I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Parallel brute force

From Rosetta Code
Task
Parallel brute force
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Find, through brute force, the five-letter passwords corresponding with the following SHA-256 hashes:

1. 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
2. 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
3. 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f

Your program should naively iterate through all possible passwords consisting only of five lower-case ASCII English letters. It should use concurrent or parallel processing, if your language supports that feature. You may calculate SHA-256 hashes by calling a library or through a custom implementation. Print each matching password, along with its SHA-256 hash.

Related task: SHA-256

Ada[edit]

Library: CryptAda
with Ada.Text_IO;
 
with CryptAda.Digests.Message_Digests.SHA_256;
with CryptAda.Digests.Hashes;
with CryptAda.Pragmatics;
 
procedure Brute_Force is
use CryptAda.Digests.Message_Digests;
use CryptAda.Digests.Hashes;
use CryptAda.Digests;
use CryptAda.Pragmatics;
 
Wanted_Sums : constant array (1 .. 3) of String (1 .. 64) :=
(1 => "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
2 => "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
3 => "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f");
Wanted_Hash : constant array (1 .. 3) of Hashes.Hash :=
(1 => Hashes.To_Hash (Wanted_Sums (1)),
2 => Hashes.To_Hash (Wanted_Sums (2)),
3 => Hashes.To_Hash (Wanted_Sums (3)));
 
subtype Ciffer is Byte range Character'Pos ('a') .. Character'Pos ('z');
subtype Code is Byte_Array (1 .. 5);
 
task type Worker (First : Byte) is
end Worker;
 
procedure Compare (Hash : in Hashes.Hash; Bytes : in Code) is
begin
for I in Wanted_Hash'Range loop
if Hash = Wanted_Hash (I) then
Ada.Text_IO.Put (Wanted_Sums (I) & " ");
for C of Bytes loop
Ada.Text_IO.Put (Character'Val (C));
end loop;
Ada.Text_IO.New_Line;
end if;
end loop;
end Compare;
 
task body Worker is
Handle : constant Message_Digest_Handle := SHA_256.Get_Message_Digest_Handle;
Digest : constant Message_Digest_Ptr  := Get_Message_Digest_Ptr (Handle);
Bytes  : Code;
Hash  : Hashes.Hash;
begin
Bytes (Bytes'First) := First;
 
for B2 in Ciffer'Range loop
for B3 in Ciffer'Range loop
for B4 in Ciffer'Range loop
Bytes (2 .. 4) := B2 & B3 & B4;
for B5 in Ciffer'Range loop
Bytes (5) := B5;
Digest_Start (Digest);
Digest_Update (Digest, Bytes);
Digest_End (Digest, Hash);
Compare (Hash, Bytes);
end loop;
end loop;
end loop;
end loop;
end Worker;
 
type Worker_Access is access Worker;
Work : Worker_Access;
pragma Unreferenced (Work);
begin
for C in Ciffer'Range loop
Work := new Worker (First => C);
end loop;
end Brute_Force;

BaCon[edit]

PRAGMA INCLUDE <openssl/sha.h>
PRAGMA LDFLAGS -lcrypto
 
OPTION MEMTYPE unsigned char
 
LOCAL buffer[32], passwd[5] TYPE unsigned char
LOCAL result TYPE unsigned char*
LOCAL a,b,c,d,e TYPE INT
 
DATA "a13bbac91141bb5cfc6f1dc723256243775aeb3517671b350ce3f4c607d693c7", "ea125efa275b675155f4f1a00ae8b6e361ea2ed486db1a55b805e4fc5f47441a", "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
 
WHILE TRUE
 
READ secret$
IF NOT(LEN(secret$)) THEN BREAK
 
FOR i = 0 TO 31
buffer[i] = DEC(MID$(secret$, i*2+1, 2))
NEXT
 
FOR a = 97 TO 122
FOR b = 97 TO 122
FOR c = 97 TO 122
FOR d = 97 TO 122
FOR e = 97 TO 122
passwd[0] = a
passwd[1] = b
passwd[2] = c
passwd[3] = d
passwd[4] = e
 
result = SHA256(passwd, 5, 0)
 
FOR i = 0 TO SHA256_DIGEST_LENGTH-1
IF PEEK(result+i) != buffer[i] THEN BREAK
NEXT
IF i = SHA256_DIGEST_LENGTH THEN
PRINT a,b,c,d,e,secret$ FORMAT "%c%c%c%c%c:%s\n"
BREAK 5
END IF
NEXT
NEXT
NEXT
NEXT
NEXT
WEND
Output:
apple:3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm:74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx:1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

C[edit]

Translation of: C#
// $ gcc -o parabrutfor parabrutfor.c -fopenmp -lssl -lcrypto
// $ export OMP_NUM_THREADS=4
// $ ./parabrutfor
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include <openssl/sha.h>
 
typedef unsigned char byte;
 
int matches(byte *a, byte* b) {
for (int i = 0; i < 32; i++)
if (a[i] != b[i])
return 0;
return 1;
}
 
 
byte* StringHashToByteArray(const char* s) {
byte* hash = (byte*) malloc(32);
char two[3];
two[2] = 0;
for (int i = 0; i < 32; i++) {
two[0] = s[i * 2];
two[1] = s[i * 2 + 1];
hash[i] = (byte)strtol(two, 0, 16);
}
return hash;
}
 
void printResult(byte* password, byte* hash) {
char sPass[6];
memcpy(sPass, password, 5);
sPass[5] = 0;
printf("%s => ", sPass);
for (int i = 0; i < SHA256_DIGEST_LENGTH; i++)
printf("%02x", hash[i]);
printf("\n");
}
 
int main(int argc, char **argv)
{
 
#pragma omp parallel
{
 
#pragma omp for
for (int a = 0; a < 26; a++)
{
byte password[5] = { 97 + a };
byte* one = StringHashToByteArray("1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad");
byte* two = StringHashToByteArray("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b");
byte* three = StringHashToByteArray("74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f");
for (password[1] = 97; password[1] < 123; password[1]++)
for (password[2] = 97; password[2] < 123; password[2]++)
for (password[3] = 97; password[3] < 123; password[3]++)
for (password[4] = 97; password[4] < 123; password[4]++) {
byte *hash = SHA256(password, 5, 0);
if (matches(one, hash) || matches(two, hash) || matches(three, hash))
printResult(password, hash);
}
free(one);
free(two);
free(three);
}
}
 
return 0;
}
Output:
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

C#[edit]

 

using System;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
 
class Program
{
static void Main(string[] args)
{
Parallel.For(0, 26, a => {
byte[] password = new byte[5];
byte[] hash;
byte[] one = StringHashToByteArray("1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad");
byte[] two = StringHashToByteArray("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b");
byte[] three = StringHashToByteArray("74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f");
password[0] = (byte)(97 + a);
var sha = System.Security.Cryptography.SHA256.Create();
for (password[1] = 97; password[1] < 123; password[1]++)
for (password[2] = 97; password[2] < 123; password[2]++)
for (password[3] = 97; password[3] < 123; password[3]++)
for (password[4] = 97; password[4] < 123; password[4]++)
{
hash = sha.ComputeHash(password);
if (matches(one, hash) || matches(two, hash) || matches(three, hash))
Console.WriteLine(Encoding.ASCII.GetString(password) + " => "
+ BitConverter.ToString(hash).ToLower().Replace("-", ""));
}
});
}
static byte[] StringHashToByteArray(string s)
{
return Enumerable.Range(0, s.Length / 2).Select(i => (byte)Convert.ToInt16(s.Substring(i * 2, 2), 16)).ToArray();
}
static bool matches(byte[] a, byte[] b)
{
for (int i = 0; i < 32; i++)
if (a[i] != b[i])
return false;
return true;
}
}
Output:
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

C++[edit]

Library: OpenSSL
#include <atomic>
#include <cstdio>
#include <cstring>
#include <future>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <openssl/sha.h>
 
struct sha256 {
unsigned char digest[SHA256_DIGEST_LENGTH];
void compute(const char* str, int len) {
SHA256((const unsigned char*)str, len, digest);
}
bool parse(const std::string& hash) {
if (hash.length() != 2*SHA256_DIGEST_LENGTH) {
std::cerr << "Invalid SHA-256 hash\n";
return false;
}
const char* p = hash.c_str();
for (int i = 0; i < SHA256_DIGEST_LENGTH; ++i, p += 2) {
unsigned int x;
if (sscanf(p, "%2x", &x) != 1) {
std::cerr << "Cannot parse SHA-256 hash\n";
return false;
}
digest[i] = x;
}
return true;
}
};
 
bool operator==(const sha256& a, const sha256& b) {
return memcmp(a.digest, b.digest, SHA256_DIGEST_LENGTH) == 0;
}
 
bool next_password(std::string& passwd, size_t start) {
size_t len = passwd.length();
for (size_t i = len - 1; i >= start; --i) {
char c = passwd[i];
if (c < 'z') {
++passwd[i];
return true;
}
passwd[i] = 'a';
}
return false;
}
 
class password_finder {
public:
password_finder(int);
void find_passwords(const std::vector<std::string>&);
private:
int length;
void find_passwords(char);
std::vector<std::string> hashes;
std::vector<sha256> digests;
std::atomic<size_t> count;
};
 
password_finder::password_finder(int len) : length(len) {}
 
void password_finder::find_passwords(char ch) {
std::string passwd(length, 'a');
passwd[0] = ch;
sha256 digest;
while (count > 0) {
digest.compute(passwd.c_str(), length);
for (int m = 0; m < hashes.size(); ++m) {
if (digest == digests[m]) {
--count;
std::ostringstream out;
out << "password: " << passwd << ", hash: " << hashes[m] << '\n';
std::cout << out.str();
break;
}
}
if (!next_password(passwd, 1))
break;
}
}
 
void password_finder::find_passwords(const std::vector<std::string>& h) {
hashes = h;
digests.resize(hashes.size());
for (int i = 0; i < hashes.size(); ++i) {
if (!digests[i].parse(hashes[i]))
return;
}
count = hashes.size();
std::vector<std::future<void>> futures;
const int n = 26;
for (int i = 0; i < n; ++i) {
char c = 'a' + i;
futures.push_back(std::async(std::launch::async,
[&,c]() { find_passwords(c); }));
}
}
 
int main() {
std::vector<std::string> hashes{
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"};
password_finder pf(5);
pf.find_passwords(hashes);
return 0;
}
Output:

Execution time is about 0.7 seconds on my system (3.2 GHz Quad-Core Intel Core i5, macOS 10.15.3).

password: mmmmm, hash: 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
password: apple, hash: 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
password: zyzzx, hash: 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Clojure[edit]

(ns rosetta.brute-force
(:require [clojure.math.combinatorics :refer [selections]]) ;; https://github.com/clojure/math.combinatorics
(:import [java.util Arrays]
[java.security MessageDigest]))
 
;;https://rosettacode.org/wiki/Parallel_Brute_Force
 
(def targets ;; length = 5
["1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"])
 
;; HELPER/UTIL fns
;;=================
 
(defn digest
"Given a byte-array <bs> returns its hash (also a byte-array)."
^bytes [^MessageDigest md ^bytes bs]
(.digest md bs))
 
(defn char-range
"Helper fn for easily producing character ranges."
[start end]
(map char (range (int start)
(inc (int end)))))
 
(def low-case-eng-bytes
"Our search-space (all lower case english characters converted to bytes)."
(map byte (char-range \a \z)))
 
(defn hex->bytes
"Converts a hex string to a byte-array."
^bytes [^String hex]
(let [len (.length hex)
ret (byte-array (/ len 2))]
(run! (fn [i]
(aset ret
(/ i 2)
^byte (unchecked-add-int
(bit-shift-left
(Character/digit (.charAt hex i) 16)
4)
(Character/digit (.charAt hex (inc i)) 16))))
(range 0 len 2))
ret))
 
(defn bytes->hex
"Converts a byte-array to a hex string."
[^bytes bs]
(.toString
^StringBuilder
(areduce bs idx ret (StringBuilder.)
(doto ret (.append (format "%02x" (aget bs idx)))))))
 
;; MAIN LOGIC
;;===========
 
(defn check-candidate
"Checks whether the SHA256 hash of <candidate> (a list of 5 bytes),
matches <target>. If it does, returns that hash as a hex-encoded String.
Otherwise returns nil."

[^bytes target sha256 candidate]
(let [candidate-bytes (byte-array candidate)
^bytes candidate-hash (sha256 candidate-bytes)]
(when (Arrays/equals target candidate-hash)
(let [answer (String. candidate-bytes)]
(println "Answer found for:" (bytes->hex candidate-hash) "=>" answer)
answer))))
 
(defn sha256-brute-force
"Top level function. Returns a list with the 3 answers."
[space hex-hashes]
(->> hex-hashes
(map hex->bytes) ;; convert the hex strings to bytes
(pmap ;; parallel map the checker-fn
(fn [target-bytes]
(let [message-digest (MessageDigest/getInstance "SHA-256") ;; new digest instance per thread
sha256 (partial digest message-digest)]
(some (partial check-candidate target-bytes sha256)
(selections space 5)))))))
 
Output:
Answer found for: 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b => apple
Answer found for: 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f => mmmmm
Answer found for: 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad => zyzzx

Common Lisp[edit]

Library: lparallel
Library: ironclad
(defpackage #:parallel-brute-force
(:use #:cl
#:lparallel))
 
(in-package #:parallel-brute-force)
 
(defparameter *alphabet* "abcdefghijklmnopqrstuvwxyz")
(defparameter *hash0* "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad")
(defparameter *hash1* "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b")
(defparameter *hash2* "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")
(defparameter *kernel-size* 7)
 
(defun sha-256 (input)
(ironclad:byte-array-to-hex-string
(ironclad:digest-sequence :sha256 (ironclad:ascii-string-to-byte-array input))))
 
(defun call-with-5-char-string (fun first-char)
(loop with str = (make-array 5 :element-type 'character :initial-element first-char)
for c1 across *alphabet*
do (setf (char str 1) c1)
(loop for c2 across *alphabet*
do (setf (char str 2) c2)
(loop for c3 across *alphabet*
do (setf (char str 3) c3)
(loop for c4 across *alphabet*
do (setf (char str 4) c4)
(funcall fun (copy-seq str)))))))
 
(defmacro with-5-char-string ((str first-char) &body body)
`(call-with-5-char-string (lambda (,str) ,@body) ,first-char))
 
(defun find-passwords-with (first-char)
(let (results)
(with-5-char-string (str first-char)
(let ((hash (sha-256 str)))
(when (or (string= hash *hash0*) (string= hash *hash1*) (string= hash *hash2*))
(push (list str hash) results))))
(nreverse results)))
 
(defun find-passwords ()
(setf *kernel* (make-kernel *kernel-size*))
(let ((results (unwind-protect
(pmapcan #'find-passwords-with *alphabet*)
(end-kernel))))
(dolist (r results)
(format t "~A: ~A~%" (first r) (second r)))))
Output:
apple: 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm: 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx: 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Erlang[edit]

There are a total of 8 tasks, each handling a different set of prefixes (abc, def, ghi, jkl, mno, pqr, stuv, wxyz)

 
#! /usr/bin/escript
-mode(compile).
-export([cracker/4, supervisor/3]).
 
hexdigit(N) when (N >= 0) and (N =< 9) -> N + $0;
hexdigit(N) when (N >= 10) and (N < 16) -> N - 10 + $a.
 
hexbyte(N) -> [hexdigit(N bsr 4), hexdigit(N band 15)].
 
match(Key, Hash) ->
B = crypto:hash(sha256, Key),
Hash == lists:append([hexbyte(X) || <<X:8/integer>> <= B]).
 
cracker(Prefixes, Rest, Hashes, Boss) ->
Results = [[[P|Q], Hash]
|| P <- Prefixes, Q <- Rest, Hash <- Hashes, match([P|Q], Hash)],
Boss ! {done, Results}.
 
supervisor(0, Results, Caller) -> Caller ! {done, Results};
supervisor(Tasks, Results, Caller) ->
receive
{done, Cracked} -> supervisor(Tasks - 1, Cracked ++ Results, Caller)
end.
 
main(_) ->
Tasks = ["abc", "def", "ghi", "jkl", "mno", "pqr", "stuv", "wxyz"],
Letter = lists:seq($a, $z),
Rest = [[B, C, D, E] || B <- Letter, C <- Letter, D <- Letter, E <- Letter],
Hashes = [
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
],
Boss = spawn(?MODULE, supervisor, [length(Tasks), [], self()]),
[spawn(?MODULE, cracker, [Prefixes, Rest, Hashes, Boss])
|| Prefixes <- Tasks],
 
receive
{done, Results} -> Results
end,
 
[io:format("~s: ~s~n", Result) || Result <- Results].
 
Output:
$ ./par-brute.erl 
zyzzx: 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
mmmmm: 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
apple: 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b

D[edit]

There is at least one more method not shown for doing the task in parallel, which uses the std.concurrency module instead.

import std.digest.sha;
import std.parallelism;
import std.range;
import std.stdio;
 
// Find the five lower-case letter strings representing the following sha256 hashes
immutable p1 = cast(ubyte[32]) x"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad";
immutable p2 = cast(ubyte[32]) x"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b";
immutable p3 = cast(ubyte[32]) x"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f";
 
void main() {
import std.datetime.stopwatch;
 
auto sw = StopWatch(AutoStart.yes);
// Switch these top loops to toggle between non-parallel and parrallel solutions.
// foreach(char a; 'a'..'z'+1) {
foreach(i, a; taskPool.parallel(iota('a', 'z'+1))) {
char[5] psw;
psw[0] = cast(char) a;
foreach(char b; 'a'..'z'+1) {
psw[1] = b;
foreach(char c; 'a'..'z'+1) {
psw[2] = c;
foreach(char d; 'a'..'z'+1) {
psw[3] = d;
foreach(char e; 'a'..'z'+1) {
psw[4] = e;
auto hash = psw.sha256Of;
if (equal(hash, p1) || equal(hash, p2) || equal(hash, p3)) {
writefln("%s <=> %(%x%)", psw, hash);
}
}
}
}
}
}
sw.stop;
writeln(sw.peek);
}
 
//Specialization that supports static arrays too
bool equal(T)(const T[] p, const T[] q) {
if (p.length != q.length) {
return false;
}
 
for(int i=0; i<p.length; i++) {
if (p[i] != q[i]) {
return false;
}
}
 
return true;
}
Output:

Parallel run time: 9 secs, 684 ms, 678 ╬╝s, and 6 hnsecs
Sequential run time: 29 secs, 298 ms, and 837 ╬╝s

apple <=> 3a7bd3e236a3d29eea436fcfb7e44c735d117c42d1c183542b6b9942dd4f1b
mmmmm <=> 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx <=> 1115dd80feaacefdf481f1f9070374a2a81e27880f187396db67958b27cbad

Delphi[edit]

Library: DCPsha256
[[1]]
 
program Parallel_Brute_Force;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils,
System.Threading,
DCPsha256;
 
function Sha256(W: string): string;
var
HashDigest: array[0..31] of byte;
d, i: Byte;
begin
Result := '';
with TDCP_sha256.Create(nil) do
begin
Init;
UpdateStr(W);
final(HashDigest[0]);
for i := 0 to High(HashDigest) do
Result := Result + lowercase(HashDigest[i].ToHexString(2));
end;
end;
 
procedure Force(a: int64);
var
password: string;
hash: string;
i, j, k, l: integer;
w: string;
const
Words: TArray<string> = ['1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad',
'3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b',
'74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f'];
begin
password := ' ';
password[1] := chr(97 + a);
 
for i := 97 to 122 do
begin
password[2] := chr(i);
for j := 97 to 122 do
begin
password[3] := chr(j);
for k := 97 to 122 do
begin
password[4] := chr(k);
for l := 97 to 122 do
begin
password[5] := chr(l);
hash := Sha256(password);
 
for w in Words do
begin
if SameText(hash, w) then
begin
Writeln('>>', password, ' => ', hash);
end;
end;
end;
end;
end;
end;
end;
 
var
s: string;
begin
 
TParallel.&For(0, 25, Force);
 
Writeln('Enter to exit');
readln;
end.

F#[edit]

 
(*
Nigel Galloway February 21st., 2017
*)

let N n i g e l =
let G = function
|"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"->Some(string n+string i+string g+string e+string l)
|"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"->Some(string n+string i+string g+string e+string l)
|"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"->Some(string n+string i+string g+string e+string l)
|_->None
G ([|byte n;byte i;byte g;byte e;byte l|]|>System.Security.Cryptography.SHA256.Create().ComputeHash|>Array.map(fun (x:byte)->System.String.Format("{0:x2}",x))|>String.concat "")
open System.Threading.Tasks
let n1 = Task.Factory.StartNew(fun ()->['a'..'m']|>List.collect(fun n->['a'..'m']|>List.collect(fun i->['a'..'m']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n2 = Task.Factory.StartNew(fun ()->['a'..'m']|>List.collect(fun n->['a'..'m']|>List.collect(fun i->['n'..'z']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n3 = Task.Factory.StartNew(fun ()->['a'..'m']|>List.collect(fun n->['n'..'z']|>List.collect(fun i->['a'..'m']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n4 = Task.Factory.StartNew(fun ()->['a'..'m']|>List.collect(fun n->['n'..'z']|>List.collect(fun i->['n'..'z']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n5 = Task.Factory.StartNew(fun ()->['n'..'z']|>List.collect(fun n->['a'..'m']|>List.collect(fun i->['a'..'m']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n6 = Task.Factory.StartNew(fun ()->['n'..'z']|>List.collect(fun n->['a'..'m']|>List.collect(fun i->['n'..'z']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n7 = Task.Factory.StartNew(fun ()->['n'..'z']|>List.collect(fun n->['n'..'z']|>List.collect(fun i->['a'..'m']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
let n8 = Task.Factory.StartNew(fun ()->['n'..'z']|>List.collect(fun n->['n'..'z']|>List.collect(fun i->['n'..'z']|>List.collect(fun g->['a'..'z']|>List.collect(fun e->['a'..'z']|>List.choose(fun l->N n i g e l))))))
 
for r in n1.Result@n2.Result@n3.Result@n4.Result@n5.Result@n6.Result@n7.Result@n8.Result do printfn "%s" r
 
Output:
mmmmm
apple
zyzzx

Go[edit]

This solution runs 26 goroutines, one for each possible password first letter. Goroutines run in parallel on a multicore system.

package main
 
import (
"crypto/sha256"
"encoding/hex"
"log"
"sync"
)
 
var hh = []string{
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f",
}
 
func main() {
log.SetFlags(0)
hd := make([][sha256.Size]byte, len(hh))
for i, h := range hh {
hex.Decode(hd[i][:], []byte(h))
}
var wg sync.WaitGroup
wg.Add(26)
for c := byte('a'); c <= 'z'; c++ {
go bf4(c, hd, &wg)
}
wg.Wait()
}
 
func bf4(c byte, hd [][sha256.Size]byte, wg *sync.WaitGroup) {
p := []byte("aaaaa")
p[0] = c
p1 := p[1:]
p:
for {
ph := sha256.Sum256(p)
for i, h := range hd {
if h == ph {
log.Println(string(p), hh[i])
}
}
for i, v := range p1 {
if v < 'z' {
p1[i]++
continue p
}
p1[i] = 'a'
}
wg.Done()
return
}
}
Output:
zyzzx 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
apple 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f

Haskell[edit]

Uses libraries:

  • cryptonite
  • monad-par
  • bytestring
  • split


Compile with "-O2 -threaded"
7.391s elapsed on a 2.5 GHz Dual-Core Intel Core i7 Macbook Pro.

import           Control.Concurrent (setNumCapabilities)
import Crypto.Hash (hashWith, SHA256 (..), Digest)
import Control.Monad (replicateM, join, (>=>))
import Control.Monad.Par (runPar, get, spawnP)
import Data.ByteString (pack)
import Data.List.Split (chunksOf)
import GHC.Conc (getNumProcessors)
import Text.Printf (printf)
 
hashedValues :: [Digest SHA256]
hashedValues = read <$>
[ "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
, "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
, "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad" ]
 
bruteForce :: Int -> [(String, String)]
bruteForce n = runPar $ join <$>
(mapM (spawnP . foldr findMatch []) >=> mapM get) chunks
where
chunks = chunksOf (26^5 `div` n) $ replicateM 5 [97..122]
findMatch s accum
| hashed `elem` hashedValues = (show hashed, show bStr) : accum
| otherwise = accum
where
bStr = pack s
hashed = hashWith SHA256 bStr
 
main :: IO ()
main = do
cpus <- getNumProcessors
setNumCapabilities cpus
printf "Using %d cores\n" cpus
mapM_ (uncurry (printf "%s -> %s\n")) (bruteForce cpus)
Output:
brute
Using 4 cores
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b -> apple
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f -> mmmmm
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad -> zyzzx

Or using worker threads with buffered read/write channels.

Here all the possible test strings are batched as a stream that is fed to worker threads via a single read channel (batchChan). Each worker thread listens to the read channel (batchChan) and will write to the write channel (resultChan) when it finds a match. The worker threads loop indefinitely returning to read the next message on the read channel (batchChan). The main thread listens to the write channel (resultChan) and terminates once all three messages have been received.

import           Control.Concurrent      (forkIO, setNumCapabilities)
import Control.Concurrent.Chan (Chan, newChan, readChan, writeList2Chan)
import Control.Monad (replicateM, replicateM_, forever)
import Crypto.Hash (SHA256(..), Digest, hashWith)
import Data.Bifunctor (first)
import Data.ByteString (ByteString, pack)
import Data.Char (isDigit)
import Data.List.Split (chunksOf)
import Data.Word (Word8)
import GHC.Conc (getNumProcessors)
import System.Environment (getArgs)
import Text.Printf (printf)
 
type Decrypted = String
type Encrypted = Digest SHA256
type TestString = [Word8]
 
hashedValues :: [Encrypted]
hashedValues = read <$>
[ "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
, "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
, "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad" ]
 
chunks :: [[TestString]]
chunks = chunksOf (10^3) $ replicateM 5 [97..122]
 
findMatch :: TestString -> [(Encrypted, Decrypted)] -> [(Encrypted, Decrypted)]
findMatch w acc
| hashed `elem` hashedValues = (hashed, show bStr):acc
| otherwise = acc
where
bStr = pack w
hashed = hashWith SHA256 bStr
 
searchWorker :: Chan [TestString] -> Chan (Encrypted, Decrypted) -> IO ()
searchWorker batchChan resultChan = forever (readChan batchChan >>= writeList2Chan resultChan . foldr findMatch [])
 
parseInput :: [String] -> Int -> Int
parseInput [] n = n
parseInput (s:_) n = if all isDigit s then read s else n
 
main :: IO ()
main = do
workers <- getArgs
cpus <- getNumProcessors
let wCount = parseInput workers cpus
setNumCapabilities wCount
printf "Using %d workers on %d cpus.\n" wCount cpus
resultChan <- newChan
batchChan <- newChan
replicateM_ wCount (forkIO $ searchWorker batchChan resultChan)
writeList2Chan batchChan chunks
replicateM_ (length hashedValues) (readChan resultChan >>= uncurry (printf "%s -> %s\n") . first show)
Output:
brute2                     
Using 4 workers on 4 cpus.
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b -> "apple"
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f -> "mmmmm"
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad -> "zyzzx"

Java[edit]

Works with: Java version 1.5

This example uses Java's multithreading capabilities. Note that the Java Virtual Machine will use native Threads if the underlying platform supprts them. If there is no native thread support, the Java VM will emulate threads. This implementation runs 3 threads (one per hash to crack), and short-stops when a match for a hash is found.

import javax.xml.bind.DatatypeConverter;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
/**
* "Main Program" that does the parallel processing
*/

public class ParallelBruteForce {
 
public static void main(String[] args) throws NoSuchAlgorithmException {
 
//the hashes to be cracked
String[] hashes = {"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"};
 
//An ExecutorService is a high-level parallel programming facility, that can execute a number of tasks
//the FixedThreadPool is an ExecutorService that uses a configurable number of parallel threads
ExecutorService executorService = Executors.newFixedThreadPool(3);
 
//Submit one Task per hash to the thread po
for (String hash : hashes) {
executorService.submit(new Forcer(hash));
}
 
//An ExecutorSerice must be shut down properly (this also causes the program to await termination of
// all pending tasks in the thread pool)
executorService.shutdown();
}
}
 
/**
* The Class that contains the actual brute-forcing task.
* <p>
* It implements the build-in Interface "Runnable", so it can be run on a Thread or a Thread-Execution-Facility
* (such as an ExecutorService).
*/

class Forcer implements Runnable {
 
private static final int LENGTH = 5;
 
//These will sore the hash to be cracked in both bytes (required for comparison) and String representation
// (required for output)
private final byte[] crackMe;
private final String crackMeString;
 
//The MessageDigest does the SHA-256 caclulation. Note that this may throw a NoSuchAlgorithmException when there
// is no SHA-256 implementation in the local standard libraries (but that algorithm is mandatory, so this code
// probably will never throw that Excpetion
private final MessageDigest digest = MessageDigest.getInstance("SHA-256");
 
public Forcer(String crackMe) throws NoSuchAlgorithmException {
this.crackMeString = crackMe;
this.crackMe = DatatypeConverter.parseHexBinary(crackMe);
}
 
@Override
public void run() {
 
String match = "";
 
//all loops use this array for their counters. This is very dirty and should never be done in production!
char[] chars = new char[LENGTH];
 
//used for short-stopping when a match is found - one could abuse the match-variable for this, but this is
// much clearer
boolean done = false;
 
for (chars[0] = 'a'; chars[0] <= 'z' && !done; chars[0]++) {
for (chars[1] = 'a'; chars[1] <= 'z' && !done; chars[1]++) {
for (chars[2] = 'a'; chars[2] <= 'z' && !done; chars[2]++) {
for (chars[3] = 'a'; chars[3] <= 'z' && !done; chars[3]++) {
for (chars[4] = 'a'; chars[4] <= 'z' && !done; chars[4]++) {
//the String creation is necessary to get the encoding right
String canidate = new String(chars);
//genenrate SHA-256 hash using Java's standard facilities
byte[] hash = digest.digest(canidate.getBytes());
if (Arrays.equals(hash, crackMe)) {
match = canidate;
done = true;
}
 
}
}
}
}
}
System.out.println(String.format("Hash %s has the following match : %s", crackMeString, match));
}
}
 
 
 
Output:
Hash 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b has the following match : apple

Hash 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f has the following match : mmmmm

Hash 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad has the following match : zyzzx

Faster Alternative Version[edit]

Combines ideas from the C++ solution and the above Java version. Execution time is about 1.6 seconds on my system (3.2 GHz Quad-Core Intel Core i5, macOS 10.15.3).

import javax.xml.bind.DatatypeConverter;
import java.security.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
 
public class ParallelBruteForce {
public static void main(String[] args) {
try {
String[] hashes = {
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"};
ParallelBruteForce pbf = new ParallelBruteForce(5, hashes);
pbf.findPasswords();
} catch (Exception e) {
e.printStackTrace();
}
}
 
private ParallelBruteForce(int length, String[] hashes) {
this.length = length;
this.hashes = hashes;
digests = new byte[hashes.length][];
for (int i = 0; i < hashes.length; ++i)
digests[i] = DatatypeConverter.parseHexBinary(hashes[i]);
}
 
private void findPasswords() throws Exception {
count.set(length);
int processors = Runtime.getRuntime().availableProcessors();
ExecutorService svc = Executors.newFixedThreadPool(processors);
List<Future<?>> tasks = new ArrayList<>();
for (int i = 0; i < 26; ++i)
tasks.add(svc.submit(new PasswordFinder((byte)(97 + i))));
for (Future<?> task : tasks)
task.get();
svc.shutdown();
}
 
private static boolean nextPassword(byte[] passwd, int start) {
int len = passwd.length;
for (int i = len - 1; i >= start; --i) {
if (passwd[i] < 122) {
++passwd[i];
return true;
}
passwd[i] = 97;
}
return false;
}
 
private class PasswordFinder implements Runnable {
private byte ch;
private MessageDigest md = MessageDigest.getInstance("SHA-256");
private PasswordFinder(byte c) throws NoSuchAlgorithmException {
ch = c;
}
public void run() {
byte[] passwd = new byte[length];
Arrays.fill(passwd, (byte)97);
passwd[0] = ch;
while (count.get() > 0) {
byte[] digest = md.digest(passwd);
for (int m = 0; m < hashes.length; ++m) {
if (Arrays.equals(digest, digests[m])) {
count.decrementAndGet();
System.out.println("password: " + new String(passwd) + ", hash: " + hashes[m]);
break;
}
}
if (!nextPassword(passwd, 1))
break;
}
}
}
 
private int length;
private String[] hashes;
private byte[][] digests;
private AtomicInteger count = new AtomicInteger();
}
Output:
password: apple, hash: 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
password: mmmmm, hash: 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
password: zyzzx, hash: 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Julia[edit]

@everywhere using SHA
 
@everywhere function bruteForceRange(startSerial, numberToDo)
targets = ["1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"]
targets = map(hex2bytes, targets)
for count = 1 : numberToDo
password = [UInt8(97 + x) for x in digits(UInt8, startSerial + count, 26, 5)]
hashbytes = sha256(password)
if (hashbytes[1] == 0x11 || hashbytes[1] == 0x3a || hashbytes[1] == 0x74) && findfirst(targets, hashbytes) > 0
hexstring = join(hex(x,2) for x in hashbytes)
passwordstring = join(map(Char, password))
println("$passwordstring --> $hexstring")
end
end
return 0
end
 
@everywhere perThread = div(26^5, Sys.CPU_CORES)
pmap(x -> bruteForceRange(x * perThread, perThread), 0:Sys.CPU_CORES-1)
 
Output:
From worker 2:  apple --> 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b

From worker 3: zyzzx --> 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

From worker 4: mmmmm --> 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f

Kotlin[edit]

Translation of: C#
// version 1.1.51
 
import java.security.MessageDigest
 
fun stringHashToByteHash(hash: String): ByteArray {
val ba = ByteArray(32)
for (i in 0 until 64 step 2) ba[i / 2] = hash.substring(i, i + 2).toInt(16).toByte()
return ba
}
 
fun ByteArray.matches(other: ByteArray): Boolean {
for (i in 0 until 32) {
if (this[i] != other[i]) return false
}
return true
}
 
fun main(args: Array<String>) {
val stringHashes = listOf(
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
)
val byteHashes = List(3) { stringHashToByteHash(stringHashes[it]) }
val letters = List(26) { (97 + it).toByte() }
 
letters.stream().parallel().forEach {
val md = MessageDigest.getInstance("SHA-256")
val range = 97..122
val pwd = ByteArray(5)
pwd[0] = it
for (i1 in range) {
pwd[1] = i1.toByte()
for (i2 in range) {
pwd[2] = i2.toByte()
for (i3 in range) {
pwd[3] = i3.toByte()
for (i4 in range) {
pwd[4] = i4.toByte()
val ba = md.digest(pwd)
for (j in 0..2) {
if (ba.matches(byteHashes[j])) {
val password = pwd.toString(Charsets.US_ASCII)
println("$password => ${stringHashes[j]}")
break
}
}
}
}
}
}
}
}
Output:
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Mathematica[edit]

testPassword[pass_String] := 
If[MemberQ[{16^^1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad,
16^^3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b,
16^^74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f},
Hash[pass, "SHA256"]], Print[pass]];
 
chars=CharacterRange["a","z"];
 
ParallelDo[
testPassword[StringJoin[a, b, c, d, e]],
{a, chars}, {b, chars}, {c, chars}, {d, chars}, {e, chars}]

Modula-2[edit]

MODULE PBF;
FROM FormatString IMPORT FormatString;
FROM SHA256 IMPORT SHA256,Create,Destroy,HashBytes,Finalize,GetHash;
FROM SYSTEM IMPORT ADR,ADDRESS,BYTE;
FROM Terminal IMPORT Write,WriteString,WriteLn,ReadChar;
FROM Threads IMPORT Thread,CreateThread,WaitForThreadTermination;
 
PROCEDURE PrintHexBytes(str : ARRAY OF BYTE; limit : INTEGER);
VAR
buf : ARRAY[0..7] OF CHAR;
i,v : INTEGER;
BEGIN
i := 0;
WHILE i<limit DO
v := ORD(str[i]);
IF v < 16 THEN
WriteString("0")
END;
FormatString("%h", buf, v);
WriteString(buf);
INC(i);
END
END PrintHexBytes;
 
PROCEDURE Check(str : ARRAY OF CHAR);
TYPE
HA = ARRAY[0..31] OF BYTE;
CONST
h1 = HA{3aH, 7bH, 0d3H, 0e2H, 36H, 0aH, 3dH, 29H, 0eeH, 0a4H, 36H, 0fcH, 0fbH, 7eH, 44H, 0c7H, 35H, 0d1H, 17H, 0c4H, 2dH, 1cH, 18H, 35H, 42H, 0bH, 6bH, 99H, 42H, 0ddH, 4fH, 1bH};
h2 = HA{74H, 0e1H, 0bbH, 62H, 0f8H, 0daH, 0bbH, 81H, 25H, 0a5H, 88H, 52H, 0b6H, 3bH, 0dfH, 6eH, 0aeH, 0f6H, 67H, 0cbH, 56H, 0acH, 7fH, 7cH, 0dbH, 0a6H, 0d7H, 30H, 5cH, 50H, 0a2H, 2fH};
h3 = HA{11H, 15H, 0ddH, 80H, 0fH, 0eaH, 0acH, 0efH, 0dfH, 48H, 1fH, 1fH, 90H, 70H, 37H, 4aH, 2aH, 81H, 0e2H, 78H, 80H, 0f1H, 87H, 39H, 6dH, 0b6H, 79H, 58H, 0b2H, 07H, 0cbH, 0adH};
VAR
hash : SHA256;
out : ARRAY[0..31] OF BYTE;
i : CARDINAL;
match : BOOLEAN;
BEGIN
hash := Create();
 
HashBytes(hash, ADR(str), HIGH(str)+1);
Finalize(hash);
 
GetHash(hash, out);
Destroy(hash);
 
match := TRUE;
FOR i:=0 TO HIGH(out) DO
IF out[i] # h1[i] THEN
match := FALSE;
BREAK
END
END;
IF match THEN
WriteString(str);
WriteString(" ");
PrintHexBytes(out, 32);
WriteLn;
RETURN
END;
 
match := TRUE;
FOR i:=0 TO HIGH(out) DO
IF out[i] # h2[i] THEN
match := FALSE;
BREAK
END
END;
IF match THEN
WriteString(str);
WriteString(" ");
PrintHexBytes(out, 32);
WriteLn;
RETURN
END;
 
match := TRUE;
FOR i:=0 TO HIGH(out) DO
IF out[i] # h3[i] THEN
match := FALSE;
BREAK
END
END;
IF match THEN
WriteString(str);
WriteString(" ");
PrintHexBytes(out, 32);
WriteLn
END
END Check;
 
PROCEDURE CheckWords(a : CHAR);
VAR
word : ARRAY[0..4] OF CHAR;
b,c,d,e : CHAR;
BEGIN
word[0] := a;
FOR b:='a' TO 'z' DO
word[1] := b;
FOR c:='a' TO 'z' DO
word[2] := c;
FOR d:='a' TO 'z' DO
word[3] := d;
FOR e:='a' TO 'z' DO
word[4] := e;
Check(word)
END
END
END
END
END CheckWords;
 
PROCEDURE CheckAF(ptr : ADDRESS) : CARDINAL;
VAR a : CHAR;
BEGIN
FOR a:='a' TO 'f' DO
CheckWords(a)
END;
RETURN 0
END CheckAF;
 
PROCEDURE CheckGM(ptr : ADDRESS) : CARDINAL;
VAR a : CHAR;
BEGIN
FOR a:='g' TO 'm' DO
CheckWords(a)
END;
RETURN 0
END CheckGM;
 
PROCEDURE CheckNS(ptr : ADDRESS) : CARDINAL;
VAR a : CHAR;
BEGIN
FOR a:='n' TO 's' DO
CheckWords(a)
END;
RETURN 0
END CheckNS;
 
PROCEDURE CheckTZ(ptr : ADDRESS) : CARDINAL;
VAR a : CHAR;
BEGIN
FOR a:='t' TO 'z' DO
CheckWords(a)
END;
RETURN 0
END CheckTZ;
 
VAR
t1,t2,t3,t4 : Thread;
s1,s2,s3,s4 : CARDINAL;
BEGIN
CreateThread(t1,CheckAF,NIL,0,TRUE);
CreateThread(t2,CheckGM,NIL,0,TRUE);
CreateThread(t3,CheckNS,NIL,0,TRUE);
CreateThread(t4,CheckTZ,NIL,0,TRUE);
 
WaitForThreadTermination(t1,-1,s1);
WaitForThreadTermination(t2,-1,s2);
WaitForThreadTermination(t3,-1,s3);
WaitForThreadTermination(t4,-1,s4);
 
WriteString("Done");
WriteLn;
ReadChar
END PBF.
Output:
apple 3A7BD3E2360A3D29EEA436FCFB7E44C735D117C42D1C1835420B6B9942DD4F1B
mmmmm 74E1BB62F8DABB8125A58852B63BDF6EAEF667CB56AC7F7CDBA6D7305C50A22F
zyzzx 1115DD800FEAACEFDF481F1F9070374A2A81E27880F187396DB67958B207CBAD
Done

Perl[edit]

Uses threads library to do naive search using 26 threads ("aaaaa" .. "azzzz", "baaaa" .. "bzzzz", etc.). No effort is made to early exit.

use Digest::SHA qw/sha256_hex/;
use threads;
use threads::shared;
my @results :shared;
 
print "$_ : ",join(" ",search($_)), "\n" for (qw/
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
/);
 
 
sub search {
my $hash = shift;
@results = ();
$_->join() for map { threads->create('tsearch', $_, $hash) } 0..25;
return @results;
}
 
sub tsearch {
my($tnum, $hash) = @_;
my $s = chr(ord("a")+$tnum) . "aaaa";
 
for (1..456976) { # 26^4
push @results, $s if sha256_hex($s) eq $hash;
$s++;
}
}
Output:
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad : zyzzx
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b : apple
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f : mmmmm

Phix[edit]

Each thread processes one start letter at a time, until they are all done.

include builtins\sha256.e
include builtins\VM\pThreadN.e -- (shd not be rqd on 0.8.1+)
 
function asHex(string s)
string res = ""
for i=1 to length(s) do
res &= sprintf("%02X",s[i])
end for
return res
end function
 
sequence starts
constant start_cs = init_cs(), -- critical section
hashes = {x"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad",
x"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
x"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"}
 
procedure find_passwords()
sequence thrashes = {} -- thread-safe copy of hashes
enter_cs(start_cs)
for i=1 to length(hashes) do
thrashes = append(thrashes,thread_safe_string(hashes[i]))
end for
leave_cs(start_cs)
while true do
string pwd
enter_cs(start_cs)
if length(starts)=0 then
leave_cs(start_cs)
exit
end if
pwd = starts[$]&repeat('a',4)
starts = starts[1..$-1]
leave_cs(start_cs)
while length(pwd) do
string hash = sha256(pwd)
if find(hash,thrashes) then ?{pwd,asHex(hash)} end if
for i=5 to 2 by -1 do
if pwd[i]!='z' then
pwd[i] += 1
exit
end if
pwd[i] = 'a'
if i=2 then pwd = "" exit end if
end for
end while
end while
exit_thread(0)
end procedure
 
for nthreads=4 to 4 do
atom t0 = time()
starts = tagset('a','z',-1)
sequence threads = {}
for i=1 to nthreads do
threads = append(threads,create_thread(routine_id("find_passwords"),{}))
end for
wait_thread(threads)
string e = elapsed(time()-t0)
printf(1,"completed with %d threads in %s\n",{nthreads,e})
end for
Output:
(with nthreads loop from 1 to 4, and for that case CPU use in Task Manager shows a very clear step pattern.)
{"apple","3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"}
{"mmmmm","74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"}
{"zyzzx","1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"}
completed with 1 threads in 29.1s
{"apple","3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"}
{"mmmmm","74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"}
{"zyzzx","1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"}
completed with 2 threads in 16.1s
{"apple","3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"}
{"mmmmm","74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"}
{"zyzzx","1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"}
completed with 3 threads in 13.8s
{"apple","3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"}
{"mmmmm","74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"}
{"zyzzx","1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"}
completed with 4 threads in 12.7s

PureBasic[edit]

UseSHA2Fingerprint()
 
NewList sha256fp.s()
AddElement(sha256fp()) : sha256fp() = "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
AddElement(sha256fp()) : sha256fp() = "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
AddElement(sha256fp()) : sha256fp() = "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
 
Procedure PrintCode(n.i)
Shared sha256fp()
SelectElement(sha256fp(), n) : fp$ = sha256fp()
For c1 = 'a' To 'z'
For c2 = 'a' To 'z'
For c3 = 'a' To 'z'
For c4 = 'a' To 'z'
For c5 = 'a' To 'z'
If fp$ = StringFingerprint(Chr(c1) + Chr(c2) + Chr(c3) + Chr(c4) + Chr(c5), #PB_Cipher_SHA2, 256)
PrintN(Chr(c1) + Chr(c2) + Chr(c3) + Chr(c4) + Chr(c5) + " => " + fp$)
Break(5)
EndIf
Next c5
Next c4
Next c3
Next c2
Next c1
EndProcedure
 
If OpenConsole("")
For i=0 To ListSize(sha256fp()) - 1
CreateThread(@PrintCode(), i)
Next
Input()
EndIf
End
Output:
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Python[edit]

import multiprocessing
from hashlib import sha256
 
 
def HashFromSerial(serial):
divisor = 456976
letters = []
for i in range(5):
letter, serial = divmod(serial, divisor)
letters.append( 97 + int(letter) )
divisor /= 26
return (letters, sha256(bytes(letters)).digest())
 
 
def main():
h1 = bytes().fromhex("1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad")
h2 = bytes().fromhex("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b")
h3 = bytes().fromhex("74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")
numpasswords = int(26 ** 5)
chunksize = int(numpasswords / multiprocessing.cpu_count())
with multiprocessing.Pool() as p:
for (letters, digest) in p.imap_unordered(HashFromSerial, range(numpasswords), chunksize):
if digest == h1 or digest == h2 or digest == h3:
password = "".join(chr(x) for x in letters)
print(password + " => " + digest.hex())
 
 
if __name__ == "__main__":
main()
Output:
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Racket[edit]

Tests are included firstly to check it works, but they also provide an opportunity to time the single threaded version.

#lang racket/base
(require racket/place
racket/list
racket/match
 ;; requires sha package. install it in DrRacket's "File/Install Package..."
 ;; or with raco:
 ;; % raco pkg install sha
sha
(only-in openssl/sha1 hex-string->bytes))
 
(define (brute css targs)
(define (sub-work i) (let ((cs (list-ref css i))) (in-range (car cs) (cdr cs))))
(define-values (as bs cs ds es) (apply values (map sub-work (range 5))))
(define s (make-bytes 5))
(for*/list ((a as) #:when (bytes-set! s 0 a)
(b bs) #:when (bytes-set! s 1 b)
(c cs) #:when (bytes-set! s 2 c)
(d ds) #:when (bytes-set! s 3 d)
(e es) #:when (bytes-set! s 4 e)
(h (in-value (sha256 s)))
(t (in-list targs))
#:when (bytes=? t h))
(eprintf "found ~s -> ~s~%" t s)
(cons (bytes-copy s) t)))
 
;; ---------------------------------------------------------------------------------------------------
(unless (place-enabled?) (error "We're using places... they're not enabled!"))
 
(define target-list
(map hex-string->bytes
(list "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
"3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")))
 
(define (run-place/assign-task sub-task)
(define there (place here
(match-define (cons work targs) (place-channel-get here))
(place-channel-put here (brute work targs))))
(place-channel-put there (cons sub-task target-list))
there)
 
(define (task->subtasks css n-tasks)
(match css
[(list (and initial-range (cons A Z+)) common-tail ...)
(define step (quotient (+ n-tasks (- Z+ A)) n-tasks))
(for/list ((a (in-range A Z+ step)))
 ;; replace the head with a sub-task head
(cons (cons a (min (+ a step) Z+)) common-tail))]))
 
(define readable-pair (match-lambda [(cons x (app bytes->hex-string s)) (cons x s)]))
 
(define (parallel-brute css (n-tasks (processor-count)))
(define the-places (map run-place/assign-task (task->subtasks css n-tasks)))
(define collected-results (append* (map place-channel-get the-places)))
(map readable-pair collected-results))
 
(define 5-char-lowercase-work
(make-list 5 (cons (char->integer #\a) (add1 (char->integer #\z)))))
 
;; ---------------------------------------------------------------------------------------------------
(module+ main
(time (parallel-brute 5-char-lowercase-work)))
 
;; ---------------------------------------------------------------------------------------------------
(module+ test
(require rackunit)
(check-equal?
(bytes->hex-string (sha256 #"mmmmm"))
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
"SHA-256 works as expected")
 
(check-equal?
(hex-string->bytes "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")
#"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/"
"This is the raw value we'll be hashing to")
 
(define m-idx (char->integer #\m))
(define m-idx+ (add1 m-idx))
(check-equal?
(brute (make-list 5 (cons m-idx m-idx+)) target-list)
(list
(cons
#"mmmmm"
#"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/")))
 
 ;; Brute works without parallelism
 ;; check when you have the time... it takes a minute (literally)
(check-equal?
(time
(brute 5-char-lowercase-work target-list))
'((#"apple"
. #":{\323\3426\n=)\356\2446\374\373~D\3075\321\27\304-\34\0305B\vk\231B\335O\e")
(#"mmmmm"
.
#"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/")
(#"zyzzx"
.
#"\21\25\335\200\17\352\254\357\337H\37\37\220p7J*\201\342x\200\361\2079m\266yX\262\a\313\255"))
"without parallelism, it works"))
Output:

Test phase of run:

found #"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/" -> #"mmmmm"
found #":{\323\3426\n=)\356\2446\374\373~D\3075\321\27\304-\34\0305B\vk\231B\335O\e" -> #"apple"
found #"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/" -> #"mmmmm"
found #"\21\25\335\200\17\352\254\357\337H\37\37\220p7J*\201\342x\200\361\2079m\266yX\262\a\313\255" -> #"zyzzx"
cpu time: 19593 real time: 19581 gc time: 2247

Main phase of run:

found #"\21\25\335\200\17\352\254\357\337H\37\37\220p7J*\201\342x\200\361\2079m\266yX\262\a\313\255" -> #"zyzzx"
found #":{\323\3426\n=)\356\2446\374\373~D\3075\321\27\304-\34\0305B\vk\231B\335O\e" -> #"apple"
found #"t\341\273b\370\332\273\201%\245\210R\266;\337n\256\366g\313V\254\177|\333\246\3270\\P\242/" -> #"mmmmm"
cpu time: 30641 real time: 4681 gc time: 0
'((#"apple" . "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b")
  (#"mmmmm" . "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")
  (#"zyzzx" . "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"))

Raku[edit]

(formerly Perl 6) This solution can be changed from parallel to serial by removing the .race method.

use Digest::SHA256::Native;
constant @alpha2 = [X~] <a m p y z> xx 2;
constant @alpha3 = [X~] <e l m p x z> xx 3;
 
my %WANTED = set <
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
>;
 
sub find_it ( $first_two ) {
for $first_two «~« @alpha3 -> \password {
my \digest_hex = sha256-hex(password);
return "{password} => {digest_hex}" if %WANTED{digest_hex}
}
()
}
 
.say for flat @alpha2.race(:1batch).map: { find_it($_) };
Output:
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

Testers can adjust the run speed by replacing the @alpha constants with one of the below:

 
# True to actual RC task, but slowest
constant @alpha2 = 'aa' .. 'zz';
constant @alpha3 = 'aaa' .. 'zzz';
 
# Reduced alphabets for speed during development & testing
constant @alpha2 = [X~] <a m p y z> xx 2;
constant @alpha3 = [X~] <e l m p x z> xx 3;
 

Rust[edit]

In this solution the number of threads is the number of logical processors on the machine. `distribute_work()` distributes the work more or less equally between the threads.

// [dependencies]
// rust-crypto = "0.2.36"
// num_cpus = "1.7.0"
// hex = "0.2.0"
 
extern crate crypto;
extern crate num_cpus;
extern crate hex;
 
use std::thread;
use std::cmp::min;
use crypto::sha2::Sha256;
use crypto::digest::Digest;
use hex::{FromHex, ToHex};
 
fn main() {
let hashes = vec![
decode("1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"),
decode("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"),
decode("74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"),
];
 
let mut threads = Vec::new();
let mut ranges = distribute_work();
 
while let Some(range) = ranges.pop() {
let hashes = hashes.clone();
threads.push(thread::spawn(
move || search(range.0, range.1, hashes.clone()),
));
}
 
while let Some(t) = threads.pop() {
t.join().ok();
}
}
 
fn search(from: [u8; 5], to: [u8; 5], hashes: Vec<[u8; 256 / 8]>) {
 
let mut password = from.clone();
 
while password <= to {
let mut sha256 = Sha256::new();
sha256.input(&password);
let mut result = [0u8; 256 / 8];
sha256.result(&mut result);
 
for hash in hashes.iter() {
if *hash == result {
println!(
"{}{}{}{}{} {}",
password[0] as char,
password[1] as char,
password[2] as char,
password[3] as char,
password[4] as char,
hash.to_hex()
);
}
}
 
password = next(&password);
}
 
}
 
fn next(password: &[u8; 5]) -> [u8; 5] {
let mut result = password.clone();
for i in (0..result.len()).rev() {
if result[i] == b'z' {
if i == 0 {
result[i] = b'z' + 1;
} else {
result[i] = b'a';
}
} else {
result[i] += 1;
break;
}
}
result.clone()
}
 
fn distribute_work() -> Vec<([u8; 5], [u8; 5])> {
let mut ranges = Vec::new();
let num_cpus = min(num_cpus::get(), 26) as u8;
 
let div = 25 / num_cpus;
let mut remainder = 25 % num_cpus;
let mut from = b'a';
while from < b'z' {
 
let to = from + div +
if remainder > 0 {
remainder -= 1;
1
} else {
0
};
 
ranges.push((
[from, from, from, from, from + 1].clone(),
[to, to, to, to, to].clone(),
));
 
from = to;
}
ranges[0].0[4] = b'a';
 
ranges.clone()
}
 
fn decode(string: &str) -> [u8; 256 / 8] {
let mut result = [0; 256 / 8];
let vec = Vec::from_hex(string).unwrap();
for i in 0..result.len() {
result[i] = vec[i];
}
result.clone()
}
Output:
apple 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
zyzzx 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
mmmmm 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f

Scala[edit]

Scala has an excellent implementation of parallel collections, which allow you to take advantage of parallel processing with only minor modifications to your code.

This example converts the collection of candidate strings into a ParVector as soon as possible, speeding up both the final step to generating the candidates and the search.

import java.security.MessageDigest
 
import scala.collection.parallel.immutable.ParVector
 
object EncryptionCracker {
def main(args: Array[String]): Unit = {
val hash1 = "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
val hash2 = "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
val hash3 = "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
 
val charSet = ('a' to 'z').toVector
val num = 5
 
for(tmp <- List(hash1, hash2, hash3)){
println(tmp)
crack(tmp, charSet, num) match{
case Some(s) => println(s"String: $s\n")
case None => println("Failed\n")
}
}
}
 
def crack(hash: String, charSet: Vector[Char], num: Int): Option[String] = {
val perms = charSet
.flatMap(c => Vector.fill(num)(c)).combinations(num) //Generate distinct sets of letters
.to(ParVector) //Convert to ParVector
.flatMap(_.permutations.map(_.mkString)) //Finish generating candidates
 
perms.find(str => getHash(str).equalsIgnoreCase(hash)) //Search for a matching string
}
 
def getHash(str: String): String = {
val digester = MessageDigest.getInstance("SHA-256")
digester.digest(str.getBytes("UTF-8")).map("%02x".format(_)).mkString
}
}

An unfortunate side-effect of jumping straight into a ParVector, though, is that the entire list of candidate strings must be computed before attempting to find a match. This means that even modestly large charsets and/or strings can make the memory usage and runtime blow up.

To solve that issue, this next example implements lazy lists. A lazy list is evaluated as needed, meaning you can generate the list of candidates as you check them. In order to still take advantage of parallel processing, this code takes fixed-size chunks off the front of the LazyList and converts them to ParVectors, repeating until either a match is found or the LazyList is empty.

Notice that def is used in place of val when working with the list of candidates. This is because val holds onto the head, which means it would fill up memory over time with the backlog of candidates already checked. Using def lets the program discard candidates after they are checked.

import java.security.MessageDigest
 
import scala.annotation.tailrec
import scala.collection.parallel.immutable.ParVector
 
object EncryptionCracker {
def main(args: Array[String]): Unit = {
val hash1 = "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
val hash2 = "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
val hash3 = "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
 
val charSet = ('a' to 'z').toVector
val len = 5
val num = 1000000
 
for(tmp <- List(hash1, hash2, hash3)){
println(tmp)
crackLazy(tmp, charSet, len, num) match{
case Some(s) => println(s"String: $s\n")
case None => println("Failed\n")
}
}
}
 
def crackLazy(hash: String, charSet: Vector[Char], len: Int, num: Int): Option[String] = {
@tailrec
def getMatch(lst: LazyList[String]): Option[String] = {
def hit = lst.take(num).to(ParVector).find(str => getHash(str).equalsIgnoreCase(hash))
def nxt = lst.drop(num)
hit match{
case Some(str) => Some(str)
case None if nxt.nonEmpty => getMatch(nxt)
case None => None
}
}
 
def perms = charSet
.flatMap(Vector.fill(len)(_))
.combinations(len)
.flatMap(_.permutations.map(_.mkString)).to(LazyList)
 
getMatch(perms)
}
 
def getHash(str: String): String = {
val digester = MessageDigest.getInstance("SHA-256")
digester.digest(str.getBytes("UTF-8")).map("%02x".format(_)).mkString
}
}

As a final example, we can clean this code up with some method chaining and currying to get this:

import java.security.MessageDigest
 
import scala.collection.parallel.immutable.ParVector
 
object EncryptionCracker {
def main(args: Array[String]): Unit = {
val hash1 = "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad"
val hash2 = "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b"
val hash3 = "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f"
 
val cracker: String => Option[String] = crackLazy('a' to 'z', 5, 1000000)
 
for(tmp <- Seq(hash2, hash1, hash3)){
println(s"$tmp")
cracker(tmp) match{
case Some(s) => println(s"String: $s\n")
case None => println("Failed\n")
}
}
}
 
def getHash(str: String): String = MessageDigest
.getInstance("SHA-256")
.digest(str.getBytes("UTF-8"))
.map("%02x".format(_)).mkString
 
def crackLazy(charSet: Seq[Char], len: Int, num: Int)(hash: String): Option[String] = charSet
.flatMap(Vector.fill(len)(_)) //Duplicate characters so they can be used any number of times
.combinations(len) //Generate distinct sets of characters
.flatMap(_.permutations.map(_.mkString)) //Generate all permutations for each character set
.grouped(num) //Partition into bite-size chunks
.map(_.to(ParVector).find(str => getHash(str) == hash)) //Convert each chunk into a ParVector and search it
.collectFirst{case Some(res) => res} //Get the first hit if one is found
}
Output:
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
String: zyzzx

3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
String: apple

74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
String: mmmmm

Sidef[edit]

Translation of: Perl
func invert_sha256(hash) {
 
var letters = @('a'..'z')
 
var job = func (prefix, hash) {
variations_with_repetition(letters, 4, {|*a|
var s = join('', prefix, a...)
return s if (s.sha256 == hash)
})
return nil
}
 
letters.map {|prefix|
job.ffork(prefix, hash)
}.each {|f|
with (f.wait) { return _ }
}
}
 
var tests = %w(
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
)
 
tests.each {|t|
var phrase = invert_sha256(t)
say "#{t} : #{phrase}"
}
Output:
1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad : zyzzx
3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b : apple
74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f : mmmmm

Visual Basic .NET[edit]

Translation of: C#
Imports System.Text
 
Module Module1
 
Function Matches(a As Byte(), b As Byte()) As Boolean
For i = 0 To 31
If a(i) <> b(i) Then
Return False
End If
Next
Return True
End Function
 
Function StringHashToByteArray(s As String) As Byte()
Return Enumerable.Range(0, s.Length / 2).Select(Function(i) CType(Convert.ToInt16(s.Substring(i * 2, 2), 16), Byte)).ToArray
End Function
 
Sub Main()
Dim h1 = StringHashToByteArray("1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad")
Dim h2 = StringHashToByteArray("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b")
Dim h3 = StringHashToByteArray("74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f")
 
Parallel.For(0, 26, Sub(a As Integer)
Dim sha = Security.Cryptography.SHA256.Create()
Dim password(4) As Byte
Dim hash As Byte()
 
password(0) = 97 + a
 
password(1) = 97
While password(1) < 123
password(2) = 97
While password(2) < 123
password(3) = 97
While password(3) < 123
password(4) = 97
While password(4) < 123
hash = sha.ComputeHash(password)
If Matches(h1, hash) OrElse Matches(h2, hash) OrElse Matches(h3, hash) Then
Console.WriteLine(Encoding.ASCII.GetString(password) + " => " + BitConverter.ToString(hash).ToLower().Replace("-", ""))
End If
password(4) += 1
End While
password(3) += 1
End While
password(2) += 1
End While
password(1) += 1
End While
End Sub)
End Sub
 
End Module
Output:
mmmmm => 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
apple => 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
zyzzx => 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

zkl[edit]

The built in thread message passing object uses the OS to do the heavy lifting and, as a result, isn't suited to high through put (ie passing passwords to cracking threads, equally distributing passwords to each cracking thread). Instead, each thread gets a range of passwords to crack and use signals to coordinate. Way more code with the drawback that one thread may have to do all the work.

This was run on a Intel i7 4 core 8 thread Linux box.

Uses the message hashing extension library (DLL).

Translation of: C#
var [const] MsgHash=Import.lib("zklMsgHash");
var [const] gotEm=Atomic.Int(); // global signal for all threads
 
const THREADS=9, // how we will split task, THREADS<=26
CHR_a="a".toAsc();
 
fcn crack(c,n,hashes){ // thread
sha256:=MsgHash.SHA256; // the SHA-256 hash method, byte bucket
bytes,hash := Data(),Data().howza(0); // byte buckets to reduce garbage production
firstLtrs:=(c+CHR_a).walker(n);
ltrs:=CHR_a.walker; // iterator starting at 97/"a"
foreach a,b,c,d,e in (firstLtrs,ltrs(26),ltrs(26),ltrs(26),ltrs(26)){
if(not hashes2go) return(); // all cracked, stop, not really needed
bytes.clear(a,b,c,d,e); // recycle Data, faster than creating Strings
sha256(bytes,1,hash); // put hash in hash
if(hashes.holds(hash)){
println(bytes.text," --> ",hash.pump(String,"%02x".fmt));
hashes2go.dec(); // I cracked one, let mom thread know
}
}
}
hashes:=T("3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b",
"74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f",
"1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad");
// convert hex strings to binary; cuts down conversions during crack
fcn hex2binary(s){ s.pump(Data,Void.Read,fcn(a,b){ (a+b).toInt(16) }) }
hashes:=hashes.apply(hex2binary);
 
hashes2go.set(hashes.len()); // number of codes to crack
num,xtra := 26/THREADS, 26%THREADS; // try for the most even spread over threads
s:=0; do(THREADS){ // start threads
n:=num + ((xtra-=1)>=0);
crack.launch(s.toInt(),n,hashes);
s+=n;
}
hashes2go.waitFor(0); // wait until all cracked, just exit, OS kills threads
mmmmm --> 74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f
apple --> 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b
zyzzx --> 1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad

real	0m3.261s
user	0m22.160s
sys	0m0.140s