clearly, such integers can only end in 1, 3, 7 or 9.

Related task
References


ALGOL 68

If running this with ALGOL 68G, you will need to specify a larger heap size with -heap 256M on the command line.
Builds tables of the unique prime factor counts and the last prime factor to handle the stretch goal, uses prime factorisation to find the first 50 Blum integers.

BEGIN # find Blum integers, semi-primes where both factors are 3 mod 4       #
      #                                   and the factors are distinct       #
    INT max number = 10 000 000;   # maximum possible Blum we will consider  #
    [ 1 : max number ]INT upfc;    # table of unique prime factor counts     #
    [ 1 : max number ]INT lpf;     # table of last prime factors             #
    FOR i TO UPB upfc DO upfc[ i ] := 0; lpf[ i ] := 1 OD;
    FOR i FROM 2 TO UPB upfc OVER 2 DO
        FOR j FROM i + i BY i TO UPB upfc DO
            upfc[ j ] +:= 1;
            lpf[  j ]  := i
        OD
    OD;

    # returns TRUE if n is a Blum integer, FALSE otherwise                  #
    PROC is blum = ( INT n )BOOL:
         IF n < 21 THEN FALSE # the lowest primes modulo 4 that are 3 are   #
                              # 3 & 7, so 21 is the lowest possible number  #
         ELIF NOT ODD n THEN FALSE 
         ELSE
            INT  v       :=  n;
            INT  f count :=  0;
            INT  f       :=  3;
            WHILE f <= v AND f count < 3 DO
                IF v MOD f = 0 THEN
                    IF f MOD 4 /= 3 THEN
                        f count  := 9 # the prime factor mod 4 isn't 3      #
                    ELSE
                        v OVERAB f;
                        f count +:= 1
                    FI;
                    IF v MOD f = 0 THEN
                        f count := 9 # f is not a distinct factor of n      #
                    FI
                FI;
                f +:= 2
            OD;
            f count = 2
        FI # is blum # ;

    # show various Blum integers                                            #
    print( ( "The first 50 Blum integers:", newline ) );
    INT b count := 0;
    [ 0 : 9 ]INT last count := []INT( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )[ AT 0 ];
    FOR i FROM 21 WHILE b count < 400 000 DO
        IF b count < 50 THEN
            IF is blum( i ) THEN
                b count +:= 1;
                last count[ i MOD 10 ] +:= 1;
                print( ( whole( i, -4 ) ) );
                IF b count MOD 10 = 0 THEN print( ( newline ) ) FI
            FI
        ELIF upfc[ i ] = 2 THEN
            # two unique prime factors - could be a Blum integer            #
            IF lpf[ i ] MOD 4 = 3 THEN
                # the last prime factor mod 4 is three                      #
                IF ( i OVER lpf[ i ] ) MOD 4 = 3 THEN
                    # and so is the other one                               #
                    b count +:= 1;
                    last count[ i MOD 10 ] +:= 1;
                    IF b count =  26 828
                    OR b count = 100 000
                    OR b count = 200 000
                    OR b count = 300 000
                    OR b count = 400 000
                    THEN
                        print( ( "The ", whole( b count, -6 )
                               , "th Blum integer is ", whole( i, -11 )
                               , newline
                               )
                             )
                    FI
                FI
            FI
        FI
    OD;
    # show some statistics of the last digits                                #
    print( ( "For Blum integers up to ", whole( b count, 0 ), ":", newline ) );
    FOR i FROM LWB last count TO UPB last count DO
        IF last count[ i ] /= 0 THEN
            print( ( "    ", fixed( ( last count[ i ] * 100 ) / b count, -8, 3 )
                   , "% end with ", whole( i, 0 )
                   , newline
                   )
                 )
        FI
    OD

END
Output:
The first 50 Blum integers:
  21  33  57  69  77  93 129 133 141 161
 177 201 209 213 217 237 249 253 301 309
 321 329 341 381 393 413 417 437 453 469
 473 489 497 501 517 537 553 573 581 589
 597 633 649 669 681 713 717 721 737 749
The  26828th Blum integer is      524273
The 100000th Blum integer is     2075217
The 200000th Blum integer is     4275533
The 300000th Blum integer is     6521629
The 400000th Blum integer is     8802377
For Blum integers up to 400000:
      25.001% end with 1
      25.017% end with 3
      24.997% end with 7
      24.985% end with 9

C

Translation of: Wren
#include <stdio.h>
#include <stdbool.h>
#include <locale.h>

int inc[8] = {4, 2, 4, 2, 4, 6, 2, 6};

bool isPrime(int n) {
    if (n < 2) return false;
    if (n%2 == 0) return n == 2;
    if (n%3 == 0) return n == 3;
    int d = 5;
    while (d*d <= n) {
        if (n%d == 0) return false;
        d += 2;
        if (n%d == 0) return false;
        d += 4;
    }
    return true;
}

// Assumes n is odd.
int firstPrimeFactor(int n) {
    if (n == 1) return 1;
    if (!(n%3)) return 3;
    if (!(n%5)) return 5;
    for (int k = 7, i = 0; k*k <= n; ) {
        if (!(n%k)) {
            return k;
        } else {
            k += inc[i];
            i = (i + 1) % 8;
        }
    }
    return n;
}

int main() {
    int i = 1, j, bc = 0, p, q;
    int blum[50], counts[4] = {0}, digits[4] = {1, 3, 5, 7};
    setlocale(LC_NUMERIC, "");
    while (true) {
        p = firstPrimeFactor(i);
        if (p % 4 == 3) {
            q = i / p;
            if (q != p && q % 4 == 3 && isPrime(q)) {
                if (bc < 50) blum[bc] = i;
                ++counts[i % 10 / 3];
                ++bc;
                if (bc == 50) {
                    printf("First 50 Blum integers:\n");
                    for (j = 0; j < 50; ++j) {
                        printf("%3d ", blum[j]);
                        if (!((j+1) % 10)) printf("\n");
                    }
                    printf("\n");
                } else if (bc == 26828 || !(bc % 100000)) {
                    printf("The %'7dth Blum integer is: %'9d\n", bc, i);
                    if (bc == 400000) {
                        printf("\n%% distribution of the first 400,000 Blum integers:\n");
                        for (j = 0; j < 4; ++j) {
                            printf("  %6.3f%% end in %d\n", counts[j]/4000.0, digits[j]);
                        }
                        break;
                    }
                }
            }
        }
        i += (i % 5 == 3) ? 4 : 2;
    }
    return 0;
}
Output:
Same as Wren example.

Go

Translation of: Wren
Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
)

var inc = []int{4, 2, 4, 2, 4, 6, 2, 6}

// Assumes n is odd.
func firstPrimeFactor(n int) int {
    if n == 1 {
        return 1
    }
    if n%3 == 0 {
        return 3
    }
    if n%5 == 0 {
        return 5
    }
    for k, i := 7, 0; k*k <= n; {
        if n%k == 0 {
            return k
        } else {
            k += inc[i]
            i = (i + 1) % 8
        }
    }
    return n
}

func main() {
    blum := make([]int, 50)
    bc := 0
    counts := make([]int, 4)
    i := 1
    for {
        p := firstPrimeFactor(i)
        if p%4 == 3 {
            q := i / p
            if q != p && q%4 == 3 && rcu.IsPrime(q) {
                if bc < 50 {
                    blum[bc] = i
                }
                counts[i%10/3]++
                bc++
                if bc == 50 {
                    fmt.Println("First 50 Blum integers:")
                    rcu.PrintTable(blum, 10, 3, false)
                    fmt.Println()
                } else if bc == 26828 || bc%100000 == 0 {
                    fmt.Printf("The %7sth Blum integer is: %9s\n", rcu.Commatize(bc), rcu.Commatize(i))
                    if bc == 400000 {
                        fmt.Println("\n% distribution of the first 400,000 Blum integers:")
                        digits := []int{1, 3, 7, 9}
                        for j := 0; j < 4; j++ {
                            fmt.Printf("  %6.3f%% end in %d\n", float64(counts[j])/4000, digits[j])
                        }
                        return
                    }
                }
            }
        }
        if i%5 == 3 {
            i += 4
        } else {
            i += 2
        }
    }
}
Output:
Same as Wren example.

Julia

using Formatting, Primes

function isblum(n)
    pe = factor(n).pe
    return length(pe) == 2 && all(p -> p[2] == 1 && p[1] % 4 == 3, pe)
end

const blum400k = @view (filter(isblum, 1:9_000_000))[1:400_000]

println("First 50 Blum integers:")
foreach(p -> print(rpad(p[2], 4), p[1] % 10 == 0 ? "\n" : ""), enumerate(blum400k[1:50]))

for idx in [26_828, 100_000, 200_000, 300_000, 400_000]
    println("\nThe $(format(idx, commas = true))th Blum number is ",
       format(blum400k[idx], commas = true), ".")
end

println("\n% distribution of the first 400,000 Blum integers is:")
for d in [1, 3, 7, 9]
    println(lpad(round(count(x -> x % 10 == d, blum400k) / 4000, digits=3), 8), "% end in $d")
end
Output:

Same as Wren, Go, etc

Python

''' python example for task rosettacode.org/wiki/Blum_integer '''

from sympy import factorint


def generate_blum():
    ''' Generate the Blum integers in series '''
    for candidate in range(1, 10_000_000_000):
        fexp = factorint(candidate).items()
        if len(fexp) == 2 and sum(p[1] == 1 and p[0] % 4 == 3 for p in fexp) == 2:
            yield candidate


print('First 50 Blum integers:')
lastdigitsums = [0, 0, 0, 0]

for idx, blum in enumerate(generate_blum()):
    if idx < 50:
        print(f'{blum: 4}', end='\n' if (idx + 1) % 10 == 0 else '')
    elif idx + 1 in [26_828, 100_000, 200_000, 300_000, 400_000]:
        print(f'\nThe {idx+1:,}th Blum number is {blum:,}.')

    j = blum % 10
    lastdigitsums[0] += j == 1
    lastdigitsums[1] += j == 3
    lastdigitsums[2] += j == 7
    lastdigitsums[3] += j == 9

    if idx + 1 == 400_000:
        print('\n% distribution of the first 400,000 Blum integers is:')
        for k, dig in enumerate([1, 3, 7, 9]):
            print(f'{lastdigitsums[k]/4000:>8.5}% end in {dig}')

        break
Output:

Same as Wren example.


Raku

use List::Divvy;
use Lingua::EN::Numbers;

sub is-blum(Int $n ) {
    return False if $n.is-prime;
    my $factor = find-factor($n);
    return True if ($factor.is-prime && ( my $div = $n div $factor ).is-prime && ($div != $factor)
    && ($factor % 4 == 3) && ($div % 4 == 3));
    False;
}

sub find-factor ( Int $n, $constant = 1 ) {
    my $x      = 2;
    my $rho    = 1;
    my $factor = 1;
    while $factor == 1 {
        $rho *= 2;
        my $fixed = $x;
        for ^$rho {
            $x = ( $x * $x + $constant ) % $n;
            $factor = ( $x - $fixed ) gcd $n;
            last if 1 < $factor;
        }
    }
    $factor = find-factor( $n, $constant + 1 ) if $n == $factor;
    $factor;
}

my @blum = lazy (2..Inf).hyper(:1000batch).grep: &is-blum;
say "The first fifty Blum integers:\n" ~
  @blum[^50].batch(10)».fmt("%3d").join: "\n";
say '';

printf "The %9s Blum integer: %9s\n", .&ordinal-digit(:c), comma @blum[$_-1] for 26828, 1e5, 2e5, 3e5, 4e5;

say "\nBreakdown by last digit:";
printf "%d => %%%7.4f:\n", .key, +.value / 4e3 for sort @blum[^4e5].categorize: {.substr(*-1)}
Output:
The first fifty Blum integers:
 21  33  57  69  77  93 129 133 141 161
177 201 209 213 217 237 249 253 301 309
321 329 341 381 393 413 417 437 453 469
473 489 497 501 517 537 553 573 581 589
597 633 649 669 681 713 717 721 737 749

The  26,828th Blum integer:   524,273
The 100,000th Blum integer: 2,075,217
The 200,000th Blum integer: 4,275,533
The 300,000th Blum integer: 6,521,629
The 400,000th Blum integer: 8,802,377

Breakdown by last digit:
1 => %25.0013:
3 => %25.0168:
7 => %24.9973:
9 => %24.9848:

Wren

Library: Wren-math
Library: Wren-fmt
import "./math" for Int
import "./fmt" for Fmt

var inc = [4, 2, 4, 2, 4, 6, 2, 6]

// Assumes n is odd.
var firstPrimeFactor = Fn.new { |n|
    if (n == 1) return 1
    if (n%3 == 0) return 3
    if (n%5 == 0) return 5
    var k = 7
    var i = 0
    while (k * k <= n) {
        if (n%k == 0)  {
            return k
        } else {
            k = k + inc[i]
            i = (i + 1) % 8
        }
    }
    return n
}

var blum = List.filled(50, 0)
var bc = 0
var counts = { 1: 0, 3: 0, 7: 0, 9: 0 }
var i = 1
while (true) {
    var p = firstPrimeFactor.call(i)
    if (p % 4 == 3) {
        var q = i / p
        if (q != p && q % 4 == 3 && Int.isPrime(q)) {
            if (bc < 50) blum[bc] = i
            counts[i % 10] = counts[i % 10] + 1
            bc = bc + 1
            if (bc == 50) {
                System.print("First 50 Blum integers:")
                Fmt.tprint("$3d ", blum, 10)
                System.print()
            } else if (bc == 26828 || bc % 1e5 == 0) {
                Fmt.print("The $,9r Blum integer is: $,9d", bc, i)
                if (bc == 400000) {
                    System.print("\n\% distribution of the first 400,000 Blum integers:")
                    for (i in [1, 3, 7, 9]) {
                        Fmt.print("  $6.3f\% end in $d", counts[i]/4000, i)
                    }
                    return
                }
            }
        }
    }
    i = (i % 5 == 3) ? i + 4 : i + 2
}
Output:
First 50 Blum integers:
 21   33   57   69   77   93  129  133  141  161 
177  201  209  213  217  237  249  253  301  309 
321  329  341  381  393  413  417  437  453  469 
473  489  497  501  517  537  553  573  581  589 
597  633  649  669  681  713  717  721  737  749 

The  26,828th Blum integer is:   524,273
The 100,000th Blum integer is: 2,075,217
The 200,000th Blum integer is: 4,275,533
The 300,000th Blum integer is: 6,521,629
The 400,000th Blum integer is: 8,802,377

% distribution of the first 400,000 Blum integers is:
  25.001% end in 1
  25.017% end in 3
  24.997% end in 7
  24.985% end in 9

XPL0

Simple minded brute force takes 93 seconds on Pi4.

int Prime1;

func Semiprime(N);      \Return 'true' if N is semiprime
int  N, F, C;
[C:= 0;  F:= 2;
repeat  if rem(N/F) = 0 then
                [C:= C+1;
                Prime1:= N;
                N:= N/F;
                ]
        else    F:= F+1;
until   F > N;
return C = 2;
];

int N, C, Prime2;
[Format(4,0);
N:= 3;  C:= 0;
loop    [if Semiprime(N) then
            [if rem(Prime1/4) = 3 then
                [Prime2:= N/Prime1;
                if Prime2 # Prime1 and rem(Prime2/4) = 3 then
                    [C:= C+1;
                    if C <= 50 then
                        [RlOut(0, float(N));
                        if rem(C/10) = 0 then CrLf(0);
                        ];
                    if rem(C/1000)=0 then ChOut(0, ^.);
                    if C >= 26828 then 
                        [Text(0, "^m^jThe 26828th Blum integer is: ");
                        IntOut(0, N);  CrLf(0);
                        quit;
                        ];
                    ];
                ];
        ];
    N:= N+2;
    ];
]
Output:
  21  33  57  69  77  93 129 133 141 161
 177 201 209 213 217 237 249 253 301 309
 321 329 341 381 393 413 417 437 453 469
 473 489 497 501 517 537 553 573 581 589
 597 633 649 669 681 713 717 721 737 749
..........................
The 26828th Blum integer is: 524273