Primes whose sum of digits is 25

From Rosetta Code
Revision as of 08:50, 8 March 2022 by Eliasen (talk | contribs) (Frink)
Primes whose sum of digits is 25 is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Show primes which sum of its decimal digits is   25


Find primes     n     such that     n  <  5000


Stretch goal

Show the count of all such primes that do not contain any zeroes in the range:  

(997   ≤   n   ≤   1,111,111,111,111,111,111,111,111).



11l

Translation of: Nim

<lang 11l>F is_prime(a)

  I a == 2
     R 1B
  I a < 2 | a % 2 == 0
     R 0B
  L(i) (3 .. Int(sqrt(a))).step(2)
     I a % i == 0
        R 0B
  R 1B

F digit_sum(=n)

  V result = 0
  L n != 0
     result += n % 10
     n I/= 10
  R result

V c = 0 L(n) 5000

  I digit_sum(n) == 25 & is_prime(n)
     c++
     print(‘#4’.format(n), end' I c % 6 == 0 {"\n"} E ‘ ’)

print() print(‘Found ’c‘ primes whose sum of digits is 25’)</lang>

Output:
 997 1699 1789 1879 1987 2689
2797 2887 3499 3697 3769 3877
3967 4597 4759 4957 4993 
Found 17 primes whose sum of digits is 25

Action!

<lang Action!>INCLUDE "H6:SIEVE.ACT"

BYTE FUNC SumOfDigits(INT x)

 BYTE s,d
 s=0
 WHILE x#0
 DO
   d=x MOD 10
   s==+d
   x==/10
 OD

RETURN (s)

PROC Main()

 DEFINE MAX="4999"
 BYTE ARRAY primes(MAX+1)
 INT i,count=[0]
 Put(125) PutE() ;clear the screen
 Sieve(primes,MAX+1)
 FOR i=2 TO MAX
 DO
   IF primes(i)=1 AND SumOfDigits(i)=25 THEN
     PrintI(i) Put(32)
     count==+1
   FI
 OD
 PrintF("%E%EThere are %I primes",count)

RETURN</lang>

Output:

Screenshot from Atari 8-bit computer

997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993

There are 17 primes

ALGOL 68

<lang algol68>BEGIN # find primes whose digits sum to 25 #

   # show all sum25 primes below 5000                                           #
   PR read "primes.incl.a68" PR
   []BOOL prime       = PRIMESIEVE 4999;
   INT    p25 count  := 0;
   FOR n TO UPB prime DO
       IF prime[ n ] THEN
           # have a prime, check for a sum25 prime                              #
           INT digit sum := 0;
           INT v         := n;
           WHILE v > 0 DO
               INT digit   = v MOD 10;
               digit sum +:= digit;
               v      OVERAB 10
           OD;
           IF digit sum = 25 THEN
               print( ( " ", whole( n, 0 ) ) );
               p25 count +:= 1
           FI
       FI
   OD;
   print( ( newline, "Found ", whole( p25 count, 0 ), " sum25 primes below ", whole( UPB prime + 1, 0 ), newline ) )

END</lang>

Output:
 997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993
Found 17 sum25 primes below 5000

Stretch Goal

Uses the candidate generating algorithm used by Phix, Go
Uses the Miller Rabin primality test and the pow mod procedure from prelude/pow_mod

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

<lang algol68>BEGIN

   PROC pow mod = (LONG LONG INT b,in e, modulus)LONG LONG INT: (
     LONG LONG INT sq := b, e := in e;
     LONG LONG INT out:= IF ODD e THEN b ELSE 1 FI;
     e OVERAB 2;
     WHILE e /= 0 DO
       sq := sq * sq MOD modulus;
       IF ODD e THEN out := out * sq MOD modulus FI ;
       e OVERAB 2
     OD;
     out
   );
   INT p25 count := 0;
   PROC sum25 = ( LONG LONG INT p, INT rem )VOID:
        FOR i TO IF rem > 9 THEN 9 ELSE rem FI DO
           IF   rem > i THEN
               sum25( ( p * 10 ) + i, rem - i )
           ELIF ODD i AND i /= 5 THEN
               LONG LONG INT n = ( p * 10 ) + i;
               IF n MOD 3 /= 0 THEN
                   BOOL          is prime := TRUE;
                   # miller rabin primality test #
                   INT  k    = 10;
                   LONG LONG INT d := n - 1;
                   INT s := 0;
                   WHILE NOT ODD d DO
                       d OVERAB 2;
                       s +:= 1
                   OD;
                   TO k WHILE is prime DO
                       LONG LONG INT a := 2 + ENTIER (random*(n-3));
                       LONG LONG INT x := pow mod(a, d, n);
                       IF x /= 1 THEN
                           BOOL done := FALSE;
                           TO s WHILE NOT done DO
                               IF   x = n-1
                               THEN done := TRUE
                               ELSE x := x * x MOD n
                               FI
                           OD;
                           IF NOT done THEN IF x /= n-1 THEN is prime := FALSE FI FI
                       FI
                   OD;
                   # END miller rabin primality test #
                   IF is prime THEN
                       # IF ( p25 count + 1 ) MOD 100 = 0 THEN print( ( whole( p25 count + 1, -8 ), whole( n, -30 ), newline ) ) FI; #
                       p25 count +:= 1
                   FI
               FI
           FI
        OD;
   sum25( 0, 25 );
   print( ( "There are ", whole( p25 count, 0 ), " sum25 primes that contain no zeroes", newline ) )

END</lang>

Output:

Note that ALGOL 68G under Windows is fully interpreted so runtime is not of the same order as the Phix and Go samples. Under Linux with optimisation and compilation, it should be faster than under Windows.

There are 1525141 sum25 primes that contain no zeroes

ALGOL W

<lang algolw>begin % find some primes whose digits sum to 25 %

   % sets p( 1 :: n ) to a sieve of primes up to n %
   procedure Eratosthenes ( logical array p( * ) ; integer value n ) ;
   begin
       p( 1 ) := false; p( 2 ) := true;
       for i := 3 step 2 until n do p( i ) := true;
       for i := 4 step 2 until n do p( i ) := false;
       for i := 3 step 2 until truncate( sqrt( n ) ) do begin
           integer ii; ii := i + i;
           if p( i ) then for pr := i * i step ii until n do p( pr ) := false
       end for_i ;
   end Eratosthenes ;
   integer MAX_NUMBER;
   MAX_NUMBER := 4999;
   begin
       logical array prime( 1 :: MAX_NUMBER );
       integer       pCount;
       % sieve the primes to MAX_NUMBER %
       Eratosthenes( prime, MAX_NUMBER );
       % find the primes whose digits sum to 25 %
       pCount := 0;
       for i := 1 until MAX_NUMBER do begin
           if prime( i ) then begin
               integer dSum, v;
               v    := i;
               dSum := 0;
               while v > 0 do begin
                   dSum := dSum + ( v rem 10 );
                   v    := v div 10
               end while_v_gt_0 ;
               if dSum = 25 then begin
                   writeon( i_w := 4, s_w := 0, " ", i );
                   pCount := pCount + 1;
                   if pCount rem 20 = 0 then write()
               end if_prime_pReversed
           end if_prime_i
       end for_i ;
       write( i_w := 1, s_w := 0, "Found ", pCount, " sum25 primes below ", MAX_NUMBER + 1 )
   end

end.</lang>

Output:
  997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993
Found 17 sum25 primes below 5000

AppleScript

Functional

Not fast. This approach takes over 20 seconds here. <lang applescript>use AppleScript version "2.4" use framework "Foundation" use scripting additions



PRIMES WITH DECIMAL DIGITS SUMMING TO 25 -------

-- primes :: [Int] on primes()

   -- A non-finite list of primes.
   
   set ca to current application
   script
       property dict : ca's NSMutableDictionary's alloc's init()
       property n : 2
       on |λ|()
           set xs to dict's objectForKey:(n as string)
           repeat until missing value = xs
               repeat with x in (xs as list)
                   set m to x as number
                   set k to (n + m) as string
                   
                   set ys to (dict's objectForKey:(k))
                   if missing value ≠ ys then
                       set zs to ys
                   else
                       set zs to ca's NSMutableArray's alloc's init()
                   end if
                   
                   (zs's addObject:(m))
                   
                   (dict's setValue:(zs) forKey:(k))
                   (dict's removeObjectForKey:(n as string))
               end repeat
               
               set n to 1 + n
               set xs to (dict's objectForKey:(n as string))
           end repeat
           
           set p to n
           dict's setValue:({n}) forKey:((n * n) as string)
           set n to 1 + n
           set xs to missing value
           return p
       end |λ|
   end script

end primes

-- digitSum :: Int -> Int on digitSum(n)

   -- Sum of the decimal digits of n.
   
   set m to 0
   set cs to characters of (n as string)
   repeat with c in cs
       set m to m + ((id of c) - 48)
   end repeat

end digitSum


TEST -------------------------

on run

   script q
       on |λ|(x)
           5000 > x
       end |λ|
   end script
   
   script p
       on |λ|(n)
           25 = digitSum(n)
       end |λ|
   end script
   
   
   set startTime to current date
   set xs to takeWhile(q, filterGen(p, primes()))
   set elapsedSeconds to ((current date) - startTime) as string
   
   showList(xs)

end run


GENERIC ------------------------

-- filterGen :: (a -> Bool) -> Gen [a] -> Gen [a] on filterGen(p, gen)

   -- Non-finite stream of values which are 
   -- drawn from gen, and satisfy p
   script
       property mp : mReturn(p)'s |λ|
       on |λ|()
           set v to gen's |λ|()
           repeat until mp(v)
               set v to gen's |λ|()
           end repeat
           return v
       end |λ|
   end script

end filterGen


-- intercalateS :: String -> [String] -> String on intercalate(delim, xs)

   set {dlm, my text item delimiters} to ¬
       {my text item delimiters, delim}
   set s to xs as text
   set my text item delimiters to dlm
   s

end intercalate


-- map :: (a -> b) -> [a] -> [b] on map(f, xs)

   -- The list obtained by applying f
   -- to each element of xs.
   tell mReturn(f)
       set lng to length of xs
       set lst to {}
       repeat with i from 1 to lng
           set end of lst to |λ|(item i of xs, i, xs)
       end repeat
       return lst
   end tell

end map


-- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f)

   -- 2nd class handler function lifted into 1st class script wrapper. 
   if script is class of f then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn


-- showList :: [a] -> String on showList(xs)

   "[" & intercalate(",", map(my str, xs)) & "]"

end showList


-- str :: a -> String on str(x)

   x as string

end str


-- takeWhile :: (a -> Bool) -> Gen [a] -> [a] on takeWhile(p, xs)

   set ys to {}
   set v to |λ|() of xs
   tell mReturn(p)
       repeat while (its |λ|(v))
           set end of ys to v
           set v to xs's |λ|()
       end repeat
   end tell
   return ys

end takeWhile</lang>

Output:
[997,1699,1789,1879,1987,2689,2797,2887,3499,3697,3769,3877,3967,4597,4759,4957,4993]

Idiomatic

Primes with silly properties are getting a bit tedious. But hey. This takes just under 0.02 seconds.

<lang applescript>on sieveOfEratosthenes(limit)

   script o
       property numberList : {missing value}
   end script
   
   repeat with n from 2 to limit
       set end of o's numberList to n
   end repeat
   
   repeat with n from 2 to (limit ^ 0.5) div 1
       if (item n of o's numberList is n) then
           repeat with multiple from n * n to limit by n
               set item multiple of o's numberList to missing value
           end repeat
       end if
   end repeat
   
   return o's numberList's numbers

end sieveOfEratosthenes

on sumOfDigits(n) -- n assumed to be a positive decimal integer.

   set sum to n mod 10
   set n to n div 10
   repeat until (n = 0)
       set sum to sum + n mod 10
       set n to n div 10
   end repeat
   
   return sum

end sumOfDigits

on numbersWhoseDigitsSumTo(numList, targetSum)

   script o
       property numberList : numList
       property output : {}
   end script
   
   repeat with n in o's numberList
       if (sumOfDigits(n) = targetSum) then set end of o's output to n's contents
   end repeat
   
   return o's output

end numbersWhoseDigitsSumTo

-- Task code: return numbersWhoseDigitsSumTo(sieveOfEratosthenes(4999), 25)</lang>

Output:

<lang applescript>{997, 1699, 1789, 1879, 1987, 2689, 2797, 2887, 3499, 3697, 3769, 3877, 3967, 4597, 4759, 4957, 4993}</lang>

Arturo

<lang rebol>primes: select 1..5000 => prime?

loop split.every: 3 select primes 'p [25 = sum digits p] 'a ->

   print map a => [pad to :string & 5]</lang>
Output:
  997  1699  1789 
 1879  1987  2689 
 2797  2887  3499 
 3697  3769  3877 
 3967  4597  4759 
 4957  4993

AWK

<lang AWK>

  1. syntax: GAWK -f PRIMES_WHICH_SUM_OF_DIGITS_IS_25.AWK

BEGIN {

   start = 1
   stop = 5000
   for (i=start; i<=stop; i++) {
     if (is_prime(i)) {
       sum = 0
       for (j=1; j<=length(i); j++) {
         sum += substr(i,j,1)
       }
       if (sum == 25) {
         printf("%d ",i)
         count++
       }
     }
   }
   printf("\nPrime numbers %d-%d whose digits sum to 25: %d\n",start,stop,count)
   exit(0)

} function is_prime(x, i) {

   if (x <= 1) {
     return(0)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} </lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993
Prime numbers 1-5000 whose digits sum to 25: 17

BASIC

BASIC256

Translation of: FreeBASIC

<lang BASIC256> function isprime(num) for i = 2 to int(sqr(num)) if (num mod i = 0) then return False next i return True end function

function digit_sum(num) sum25 = 0 for j = 1 to length(num) sum25 += int(mid(string(num),j,1)) next j return sum25 end function

inicio = 1: final = 5000 total = 0 for i = inicio to final if isprime(i) and (digit_sum(i) = 25) then total += 1 print i; " "; end if next i print chr(13) + chr(13) print "Se encontraron "; total; " primos sum25 por debajo de "; final end </lang>

Output:
Igual que la entrada de FreeBASIC.


C

<lang c>#include <stdbool.h>

  1. include <stdio.h>

bool is_prime(int n) {

   int i = 5;
   if (n < 2) {
       return false;
   }
   if (n % 2 == 0) {
       return n == 2;
   }
   if (n % 3 == 0) {
       return n == 3;
   }
   while (i * i <= n) {
       if (n % i == 0) {
           return false;
       }
       i += 2;
       if (n % i == 0) {
           return false;
       }
       i += 4;
   }
   return true;

}

int digit_sum(int n) {

   int sum = 0;
   while (n > 0) {
       int rem = n % 10;
       n /= 10;
       sum += rem;
   }
   return sum;

}

int main() {

   int n;
   for (n = 2; n < 5000; n++) {
       if (is_prime(n) && digit_sum(n) == 25) {
           printf("%d ", n);
       }
   }
   return 0;

}</lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993

C++

Library: GMP

Stretch goal solved the same way as Phix and Go. <lang cpp>#include <algorithm>

  1. include <chrono>
  2. include <iomanip>
  3. include <iostream>
  4. include <string>
  1. include <gmpxx.h>

bool is_probably_prime(const mpz_class& n) {

   return mpz_probab_prime_p(n.get_mpz_t(), 3) != 0;

}

bool is_prime(int n) {

   if (n < 2)
       return false;
   if (n % 2 == 0)
       return n == 2;
   if (n % 3 == 0)
       return n == 3;
   for (int p = 5; p * p <= n; p += 4) {
       if (n % p == 0)
           return false;
       p += 2;
       if (n % p == 0)
           return false;
   }
   return true;

}

int digit_sum(int n) {

   int sum = 0;
   for (; n > 0; n /= 10)
       sum += n % 10;
   return sum;

}

int count_all(const std::string& str, int rem) {

   int count = 0;
   if (rem == 0) {
       switch (str.back()) {
       case '1':
       case '3':
       case '7':
       case '9':
           if (is_probably_prime(mpz_class(str)))
               ++count;
           break;
       default:
           break;
       }
   } else {
       for (int i = 1; i <= std::min(9, rem); ++i)
           count += count_all(str + char('0' + i), rem - i);
   }
   return count;

}

int main() {

   std::cout.imbue(std::locale(""));
   const int limit = 5000;
   std::cout << "Primes < " << limit << " whose digits sum to 25:\n";
   int count = 0;
   for (int p = 1; p < limit; ++p) {
       if (digit_sum(p) == 25 && is_prime(p)) {
           ++count;
           std::cout << std::setw(6) << p << (count % 10 == 0 ? '\n' : ' ');
       }
   }
   std::cout << '\n';
   auto start = std::chrono::steady_clock::now();
   count = count_all("", 25);
   auto end = std::chrono::steady_clock::now();
   std::cout << "\nThere are " << count
             << " primes whose digits sum to 25 and include no zeros.\n";
   std::cout << "Time taken: "
             << std::chrono::duration<double>(end - start).count() << "s\n";
   return 0;

}</lang>

Output:
//https://tio.run/#cpp-gcc -lgmp -O3
Primes < 5,000 whose digits sum to 25:
   997  1,699  1,789  1,879  1,987  2,689  2,797  2,887  3,499  3,697
 3,769  3,877  3,967  4,597  4,759  4,957  4,993 

There are 1,525,141 primes whose digits sum to 25 and include no zeros.
Time taken: 10.6088s
.....
Real time: 11.214 s
User time: 11.075 s
Sys. time: 0.082 s
CPU share: 99.50 %
Exit code: 0

D

Translation of: C

<lang d>import std.bigint; import std.stdio;

bool isPrime(BigInt n) {

   if (n < 2) {
       return false;
   }
   if (n % 2 == 0) {
       return n == 2;
   }
   if (n % 3 == 0) {
       return n == 3;
   }
   auto i = BigInt(5);
   while (i * i <= n) {
       if (n % i == 0){
           return false;
       }
       i += 2;
       if (n % i == 0){
           return false;
       }
       i += 4;
   }
   return true;

}

int digitSum(BigInt n) {

   int result;
   while (n > 0) {
       result += n % 10;
       n /= 10;
   }
   return result;

}

void main() {

   for (auto n = BigInt(2); n < 5_000; n++) {
       if (n.isPrime && n.digitSum == 25) {
           write(n, ' ');
       }
   }
   writeln;

}</lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993 

Delphi

Library: PrimTrial
Translation of: Ring

<lang Delphi> program Primes_which_sum_of_digits_is_25;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,
 PrimTrial;

var

 row: Integer = 0;
 limit1: Integer = 25;
 limit2: Integer = 5000;

function Sum25(n: Integer): boolean; var

 sum: Integer;
 str: string;
 c: char;

begin

 sum := 0;
 str := n.ToString;
 for c in str do
   inc(sum, strToInt(c));
 Result := sum = limit1;

end;

begin

 for var n := 1 to limit2-1 do
 begin
   if isPrime(n) and sum25(n) then
   begin
     inc(row);
     write(n: 4, ' ');
     if (row mod 5) = 0 then
       writeln;
   end;
 end;
 readln;

end.</lang>

Output:
 997 1699 1789 1879 1987
2689 2797 2887 3499 3697
3769 3877 3967 4597 4759
4957 4993

F#

<lang fsharp> // Primes to 5000 who's sum of digits is 25. Nigel Galloway: April 1st., 2021 let rec fN g=function n when n<10->n+g=25 |n->fN(g+n%10)(n/10) primes32()|>Seq.takeWhile((>)5000)|>Seq.filter fN|>Seq.iter(printf "%d "); printfn "" </lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993

Factor

Works with: Factor version 0.99 2021-02-05

<lang factor>USING: kernel lists lists.lazy math math.primes.lists prettyprint ;

digit-sum ( n -- sum )
   0 swap [ 10 /mod rot + swap ] until-zero ;
lprimes25 ( -- list ) lprimes [ digit-sum 25 = ] lfilter ;

lprimes25 [ 5,000 < ] lwhile [ . ] leach</lang>

Output:
997
1699
1789
1879
1987
2689
2797
2887
3499
3697
3769
3877
3967
4597
4759
4957
4993

Forth

Works with: Gforth

<lang forth>: prime? ( n -- ? ) here + c@ 0= ;

notprime! ( n -- ) here + 1 swap c! ;
prime_sieve { n -- }
 here n erase
 0 notprime!
 1 notprime!
 n 4 > if
   n 4 do i notprime! 2 +loop
 then
 3
 begin
   dup dup * n <
 while
   dup prime? if
     n over dup * do
       i notprime!
     dup 2* +loop
   then
   2 +
 repeat
 drop ;
digit_sum ( u -- u )
 dup 10 < if exit then
 10 /mod recurse + ;
prime25? { p -- ? }
 p prime? if
   p digit_sum 25 =
 else
   false
 then ;  
.prime25 { n -- }
 ." Primes < " n . ." whose digits sum to 25:" cr
 n prime_sieve
 0
 n 0 do
   i prime25? if
     i 5 .r
     1+ dup 10 mod 0= if cr then
   then
 loop
 cr ." Count: " . cr ;

5000 .prime25 bye</lang>

Output:
Primes < 5000 whose digits sum to 25:
  997 1699 1789 1879 1987 2689 2797 2887 3499 3697
 3769 3877 3967 4597 4759 4957 4993
Count: 17 


FreeBASIC

Translation of: AWK

<lang freebasic> Function isprime(num As Ulongint) As Boolean

   For i As Integer = 2 To Sqr(num)
       If (num Mod i = 0) Then Return False
   Next i
   Return True 

End Function

Function digit_sum(num As Integer) As Integer

   Dim As Integer sum25 = 0
   For j As Integer = 1 To Len(num)
       sum25 += Val(Mid(Str(num),j,1))
   Next j
   Return sum25

End Function

Dim As Integer inicio = 1, final = 5000, total = 0 For i As Integer = inicio To final

   If (isprime(i)) And (digit_sum(i) = 25) Then
       total += 1
       Print Using " ####"; i;
       If (total Mod 9) = 0 Then Print
   End If

Next i Print !"\n\nSe encontraron"; total; " primos sum25 por debajo de"; finalSleep </lang>

Output:
  997 1699 1789 1879 1987 2689 2797 2887 3499
 3697 3769 3877 3967 4597 4759 4957 4993

Se encontraron 17 primos sum25 por debajo de 5000

Frink

<lang frink>println[select[primes[2,4999], {|x| sum[integerDigits[x]] == 25}]]</lang>

Output:
[997, 1699, 1789, 1879, 1987, 2689, 2797, 2887, 3499, 3697, 3769, 3877, 3967, 4597, 4759, 4957, 4993]

Go

This uses the Phix routine for the stretch goal though I've had to plug in a GMP wrapper to better the Phix time. Using Go's native big.Int, the time was slightly slower than Phix at 1 minute 28 seconds. <lang go>package main

import (

   "fmt"
   big "github.com/ncw/gmp"
   "time"

)

// for small numbers func sieve(limit int) []bool {

   limit++
   // True denotes composite, false denotes prime.
   c := make([]bool, limit) // all false by default
   c[0] = true
   c[1] = true
   // no need to bother with even numbers over 2 for this task
   p := 3 // Start from 3.
   for {
       p2 := p * p
       if p2 >= limit {
           break
       }
       for i := p2; i < limit; i += 2 * p {
           c[i] = true
       }
       for {
           p += 2
           if !c[p] {
               break
           }
       }
   }
   return c

}

func sumDigits(n int) int {

   sum := 0
   for n > 0 {
       sum += n % 10
       n /= 10
   }
   return sum

}

func min(a, b int) int {

   if a < b {
       return a
   }
   return b

}

// for big numbers func countAll(p string, rem, res int) int {

   if rem == 0 {
       b := p[len(p)-1]
       if b == '1' || b == '3' || b == '7' || b == '9' {
           z := new(big.Int)
           z.SetString(p, 10)
           if z.ProbablyPrime(1) {
               res++
           }
       }
   } else {
       for i := 1; i <= min(9, rem); i++ {
           res = countAll(p+fmt.Sprintf("%d", i), rem-i, res)
       }
   }
   return res

}

func commatize(n int) string {

   s := fmt.Sprintf("%d", n)
   if n < 0 {
       s = s[1:]
   }
   le := len(s)
   for i := le - 3; i >= 1; i -= 3 {
       s = s[0:i] + "," + s[i:]
   }
   if n >= 0 {
       return s
   }
   return "-" + s

}

func main() {

   start := time.Now()
   c := sieve(4999)
   var primes25 []int
   for i := 997; i < 5000; i += 2 {
       if !c[i] && sumDigits(i) == 25 {
           primes25 = append(primes25, i)
       }
   }
   fmt.Println("The", len(primes25), "primes under 5,000 whose digits sum to 25 are:")
   fmt.Println(primes25)
   n := countAll("", 25, 0)
   fmt.Println("\nThere are", commatize(n), "primes whose digits sum to 25 and include no zeros.")
   fmt.Printf("\nTook %s\n", time.Since(start))

}</lang>

Output:
The 17 primes under 5,000 whose digits sum to 25 are:
[997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993]

There are 1,525,141 primes whose digits sum to 25 and include no zeros.

Took 25.300758564s

Haskell

<lang haskell>import Data.Bifunctor (second) import Data.List (replicate) import Data.List.Split (chunksOf) import Data.Numbers.Primes (primes)


PRIMES WITH DECIMAL DIGITS SUMMING TO 25 -------

matchingPrimes :: [Int] matchingPrimes =

 takeWhile
   (< 5000)
   [n | n <- primes, 25 == decimalDigitSum n]

decimalDigitSum :: Int -> Int decimalDigitSum n =

 snd $
   until
     ((0 ==) . fst)
     (\(n, x) -> second (+ x) $ quotRem n 10)
     (n, 0)

TEST -------------------------

main :: IO () main = do

 let w = length (show (last matchingPrimes))
 mapM_ putStrLn $
   ( show (length matchingPrimes)
       <> " primes (< 5000) with decimal digits totalling 25:\n"
   ) :
   ( unwords
       <$> chunksOf
         4
         (justifyRight w ' ' . show <$> matchingPrimes)
   )

justifyRight :: Int -> Char -> String -> String justifyRight n c = (drop . length) <*> (replicate n c <>)</lang>

Output:
17 primes (< 5000) with decimal digits totalling 25:

 997 1699 1789 1879
1987 2689 2797 2887
3499 3697 3769 3877
3967 4597 4759 4957
4993

Java

Translation of: Kotlin

<lang java>import java.math.BigInteger;

public class PrimeSum {

   private static int digitSum(BigInteger bi) {
       int sum = 0;
       while (bi.compareTo(BigInteger.ZERO) > 0) {
           BigInteger[] dr = bi.divideAndRemainder(BigInteger.TEN);
           sum += dr[1].intValue();
           bi = dr[0];
       }
       return sum;
   }
   public static void main(String[] args) {
       BigInteger fiveK = BigInteger.valueOf(5_000);
       BigInteger bi = BigInteger.valueOf(2);
       while (bi.compareTo(fiveK) < 0) {
           if (digitSum(bi) == 25) {
               System.out.print(bi);
               System.out.print("  ");
           }
           bi = bi.nextProbablePrime();
       }
       System.out.println();
   }

}</lang>

Output:
997  1699  1789  1879  1987  2689  2797  2887  3499  3697  3769  3877  3967  4597  4759  4957  4993  

JavaScript

<lang javascript>(() => {

   "use strict";
   // ---- PRIMES WITH DECIMAL DIGITS SUMMING TO 25 -----
   // digitSum :: Int -> Int
   const digitSum = n =>
       `${n}`.split("").reduce(
           (a, c) => a + (c.codePointAt(0) - 48),
           0
       );


   // primes :: [Int]
   const primes = function* () {
       // Non finite sequence of prime numbers.
       const dct = {};
       let n = 2;
       while (true) {
           if (n in dct) {
               dct[n].forEach(p => {
                   const np = n + p;
                   dct[np] = (dct[np] || []).concat(p);
                   delete dct[n];
               });
           } else {
               yield n;
               dct[n * n] = [n];
           }
           n = 1 + n;
       }
   };


   // ---------------------- TEST -----------------------
   // main :: IO ()
   const main = () =>
       unlines(
           chunksOf(5)(
               takeWhileGen(n => 5000 > n)(
                   filterGen(n => 25 === digitSum(n))(
                       primes()
                   )
               ).map(str)
           ).map(unwords)
       );


   // --------------------- GENERIC ---------------------
   // chunksOf :: Int -> [a] -> a
   const chunksOf = n => {
       // xs split into sublists of length n.
       // The last sublist will be short if n
       // does not evenly divide the length of xs .
       const go = xs => {
           const chunk = xs.slice(0, n);
           return 0 < chunk.length ? (
               [chunk].concat(
                   go(xs.slice(n))
               )
           ) : [];
       };
       return go;
   };


   // filterGen :: (a -> Bool) -> Gen [a] -> Gen [a]
   const filterGen = p => xs => {
       // Non-finite stream of values which are
       // drawn from gen, and satisfy p
       const go = function* () {
           let x = xs.next();
           while (!x.done) {
               const v = x.value;
               if (p(v)) {
                   yield v;
               }
               x = xs.next();
           }
       };
       return go(xs);
   };


   // str :: a -> String
   const str = x =>
       x.toString();


   // takeWhileGen :: (a -> Bool) -> Gen [a] -> [a]
   const takeWhileGen = p =>
       // Values drawn from xs until p matches.
       xs => {
           const ys = [];
           let
               nxt = xs.next(),
               v = nxt.value;
           while (!nxt.done && p(v)) {
               ys.push(v);
               nxt = xs.next();
               v = nxt.value;
           }
           return ys;
       };


   // unlines :: [String] -> String
   const unlines = xs =>
       // A single string formed by the intercalation
       // of a list of strings with the newline character.
       xs.join("\n");


   // unwords :: [String] -> String
   const unwords = xs =>
       // A space-separated string derived
       // from a list of words.
       xs.join(" ");
   return main();

})();</lang>

997 1699 1789 1879 1987
2689 2797 2887 3499 3697
3769 3877 3967 4597 4759
4957 4993

jq

Works with jq
Works with gojq, the Go implementation of jq

The stretch goal is currently beyond the practical capabilities of both the C and Go-based implementations of jq, so only a simple solution to the primary task is shown here.

A suitable definition of `is_prime` may be found at Erdős-primes#jq and is therefore not repeated here.

Preliminaries <lang jq>def digits: tostring | explode | map( [.]|implode|tonumber);

def emit_until(cond; stream): label $out | stream | if cond then break $out else . end;</lang> The Task <lang jq># Output: primes whose decimal representation has no 0s and whose sum of digits is $sum > 2 def task($sum):

 # Input: array of digits
 def nozeros: select(all(.[]; . != 0));
 range(3;infinite;2)
 | select(digits | (.[-1] != 5 and nozeros and (add == $sum)) )
 | select(is_prime);
    

emit_until(. >= 5000; task(25) )</lang>

Output:
997
1699
1789
1879
1987
2689
2797
2887
3499
3697
3769
3877
3967
4597
4759
4957
4993

Julia

<lang julia>using Primes

let

   pmask, pcount = primesmask(1, 5000), 0
   issum25prime(n) = pmask[n] && sum(digits(n)) == 25
   println("Primes with digits summing to 25 between 0 and 5000:")
   for n in 1:4999
       if issum25prime(n)
           pcount += 1
           print(rpad(n, 5))
       end
   end
   println("\nTotal found: $pcount")

end

</lang>

Output:
Primes with digits summing to 25 between 0 and 5000:
997  1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993 
Total found: 17

Stretch goal

Translation of: Phix

<lang julia>using Primes, Formatting

function sum25(p::String, rm, res)

   if rm == 0
       if p[end] in "1379" && isprime(parse(Int128, p))
           res += 1
       end
   else
       for i in 1:min(rm, 9)
           res = sum25(p * string(i), rm - i, res)
       end
   end
   return res

end

@time println("There are ", format(sum25("", 25, 0), commas=true),

   " primes whose digits sum to 25 without any zero digits.")

</lang>

Output:
There are 1,525,141 primes whose digits sum to 25 without any zero digits.
 29.377893 seconds (100.61 M allocations: 4.052 GiB, 0.55% gc time)

Kotlin

<lang scala>import java.math.BigInteger

fun digitSum(bi: BigInteger): Int {

   var bi2 = bi
   var sum = 0
   while (bi2 > BigInteger.ZERO) {
       val dr = bi2.divideAndRemainder(BigInteger.TEN)
       sum += dr[1].toInt()
       bi2 = dr[0]
   }
   return sum

}

fun main() {

   val fiveK = BigInteger.valueOf(5_000)
   var bi = BigInteger.valueOf(2)
   while (bi < fiveK) {
       if (digitSum(bi) == 25) {
           print(bi)
           print("  ")
       }
       bi = bi.nextProbablePrime()
   }
   println()

}</lang>

Output:
997  1699  1789  1879  1987  2689  2797  2887  3499  3697  3769  3877  3967  4597  4759  4957  4993  

Ksh

<lang ksh>

  1. !/bin/ksh
  1. Primes which sum of digits is 25
  1. # Variables:

integer MAXN=5000 SUM=25

  1. # Functions:
  2. # Function _sumdigits(n, sum) - return 1 if sum of n's digits = sum

function _sumdigits { typeset _n ; integer _n=$1 typeset _sum ; integer _sum=$2 typeset _i _dsum ; integer _i _dsum=0

for ((_i=0; _i<${#_n}; _i++)); do (( _dsum+=${_n:_i:1} )) done return $(( _dsum == _sum )) }

  1. # Function _isprime(n) return 1 for prime, 0 for not prime

function _isprime { typeset _n ; integer _n=$1 typeset _i ; integer _i

(( _n < 2 )) && return 0 for (( _i=2 ; _i*_i<=_n ; _i++ )); do (( ! ( _n % _i ) )) && return 0 done return 1 }

######
  1. main #
######

for ((i=3; i<$MAXN; i++)); do _isprime ${i} || _sumdigits ${i} $SUM || printf "%d " ${i} done echo </lang>

Output:

997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993 

Mathematica/Wolfram Language

<lang Mathematica>Select[Prime[Range@PrimePi[4999]], IntegerDigits /* Total /* EqualTo[25]]</lang>

Output:
{997, 1699, 1789, 1879, 1987, 2689, 2797, 2887, 3499, 3697, 3769, 3877, 3967, 4597, 4759, 4957, 4993}

Nanoquery

<lang Nanoquery>// find primes using the sieve of eratosthenes // https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Pseudocode def find_primes(upper_bound)

   a = {true} * (upper_bound + 1)
   for i in range(2, int(sqrt(upper_bound)))
       if a[i]
           for j in range(i ^ 2, upper_bound, i)
               a[j] = false
           end for
       end if
   end for
   primes = {}
   for i in range(2, len(a) - 1)
       if a[i]
           primes.append(i)
       end if
   end for
   return primes

end find_primes

def sum_digits(num)

   digits = str(num)
   digit_sum = 0
   for i in range(0, len(digits) - 1)
       digit_sum += int(digits[i])
   end for
   return digit_sum

end sum_digits

primes_to_check = find_primes(5000) for prime in primes_to_check

   if sum_digits(prime) = 25
       print prime + " "
   end if

end for println</lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993 

Nim

Task

<lang Nim>import strutils, sugar

func isPrime(n: Natural): bool =

 if n < 2: return false
 if n mod 2 == 0: return n == 2
 if n mod 3 == 0: return n == 3
 var d = 5
 while d * d <= n:
   if n mod d == 0: return false
   inc d, 2
   if n mod d == 0: return false
   inc d, 4
 result = true

func digitSum(n: Natural): int =

 var n = n
 while n != 0:
   result += n mod 10
   n = n div 10

let result = collect(newSeq):

              for n in countup(3, 5000, 2):
                if digitSum(n) == 25 and n.isPrime: n

for i, n in result:

 stdout.write ($n).align(4), if (i + 1) mod 6 == 0: '\n' else: ' '

echo()</lang>

Output:
 997 1699 1789 1879 1987 2689
2797 2887 3499 3697 3769 3877
3967 4597 4759 4957 4993 

Stretch goal

Translation of: Julia
Library: bignum

<lang Nim>import std/monotimes, strformat, strutils import bignum

func sum25(p: string; rm, res: Natural): Natural =

 result = res
 if rm == 0:
   if p[^1] in "1379" and probablyPrime(newInt(p), 25) != 0:
     inc result
 else:
   for i in 1..min(rm, 9):
     result = sum25(p & chr(i + ord('0')), rm - i, result)

let t0 = getMonoTime() let count = $sum25("", 25, 0) echo &"There are {count.insertSep()} primes whose digits sum to 25 without any zero digits." echo "\nExecution time: ", getMonoTime() - t0</lang>

Output:
There are 1_525_141 primes whose digits sum to 25 without any zero digits.

Execution time: (seconds: 12, nanosecond: 182051288)

Pascal

added only strechted goal.Generating the combination of the digits for the numbers and afterwards generating the Permutations with some identical elements
Now seting one digit out of 1,3,7,9 to the end and permute the rest of the digits in front.
So much less numbers have to be tested.10.5e6 instead of 16.4e6.Generating of the numbers is reduced in the same ratio. <lang pascal>program Perm5aus8; //formerly roborally take 5 cards out of 8 {$IFDEF FPC}

 {$mode Delphi}
 {$Optimization ON,All}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils,
 gmp;

const

 cTotalSum = 31;
 cMaxCardsOnDeck = cTotalSum;//8
 CMaxCardsUsed   = cTotalSum;//5

type

 tDeckIndex     = 0..cMaxCardsOnDeck-1;
 tSequenceIndex = 0..CMaxCardsUsed-1;
 tDiffCardCount = 0..9;
 tSetElem     = record
                     Elem  : tDiffCardCount;
                     Elemcount : tDeckIndex;
                end;
 tSet          =  record
                     RemSet : array [low(tDiffCardCount)..High(tDiffCardCount)] of tSetElem;
                     MaxUsedIdx,
                     TotElemCnt   : byte;
                   end;
 tRemainSet      = array [low(tSequenceIndex)..High(tSequenceIndex)+1] of tSet;
 tCardSequence   = array [low(tSequenceIndex)..High(tSequenceIndex)] of tDiffCardCount;

var

 ManifoldOfDigit : array[tDiffCardCount] of Byte;
 TotalUsedDigits : array[tDeckIndex] of Byte;
 RemainSets     : tRemainSet;
 CardString    : AnsiString;
 PrimeCount : integer;
 PermCount  : integer;

//***************************************************************************** var

 CS : pchar;
 z : mpz_t;

procedure SetInit(var ioSet:tSet); var

 i : integer;

begin

 with ioSet do
   begin
   MaxUsedIdx := 0;
   For i := Low(tDiffCardCount) to High(tDiffCardCount) do
     with RemSet[i] do
       begin
       ElemCount := 0;
       Elem      := 0;
       end;
   end;

end;

procedure CheckPrime;inline; begin

 mpz_set_str(z,CS,10);
 inc(PrimeCount,ORD(mpz_probab_prime_p(z,3)>0));

end;

procedure Permute(depth,MaxCardsUsed:NativeInt); var

 pSetElem : ^tSetElem;
 i : NativeInt;

begin

 i := 0;
 pSetElem := @RemainSets[depth].RemSet[i];
 repeat
   if pSetElem^.Elemcount <> 0 then begin
     //take one of the same elements of the stack
     //insert in result here string
     CS[depth] := chr(pSetElem^.Elem+Ord('0'));
      //done one permutation
     IF depth = MaxCardsUsed then
     begin
       inc(permCount);
       CheckPrime;
     end
     else
     begin
       dec(pSetElem^.ElemCount);
       RemainSets[depth+1]:= RemainSets[depth];
       Permute(depth+1,MaxCardsUsed);
       //re-insert that element
       inc(pSetElem^.ElemCount);
     end;
   end;
   //move on to the next digit
   inc(pSetElem);
   inc(i);
 until i >=RemainSets[depth].MaxUsedIdx;

end;

procedure Check(n:nativeInt); var

 i,dgtCnt,cnt,dgtIdx : NativeInt;

Begin

 SetInit(RemainSets[0]);
 dgtCnt := 0;
 dgtIdx := 0;
 //creating the start set.
 with RemainSets[0] do
 Begin
   For i in tDiffCardCount do
   Begin
     cnt := ManifoldOfDigit[i];
     if cnt > 0 then
     Begin
       with RemSet[dgtIdx] do
       Begin
         Elemcount := cnt;
         Elem  := i;
       end;
       inc(dgtCnt,cnt);
       inc(dgtIdx);
     end;
   end;
   TotElemCnt := dgtCnt;
   MaxUsedIdx := dgtIdx;
   CS := @CardString[1];
   //Check only useful end-digits
   For i := 0 to dgtIdx-1 do
   Begin
     if RemSet[i].Elem in[1,3,7,9]then
     Begin
       CS[dgtCnt-1] := chr(RemSet[i].Elem+Ord('0'));
       CS[dgtCnt] := #00;
       dec(RemSet[i].ElemCount);
       permute(0,dgtCnt-2);
       inc(RemSet[i].ElemCount);
     end;
   end;
 end;

end;

procedure AppendToSum(n,dgt,remsum:NativeInt); var

 i: NativeInt;

begin

 inc(ManifoldOfDigit[dgt]);
 IF remsum > 0 then
   For i := dgt to 9 do
     AppendToSum(n+1,i,remsum-i)
 else
 Begin
   if remsum = 0 then
   Begin
     Check(n);
     //n is 0 based PrimeCount combinations of length n
     inc(TotalUsedDigits[n+1]);
   end;
 end;
 dec(ManifoldOfDigit[dgt]);

end;

procedure CheckAll(SumGoal:NativeInt); var

 i :NativeInt;

begin

 setlength(CardString,SumGoal);
 IF sumGoal>cTotalSum then
   EXIT;
 fillchar(ManifoldOfDigit[0],SizeOf(ManifoldOfDigit),#0);
 permcount:=0;
 PrimeCount := 0;
 For i := 1 to 9 do
   AppendToSum(0,i,SumGoal-i);
 writeln('PrimeCount of generated numbers with digits sum of ',SumGoal,' are ',permcount);
 writeln('Propably primes ',PrimeCount);
 writeln;

end; var

 T1,T0 : Int64;
 SumGoal: NativeInt;

BEGIN

 writeln('GMP-Version ',gmp.version);
 mpz_init_set_ui(z,0);
 T0 := GetTickCount64;
 For SumGoal := 25 to 25 do
 Begin
   CheckAll(SumGoal);
   T1 := GetTickCount64;Writeln((T1-T0)/1000:7:3,' s');
   T0 := T1;
 end;
 mpz_clear(z);

END. </lang>

Output:
//Runnning on TIO.RUN
GMP-Version 6.1.2
PrimeCount of generated numbers with digits sum of 25 are 10488498
Propably primes 1525141

  9.932 s
....
Free Pascal Compiler version 3.0.4 [2018/07/13] for x86_64
Copyright (c) 1993-2017 by Florian Klaempfl and others
Target OS: Linux for x86-64
Compiling .code.tio.pp
Linking .bin.tio
/usr/bin/ld: warning: link.res contains output sections; did you forget -T?
204 lines compiled, 0.2 sec

Real time: 10.135 s
User time: 10.027 s
Sys. time: 0.052 s
CPU share: 99.45 %
Exit code: 0

Perl

Library: ntheory

<lang perl>use strict; use warnings; use feature 'say'; use List::Util 'sum'; use ntheory 'is_prime';

my($limit, @p25) = 5000; is_prime($_) and 25 == sum(split , $_) and push @p25, $_ for 1..$limit; say @p25 . " primes < $limit with digital sum 25:\n" . join ' ', @p25; </lang>

Output:
17 primes < 5000 with digital sum 25:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993

Phix

function sum25(integer p) return sum(sq_sub(sprint(p),'0'))=25 end function
sequence res = filter(get_primes_le(5000),sum25)
string r = join(shorten(apply(res,sprint),"",4))
printf(1,"%d sum25 primes less than 5000 found: %s\n",{length(res),r})
Output:
17 sum25 primes less than 5000 found: 997 1699 1789 1879 ... 4597 4759 4957 4993

Stretch goal

Library: Phix/mpfr
without js
include mpfr.e
atom t0 = time(), t1 = time()+1
mpz pz = mpz_init(0)

function sum25(string p, integer rem, res=0)
    if rem=0 then
        if find(p[$],"1379") then -- (saves 13s)
            mpz_set_str(pz,p)
            if mpz_prime(pz) then
                res += 1
                if platform()!=JS and time()>t1 then
                    progress("%d, %s...",{res,p})
                    t1 = time()+1
                end if
            end if
        end if
    else
        for i=1 to min(rem,9) do
            res = sum25(p&'0'+i,rem-i,res)
        end for
    end if
    return res
end function
 
printf(1,"There are %,d sum25 primes that contain no zeroes\n",sum25("",25))
?elapsed(time()-t0)
Output:
There are 1,525,141 sum25 primes that contain no zeroes
"1 minute and 27s"

Note this works under pwa/p2js but you would get to stare at a blank screen for 8½ minutes with 100% cpu, hence it has been marked "without js".

Python

<lang python>Primes with a decimal digit sum of 25

from itertools import takewhile


  1. primesWithGivenDigitSum :: Int -> Int -> [Int]

def primesWithGivenDigitSum(below, n):

   Primes below a given value with
      decimal digits sums equal to n.
   
   return list(
       takewhile(
           lambda x: below > x,
           (
               x for x in primes()
               if n == sum(int(c) for c in str(x))
           )
       )
   )


  1. ------------------------- TEST -------------------------
  2. main :: IO ()

def main():

   Test
   matches = primesWithGivenDigitSum(5000, 25)
   print(
       str(len(matches)) + (
           ' primes below 5000 with a decimal digit sum of 25:\n'
       )
   )
   print(
       '\n'.join([
           ' '.join([str(x).rjust(4, ' ') for x in xs])
           for xs in chunksOf(4)(matches)
       ])
   )


  1. ----------------------- GENERIC ------------------------
  1. chunksOf :: Int -> [a] -> a

def chunksOf(n):

   A series of lists of length n, subdividing the
      contents of xs. Where the length of xs is not evenly
      divible, the final list will be shorter than n.
   
   def go(xs):
       return (
           xs[i:n + i] for i in range(0, len(xs), n)
       ) if 0 < n else None
   return go


  1. primes :: [Int]

def primes():

    Non-finite sequence of prime numbers.
   
   n = 2
   dct = {}
   while True:
       if n in dct:
           for p in dct[n]:
               dct.setdefault(n + p, []).append(p)
           del dct[n]
       else:
           yield n
           dct[n * n] = [n]
       n = 1 + n


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
17 primes below 5000 with a decimal digit sum of 25:

 997 1699 1789 1879
1987 2689 2797 2887
3499 3697 3769 3877
3967 4597 4759 4957
4993

Raku

<lang perl6>unit sub MAIN ($limit = 5000); say "{+$_} primes < $limit with digital sum 25:\n{$_».fmt("%" ~ $limit.chars ~ "d").batch(10).join("\n")}",

   with ^$limit .grep: { .is-prime and .comb.sum == 25 }</lang>
Output:
17 primes < 5000 with digital sum 25:
 997 1699 1789 1879 1987 2689 2797 2887 3499 3697
3769 3877 3967 4597 4759 4957 4993

REXX

This REXX version allows the following to be specified on the command line:

  •   the high number   (HI)
  •   the number of columns shown per line   (COLS)
  •   the target sum   (TARGET)

<lang rexx>/*REXX pgm finds and displays primes less than HI whose decimal digits sum to TARGET.*/ parse arg hi cols target . /*obtain optional argument from the CL.*/ if hi== | hi=="," then hi= 5000 /*Not specified? Then use the default.*/ if cols== | cols=="," then cols= 10 /* " " " " " " */ if target== | target=="," then target= 25 /* " " " " " " */ call genP /*build array of semaphores for primes.*/ w= 10 /*width of a number in any column. */ title= ' primes that are < ' commas(hi) " and whose decimal digits sum to " ,

                              commas(target)

if cols>0 then say ' index │'center(title, 1 + cols*(w+1) ) if cols>0 then say '───────┼'center("" , 1 + cols*(w+1), '─') found= 0; idx= 1 /*define # target primes found and IDX.*/ $= /*list of target primes found (so far).*/

    do j=1  for #                               /*examine all the primes generated.    */
    if sumDigs(@.j)\==target  then iterate      /*Is sum≡target sum?  No, then skip it.*/
    found= found + 1                            /*bump the number of target primes.    */
    if cols<1                 then iterate      /*Build the list  (to be shown later)? */
    c= commas(@.j)                              /*maybe add commas to the number.      */
    $= $  right(c, max(w, length(c) ) )         /*add a prime ──► list,  allow big #'s.*/
    if found//cols\==0        then iterate      /*have we populated a line of output?  */
    say center(idx, 7)'│'  substr($, 2);     $= /*display what we have so far  (cols). */
    idx= idx + cols                             /*bump the  index  count for the output*/
    end   /*j*/

if $\== then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/ if cols>0 then say '───────┴'center("" , 1 + cols*(w+1), '─') say say 'Found ' commas(found) title exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? /*──────────────────────────────────────────────────────────────────────────────────────*/ genP: !.= 0 /*placeholders for primes' semaphores. */

     @.1=2; @.2=3; @.3=5; @.4=7; @.5=11; @.6=13 /*define some  low primes.             */
     !.2=1; !.3=1; !.5=1; !.7=1; !.11=1; @.13=1 /*   "     "   "   primes' semaphores. */
                          #= 6;  sq.#= @.# ** 2 /*number of primes so far;     prime². */
                                                /* [↓]  generate more  primes  ≤  high.*/
       do j=@.#+2  by 2  to hi                  /*find odd primes from here on.        */
       parse var   j      -1  _               /*obtain the last decimal digit of  J. */
       if    _==5  then iterate;  if j// 3==0  then iterate   /*J ÷ by 5?   J ÷ by  3? */
       if j//7==0  then iterate;  if j//11==0  then iterate   /*" "  " 7?   " "  " 11? */
              do k=6  while sq.k<=j             /* [↓]  divide by the known odd primes.*/
              if j // @.k == 0  then iterate j  /*Is  J ÷ X?  Then not prime.     ___  */
              end   /*k*/                       /* [↑]  only process numbers  ≤  √ J   */
       #= #+1;    @.#= j;    sq.#= j*j;  !.j= 1 /*bump # of Ps; assign next P;  P²; P# */
       end          /*j*/;               return

/*──────────────────────────────────────────────────────────────────────────────────────*/ sumDigs: parse arg x 1 s 2 -1 z; L= length(x); if L==1 then return s; s= s + z

                  do m=2  for L-2;   s= s + substr(x, m, 1);  end;  return s</lang>
output   when using the default inputs:
 index │                         primes that are  <  5,000  and whose decimal digits sum to  25
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │        997      1,699      1,789      1,879      1,987      2,689      2,797      2,887      3,499      3,697
  11   │      3,769      3,877      3,967      4,597      4,759      4,957      4,993
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  17  primes that are  <  5,000  and whose decimal digits sum to  25
output   when using the input of:     1000000   0
Found  6,198  primes that are  <  1,000,000  and whose decimal digits sum to  25

Ring

<lang ring> load "stdlib.ring"

see "working..." + nl decimals(0) row = 0 num = 0 nr = 0 numsum25 = 0 limit1 = 25 limit2 = 5000

for n = 1 to limit2

   if isprime(n)
      bool = sum25(n)
      if bool = 1
         row = row + 1
         see "" + n + " "
         if (row%5) = 0
             see nl
         ok
      ok
   ok

next

see nl + "Found " + row + " sum25 primes below 5000" + nl

time1 = clock() see nl row = 0

while true

     num = num + 1
     str = string(num)
     for m = 1 to len(str)
         if str[m] = 0
            loop
         ok
     next
     if isprime(num)
        bool = sum25(num)
        if bool = 1
           nr = num
           numsum25 = numsum25 + 1
         ok
     ok
     time2 = clock()
     time3 = (time2-time1)/1000/60
     if time3 > 30
        exit
     ok

end

see "There are " + numsum25 + " sum25 primes that contain no zeroes (during 30 mins)" + nl see "The last sum25 prime found during 30 mins is: " + nr + nl see "time = " + time3 + " mins" + nl see "done..." + nl

func sum25(n)

    sum = 0
    str = string(n)
    for n = 1 to len(str)
        sum = sum + number(str[n])
    next
    if sum = limit1
       return 1
    ok

</lang>

Output:
working...
997 1699 1789 1879 1987 
2689 2797 2887 3499 3697 
3769 3877 3967 4597 4759 
4957 4993 
Found 17 sum25 primes below 5000

There are 1753 sum25 primes that contain no zeroes (during 30 mins)
The last sum25 prime found during 30 mins is: 230929
time = 30 mins
done...

Ruby

<lang ruby>require 'prime'

def digitSum(n)

   sum = 0
   while n > 0
       sum += n % 10
       n /= 10
   end
   return sum

end

for p in Prime.take_while { |p| p < 5000 }

   if digitSum(p) == 25 then
       print p, "  "
   end

end</lang>

Output:
997  1699  1789  1879  1987  2689  2797  2887  3499  3697  3769  3877  3967  4597  4759  4957  4993  

Sidef

Simple solution: <lang ruby>5000.primes.grep { .sumdigits == 25 }.say</lang>

Generate such primes from digits (asymptotically faster): <lang ruby>func generate_from_prefix(limit, digitsum, p, base, digits, t=p) {

   var seq = [p]
   digits.each {|d|
       var num = (p*base + d)
       num <= limit    || return seq
       var sum = (t + d)
       sum <= digitsum || return seq
       seq << __FUNC__(limit, digitsum, num, base, digits, sum)\
              .grep { .is_prime }...
   }
   return seq

}

func primes_with_digit_sum(limit, digitsum = 25, base = 10, digits = @(^base)) {

   digits.grep { _ > 0 }\
         .map  { generate_from_prefix(limit, digitsum, _, base, digits)... }\
         .grep { .sumdigits(base) == digitsum }\
         .sort

}

say primes_with_digit_sum(5000)</lang>

Output:
[997, 1699, 1789, 1879, 1987, 2689, 2797, 2887, 3499, 3697, 3769, 3877, 3967, 4597, 4759, 4957, 4993]

Tcl

Library: Tcllib (Package: math::numtheory)

Could be made prettier with the staple helper proc lfilter. <lang tcl>package require Tcl 8.5 package require math::numtheory namespace path ::tcl::mathop

puts [lmap x [math::numtheory::primesLowerThan 5000] {

   if {[+ {*}[split $x {}]] == 25} {set x} else continue

}]</lang>

Output:
997 1699 1789 1879 1987 2689 2797 2887 3499 3697 3769 3877 3967 4597 4759 4957 4993

Wren

Library: Wren-math
Library: Wren-fmt
Library: Wren-seq

Although do-able, the stretch goal would take too long in Wren so I haven't bothered. <lang ecmascript>import "/math" for Int import "/fmt" for Fmt import "/seq" for Lst

var sumDigits = Fn.new { |n|

   var sum = 0
   while (n > 0) {
       sum = sum + (n % 10)
       n = (n/10).floor
   }
   return sum

}

var primes = Int.primeSieve(4999).where { |p| p >= 997 } var primes25 = [] for (p in primes) {

   if (sumDigits.call(p) == 25) primes25.add(p)

} System.print("The %(primes25.count) primes under 5,000 whose digits sum to 25 are:") for (chunk in Lst.chunks(primes25, 6)) Fmt.print("$,6d", chunk)</lang>

Output:
The 17 primes under 5,000 whose digits sum to 25 are:
   997  1,699  1,789  1,879  1,987  2,689
 2,797  2,887  3,499  3,697  3,769  3,877
 3,967  4,597  4,759  4,957  4,993

XPL0

<lang XPL0>func IsPrime(N); \Return 'true' if N is prime int N, I; [if N <= 2 then return N = 2; if (N&1) = 0 then \even >2\ return false; for I:= 3 to sqrt(N) do

   [if rem(N/I) = 0 then return false;
   I:= I+1;
   ];

return true; ];

func SumDigits(N); \Return sum of digits in N int N, Sum; [Sum:= 0; repeat N:= N/10;

       Sum:= Sum + rem(0);

until N=0; return Sum; ];

int Cnt, N; [Cnt:= 0; for N:= 2 to 5000-1 do

   if IsPrime(N) & SumDigits(N) = 25 then
       [IntOut(0, N);
       Cnt:= Cnt+1;
       if rem(Cnt/5) then ChOut(0, 9\tab\) else CrLf(0);
       ];

CrLf(0); IntOut(0, Cnt); Text(0, " primes whose sum of digits is 25. "); ]</lang>

Output:
997     1699    1789    1879    1987
2689    2797    2887    3499    3697
3769    3877    3967    4597    4759
4957    4993    
17 primes whose sum of digits is 25.