Permutations with some identical elements

From Rosetta Code
Permutations with some identical elements is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Sometimes you want to find all permutations of elements where some elements are repeated, e.g. you have 3 red balls, 2 blue balls and one black ball.

If you just do all permutations of the 6 elements, each permutation will be duplicated 12 times where you can't tell that the identical elements have switched places.


Given an input of the form   [a1, a2, ยทยทยท, ak]   where   ak   denotes how many duplicates of element   k   you should have,
each   ak > 0   and the sum of all   ak   is   n.

You should get   n! / (a1! × a2! ... × ak!)   permutations as a result.

(You may, of course, denote the elements   0..k-1   if that works better.)


For example, the input   [2,1]   should give results   (1,1,2),   (1,2,1)   and  (2,1,1).

Alternatively, if zero-based:   (0,0,1),   (0,1,0)   and   (1,0,0).


Task

List the permutations you get from the input   [2, 3, 1].

Optionally output the permutations as strings where the first element is represented by A, the second by B and the third by C  
(the example result would then be AAB, ABA and BAA).


Related tasks



Dart[edit]

Translation of: Tailspin
 
import 'dart:io';
 
void main() {
stdout.writeln(distinctPerms([2,3,1]).map((p) => alpha("ABC", p)).toList());
}
 
String alpha(String alphabet, List<int> perm) {
return perm.map((i) => alphabet[i]).join("");
}
 
Iterable<List<int>> distinctPerms(List<int> reps) sync* {
Iterable<List<int>> perms(List<List<int>> elements) sync* {
if (elements.length == 1) {
yield List.of(elements[0]);
} else {
for (int k = 0; k < elements.length; k++) {
List<List<int>> tail = [];
for (int i = 0; i < elements.length; i++) {
if (i == k) {
if (elements[i].length > 1) {
tail.add(List.of(elements[i].skip(1)));
}
} else {
tail.add(elements[i]);
}
}
yield* perms(tail).map((t) {
t.insert(0, elements[k][0]);
return t;
});
}
}
}
List<List<int>> elements = [];
for (int i = 0; i < reps.length; i++) {
elements.add(List.filled(reps[i], i));
}
yield* perms(elements);
}
 
Output:
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]

Factor[edit]

Removing duplicates from the list of all permutations:

USING: arrays grouping math math.combinatorics prettyprint
sequences sets ;
 
: distinct-permutations ( seq -- seq )
[ CHAR: A + <array> ] map-index "" concat-as <permutations>
members ;
 
{ 2 3 1 } distinct-permutations 10 group simple-table.
Output:
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC
ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA
BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB
BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA
BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA
CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA

Generating distinct permutations directly (more efficient in time and space):

Translation of: Go
USING: arrays io kernel locals math math.ranges sequences ;
IN: rosetta-code.distinct-permutations
 
: should-swap? ( start curr seq -- ? )
[ nipd nth ] [ <slice> member? not ] 3bi ;
 
:: .find-permutations ( seq index n -- )
index n >= [ seq write bl ] [
index n [a,b) [
 :> i
index i seq should-swap? [
index i seq exchange
seq index 1 + n .find-permutations
index i seq exchange
] when
] each
] if ;
 
: first-permutation ( nums charset -- seq )
[ <array> ] 2map "" concat-as ;
 
: .distinct-permutations ( nums charset -- )
first-permutation 0 over length .find-permutations nl ;
 
: main ( -- )
{ 2 1 } "12"
{ 2 3 1 } "123"
{ 2 3 1 } "ABC"
[ .distinct-permutations ] [email protected] ;
 
MAIN: main
Output:
112 121 211 
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122321 122312 123221 123212 123122 132221 132212 132122 131222 211223 211232 211322 212123 212132 212213 212231 212321 212312 213221 213212 213122 221123 221132 221213 221231 221321 221312 222113 222131 222311 223121 223112 223211 231221 231212 231122 232121 232112 232211 312221 312212 312122 311222 321221 321212 321122 322121 322112 322211 
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCBA ABBCAB ABCBBA ABCBAB ABCABB ACBBBA ACBBAB ACBABB ACABBB BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCBA BABCAB BACBBA BACBAB BACABB BBAABC BBAACB BBABAC BBABCA BBACBA BBACAB BBBAAC BBBACA BBBCAA BBCABA BBCAAB BBCBAA BCABBA BCABAB BCAABB BCBABA BCBAAB BCBBAA CABBBA CABBAB CABABB CAABBB CBABBA CBABAB CBAABB CBBABA CBBAAB CBBBAA 

Go[edit]

This is based on the C++ code here.

package main
 
import "fmt"
 
func shouldSwap(s []byte, start, curr int) bool {
for i := start; i < curr; i++ {
if s[i] == s[curr] {
return false
}
}
return true
}
 
func findPerms(s []byte, index, n int, res *[]string) {
if index >= n {
*res = append(*res, string(s))
return
}
for i := index; i < n; i++ {
check := shouldSwap(s, index, i)
if check {
s[index], s[i] = s[i], s[index]
findPerms(s, index+1, n, res)
s[index], s[i] = s[i], s[index]
}
}
}
 
func createSlice(nums []int, charSet string) []byte {
var chars []byte
for i := 0; i < len(nums); i++ {
for j := 0; j < nums[i]; j++ {
chars = append(chars, charSet[i])
}
}
return chars
}
 
func main() {
var res, res2, res3 []string
nums := []int{2, 1}
s := createSlice(nums, "12")
findPerms(s, 0, len(s), &res)
fmt.Println(res)
fmt.Println()
 
nums = []int{2, 3, 1}
s = createSlice(nums, "123")
findPerms(s, 0, len(s), &res2)
fmt.Println(res2)
fmt.Println()
 
s = createSlice(nums, "ABC")
findPerms(s, 0, len(s), &res3)
fmt.Println(res3)
}
Output:
[112 121 211]

[112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122321 122312 123221 123212 123122 132221 132212 132122 131222 211223 211232 211322 212123 212132 212213 212231 212321 212312 213221 213212 213122 221123 221132 221213 221231 221321 221312 222113 222131 222311 223121 223112 223211 231221 231212 231122 232121 232112 232211 312221 312212 312122 311222 321221 321212 321122 322121 322112 322211]

[AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCBA ABBCAB ABCBBA ABCBAB ABCABB ACBBBA ACBBAB ACBABB ACABBB BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCBA BABCAB BACBBA BACBAB BACABB BBAABC BBAACB BBABAC BBABCA BBACBA BBACAB BBBAAC BBBACA BBBCAA BBCABA BBCAAB BBCBAA BCABBA BCABAB BCAABB BCBABA BCBAAB BCBBAA CABBBA CABBAB CABABB CAABBB CBABBA CBABAB CBAABB CBBABA CBBAAB CBBBAA]

Julia[edit]

With the Combinatorics package, create all permutations and filter out the duplicates[edit]

using Combinatorics
 
catlist(spec) = mapreduce(i -> repeat([i], spec[i]), vcat, 1:length(spec))
 
alphastringfromintvector(v) = String([Char(Int('A') + i - 1) for i in v])
 
function testpermwithident(spec)
println("\nTesting $spec yielding:")
for (i, p) in enumerate(unique(collect(permutations(catlist(spec)))))
print(alphastringfromintvector(p), " ", i % 10 == 0 ? "\n" : "")
end
end
 
testpermwithident([2, 3, 1])
 
Output:
Testing [2, 3, 1] yielding:
AABBBC  AABBCB  AABCBB  AACBBB  ABABBC  ABABCB  ABACBB  ABBABC  ABBACB  ABBBAC
ABBBCA  ABBCAB  ABBCBA  ABCABB  ABCBAB  ABCBBA  ACABBB  ACBABB  ACBBAB  ACBBBA
BAABBC  BAABCB  BAACBB  BABABC  BABACB  BABBAC  BABBCA  BABCAB  BABCBA  BACABB
BACBAB  BACBBA  BBAABC  BBAACB  BBABAC  BBABCA  BBACAB  BBACBA  BBBAAC  BBBACA
BBBCAA  BBCAAB  BBCABA  BBCBAA  BCAABB  BCABAB  BCABBA  BCBAAB  BCBABA  BCBBAA
CAABBB  CABABB  CABBAB  CABBBA  CBAABB  CBABAB  CBABBA  CBBAAB  CBBABA  CBBBAA

Generate directly[edit]

Translation of: Tailspin
 
alpha(s, v) = map(i -> s[i], v)
 
function distinctPerms(spec)
function perm(elements)
if length(elements) == 1
deepcopy(elements)
else
[pushfirst!(p, elements[k][1]) for k in 1:length(elements) for p in perm(filter(dups -> length(dups) != 0,
[ if i == k dups[2:end] else dups end
for (i, dups) in enumerate(elements)]))
]
end
end
elements = [fill(x...) for x in enumerate(spec)]
perm(elements)
end
 
println(map(p -> join(alpha("ABC", p), ""), distinctPerms([2, 3, 1])))
 
Output:
["AABBBC", "AABBCB", "AABCBB", "AACBBB", "ABABBC", "ABABCB", "ABACBB", "ABBABC", "ABBACB", "ABBBAC", "ABBBCA", "ABBCAB", "ABBCBA", "ABCABB", "ABCBAB", "ABCBBA", "ACABBB", "ACBABB", "ACBBAB", "ACBBBA", "BAABBC", "BAABCB", "BAACBB", "BABABC", "BABACB", "BABBAC", "BABBCA", "BABCAB", "BABCBA", "BACABB", "BACBAB", "BACBBA", "BBAABC", "BBAACB", "BBABAC", "BBABCA", "BBACAB", "BBACBA", "BBBAAC", "BBBACA", "BBBCAA", "BBCAAB", "BBCABA", "BBCBAA", "BCAABB", "BCABAB", "BCABBA", "BCBAAB", "BCBABA", "BCBBAA", "CAABBB", "CABABB", "CABBAB", "CABBBA", "CBAABB", "CBABAB", "CBABBA", "CBBAAB", "CBBABA", "CBBBAA"]

Perl 6[edit]

Works with: Rakudo version 2019.07
sub permutations-with-some-identical-elements ( @elements, @reps = () ) {
with @elements { (@reps ?? flat $_ Zxx @reps !! flat .keys.map(*+1) Zxx .values).permutationsยป.join.unique }
}
 
for (<2 1>,), (<2 3 1>,), (<A B C>, <2 3 1>), (<๐Ÿฆ‹ โšฝ ๐Ÿ™„>, <2 2 1>) {
put permutations-with-some-identical-elements |$_;
say '';
}
Output:
112 121 211

112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122312 122321 123122 123212 123221 131222 132122 132212 132221 211223 211232 211322 212123 212132 212213 212231 212312 212321 213122 213212 213221 221123 221132 221213 221231 221312 221321 222113 222131 222311 223112 223121 223211 231122 231212 231221 232112 232121 232211 311222 312122 312212 312221 321122 321212 321221 322112 322121 322211

AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA

๐Ÿฆ‹๐Ÿฆ‹โšฝโšฝ๐Ÿ™„ ๐Ÿฆ‹๐Ÿฆ‹โšฝ๐Ÿ™„โšฝ ๐Ÿฆ‹๐Ÿฆ‹๐Ÿ™„โšฝโšฝ ๐Ÿฆ‹โšฝ๐Ÿฆ‹โšฝ๐Ÿ™„ ๐Ÿฆ‹โšฝ๐Ÿฆ‹๐Ÿ™„โšฝ ๐Ÿฆ‹โšฝโšฝ๐Ÿฆ‹๐Ÿ™„ ๐Ÿฆ‹โšฝโšฝ๐Ÿ™„๐Ÿฆ‹ ๐Ÿฆ‹โšฝ๐Ÿ™„๐Ÿฆ‹โšฝ ๐Ÿฆ‹โšฝ๐Ÿ™„โšฝ๐Ÿฆ‹ ๐Ÿฆ‹๐Ÿ™„๐Ÿฆ‹โšฝโšฝ ๐Ÿฆ‹๐Ÿ™„โšฝ๐Ÿฆ‹โšฝ ๐Ÿฆ‹๐Ÿ™„โšฝโšฝ๐Ÿฆ‹ โšฝ๐Ÿฆ‹๐Ÿฆ‹โšฝ๐Ÿ™„ โšฝ๐Ÿฆ‹๐Ÿฆ‹๐Ÿ™„โšฝ โšฝ๐Ÿฆ‹โšฝ๐Ÿฆ‹๐Ÿ™„ โšฝ๐Ÿฆ‹โšฝ๐Ÿ™„๐Ÿฆ‹ โšฝ๐Ÿฆ‹๐Ÿ™„๐Ÿฆ‹โšฝ โšฝ๐Ÿฆ‹๐Ÿ™„โšฝ๐Ÿฆ‹ โšฝโšฝ๐Ÿฆ‹๐Ÿฆ‹๐Ÿ™„ โšฝโšฝ๐Ÿฆ‹๐Ÿ™„๐Ÿฆ‹ โšฝโšฝ๐Ÿ™„๐Ÿฆ‹๐Ÿฆ‹ โšฝ๐Ÿ™„๐Ÿฆ‹๐Ÿฆ‹โšฝ โšฝ๐Ÿ™„๐Ÿฆ‹โšฝ๐Ÿฆ‹ โšฝ๐Ÿ™„โšฝ๐Ÿฆ‹๐Ÿฆ‹ ๐Ÿ™„๐Ÿฆ‹๐Ÿฆ‹โšฝโšฝ ๐Ÿ™„๐Ÿฆ‹โšฝ๐Ÿฆ‹โšฝ ๐Ÿ™„๐Ÿฆ‹โšฝโšฝ๐Ÿฆ‹ ๐Ÿ™„โšฝ๐Ÿฆ‹๐Ÿฆ‹โšฝ ๐Ÿ™„โšฝ๐Ÿฆ‹โšฝ๐Ÿฆ‹ ๐Ÿ™„โšฝโšฝ๐Ÿฆ‹๐Ÿฆ‹

Phix[edit]

Translation of: Go
function shouldSwap(string s, integer start, curr)
for i=start to curr-1 do
if s[i] == s[curr] then
return false
end if
end for
return true
end function
 
function findPerms(string s, integer i=1, sequence res={})
if i>length(s) then
res = append(res, s)
else
for j=i to length(s) do
if shouldSwap(s, i, j) then
{s[i], s[j]} = {s[j], s[i]}
res = findPerms(s, i+1, res)
{s[i], s[j]} = {s[j], s[i]}
end if
end for
end if
return res
end function
 
function createSlice(sequence nums, string charSet)
string chars = ""
for i=1 to length(nums) do
chars &= repeat(charSet[i],nums[i])
end for
return chars
end function
 
pp(findPerms(createSlice({2,1}, "12"))) -- (=== findPerms("112"))
pp(findPerms(createSlice({2,3,1}, "123"))) -- (=== findPerms("112223"))
pp(findPerms(createSlice({2,3,1}, "ABC"))) -- (=== findPerms("AABBBC"))
Output:
{`112`, `121`, `211`}
{`112223`, `112232`, `112322`, `113222`, `121223`, `121232`, `121322`,
 `122123`, `122132`, `122213`, `122231`, `122321`, `122312`, `123221`,
 `123212`, `123122`, `132221`, `132212`, `132122`, `131222`, `211223`,
 `211232`, `211322`, `212123`, `212132`, `212213`, `212231`, `212321`,
 `212312`, `213221`, `213212`, `213122`, `221123`, `221132`, `221213`,
 `221231`, `221321`, `221312`, `222113`, `222131`, `222311`, `223121`,
 `223112`, `223211`, `231221`, `231212`, `231122`, `232121`, `232112`,
 `232211`, `312221`, `312212`, `312122`, `311222`, `321221`, `321212`,
 `321122`, `322121`, `322112`, `322211`}
{`AABBBC`, `AABBCB`, `AABCBB`, `AACBBB`, `ABABBC`, `ABABCB`, `ABACBB`,
 `ABBABC`, `ABBACB`, `ABBBAC`, `ABBBCA`, `ABBCBA`, `ABBCAB`, `ABCBBA`,
 `ABCBAB`, `ABCABB`, `ACBBBA`, `ACBBAB`, `ACBABB`, `ACABBB`, `BAABBC`,
 `BAABCB`, `BAACBB`, `BABABC`, `BABACB`, `BABBAC`, `BABBCA`, `BABCBA`,
 `BABCAB`, `BACBBA`, `BACBAB`, `BACABB`, `BBAABC`, `BBAACB`, `BBABAC`,
 `BBABCA`, `BBACBA`, `BBACAB`, `BBBAAC`, `BBBACA`, `BBBCAA`, `BBCABA`,
 `BBCAAB`, `BBCBAA`, `BCABBA`, `BCABAB`, `BCAABB`, `BCBABA`, `BCBAAB`,
 `BCBBAA`, `CABBBA`, `CABBAB`, `CABABB`, `CAABBB`, `CBABBA`, `CBABAB`,
 `CBAABB`, `CBBABA`, `CBBAAB`, `CBBBAA`}

REXX[edit]

shows permutation list[edit]

/*REXX program  computes and displays  the  permutations  with some identical elements. */
parse arg g /*obtain optional arguments from the CL*/
if g='' | g="," then g= 2 3 1 /*Not specified? Then use the defaults*/
#= words(g) /*obtain the number of source items. */
@= left('ABCDEFGHIJKLMNOPQRSTUVWXYZ', #) /*@: the (output) letters to be used.*/
LO= /*LO: the start of the sequence. */
HI= /*HI: " end " " " */
do i=1 for #; @.i= word(g, i) /*get number of characters for an arg. */
LO= LO || copies(i, @.i) /*build the LO number for the range. */
HI= copies(i, @.i) || HI /* " " HI " " " " */
end /*i*/
$= /*initialize the output string to null.*/
do j=LO to HI /*generate the enumerated output string*/
if verify(j, LO)\==0 then iterate /*An invalid digital string? Then skip*/
do k=1 for # /*parse string for correct # of digits.*/
if countstr(k, j)\[email protected].k then iterate j /*Incorrect number of digits? Skip. */
end /*k*/
$= $ j /*append digital string to the list. */
end /*j*/
/*stick a fork in it, we're all done. */
say 'number of permutations: ' words($)
say
say strip(translate($, @, left(123456789, #) ) ) /*display the translated string to term*/
output   when using the inputs of:     2   1
number of permutations:  3

AAB ABA BAA
output   when using the default inputs:     2   3   1
number of permutations:  60

AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA

only shows permutation count[edit]

If any of the arguments is negative, the list of the permutations is suppressed, only the permutation count is shown.

/*REXX program  computes and displays  the  permutations  with some identical elements. */
parse arg g /*obtain optional arguments from the CL*/
if g='' | g="," then g= 2 3 1 /*Not specified? Then use the defaults*/
#= words(g) /*obtain the number of source items. */
@= left('ABCDEFGHIJKLMNOPQRSTUVWXYZ', #) /*@: the (output) letters to be used.*/
show= 1 /*if = 1, will show permutation list. */
sum= 0
LO= /*LO: the start of the sequence. */
HI= /*HI: " end " " " */
do i=1 for #; y= word(g, i) /*get number of characters for an arg. */
show= show & y>=0; a= abs(y) /*Is it negative? Then don't show list*/
sum= sum + a; @.i= a /*use the absolute value of an argument*/
LO= LO || copies(i, @.i) /*build the LO number for the range. */
HI= copies(i, @.i) || HI /* " " HI " " " " */
end /*i*/
$= /*initialize the output string to null.*/
numeric digits max(9, sum) /*ensure enough numeric decimal digits.*/
 
do j=LO to HI /*generate the enumerated output string*/
if verify(j, LO)\==0 then iterate /*An invalid digital string? Then skip*/
do k=1 for # /*parse string for correct # of digits.*/
if countstr(k, j)\[email protected].k then iterate j /*Incorrect number of digits? Skip. */
end /*k*/
$= $ j /*append digital string to the list. */
end /*j*/
/*stick a fork in it, we're all done. */
say 'number of permutations: ' words($) /*# perms with some identical elements.*/
say
if show then say strip(translate($, @, left(123456789, #) ) ) /*display translated str.*/
output   when using the inputs of:     -2   3   1   1   1
number of permutations:  3360
output   when using the inputs of:     -1   2   1   2   1
number of permutations:  1260
output   when using the inputs of:     -1   2   3   2   1
number of permutations:  15120
output   when using the inputs of:     -1   1   5   2
number of permutations:  1512
output   when using the inputs of:     -1   1   1   1   6
number of permutations:  5040

Tailspin[edit]

Creates lots of new arrays, which might be wasteful.

 
templates distinctPerms
templates perms
<[](1)> $(1) !
<>
def elements: $;
1..$::length -> (
def k: $;
def tail: $elements -> [i](
<?($i <$k>)> $ -> (<[](2..)> $(2..-1)!) !
<> $!
);
$tail -> perms -> [$elements($k;1), $...] !
) !
end perms
$ -> [i]([1..$ -> $i] !) -> perms !
end distinctPerms
 
def alpha: ['ABC'...];
[[2,3,1] -> distinctPerms -> '$alpha($)...;' ] -> !OUT::write
 
Output:
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]

Work in place (slightly modified from the Go solution to preserve lexical order)

Translation of: Go
 
templates distinctPerms
templates [email protected]{start:}
<?([email protected]($start..~$) <~[<[email protected]($)>]>)> $!
end shouldSwap
templates findPerms
<[email protected]::length..> [email protected] !
<>
def index: $;
[email protected]::length -> [email protected]{start: $index}
-> (
@findPerms: $;
@distinctPerms([$, $index]): [email protected]([$index, $])...;
$index + 1 -> findPerms !
) !
@distinctPerms([[email protected], [email protected]]): [email protected]([email protected])...;
end findPerms
@: $ -> [i](1..$ -> $i !);
1 -> findPerms !
end distinctPerms
 
def alpha: ['ABC'...];
[[2,3,1] -> distinctPerms -> '$alpha($)...;' ] -> !OUT::write
 
Output:
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]

zkl[edit]

  // eg ( (2,3,1), "ABC" ) == permute "A","A","B","B","B","C" and remove duplicates
// --> ( "AABBBC", "AABBCB" .. )
// this gets ugly lots sooner than it should
fcn permutationsWithSomeIdenticalElements(ns,abcs){
ns.zipWith(fcn(n,c){ List.createLong(n,c) },abcs).flatten() : # (3,"B")-->("B","B,"B")
Utils.Helpers.permute(_) : Utils.Helpers.listUnique(_)
.apply("concat") // ("A","A","B","B","B","C")-->"AABBCB"
}
permutationsWithSomeIdenticalElements(T(2,1),"123").println();
permutationsWithSomeIdenticalElements(T(2,1),L("\u2192","\u2191")).concat(" ").println();
 
z:=permutationsWithSomeIdenticalElements(T(2,3,1),"ABC");
println(z.len());
z.pump(Void,T(Void.Read,9,False), // print rows of ten items
fcn{ vm.arglist.concat(" ").println() });
Output:
L("112","121","211")
โ†’โ†’โ†‘  โ†’โ†‘โ†’  โ†‘โ†’โ†’
60
AABBBC  AABBCB  AABCBB  AACBBB  ACABBB  CAABBB  CABABB  ACBABB  ABCABB  ABACBB
ABABCB  ABABBC  BAABBC  BAABCB  BAACBB  BACABB  BCAABB  CBAABB  ABBABC  ABBACB
ABBCAB  ABCBAB  ACBBAB  CABBAB  BABABC  BABACB  BABCAB  BACBAB  BCABAB  CBABAB
CBBAAB  BCBAAB  BBCAAB  BBACAB  BBAACB  BBAABC  CBABBA  BCABBA  BACBBA  BABCBA
BABBCA  BABBAC  CBBABA  BCBABA  BBCABA  BBACBA  BBABCA  BBABAC  ABBBAC  ABBBCA
ABBCBA  ABCBBA  ACBBBA  CABBBA  BBBAAC  BBBACA  BBBCAA  BBCBAA  BCBBAA  CBBBAA