SHA-256

From Rosetta Code
Task
SHA-256
You are encouraged to solve this task according to the task description, using any language you may know.

SHA-256 is the recommended stronger alternative to SHA-1. See FIPS PUB 180-4 for implementation details.

Either by using a dedicated library or implementing the algorithm in your language, show that the SHA-256 digest of the string "Rosetta code" is: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

AutoHotkey[edit]

Source: SHA-256 @github by jNizM

str := "Rosetta code"
MsgBox, % "File:`n" (file) "`n`nSHA-256:`n" FileSHA256(file)
 
 
 
; SHA256 ============================================================================
SHA256(string, encoding = "utf-8")
{
return CalcStringHash(string, 0x800c, encoding)
}
 
; CalcAddrHash ======================================================================
CalcAddrHash(addr, length, algid, byref hash = 0, byref hashlength = 0)
{
static h := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "A", "B", "C", "D", "E", "F"]
static b := h.minIndex()
o := ""
if (DllCall("advapi32\CryptAcquireContext", "Ptr*", hProv, "Ptr", 0, "Ptr", 0, "UInt", 24, "UInt", 0xF0000000))
{
if (DllCall("advapi32\CryptCreateHash", "Ptr", hProv, "UInt", algid, "UInt", 0, "UInt", 0, "Ptr*", hHash))
{
if (DllCall("advapi32\CryptHashData", "Ptr", hHash, "Ptr", addr, "UInt", length, "UInt", 0))
{
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", 0, "UInt*", hashlength, "UInt", 0))
{
VarSetCapacity(hash, hashlength, 0)
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", &hash, "UInt*", hashlength, "UInt", 0))
{
loop, % hashlength
{
v := NumGet(hash, A_Index - 1, "UChar")
o .= h[(v >> 4) + b] h[(v & 0xf) + b]
}
}
}
}
DllCall("advapi32\CryptDestroyHash", "Ptr", hHash)
}
DllCall("advapi32\CryPtreleaseContext", "Ptr", hProv, "UInt", 0)
}
return o
}
 
; CalcStringHash ====================================================================
CalcStringHash(string, algid, encoding = "utf-8", byref hash = 0, byref hashlength = 0)
{
chrlength := (encoding = "cp1200" || encoding = "utf-16") ? 2 : 1
length := (StrPut(string, encoding) - 1) * chrlength
VarSetCapacity(data, length, 0)
StrPut(string, &data, floor(length / chrlength), encoding)
return CalcAddrHash(&data, length, algid, hash, hashlength)
}
Output:
String:    Rosetta code
SHA-256:   764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

BBC BASIC[edit]

Library[edit]

      PRINT FNsha256("Rosetta code")
END
 
DEF FNsha256(message$)
LOCAL buflen%, buffer%, hcont%, hprov%, hhash%, hash$, i%
CALG_SHA_256 = &800C
HP_HASHVAL = 2
CRYPT_NEWKEYSET = 8
PROV_RSA_AES = 24
buflen% = 128
DIM buffer% LOCAL buflen%-1
SYS "CryptAcquireContext", ^hcont%, 0, \
\ "Microsoft Enhanced RSA and AES Cryptographic Provider", \
\ PROV_RSA_AES, CRYPT_NEWKEYSET
SYS "CryptAcquireContext", ^hprov%, 0, 0, PROV_RSA_AES, 0
SYS "CryptCreateHash", hprov%, CALG_SHA_256, 0, 0, ^hhash%
SYS "CryptHashData", hhash%, message$, LEN(message$), 0
SYS "CryptGetHashParam", hhash%, HP_HASHVAL, buffer%, ^buflen%, 0
SYS "CryptDestroyHash", hhash%
SYS "CryptReleaseContext", hprov%
SYS "CryptReleaseContext", hcont%
FOR i% = 0 TO buflen%-1
hash$ += RIGHT$("0" + STR$~buffer%?i%, 2)
NEXT
= hash$

Output:

764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

Native[edit]

      REM SHA-256 calculation by Richard Russell in BBC BASIC for Windows
 
REM Must run in FLOAT64 mode:
*FLOAT64
 
REM Test message for validation:
message$ = "Rosetta code"
 
REM Initialize variables:
h0% = &6A09E667
h1% = &BB67AE85
h2% = &3C6EF372
h3% = &A54FF53A
h4% = &510E527F
h5% = &9B05688C
h6% = &1F83D9AB
h7% = &5BE0CD19
 
REM Create table of constants:
DIM k%(63) : k%() = \
\ &428A2F98, &71374491, &B5C0FBCF, &E9B5DBA5, &3956C25B, &59F111F1, &923F82A4, &AB1C5ED5, \
\ &D807AA98, &12835B01, &243185BE, &550C7DC3, &72BE5D74, &80DEB1FE, &9BDC06A7, &C19BF174, \
\ &E49B69C1, &EFBE4786, &0FC19DC6, &240CA1CC, &2DE92C6F, &4A7484AA, &5CB0A9DC, &76F988DA, \
\ &983E5152, &A831C66D, &B00327C8, &BF597FC7, &C6E00BF3, &D5A79147, &06CA6351, &14292967, \
\ &27B70A85, &2E1B2138, &4D2C6DFC, &53380D13, &650A7354, &766A0ABB, &81C2C92E, &92722C85, \
\ &A2BFE8A1, &A81A664B, &C24B8B70, &C76C51A3, &D192E819, &D6990624, &F40E3585, &106AA070, \
\ &19A4C116, &1E376C08, &2748774C, &34B0BCB5, &391C0CB3, &4ED8AA4A, &5B9CCA4F, &682E6FF3, \
\ &748F82EE, &78A5636F, &84C87814, &8CC70208, &90BEFFFA, &A4506CEB, &BEF9A3F7, &C67178F2
 
Length% = LEN(message$)*8
 
REM Pre-processing:
REM append the bit '1' to the message:
message$ += CHR$&80
 
REM append k bits '0', where k is the minimum number >= 0 such that
REM the resulting message length (in bits) is congruent to 448 (mod 512)
WHILE (LEN(message$) MOD 64) <> 56
message$ += CHR$0
ENDWHILE
 
REM append length of message (before pre-processing), in bits, as
REM 64-bit big-endian integer:
FOR I% = 56 TO 0 STEP -8
message$ += CHR$(Length% >>> I%)
NEXT
 
REM Process the message in successive 512-bit chunks:
REM break message into 512-bit chunks, for each chunk
REM break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15
 
DIM w%(63)
FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
 
FOR i% = 0 TO 15
w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
SWAP ?(^w%(i%)+0),?(^w%(i%)+3)
SWAP ?(^w%(i%)+1),?(^w%(i%)+2)
NEXT i%
 
REM Extend the sixteen 32-bit words into sixty-four 32-bit words:
FOR i% = 16 TO 63
s0% = FNrr(w%(i%-15),7) EOR FNrr(w%(i%-15),18) EOR (w%(i%-15) >>> 3)
s1% = FNrr(w%(i%-2),17) EOR FNrr(w%(i%-2),19) EOR (w%(i%-2) >>> 10)
w%(i%) = FN32(w%(i%-16) + s0% + w%(i%-7) + s1%)
NEXT i%
 
REM Initialize hash value for this chunk:
a% = h0%
b% = h1%
c% = h2%
d% = h3%
e% = h4%
f% = h5%
g% = h6%
h% = h7%
 
REM Main loop:
FOR i% = 0 TO 63
s0% = FNrr(a%,2) EOR FNrr(a%,13) EOR FNrr(a%,22)
maj% = (a% AND b%) EOR (a% AND c%) EOR (b% AND c%)
t2% = FN32(s0% + maj%)
s1% = FNrr(e%,6) EOR FNrr(e%,11) EOR FNrr(e%,25)
ch% = (e% AND f%) EOR ((NOT e%) AND g%)
t1% = FN32(h% + s1% + ch% + k%(i%) + w%(i%))
 
h% = g%
g% = f%
f% = e%
e% = FN32(d% + t1%)
d% = c%
c% = b%
b% = a%
a% = FN32(t1% + t2%)
 
NEXT i%
 
REM Add this chunk's hash to result so far:
h0% = FN32(h0% + a%)
h1% = FN32(h1% + b%)
h2% = FN32(h2% + c%)
h3% = FN32(h3% + d%)
h4% = FN32(h4% + e%)
h5% = FN32(h5% + f%)
h6% = FN32(h6% + g%)
h7% = FN32(h7% + h%)
 
NEXT chunk%
 
REM Produce the final hash value (big-endian):
hash$ = FNhex(h0%) + " " + FNhex(h1%) + " " + FNhex(h2%) + " " + FNhex(h3%) + \
\ " " + FNhex(h4%) + " " + FNhex(h5%) + " " + FNhex(h6%) + " " + FNhex(h7%)
 
PRINT hash$
END
 
DEF FNrr(A%,I%) = (A% >>> I%) OR (A% << (32-I%))
 
DEF FNhex(A%) = RIGHT$("0000000"+STR$~A%,8)
 
DEF FN32(n#)
WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
= n#

Output:

764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF

C[edit]

Requires OpenSSL, compile flag: -lssl

#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
 
int main (void) {
const char *s = "Rosetta code";
unsigned char *d = SHA256(s, strlen(s), 0);
 
int i;
for (i = 0; i < SHA256_DIGEST_LENGTH; i++)
printf("%02x", d[i]);
putchar('\n');
 
return 0;
}

C#[edit]

using System;
using System.Security.Cryptography;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;
 
namespace RosettaCode.SHA256
{
[TestClass]
public class SHA256ManagedTest
{
[TestMethod]
public void TestComputeHash()
{
var buffer = Encoding.UTF8.GetBytes("Rosetta code");
var hashAlgorithm = new SHA256Managed();
var hash = hashAlgorithm.ComputeHash(buffer);
Assert.AreEqual(
"76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF",
BitConverter.ToString(hash));
}
}
}

Caché ObjectScript[edit]

USER>set hash=$System.Encryption.SHAHash(256, "Rosetta code")
USER>zzdump hash
0000: 76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39
0010: 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF

Clojure[edit]

Library: pandect
(use 'pandect.core)
(sha256 "Rosetta code")
Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Common Lisp[edit]

Library: Ironclad
(ql:quickload 'ironclad)
(defun sha-256 (str)
(ironclad:byte-array-to-hex-string
(ironclad:digest-sequence :sha256
(ironclad:ascii-string-to-byte-array str))))
 
(sha-256 "Rosetta code")
Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

D[edit]

Standard Version[edit]

void main() {
import std.stdio, std.digest.sha;
 
writefln("%-(%02x%)", "Rosetta code".sha256Of);
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Simple Implementation[edit]

// Copyright (C) 2005, 2006 Free Software Foundation, Inc. GNU License.
// Translated to D language. Only lightly tested, not for serious use.
 
import core.stdc.string: memcpy;
import core.bitop: bswap;
 
struct SHA256 {
enum uint BLOCK_SIZE = 4096;
static assert(BLOCK_SIZE % 64 == 0, "Invalid BLOCK_SIZE.");
 
uint[8] state;
uint[2] total;
uint bufLen;
union {
uint[32] buffer;
ubyte[buffer.sizeof] bufferB;
}
 
alias TResult = ubyte[256 / 8];
 
version(WORDS_BIGENDIAN) {
static uint bswap(in uint n) pure nothrow @safe @nogc { return n; }
}
 
// Bytes used to pad the buffer to the next 64-byte boundary.
static immutable ubyte[64] fillBuf = [0x80, 0 /* , 0, 0, ... */];
 
 
/** Initialize structure containing state of computation.
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
intializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash. */

void init() pure nothrow @safe @nogc {
state = [0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U];
total[] = 0;
bufLen = 0;
}
 
 
/** Starting with the result of former calls of this function (or
the initialization function) update the context for the next LEN
bytes starting at BUFFER.
It is not required that LEN is a multiple of 64. */

void processBytes(in ubyte[] inBuffer) pure nothrow @nogc {
// When we already have some bits in our internal
// buffer concatenate both inputs first.
const(ubyte)* inBufferPtr = inBuffer.ptr;
auto len = inBuffer.length;
 
if (bufLen != 0) {
immutable size_t left_over = bufLen;
immutable size_t add = (128 - left_over > len) ?
len :
128 - left_over;
 
memcpy(&bufferB[left_over], inBufferPtr, add);
bufLen += add;
 
if (bufLen > 64) {
processBlock(bufferB[0 .. bufLen & ~63]);
 
bufLen &= 63;
// The regions in the following copy operation cannot overlap.
memcpy(bufferB.ptr, &bufferB[(left_over + add) & ~63], bufLen);
}
 
inBufferPtr += add;
len -= add;
}
 
// Process available complete blocks.
if (len >= 64) {
processBlock(inBufferPtr[0 .. len & ~63]);
inBufferPtr += (len & ~63);
len &= 63;
}
 
// Move remaining bytes in internal buffer.
if (len > 0) {
size_t left_over = bufLen;
 
memcpy(&bufferB[left_over], inBufferPtr, len);
left_over += len;
if (left_over >= 64) {
processBlock(bufferB[0 .. 64]);
left_over -= 64;
memcpy(bufferB.ptr, &bufferB[64], left_over);
}
bufLen = left_over;
}
}
 
 
/** Starting with the result of former calls of this function
(or the initialization function) update the context ctx for
the next len bytes starting at buffer.
It is necessary that len is a multiple of 64. */

void processBlock(in ubyte[] inBuffer)
pure nothrow @nogc in {
assert(inBuffer.length % 64 == 0);
} body {
// Round functions.
static uint F1(in uint e, in uint f, in uint g) pure nothrow @safe @nogc {
return g ^ (e & (f ^ g));
}
 
static uint F2(in uint a, in uint b, in uint c) pure nothrow @safe @nogc {
return (a & b) | (c & (a | b));
}
 
immutable len = inBuffer.length;
auto words = cast(uint*)inBuffer.ptr;
immutable size_t nWords = len / uint.sizeof;
const uint* endp = words + nWords;
uint[16] x = void;
auto a = state[0];
auto b = state[1];
auto c = state[2];
auto d = state[3];
auto e = state[4];
auto f = state[5];
auto g = state[6];
auto h = state[7];
 
// First increment the byte count. FIPS PUB 180-2 specifies the
// possible length of the file up to 2^64 bits. Here we only
// compute the number of bytes. Do a double word increment.
total[0] += len;
if (total[0] < len)
total[1]++;
 
static uint rol(in uint x, in uint n) pure nothrow @safe @nogc {
return (x << n) | (x >> (32 - n)); }
static uint S0(in uint x) pure nothrow @safe @nogc {
return rol(x, 25) ^ rol(x, 14) ^ (x >> 3); }
static uint S1(in uint x) pure nothrow @safe @nogc {
return rol(x, 15) ^ rol(x, 13) ^ (x >> 10); }
static uint SS0(in uint x) pure nothrow @safe @nogc {
return rol(x, 30) ^ rol(x,19) ^ rol(x, 10); }
static uint SS1(in uint x) pure nothrow @safe @nogc {
return rol(x, 26) ^ rol(x, 21) ^ rol(x, 7); }
 
uint M(in uint I) pure nothrow @safe @nogc {
immutable uint tm = S1(x[(I - 2) & 0x0f]) +
x[(I - 7) & 0x0f] +
S0(x[(I - 15) & 0x0f]) +
x[I & 0x0f];
x[I & 0x0f] = tm;
return tm;
}
 
static void R(in uint a, in uint b, in uint c, ref uint d,
in uint e, in uint f, in uint g, ref uint h,
in uint k, in uint m) pure nothrow @safe @nogc {
immutable t0 = SS0(a) + F2(a, b, c);
immutable t1 = h + SS1(e) + F1(e, f, g) + k + m;
d += t1;
h = t0 + t1;
}
 
// SHA256 round constants.
static immutable uint[64] K = [
0x428a2f98U, 0x71374491U, 0xb5c0fbcfU, 0xe9b5dba5U,
0x3956c25bU, 0x59f111f1U, 0x923f82a4U, 0xab1c5ed5U,
0xd807aa98U, 0x12835b01U, 0x243185beU, 0x550c7dc3U,
0x72be5d74U, 0x80deb1feU, 0x9bdc06a7U, 0xc19bf174U,
0xe49b69c1U, 0xefbe4786U, 0x0fc19dc6U, 0x240ca1ccU,
0x2de92c6fU, 0x4a7484aaU, 0x5cb0a9dcU, 0x76f988daU,
0x983e5152U, 0xa831c66dU, 0xb00327c8U, 0xbf597fc7U,
0xc6e00bf3U, 0xd5a79147U, 0x06ca6351U, 0x14292967U,
0x27b70a85U, 0x2e1b2138U, 0x4d2c6dfcU, 0x53380d13U,
0x650a7354U, 0x766a0abbU, 0x81c2c92eU, 0x92722c85U,
0xa2bfe8a1U, 0xa81a664bU, 0xc24b8b70U, 0xc76c51a3U,
0xd192e819U, 0xd6990624U, 0xf40e3585U, 0x106aa070U,
0x19a4c116U, 0x1e376c08U, 0x2748774cU, 0x34b0bcb5U,
0x391c0cb3U, 0x4ed8aa4aU, 0x5b9cca4fU, 0x682e6ff3U,
0x748f82eeU, 0x78a5636fU, 0x84c87814U, 0x8cc70208U,
0x90befffaU, 0xa4506cebU, 0xbef9a3f7U, 0xc67178f2U];
 
while (words < endp) {
foreach (ref xi; x) {
xi = bswap(*words);
words++;
}
 
R(a, b, c, d, e, f, g, h, K[ 0], x[ 0]);
R(h, a, b, c, d, e, f, g, K[ 1], x[ 1]);
R(g, h, a, b, c, d, e, f, K[ 2], x[ 2]);
R(f, g, h, a, b, c, d, e, K[ 3], x[ 3]);
R(e, f, g, h, a, b, c, d, K[ 4], x[ 4]);
R(d, e, f, g, h, a, b, c, K[ 5], x[ 5]);
R(c, d, e, f, g, h, a, b, K[ 6], x[ 6]);
R(b, c, d, e, f, g, h, a, K[ 7], x[ 7]);
R(a, b, c, d, e, f, g, h, K[ 8], x[ 8]);
R(h, a, b, c, d, e, f, g, K[ 9], x[ 9]);
R(g, h, a, b, c, d, e, f, K[10], x[10]);
R(f, g, h, a, b, c, d, e, K[11], x[11]);
R(e, f, g, h, a, b, c, d, K[12], x[12]);
R(d, e, f, g, h, a, b, c, K[13], x[13]);
R(c, d, e, f, g, h, a, b, K[14], x[14]);
R(b, c, d, e, f, g, h, a, K[15], x[15]);
R(a, b, c, d, e, f, g, h, K[16], M(16));
R(h, a, b, c, d, e, f, g, K[17], M(17));
R(g, h, a, b, c, d, e, f, K[18], M(18));
R(f, g, h, a, b, c, d, e, K[19], M(19));
R(e, f, g, h, a, b, c, d, K[20], M(20));
R(d, e, f, g, h, a, b, c, K[21], M(21));
R(c, d, e, f, g, h, a, b, K[22], M(22));
R(b, c, d, e, f, g, h, a, K[23], M(23));
R(a, b, c, d, e, f, g, h, K[24], M(24));
R(h, a, b, c, d, e, f, g, K[25], M(25));
R(g, h, a, b, c, d, e, f, K[26], M(26));
R(f, g, h, a, b, c, d, e, K[27], M(27));
R(e, f, g, h, a, b, c, d, K[28], M(28));
R(d, e, f, g, h, a, b, c, K[29], M(29));
R(c, d, e, f, g, h, a, b, K[30], M(30));
R(b, c, d, e, f, g, h, a, K[31], M(31));
R(a, b, c, d, e, f, g, h, K[32], M(32));
R(h, a, b, c, d, e, f, g, K[33], M(33));
R(g, h, a, b, c, d, e, f, K[34], M(34));
R(f, g, h, a, b, c, d, e, K[35], M(35));
R(e, f, g, h, a, b, c, d, K[36], M(36));
R(d, e, f, g, h, a, b, c, K[37], M(37));
R(c, d, e, f, g, h, a, b, K[38], M(38));
R(b, c, d, e, f, g, h, a, K[39], M(39));
R(a, b, c, d, e, f, g, h, K[40], M(40));
R(h, a, b, c, d, e, f, g, K[41], M(41));
R(g, h, a, b, c, d, e, f, K[42], M(42));
R(f, g, h, a, b, c, d, e, K[43], M(43));
R(e, f, g, h, a, b, c, d, K[44], M(44));
R(d, e, f, g, h, a, b, c, K[45], M(45));
R(c, d, e, f, g, h, a, b, K[46], M(46));
R(b, c, d, e, f, g, h, a, K[47], M(47));
R(a, b, c, d, e, f, g, h, K[48], M(48));
R(h, a, b, c, d, e, f, g, K[49], M(49));
R(g, h, a, b, c, d, e, f, K[50], M(50));
R(f, g, h, a, b, c, d, e, K[51], M(51));
R(e, f, g, h, a, b, c, d, K[52], M(52));
R(d, e, f, g, h, a, b, c, K[53], M(53));
R(c, d, e, f, g, h, a, b, K[54], M(54));
R(b, c, d, e, f, g, h, a, K[55], M(55));
R(a, b, c, d, e, f, g, h, K[56], M(56));
R(h, a, b, c, d, e, f, g, K[57], M(57));
R(g, h, a, b, c, d, e, f, K[58], M(58));
R(f, g, h, a, b, c, d, e, K[59], M(59));
R(e, f, g, h, a, b, c, d, K[60], M(60));
R(d, e, f, g, h, a, b, c, K[61], M(61));
R(c, d, e, f, g, h, a, b, K[62], M(62));
R(b, c, d, e, f, g, h, a, K[63], M(63));
 
a = state[0] += a;
b = state[1] += b;
c = state[2] += c;
d = state[3] += d;
e = state[4] += e;
f = state[5] += f;
g = state[6] += g;
h = state[7] += h;
}
}
 
 
/** Process the remaining bytes in the internal buffer and the
usual prolog according to the standard and write the result to
resBuf.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */

void conclude() pure nothrow @nogc {
// Take yet unprocessed bytes into account.
immutable bytes = bufLen;
immutable size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
 
// Now count remaining bytes.
total[0] += bytes;
if (total[0] < bytes)
total[1]++;
 
// Put the 64-bit file length in *bits* at the end of
// the buffer.
buffer[size - 2] = bswap((total[1] << 3) | (total[0] >> 29));
buffer[size - 1] = bswap(total[0] << 3);
 
memcpy(&bufferB[bytes], fillBuf.ptr, (size - 2) * 4 - bytes);
 
// Process last bytes.
processBlock(bufferB[0 .. size * 4]);
}
 
 
/** Put result from this in first 32 bytes following resBuf. The
result must be in little endian byte order.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */

ref TResult read(return ref TResult resBuf) pure nothrow @nogc {
foreach (immutable i, immutable s; state)
(cast(uint*)resBuf.ptr)[i] = bswap(s);
return resBuf;
}
 
 
/** Process the remaining bytes in the buffer and put result from
CTX in first 32 (28) bytes following resBuf. The result is always
in little endian byte order, so that a byte-wise output yields to
the wanted ASCII representation of the message digest.
Important: On some systems it is required that resBuf be correctly
aligned for a 32 bits value. */

ref TResult finish(return ref TResult resBuf) pure nothrow @nogc {
conclude;
return read(resBuf);
}
 
 
/** Compute SHA512 message digest for LEN bytes beginning at
buffer. The result is always in little endian byte order, so that
a byte-wise output yields to the wanted ASCII representation of
the message digest. */

static ref TResult digest(in ubyte[] inBuffer, return ref TResult resBuf)
pure nothrow @nogc {
SHA256 sha = void;
 
// Initialize the computation context.
sha.init;
 
// Process whole buffer but last len % 64 bytes.
sha.processBytes(inBuffer);
 
// Put result in desired memory area.
return sha.finish(resBuf);
}
 
 
/// ditto
static TResult digest(in ubyte[] inBuffer) pure nothrow @nogc {
align(4) TResult resBuf = void;
return digest(inBuffer, resBuf);
}
}
 
 
version (sha_256_main) {
void main() {
import std.stdio, std.string;
 
immutable data = "Rosetta code".representation;
writefln("%(%02x%)", SHA256.digest(data));
}
}

Compile with -version=sha_256_main to run the main function.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

This is a moderately efficient implementation, about 100 MB/s on a 4096 bytes input buffer on a 32 bit system, using the ldc2 compiler. On a more modern CPU (Intel Ivy Bridge) using HyperThreading, handwritten assembly by Intel is about twice faster.

DWScript[edit]

PrintLn( HashSHA256.HashData('Rosetta code') );

Emacs Lisp[edit]

(secure-hash 'sha256 "Rosetta code")  ;; as string of hex digits

Erlang[edit]

More code to get the correct display format than doing the calculation.

Output:
10> Binary =  crypto:hash( sha256, "Rosetta code" ).
11> lists:append( [erlang:integer_to_list(X, 16) || <<X:8/integer>> <= Binary] ).
"764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF"

F#[edit]

open System.Security.Cryptography
open System.Text
 
"Rosetta code"
|> Encoding.ASCII.GetBytes
|> (new SHA256Managed()).ComputeHash
|> System.BitConverter.ToString
|> printfn "%s"
 
Output:
76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF

Fortran[edit]

Intel Fortran on Windows[edit]

Using Windows API. See CryptAcquireContext, CryptCreateHash, CryptHashData and CryptGetHashParam on MSDN. A few constants are not defined in the modules provided with Intel Fortran 2017 update 1, so they have to be defined first (MS_ENH_RSA_AES_PROV and CALG_SHA_256).

With the file rc.txt containing the string "Rosetta Code":

sha256 rc.txt
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF rc.txt (12 bytes)
module sha256_m
use kernel32
use advapi32
implicit none
integer, parameter :: SHA256LEN = 32
integer(DWORD), parameter :: CALG_SHA_256 = 32780
character(*), parameter :: MS_ENH_RSA_AES_PROV = "Microsoft Enhanced RSA and AES Cryptographic Provider"C
contains
subroutine sha256hash(name, hash, dwStatus, filesize)
implicit none
character(*) :: name
integer, parameter :: BUFLEN = 32768
integer(HANDLE) :: hFile, hProv, hHash
integer(DWORD) :: dwStatus, nRead
integer(BOOL) :: status
integer(BYTE) :: buffer(BUFLEN)
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
 
dwStatus = 0
filesize = 0
hFile = CreateFile(trim(name) // char(0), GENERIC_READ, FILE_SHARE_READ, NULL, &
OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL)
 
if (hFile == INVALID_HANDLE_VALUE) then
dwStatus = GetLastError()
print *, "CreateFile failed."
return
end if
 
if (CryptAcquireContext(hProv, NULL, MS_ENH_RSA_AES_PROV, PROV_RSA_AES, &
CRYPT_VERIFYCONTEXT) == FALSE) then
 
dwStatus = GetLastError()
print *, "CryptAcquireContext failed.", dwStatus
goto 3
end if
 
if (CryptCreateHash(hProv, CALG_SHA_256, 0_ULONG_PTR, 0_DWORD, hHash) == FALSE) then
 
dwStatus = GetLastError()
print *, "CryptCreateHash failed."
go to 2
end if
 
do
status = ReadFile(hFile, loc(buffer), BUFLEN, loc(nRead), NULL)
if (status == FALSE .or. nRead == 0) exit
filesize = filesize + nRead
if (CryptHashData(hHash, buffer, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptHashData failed."
go to 1
end if
end do
 
if (status == FALSE) then
dwStatus = GetLastError()
print *, "ReadFile failed."
go to 1
end if
 
nRead = SHA256LEN
if (CryptGetHashParam(hHash, HP_HASHVAL, hash, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptGetHashParam failed."
end if
 
1 status = CryptDestroyHash(hHash)
2 status = CryptReleaseContext(hProv, 0)
3 status = CloseHandle(hFile)
end subroutine
end module
 
program sha256
use sha256_m
implicit none
integer :: n, m, i, j
character(:), allocatable :: name
integer(DWORD) :: dwStatus
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
 
n = command_argument_count()
do i = 1, n
call get_command_argument(i, length=m)
allocate(character(m) :: name)
call get_command_argument(i, name)
call sha256hash(name, hash, dwStatus, filesize)
if (dwStatus*0 == 0) then
do j = 1, SHA256LEN
write(*, "(Z2.2)", advance="NO") hash(j)
end do
write(*, "(' ',A,' (',G0,' bytes)')") name, filesize
end if
deallocate(name)
end do
end program

FreeBASIC[edit]

' version 20-10-2016
' FIPS PUB 180-4
' compile with: fbc -s console
 
Function SHA_256(test_str As String) As String
 
#Macro Ch (x, y, z)
(((x) And (y)) Xor ((Not (x)) And z))
#EndMacro
 
#Macro Maj (x, y, z)
(((x) And (y)) Xor ((x) And (z)) Xor ((y) And (z)))
#EndMacro
 
#Macro sigma0 (x)
(((x) Shr 2 Or (x) Shl 30) Xor ((x) Shr 13 Or (x) Shl 19) Xor ((x) Shr 22 Or (x) Shl 10))
#EndMacro
 
#Macro sigma1 (x)
(((x) Shr 6 Or (x) Shl 26) Xor ((x) Shr 11 Or (x) Shl 21) Xor ((x) Shr 25 Or (x) Shl 7))
#EndMacro
 
#Macro sigma2 (x)
(((x) Shr 7 Or (x) Shl 25) Xor ((x) Shr 18 Or (x) Shl 14) Xor ((x) Shr 3))
#EndMacro
 
#Macro sigma3 (x)
(((x) Shr 17 Or (x) Shl 15) Xor ((x) Shr 19 Or (x) Shl 13) Xor ((x) Shr 10))
#EndMacro
 
Dim As String message = test_str ' strings are passed as ByRef's
 
Dim As Long i, j
Dim As UByte Ptr ww1
Dim As UInteger<32> Ptr ww4
 
Dim As ULongInt l = Len(message)
' set the first bit after the message to 1
message = message + Chr(1 Shl 7)
' add one char to the length
Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
 
' check if we have enough room for inserting the length
If padding < 8 Then padding = padding + 64
 
message = message + String(padding, Chr(0)) ' adjust length
Dim As ULong l1 = Len(message) ' new length
 
l = l * 8 ' orignal length in bits
' create ubyte ptr to point to l ( = length in bits)
Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
 
For i = 0 To 7 'copy length of message to the last 8 bytes
message[l1 -1 - i] = ub_ptr[i]
Next
 
'table of constants
Dim As UInteger<32> K(0 To ...) = _
{ &H428a2f98, &H71374491, &Hb5c0fbcf, &He9b5dba5, &H3956c25b, &H59f111f1, _
&H923f82a4, &Hab1c5ed5, &Hd807aa98, &H12835b01, &H243185be, &H550c7dc3, _
&H72be5d74, &H80deb1fe, &H9bdc06a7, &Hc19bf174, &He49b69c1, &Hefbe4786, _
&H0fc19dc6, &H240ca1cc, &H2de92c6f, &H4a7484aa, &H5cb0a9dc, &H76f988da, _
&H983e5152, &Ha831c66d, &Hb00327c8, &Hbf597fc7, &Hc6e00bf3, &Hd5a79147, _
&H06ca6351, &H14292967, &H27b70a85, &H2e1b2138, &H4d2c6dfc, &H53380d13, _
&H650a7354, &H766a0abb, &H81c2c92e, &H92722c85, &Ha2bfe8a1, &Ha81a664b, _
&Hc24b8b70, &Hc76c51a3, &Hd192e819, &Hd6990624, &Hf40e3585, &H106aa070, _
&H19a4c116, &H1e376c08, &H2748774c, &H34b0bcb5, &H391c0cb3, &H4ed8aa4a, _
&H5b9cca4f, &H682e6ff3, &H748f82ee, &H78a5636f, &H84c87814, &H8cc70208, _
&H90befffa, &Ha4506ceb, &Hbef9a3f7, &Hc67178f2 }
 
Dim As UInteger<32> h0 = &H6a09e667
Dim As UInteger<32> h1 = &Hbb67ae85
Dim As UInteger<32> h2 = &H3c6ef372
Dim As UInteger<32> h3 = &Ha54ff53a
Dim As UInteger<32> h4 = &H510e527f
Dim As UInteger<32> h5 = &H9b05688c
Dim As UInteger<32> h6 = &H1f83d9ab
Dim As UInteger<32> h7 = &H5be0cd19
Dim As UInteger<32> a, b, c, d, e, f, g, h
Dim As UInteger<32> t1, t2, w(0 To 63)
 
 
For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
ww1 = Cast(UByte Ptr, @message[j * 64])
ww4 = Cast(UInteger<32> Ptr, @message[j * 64])
 
For i = 0 To 60 Step 4 'little endian -> big endian
Swap ww1[i ], ww1[i +3]
Swap ww1[i +1], ww1[i +2]
Next
 
For i = 0 To 15 ' copy the 16 32bit block into the array
W(i) = ww4[i]
Next
 
For i = 16 To 63 ' fill the rest of the array
w(i) = sigma3(W(i -2)) + W(i -7) + sigma2(W(i -15)) + W(i -16)
Next
 
a = h0 : b = h1 : c = h2 : d = h3 : e = h4 : f = h5 : g = h6 : h = h7
 
For i = 0 To 63
t1 = h + sigma1(e) + Ch(e, f, g) + K(i) + W(i)
t2 = sigma0(a) + Maj(a, b, c)
h = g : g = f : f = e
e = d + t1
d = c : c = b : b = a
a = t1 + t2
Next
 
h0 += a : h1 += b : h2 += c : h3 += d
h4 += e : h5 += f : h6 += g : h7 += h
 
Next j
 
Dim As String answer = Hex(h0, 8) + Hex(h1, 8) + Hex(h2, 8) + Hex(h3, 8)
answer += Hex(h4, 8) + Hex(h5, 8) + Hex(h6, 8) + Hex(h7, 8)
 
Return LCase(answer)
 
End Function
 
' ------=< MAIN >=------
 
Dim As String test = "Rosetta code"
Print test; " => "; SHA_256(test)
 
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
Rosetta code => 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

FunL[edit]

A SHA-256 function can be defined using the Java support library.

native java.security.MessageDigest
 
def sha256Java( message ) = map( a -> format('%02x', a), list(MessageDigest.getInstance('SHA-256').digest(message.getBytes('UTF-8'))) ).mkString()

Here is a definition implemented as a direct translation of the pseudocode at SHA-256.

def sha256( message ) =
//Initialize hash values
h0 = 0x6a09e667
h1 = 0xbb67ae85
h2 = 0x3c6ef372
h3 = 0xa54ff53a
h4 = 0x510e527f
h5 = 0x9b05688c
h6 = 0x1f83d9ab
h7 = 0x5be0cd19
 
// Initialize array of round constants
k(0..63) = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
 
// Pre-processing
bits = BitArray( message.getBytes('UTF-8') )
len = bits.length()
bits.append( 1 )
r = bits.length()%512
bits.appendAll( 0 | _ <- 1..(if r > 448 then 512 - r + 448 else 448 - r) )
bits.appendInt( 0 )
bits.appendInt( len )
 
words = bits.toIntVector()
 
// Process the message in successive 512-bit chunks
for chunk <- 0:words.length():16
w(0..15) = words(chunk..chunk+15)
 
// Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
for i <- 16..63
s0 = (w(i-15) rotateright 7) xor (w(i-15) rotateright 18) xor (w(i-15) >>> 3)
s1 = (w(i-2) rotateright 17) xor (w(i-2) rotateright 19) xor (w(i-2) >>> 10)
w(i) = w(i-16) + s0 + w(i-7) + s1
 
// Initialize working variables to current hash value
a = h0
b = h1
c = h2
d = h3
e = h4
f = h5
g = h6
h = h7
 
// Compression function main loop
for i <- 0..63
S1 = (e rotateright 6) xor (e rotateright 11) xor (e rotateright 25)
ch = (e and f) xor ((not e) and g)
temp1 = h + S1 + ch + k(i) + w(i)
S0 = (a rotateright 2) xor (a rotateright 13) xor (a rotateright 22)
maj = (a and b) xor (a and c) xor (b and c)
temp2 = S0 + maj
 
h = g
g = f
f = e
e = d + temp1
d = c
c = b
b = a
a = temp1 + temp2
 
// Add the compressed chunk to the current hash value
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
h5 = h5 + f
h6 = h6 + g
h7 = h7 + h
 
// Produce the final hash value (big-endian)
map( a -> format('%08x', a.intValue()), [h0, h1, h2, h3, h4, h5, h6, h7] ).mkString()

Here is a test comparing the two and also verifying the hash values of the empty message string.

message = 'Rosetta code'
 
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
 
message = ''
 
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
Output:
FunL: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Java: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
FunL: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Java: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Go[edit]

package main
 
import (
"crypto/sha256"
"fmt"
"log"
)
 
func main() {
h := sha256.New()
if _, err := h.Write([]byte("Rosetta code")); err != nil {
log.Fatal(err)
}
fmt.Printf("%x\n", h.Sum(nil))
}
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Groovy[edit]

def sha256Hash = { text ->
java.security.MessageDigest.getInstance("SHA-256").digest(text.bytes)
.collect { String.format("%02x", it) }.join('')
}

Testing

assert sha256Hash('Rosetta code') == '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'

Haskell[edit]

import Data.Char (ord)
import Crypto.Hash.SHA256 (hash)
import Data.ByteString (unpack, pack)
import Text.Printf (printf)
 
main = putStrLn $ -- output to terminal
concatMap (printf "%02x") $ -- to hex string
unpack $ -- to array of Word8
hash $ -- SHA-256 hash to ByteString
pack $ -- to ByteString
map (fromIntegral.ord) -- to array of Word8
"Rosetta code"
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

J[edit]

Solution: From J8 the ide/qt addon provides bindings to Qt libraries that include support for various hashing algorithms including SHA-256.

require '~addons/ide/qt/qt.ijs'
getsha256=: 'sha256'&gethash_jqtide_

Example Usage:

   getsha256 'Rosetta code'
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Note that the older version Qt4 libraries currently shipped by default on many Linux distributions don't support SHA-256. On Windows and Mac, J8 includes the later Qt5 libraries that include support for SHA-256.

Java[edit]

The solution to this task would be a small modification to MD5 (replacing "MD5" with "SHA-256" as noted here).

Julia[edit]

 
clear = "Rosetta code"
standard = "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
 
using SHA
 
crypt = sha256(clear)
 
println("Testing Julia's SHA-256:")
if crypt == standard
println(" OK, \"", clear, "\" => ", crypt)
else
println("The hash does not match the standard value.")
end
 
Output:
Testing Julia's SHA-256:
  OK, "Rosetta code" => 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Lasso[edit]

Lasso supports the ciphers as supplied by the operating system.

SHA-256 is not supplied by all operating systems by default.

Use the cipher_list method to view these algorithms.

// The following will return a list of all the cipher 
// algorithms supported by the installation of Lasso
cipher_list
 
// With a -digest parameter the method will limit the returned list
// to all of the digest algorithms supported by the installation of Lasso
cipher_list(-digest)
 
// return the SHA-256 digest. Dependant on SHA-256 being an available digest method
cipher_digest('Rosetta Code', -digest='SHA-256',-hex=true)
 

Lua[edit]

Works with: Lua 5.1.4
Library: sha2
(luarocks install sha2)
#!/usr/bin/lua
 
require "sha2"
 
print(sha2.sha256hex("Rosetta code"))
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Mathematica[edit]

IntegerString[Hash["Rosetta code", "SHA256"], 16]
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

NetRexx[edit]

This solution is basically the same as that for MD5, substituting "SHA-256" for "MD5" as the algorithm to use in the MessageDigest instance.

/* NetRexx */
options replace format comments java crossref savelog symbols binary
 
import java.security.MessageDigest
 
SHA256('Rosetta code', '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf')
 
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method SHA256(messageText, verifyCheck) public static
 
algorithm = 'SHA-256'
digestSum = getDigest(messageText, algorithm)
 
say '<Message>'messageText'</Message>'
say Rexx('<'algorithm'>').right(12) || digestSum'</'algorithm'>'
say Rexx('<Verify>').right(12) || verifyCheck'</Verify>'
if digestSum == verifyCheck then say algorithm 'Confirmed'
else say algorithm 'Failed'
 
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method getDigest(messageText = Rexx, algorithm = Rexx 'MD5', encoding = Rexx 'UTF-8', lowercase = boolean 1) public static returns Rexx
 
algorithm = algorithm.upper
encoding = encoding.upper
 
message = String(messageText)
messageBytes = byte[]
digestBytes = byte[]
digestSum = Rexx ''
 
do
messageBytes = message.getBytes(encoding)
md = MessageDigest.getInstance(algorithm)
md.update(messageBytes)
digestBytes = md.digest
 
loop b_ = 0 to digestBytes.length - 1
bb = Rexx(digestBytes[b_]).d2x(2)
if lowercase then digestSum = digestSum || bb.lower
else digestSum = digestSum || bb.upper
end b_
catch ex = Exception
ex.printStackTrace
end
 
return digestSum
 

Output:

<Message>Rosetta code</Message>
   <SHA-256>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</SHA-256>
    <Verify>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</Verify>
SHA-256 Confirmed

NewLISP[edit]

;; using the crypto module from http://www.newlisp.org/code/modules/crypto.lsp.html
;; (import native functions from the crypto library, provided by OpenSSL)
(module "crypto.lsp")
(crypto:sha256 "Rosetta Code")

Nim[edit]

Library: OpenSSL

Compile with nim -d:ssl c sha256.nim:

import strutils
 
const SHA256Len = 32
 
proc SHA256(d: cstring, n: culong, md: cstring = nil): cstring {.cdecl, dynlib: "libssl.so", importc.}
 
proc SHA256(s: string): string =
result = ""
let s = SHA256(s.cstring, s.len.culong)
for i in 0 .. < SHA256Len:
result.add s[i].BiggestInt.toHex(2).toLower
 
echo SHA256("Rosetta code")
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Oberon-2[edit]

Works with: oo2c
Library: crypto
 
MODULE SHA256;
IMPORT
Crypto:SHA256,
Crypto:Utils,
Strings,
Out;
VAR
h: SHA256.Hash;
str: ARRAY 128 OF CHAR;
 
BEGIN
h := SHA256.NewHash();
h.Initialize;
str := "Rosetta code";
h.Update(str,0,Strings.Length(str));
h.GetHash(str,0);
Out.String("SHA256: ");Utils.PrintHex(str,0,h.size);Out.Ln
END SHA256.
 
Output:
SHA256: 
   764FAF5C   61AC315F   1497F9DF   A5427139   65B785E5   CC2F707D
   6468D7D1   124CDFCF

Objeck[edit]

 
class ShaHash {
function : Main(args : String[]) ~ Nil {
hash:= Encryption.Hash->SHA256("Rosetta code"->ToByteArray());
str := hash->ToHexString()->ToLower();
str->PrintLine();
str->Equals("764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")->PrintLine();
}
}
 
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
true

Objective-C[edit]

Build with something like

clang -o rosetta_sha256 rosetta_sha256.m /System/Library/Frameworks/Cocoa.framework/Cocoa

or in XCode.

#import <Cocoa/Cocoa.h>
#import <CommonCrypto/CommonDigest.h>
 
 
int main(int argc, char ** argv) {
NSString * msg = @"Rosetta code";
unsigned char buf[CC_SHA256_DIGEST_LENGTH];
const char * rc = [msg cStringUsingEncoding:NSASCIIStringEncoding];
if (! CC_SHA256(rc, strlen(rc), buf)) {
NSLog(@"Failure...");
return -1;
}
NSMutableString * res = [NSMutableString stringWithCapacity:(CC_SHA256_DIGEST_LENGTH * 2)];
for (int i = 0; i < CC_SHA256_DIGEST_LENGTH; ++i) {
[res appendFormat:@"%02x", buf[i]];
}
NSLog(@"Output: %@", res);
return 0;
}
 

OCaml[edit]

Library: caml-sha
let () =
let s = "Rosetta code" in
let digest = Sha256.string s in
print_endline (Sha256.to_hex digest)

Running this script in interpreted mode:

$ ocaml -I +sha sha256.cma sha.ml
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

OS X sha256sum[edit]

Apple OS X command line with echo and sha256sum.

echo -n 'Rosetta code' | sha256sum

Using the -n flag for echo is required as echo normally outputs a newline.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf  -

PARI/GP[edit]

It works on Linux systems.

sha256(s)=extern("echo \"Str(`echo -n '"Str(s)"'|sha256sum|cut -d' ' -f1`)\"")

The code above creates a new function sha256(s) which returns SHA-256 hash of item s.

Output:
sha256("Rosetta code") = "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Perl[edit]

The preferred way to do a task like this is to use an already written module, for example:

#!/usr/bin/perl 
use strict ;
use warnings ;
use Digest::SHA qw( sha256_hex ) ;
 
my $digest = sha256_hex my $phrase = "Rosetta code" ;
print "SHA-256('$phrase'): $digest\n" ;
 
Output:
SHA-256('Rosetta code'): 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

On the other hand, one of perl's mottos is There Is More Than One Way To Do It, so of course you could write your own implementation if you wanted to.

 
package Digest::SHA256::PP;
 
use strict;
use warnings;
 
use constant WORD => 2**32;
use constant MASK => WORD - 1;
 
my @h;
my @k;
 
for my $p ( 2 .. 311 ) {
# Horrible primality test, but sufficient for this task.
next if ("1" x $p) =~ /^(11+?)\1+$/;
# The choice to generate h and k instead of hard coding
# them is inspired by the Perl 6 implementation.
my $c = $p ** ( 1/3 );
push @k, int( ($c - int $c) * WORD );
next if @h == 8;
my $s = $p ** ( 1/2 );
push @h, int( ($s - int $s) * WORD );
}
 
sub new {
my %self = ( state => [@h], str => "", len => 0 );
bless \%self, shift;
}
 
my $rightrotate = sub {
my $lo = $_[0] >> $_[1];
my $hi = $_[0] << (32 - $_[1]);
($hi | $lo);
};
 
# This is adapted from the wikipedia entry on SHA2.
my $compress = sub {
my ($state, $bytes) = @_;
my @w = unpack 'N*', $bytes;
@w == 16 or die 'internal error';
my ($a, $b, $c, $d, $e, $f, $g, $h) = @$state;
until( @w == 64 ) {
my $s0 = $w[-15] >> 3;
my $s1 = $w[-2] >> 10;
$s0 ^= $rightrotate->($w[-15], $_) for 7, 18;
$s1 ^= $rightrotate->($w[-2], $_) for 17, 19;
push @w, ($w[-16] + $s0 + $w[-7] + $s1) & MASK;
}
my $i = 0;
for my $w (@w) {
my $ch = ($e & $f) ^ ((~$e) & $g);
my $maj = ($a & $b) ^ ($a & $c) ^ ($b & $c);
my ($S0, $S1) = (0, 0);
$S1 ^= $rightrotate->( $e, $_ ) for 6, 11, 25;
$S0 ^= $rightrotate->( $a, $_ ) for 2, 13, 22;
my $temp1 = $h + $S1 + $ch + $k[$i++] + $w;
my $temp2 = $S0 + $maj;
($h, $g, $f, $e, $d, $c, $b, $a) =
($g, $f, $e, ($d+$temp1)&MASK, $c, $b, $a, ($temp1+$temp2)&MASK);
}
my $j = 0;
$state->[$j++] += $_ for $a, $b, $c, $d, $e, $f, $g, $h;
};
 
use constant can_Q => eval { length pack 'Q>', 0 };
 
sub add {
my ($self, $bytes) = @_;
$self->{len} += 8 * length $bytes;
if( !can_Q and $self->{len} >= WORD ) {
my $hi = int( $self->{len} / WORD );
$self->{big} += $hi;
$self->{len} -= $hi * WORD;
}
my $len = length $self->{str};
if( ($len + length $bytes) < 64 ) {
$self->{str} .= $bytes;
return $self;
}
my $off = 64 - $len;
$compress->( $self->{state}, $self->{str} . substr( $bytes, 0, $off ) );
$len = length $_[0];
while( $off+64 <= $len ) {
$compress->( $self->{state}, substr( $bytes, $off, 64 ) );
$off += 64;
}
$self->{str} = substr( $bytes, $off );
$self;
}
 
sub addfile {
my ($self, $fh) = @_;
my $s = "";
while( read( $fh, $s, 2**13 ) ) {
$self->add( $s );
}
$self;
}
 
 
sub digest {
my $self = shift;
my $final = $self->{str};
$final .= chr 0x80;
while( ( 8+length $final ) % 64 ) {
$final .= chr 0;
}
if( can_Q ) {
$final .= pack 'Q>', $self->{len};
} else {
$self->{big} ||= 0;
$final .= pack 'NN', $self->{big}, $self->{len};
}
$compress->( $self->{state}, substr $final, 0, 64, "" ) while length $final;
if( wantarray ) {
map pack('N', $_), @{ $self->{state} };
} else {
pack 'N*', @{ $self->{state} };
}
}
 
sub hexdigest {
if( wantarray ) {
map unpack( 'H*', $_), &digest;
} else {
unpack 'H*', &digest;
}
}
 
unless( caller ) {
my @testwith = (@ARGV ? @ARGV : 'Rosetta code');
for my $str (@testwith) {
my $digester = __PACKAGE__->new;
$digester->add($str);
print "'$str':\n";
print join(" ", $digester->hexdigest), "\n";
}
}
 
1;
 
Output:
'Rosetta code':
764faf5c 61ac315f 1497f9df a5427139 65b785e5 cc2f707d 6468d7d1 124cdfcf

Perl 6[edit]

The following implementation takes all data as input. Ideally, input should be given lazily or something.

say sha256 "Rosetta code";
 
sub init(&f) {
map { my $f = $^p.&f; (($f - $f.Int)*2**32).Int },
state @ = grep *.is-prime, 2 .. *;
}
 
sub infix:<m+> { ($^a + $^b) % 2**32 }
sub rotr($n, $b) { $n +> $b +| $n +< (32 - $b) }
 
proto sha256($) returns Blob {*}
multi sha256(Str $str where all($str.ords) < 128) {
sha256 $str.encode: 'ascii'
}
multi sha256(Blob $data) {
constant K = init(* **(1/3))[^64];
my @b = flat $data.list, 0x80;
push @b, 0 until (8 * @b - 448) %% 512;
push @b, slip reverse (8 * $data).polymod(256 xx 7);
my @word = :256[@b.shift xx 4] xx @b/4;
 
my @H = init(&sqrt)[^8];
my @w;
loop (my $i = 0; $i < @word; $i += 16) {
my @h = @H;
for ^64 -> $j {
@w[$j] = $j < 16 ?? @word[$j + $i] // 0 !!
[m+]
rotr(@w[$j-15], 7) +^ rotr(@w[$j-15], 18) +^ @w[$j-15] +> 3,
@w[$j-7],
rotr(@w[$j-2], 17) +^ rotr(@w[$j-2], 19) +^ @w[$j-2] +> 10,
@w[$j-16];
my $ch = @h[4] +& @h[5] +^ +^@h[4] % 2**32 +& @h[6];
my $maj = @h[0] +& @h[2] +^ @h[0] +& @h[1] +^ @h[1] +& @h[2];
my0 = [+^] map { rotr @h[0], $_ }, 2, 13, 22;
my1 = [+^] map { rotr @h[4], $_ }, 6, 11, 25;
my $t1 = [m+] @h[7],1, $ch, K[$j], @w[$j];
my $t2 =0 m+ $maj;
@h = flat $t1 m+ $t2, @h[^3], @h[3] m+ $t1, @h[4..6];
}
@H [Z[m+]]= @h;
}
return Blob.new: map { |reverse .polymod(256 xx 3) }, @H;
}
Output:
Buf:0x<76 4f af 5c 61 ac 31 5f 14 97 f9 df a5 42 71 39 65 b7 85 e5 cc 2f 70 7d 64 68 d7 d1 12 4c df cf>

Phix[edit]

Using a pre-built dll (source and binary included in the standard distro)

constant lib = open_dll("SHA.DLL")
constant SHA_HashBlock = define_c_proc(lib,"SHA_HashBlock",{C_PTR,C_PTR,C_INT})
 
function sha256(string s)
atom mem = allocate(32)
sequence res
c_proc(SHA_HashBlock,{s,mem,length(s)})
res = peek4u({mem,8})
free(mem)
for i=1 to length(res) do
res[i] = sprintf("%08x",res[i])
end for
return join(res)
end function
 
?sha256("Rosetta code")
Output:
"764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF"

The following is, I feel, more in the spirit of this site (same output)

--
-- demo\rosetta\sha-256.exw
-- ========================
--
-- fairly faithful rendition of https://en.wikipedia.org/wiki/SHA-2
-- with slightly improved names (eg s0 -> sigma0) from elsewhere.
-- See also sha-256asm.exw for a faster inline asm version, and
-- sha-256dll.exw is much shorter as it uses a pre-built dll.
 
--Initial array of round constants
--(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
constant k = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}
 
function pad64(integer v)
-- round v up to multiple of 64
return floor((v+63)/64)*64
end function
 
constant m4 = allocate(4) -- scratch area, for uint32
 
function uint32(atom v)
--
-- (note: I have experimented to call this as few times as possible.
-- It wouldn't hurt to perform this on every maths op, but a
-- few leading bits in a few work fields don't matter much.)
--
poke4(m4,v)
return peek4u(m4)
end function
 
function sq_uint32(sequence s)
-- apply unit32 to all elements of s
for i=1 to length(s) do
s[i] = uint32(s[i])
end for
return s
end function
 
function dword(string msg, integer i)
-- get dword as big-endian
return msg[i]*#1000000+msg[i+1]*#10000+msg[i+2]*#100+msg[i+3]
end function
 
function shr(atom v, integer bits)
return floor(v/power(2,bits))
end function
 
function ror(atom v, integer bits)
return or_bits(shr(v,bits),v*power(2,32-bits))
end function
 
function sha256(string msg)
-- main function
atom s0,s1,a,b,c,d,e,f,g,h,ch,temp1,maj,temp2,x
sequence w = repeat(0,64)
sequence res
integer len = length(msg)+1
--Initial hash values
--(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19)
atom h0 = 0x6a09e667,
h1 = 0xbb67ae85,
h2 = 0x3c6ef372,
h3 = 0xa54ff53a,
h4 = 0x510e527f,
h5 = 0x9b05688c,
h6 = 0x1f83d9ab,
h7 = 0x5be0cd19
 
-- add the '1' bit and space for size in bits, padded to multiple of 64
msg &= #80&repeat('\0',pad64(len+8)-len)
len = (len-1)*8
for i=length(msg) to 1 by -1 do
msg[i] = and_bits(len,#FF)
len = floor(len/#100)
if len=0 then exit end if
end for
 
-- Process the message in successive 512-bit (64 byte) chunks
for chunk=1 to length(msg) by 64 do
for i=1 to 16 do
w[i] = dword(msg,chunk+(i-1)*4)
end for
-- Extend the first 16 words into the remaining 48 words w[17..64] of the message schedule array
for i=17 to 64 do
x = w[i-15]; s0 = xor_bits(xor_bits(ror(x, 7),ror(x,18)),shr(x, 3))
x = w[i-2]; s1 = xor_bits(xor_bits(ror(x,17),ror(x,19)),shr(x,10))
w[i] = uint32(w[i-16]+s0+w[i-7]+s1)
end for
-- Initialize working variables to current hash value
{a,b,c,d,e,f,g,h} = {h0,h1,h2,h3,h4,h5,h6,h7}
 
-- Compression function main loop
for i=1 to 64 do
s1 = xor_bits(xor_bits(ror(e,6),ror(e,11)),ror(e,25))
ch = xor_bits(and_bits(e,f),and_bits(not_bits(e),g))
temp1 = h+s1+ch+k[i]+w[i]
s0 = xor_bits(xor_bits(ror(a,2),ror(a,13)),ror(a,22))
maj = xor_bits(xor_bits(and_bits(a,b),and_bits(a,c)),and_bits(b,c))
temp2 = s0+maj
 
{h,g,f,e,d,c,b,a} = sq_uint32({g,f,e,d+temp1,c,b,a,temp1+temp2})
 
end for
 
-- Add the compressed chunk to the current hash value
{h0,h1,h2,h3,h4,h5,h6,h7} = sq_add({h0,h1,h2,h3,h4,h5,h6,h7},{a,b,c,d,e,f,g,h})
end for
 
-- Produce the final hash value (big-endian)
res = sq_uint32({h0, h1, h2, h3, h4, h5, h6, h7}) -- (or do sq_unit32 on the sq_add above)
for i=1 to length(res) do
res[i] = sprintf("%08x",res[i])
end for
return join(res)
end function
 
string res = sha256("Rosetta code")
?res

PHP[edit]

<?php
echo hash('sha256', 'Rosetta code');
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

PicoLisp[edit]

Library and implementation.

(setq *Sha256-K 
(mapcar hex
'("428A2F98" "71374491" "B5C0FBCF" "E9B5DBA5" "3956C25B"
"59F111F1" "923F82A4" "AB1C5ED5" "D807AA98" "12835B01"
"243185BE" "550C7DC3" "72BE5D74" "80DEB1FE" "9BDC06A7"
"C19BF174" "E49B69C1" "EFBE4786" "0FC19DC6" "240CA1CC"
"2DE92C6F" "4A7484AA" "5CB0A9DC" "76F988DA" "983E5152"
"A831C66D" "B00327C8" "BF597FC7" "C6E00BF3" "D5A79147"
"06CA6351" "14292967" "27B70A85" "2E1B2138" "4D2C6DFC"
"53380D13" "650A7354" "766A0ABB" "81C2C92E" "92722C85"
"A2BFE8A1" "A81A664B" "C24B8B70" "C76C51A3" "D192E819"
"D6990624" "F40E3585" "106AA070" "19A4C116" "1E376C08"
"2748774C" "34B0BCB5" "391C0CB3" "4ED8AA4A" "5B9CCA4F"
"682E6FF3" "748F82EE" "78A5636F" "84C87814" "8CC70208"
"90BEFFFA" "A4506CEB" "BEF9A3F7" "C67178F2") ) )
 
(de rightRotate (X C)
(| (mod32 (>> C X)) (mod32 (>> (- C 32) X))) )
 
(de mod32 (N)
(& N `(hex "FFFFFFFF")) )
 
(de not32 (N)
(x| N `(hex "FFFFFFFF")) )
 
(de add32 @
(mod32 (pass +)) )
 
(de sha256 (Str)
(let Len (length Str)
(setq Str
(conc
(need
(-
8
(* 64 (/ (+ Len 1 8 63) 64)) )
(conc (mapcar char (chop Str)) (cons `(hex "80")))
0 )
(flip
(make
(setq Len (* 8 Len))
(do 8
(link (& Len 255))
(setq Len (>> 8 Len )) ) ) ) ) ) )
(let
(H0 `(hex "6A09E667")
H1 `(hex "BB67AE85")
H2 `(hex "3C6EF372")
H3 `(hex "A54FF53A")
H4 `(hex "510E527F")
H5 `(hex "9B05688C")
H6 `(hex "1F83D9AB")
H7 `(hex "5BE0CD19") )
(while Str
(let
(A H0
B H1
C H2
D H3
E H4
F H5
G H6
H H7
W
(conc
(make
(do 16
(link
(apply
|
(mapcar >> (-24 -16 -8 0) (cut 4 'Str)) ) ) ) )
(need 48 0) ) )
(for (I 17 (>= 64 I) (inc I))
(let
(Wi15 (get W (- I 15))
Wi2 (get W (- I 2))
S0
(x|
(rightRotate Wi15 7)
(rightRotate Wi15 18)
(>> 3 Wi15) )
S1
(x|
(rightRotate Wi2 17)
(rightRotate Wi2 19)
(>> 10 Wi2) ) )
(set (nth W I)
(add32
(get W (- I 16))
S0
(get W (- I 7))
S1 ) ) ) )
(use (Tmp1 Tmp2)
(for I 64
(setq
Tmp1
(add32
H
(x|
(rightRotate E 6)
(rightRotate E 11)
(rightRotate E 25) )
(x| (& E F) (& (not32 E) G))
(get *Sha256-K I)
(get W I) )
Tmp2
(add32
(x|
(rightRotate A 2)
(rightRotate A 13)
(rightRotate A 22) )
(x|
(& A B)
(& A C)
(& B C) ) )
H G
G F
F E
E (add32 D Tmp1)
D C
C B
B A
A (add32 Tmp1 Tmp2) ) ) )
(setq
H0 (add32 H0 A)
H1 (add32 H1 B)
H2 (add32 H2 C)
H3 (add32 H3 D)
H4 (add32 H4 E)
H5 (add32 H5 F)
H6 (add32 H6 G)
H7 (add32 H7 H) ) ) )
(mapcan
'((N)
(flip
(make
(do 4
(link (& 255 N))
(setq N (>> 8 N)) ) ) ) )
(list H0 H1 H2 H3 H4 H5 H6 H7) ) ) )
 
(let Str "Rosetta code"
(println
(pack
(mapcar
'((B) (pad 2 (hex B)))
(sha256 Str) ) ) )
(println
(pack
(mapcar
'((B) (pad 2 (hex B)))
(native
"libcrypto.so"
"SHA256"
'(B . 32)
Str
(length Str)
'(NIL (32)) ) ) ) ) )
 
(bye)

PureBasic[edit]

PB Version 5.40

a$="Rosetta code"
bit.i= 256
 
UseSHA2Fingerprint() : b$=StringFingerprint(a$, #PB_Cipher_SHA2, bit)
 
OpenConsole()
Print("[SHA2 "+Str(bit)+" bit] Text: "+a$+" ==> "+b$)
Input()
Output:
[SHA2 256 bit] Text: Rosetta code ==> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Python[edit]

Python has a standard module for this:

>>> import hashlib
>>> hashlib.sha256( "Rosetta code".encode() ).hexdigest()
'764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'
>>>

Racket[edit]

 
#lang racket/base
 
;; define a quick SH256 FFI interface, similar to the Racket's default
;; SHA1 interface
(require ffi/unsafe ffi/unsafe/define openssl/libcrypto
(only-in openssl/sha1 bytes->hex-string))
(define-ffi-definer defcrypto libcrypto)
(defcrypto SHA256_Init (_fun _pointer -> _int))
(defcrypto SHA256_Update (_fun _pointer _pointer _long -> _int))
(defcrypto SHA256_Final (_fun _pointer _pointer -> _int))
(define (sha256 bytes)
(define ctx (malloc 128))
(define result (make-bytes 32))
(SHA256_Init ctx)
(SHA256_Update ctx bytes (bytes-length bytes))
(SHA256_Final result ctx)
(bytes->hex-string result))
 
;; use the defined wrapper to solve the task
(displayln (sha256 #"Rosetta code"))
 
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Ruby[edit]

require 'digest/sha2'
puts Digest::SHA256.hexdigest('Rosetta code')

Rust[edit]

extern crate crypto;
 
use crypto::sha2::Sha256;
use crypto::digest::Digest;
 
fn main() {
let mut digest = Sha256::new();
digest.input_str("Rosetta code");
assert!(digest.result_str() == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf".into());
}

Scala[edit]

Library: Scala
object RosettaSHA256 extends App {
 
def MD5(s: String): String = {
// Besides "MD5", "SHA-256", and other hashes are available
val m = java.security.MessageDigest.getInstance("SHA-256").digest(s.getBytes("UTF-8"))
m.map("%02x".format(_)).mkString
}
 
assert(MD5("Rosetta code") == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")
println("Successfully completed without errors.")
}

Seed7[edit]

$ include "seed7_05.s7i";
include "msgdigest.s7i";
 
const proc: main is func
begin
writeln(hex(sha256("Rosetta code")));
end func;
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Sidef[edit]

var sha = frequire('Digest::SHA');
say sha.sha256_hex('Rosetta code');
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Smalltalk[edit]

Use the Cryptography library:

 
(SHA256 new hashStream: 'Rosetta code' readStream) hex.
 

Tcl[edit]

package require sha256
 
puts [sha2::sha256 -hex "Rosetta code"]
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

zkl[edit]

Uses shared library zklMsgHash.so

var MsgHash=Import("zklMsgHash");
MsgHash.SHA256("Rosetta code")=="764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
Output:
True