MD5/Implementation

From Rosetta Code
< MD5
Task
MD5/Implementation
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task to code and validate an implementation of the MD5 Message Digest Algorithm by coding the algorithm directly (not using a call to a built-in or external hashing library). For details of the algorithm refer to MD5 on Wikipedia or the MD5 definition in IETF RFC (1321).

  • The implementation needs to implement the key functionality namely producing a correct message digest for an input string. It is not necessary to mimic all of the calling modes such as adding to a digest one block at a time over subsequent calls.
  • In addition to coding and verifying your implementation, note any challenges your language presented implementing the solution, implementation choices made, or limitations of your solution.
  • Solutions on this page should implement MD5 directly and NOT use built in (MD5) functions, call outs to operating system calls or library routines written in other languages as is common in the original MD5 task.
  • The following are acceptable:
    • An original implementation from the specification, reference implementation, or pseudo-code
    • A translation of a correct implementation from another language
    • A library routine in the same language; however, the source must be included here.

The solutions shown here will provide practical illustrations of bit manipulation, unsigned integers, working with little-endian data. Additionally, the task requires an attention to details such as boundary conditions since being out by even 1 bit will produce dramatically different results. Subtle implementation bugs can result in some hashes being correct while others are wrong. Not only is it critical to get the individual sub functions working correctly, even small errors in padding, endianness, or data layout will result in failure.

The following verification strings and hashes come from RFC 1321:
                            hash code <== string 
   0xd41d8cd98f00b204e9800998ecf8427e <== ""  
   0x0cc175b9c0f1b6a831c399e269772661 <== "a"
   0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
   0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
   0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
   0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
   0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

In addition, intermediate outputs to aid in developing an implementation can be found here.

The MD5 Message-Digest Algorithm was developed by RSA Data Security, Inc. in 1991.

Warning
Rosetta Code is not a place you should rely on for examples of code in critical roles, including security.
Also, note that MD5 has been broken and should not be used in applications requiring security. For these consider SHA2 or the upcoming SHA3.

Ada[edit]

note: this could be dependent on the endianness of the machine it runs on - not tested on big endian.

md5.ads:

package MD5 is
 
type Int32 is mod 2 ** 32;
type MD5_Hash is array (1 .. 4) of Int32;
function MD5 (Input : String) return MD5_Hash;
 
-- 32 hexadecimal characters + '0x' prefix
subtype MD5_String is String (1 .. 34);
function To_String (Item : MD5_Hash) return MD5_String;
 
end MD5;

md5.adb:

with Ada.Unchecked_Conversion;
 
package body MD5 is
type Int32_Array is array (Positive range <>) of Int32;
 
function Rotate_Left (Value : Int32; Count : Int32) return Int32 is
Bit  : Boolean;
Result : Int32 := Value;
begin
for I in 1 .. Count loop
Bit  := (2 ** 31 and Result) = 2 ** 31;
Result := Result * 2;
if Bit then
Result := Result + 1;
end if;
end loop;
return Result;
end Rotate_Left;
 
function Pad_String (Item : String) return Int32_Array is
-- always pad positive amount of Bytes
Padding_Bytes : Positive := 64 - Item'Length mod 64;
subtype String4 is String (1 .. 4);
function String4_To_Int32 is new Ada.Unchecked_Conversion
(Source => String4,
Target => Int32);
begin
if Padding_Bytes <= 2 then
Padding_Bytes := Padding_Bytes + 64;
end if;
declare
Result  : Int32_Array (1 .. (Item'Length + Padding_Bytes) / 4);
Current_Index : Positive := 1;
begin
for I in 1 .. Item'Length / 4 loop
Result (I)  :=
String4_To_Int32 (Item (4 * (I - 1) + 1 .. 4 * I));
Current_Index := Current_Index + 1;
end loop;
 
declare
Last_String : String4  := (others => Character'Val (0));
Chars_Left  : constant Natural := Item'Length mod 4;
begin
Last_String (1 .. Chars_Left) :=
Item (Item'Last - Chars_Left + 1 .. Item'Last);
Last_String (Chars_Left + 1)  := Character'Val (2#1000_0000#);
Result (Current_Index)  := String4_To_Int32 (Last_String);
Current_Index  := Current_Index + 1;
end;
 
Result (Current_Index .. Result'Last) := (others => 0);
-- append length as bit count
Result (Result'Last - 1) := Item'Length * 2 ** 3; -- mod 2 ** 32;
Result (Result'Last)  := Item'Length / 2 ** (32 - 3);
return Result;
end;
end Pad_String;
 
function Turn_Around (X : Int32) return Int32 is
Result : Int32 := 0;
begin
for Byte in 1 .. 4 loop
Result := Result * 16#100#;
Result := Result + (X / (2 ** (8 * (Byte - 1)))) mod 16#100#;
end loop;
return Result;
end Turn_Around;
 
function MD5 (Input : String) return MD5_Hash is
function F (X, Y, Z : Int32) return Int32 is
begin
return Z xor (X and (Y xor Z));
end F;
function G (X, Y, Z : Int32) return Int32 is
begin
return (X and Z) or (Y and (not Z));
end G;
function H (X, Y, Z : Int32) return Int32 is
begin
return X xor Y xor Z;
end H;
function I (X, Y, Z : Int32) return Int32 is
begin
return Y xor (X or (not Z));
end I;
T  : constant Int32_Array :=
(16#d76aa478#, 16#e8c7b756#, 16#242070db#, 16#c1bdceee#,
16#f57c0faf#, 16#4787c62a#, 16#a8304613#, 16#fd469501#,
16#698098d8#, 16#8b44f7af#, 16#ffff5bb1#, 16#895cd7be#,
16#6b901122#, 16#fd987193#, 16#a679438e#, 16#49b40821#,
16#f61e2562#, 16#c040b340#, 16#265e5a51#, 16#e9b6c7aa#,
16#d62f105d#, 16#02441453#, 16#d8a1e681#, 16#e7d3fbc8#,
16#21e1cde6#, 16#c33707d6#, 16#f4d50d87#, 16#455a14ed#,
16#a9e3e905#, 16#fcefa3f8#, 16#676f02d9#, 16#8d2a4c8a#,
16#fffa3942#, 16#8771f681#, 16#6d9d6122#, 16#fde5380c#,
16#a4beea44#, 16#4bdecfa9#, 16#f6bb4b60#, 16#bebfbc70#,
16#289b7ec6#, 16#eaa127fa#, 16#d4ef3085#, 16#04881d05#,
16#d9d4d039#, 16#e6db99e5#, 16#1fa27cf8#, 16#c4ac5665#,
16#f4292244#, 16#432aff97#, 16#ab9423a7#, 16#fc93a039#,
16#655b59c3#, 16#8f0ccc92#, 16#ffeff47d#, 16#85845dd1#,
16#6fa87e4f#, 16#fe2ce6e0#, 16#a3014314#, 16#4e0811a1#,
16#f7537e82#, 16#bd3af235#, 16#2ad7d2bb#, 16#eb86d391#);
A : Int32 := 16#67452301#;
B : Int32 := 16#EFCDAB89#;
C : Int32 := 16#98BADCFE#;
D : Int32 := 16#10325476#;
Padded_String : constant Int32_Array := Pad_String (Input);
begin
for Block512 in 1 .. Padded_String'Length / 16 loop
declare
Words  : constant Int32_Array (1 .. 16) :=
Padded_String (16 * (Block512 - 1) + 1 .. 16 * Block512);
AA  : constant Int32  := A;
BB  : constant Int32  := B;
CC  : constant Int32  := C;
DD  : constant Int32  := D;
begin
-- round 1
A := B + Rotate_Left ((A + F (B, C, D) + Words (1) + T (1)), 7);
D := A + Rotate_Left ((D + F (A, B, C) + Words (2) + T (2)), 12);
C := D + Rotate_Left ((C + F (D, A, B) + Words (3) + T (3)), 17);
B := C + Rotate_Left ((B + F (C, D, A) + Words (4) + T (4)), 22);
A := B + Rotate_Left ((A + F (B, C, D) + Words (5) + T (5)), 7);
D := A + Rotate_Left ((D + F (A, B, C) + Words (6) + T (6)), 12);
C := D + Rotate_Left ((C + F (D, A, B) + Words (7) + T (7)), 17);
B := C + Rotate_Left ((B + F (C, D, A) + Words (8) + T (8)), 22);
A := B + Rotate_Left ((A + F (B, C, D) + Words (9) + T (9)), 7);
D := A + Rotate_Left ((D + F (A, B, C) + Words (10) + T (10)), 12);
C := D + Rotate_Left ((C + F (D, A, B) + Words (11) + T (11)), 17);
B := C + Rotate_Left ((B + F (C, D, A) + Words (12) + T (12)), 22);
A := B + Rotate_Left ((A + F (B, C, D) + Words (13) + T (13)), 7);
D := A + Rotate_Left ((D + F (A, B, C) + Words (14) + T (14)), 12);
C := D + Rotate_Left ((C + F (D, A, B) + Words (15) + T (15)), 17);
B := C + Rotate_Left ((B + F (C, D, A) + Words (16) + T (16)), 22);
-- round 2
A := B + Rotate_Left ((A + G (B, C, D) + Words (2) + T (17)), 5);
D := A + Rotate_Left ((D + G (A, B, C) + Words (7) + T (18)), 9);
C := D + Rotate_Left ((C + G (D, A, B) + Words (12) + T (19)), 14);
B := C + Rotate_Left ((B + G (C, D, A) + Words (1) + T (20)), 20);
A := B + Rotate_Left ((A + G (B, C, D) + Words (6) + T (21)), 5);
D := A + Rotate_Left ((D + G (A, B, C) + Words (11) + T (22)), 9);
C := D + Rotate_Left ((C + G (D, A, B) + Words (16) + T (23)), 14);
B := C + Rotate_Left ((B + G (C, D, A) + Words (5) + T (24)), 20);
A := B + Rotate_Left ((A + G (B, C, D) + Words (10) + T (25)), 5);
D := A + Rotate_Left ((D + G (A, B, C) + Words (15) + T (26)), 9);
C := D + Rotate_Left ((C + G (D, A, B) + Words (4) + T (27)), 14);
B := C + Rotate_Left ((B + G (C, D, A) + Words (9) + T (28)), 20);
A := B + Rotate_Left ((A + G (B, C, D) + Words (14) + T (29)), 5);
D := A + Rotate_Left ((D + G (A, B, C) + Words (3) + T (30)), 9);
C := D + Rotate_Left ((C + G (D, A, B) + Words (8) + T (31)), 14);
B := C + Rotate_Left ((B + G (C, D, A) + Words (13) + T (32)), 20);
-- round 3
A := B + Rotate_Left ((A + H (B, C, D) + Words (6) + T (33)), 4);
D := A + Rotate_Left ((D + H (A, B, C) + Words (9) + T (34)), 11);
C := D + Rotate_Left ((C + H (D, A, B) + Words (12) + T (35)), 16);
B := C + Rotate_Left ((B + H (C, D, A) + Words (15) + T (36)), 23);
A := B + Rotate_Left ((A + H (B, C, D) + Words (2) + T (37)), 4);
D := A + Rotate_Left ((D + H (A, B, C) + Words (5) + T (38)), 11);
C := D + Rotate_Left ((C + H (D, A, B) + Words (8) + T (39)), 16);
B := C + Rotate_Left ((B + H (C, D, A) + Words (11) + T (40)), 23);
A := B + Rotate_Left ((A + H (B, C, D) + Words (14) + T (41)), 4);
D := A + Rotate_Left ((D + H (A, B, C) + Words (1) + T (42)), 11);
C := D + Rotate_Left ((C + H (D, A, B) + Words (4) + T (43)), 16);
B := C + Rotate_Left ((B + H (C, D, A) + Words (7) + T (44)), 23);
A := B + Rotate_Left ((A + H (B, C, D) + Words (10) + T (45)), 4);
D := A + Rotate_Left ((D + H (A, B, C) + Words (13) + T (46)), 11);
C := D + Rotate_Left ((C + H (D, A, B) + Words (16) + T (47)), 16);
B := C + Rotate_Left ((B + H (C, D, A) + Words (3) + T (48)), 23);
-- round 4
A := B + Rotate_Left ((A + I (B, C, D) + Words (1) + T (49)), 6);
D := A + Rotate_Left ((D + I (A, B, C) + Words (8) + T (50)), 10);
C := D + Rotate_Left ((C + I (D, A, B) + Words (15) + T (51)), 15);
B := C + Rotate_Left ((B + I (C, D, A) + Words (6) + T (52)), 21);
A := B + Rotate_Left ((A + I (B, C, D) + Words (13) + T (53)), 6);
D := A + Rotate_Left ((D + I (A, B, C) + Words (4) + T (54)), 10);
C := D + Rotate_Left ((C + I (D, A, B) + Words (11) + T (55)), 15);
B := C + Rotate_Left ((B + I (C, D, A) + Words (2) + T (56)), 21);
A := B + Rotate_Left ((A + I (B, C, D) + Words (9) + T (57)), 6);
D := A + Rotate_Left ((D + I (A, B, C) + Words (16) + T (58)), 10);
C := D + Rotate_Left ((C + I (D, A, B) + Words (7) + T (59)), 15);
B := C + Rotate_Left ((B + I (C, D, A) + Words (14) + T (60)), 21);
A := B + Rotate_Left ((A + I (B, C, D) + Words (5) + T (61)), 6);
D := A + Rotate_Left ((D + I (A, B, C) + Words (12) + T (62)), 10);
C := D + Rotate_Left ((C + I (D, A, B) + Words (3) + T (63)), 15);
B := C + Rotate_Left ((B + I (C, D, A) + Words (10) + T (64)), 21);
-- increment
A := A + AA;
B := B + BB;
C := C + CC;
D := D + DD;
end;
end loop;
return
(Turn_Around (A),
Turn_Around (B),
Turn_Around (C),
Turn_Around (D));
end MD5;
 
function To_String (Item : MD5_Hash) return MD5_String is
Hex_Chars : constant array (0 .. 15) of Character :=
('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
Result  : MD5_String := (1 => '0',
2 => 'x',
others => '0');
Temp  : Int32;
Position  : Natural := Result'Last;
begin
for Part in reverse Item'Range loop
Temp := Item (Part);
while Position > Result'Last - (5 - Part) * 8 loop
Result (Position) := Hex_Chars (Natural (Temp mod 16));
Position  := Position - 1;
Temp  := Temp / 16;
end loop;
end loop;
return Result;
end To_String;
 
end MD5;

tester.adb:

with Ada.Strings.Unbounded;
with Ada.Text_IO;
with MD5;
 
procedure Tester is
use Ada.Strings.Unbounded;
type String_Array is array (Positive range <>) of Unbounded_String;
Sources : constant String_Array :=
(To_Unbounded_String (""),
To_Unbounded_String ("a"),
To_Unbounded_String ("abc"),
To_Unbounded_String ("message digest"),
To_Unbounded_String ("abcdefghijklmnopqrstuvwxyz"),
To_Unbounded_String
("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"),
To_Unbounded_String
("12345678901234567890123456789012345678901234567890123456789012345678901234567890")
);
Digests : constant String_Array :=
(To_Unbounded_String ("0xd41d8cd98f00b204e9800998ecf8427e"),
To_Unbounded_String ("0x0cc175b9c0f1b6a831c399e269772661"),
To_Unbounded_String ("0x900150983cd24fb0d6963f7d28e17f72"),
To_Unbounded_String ("0xf96b697d7cb7938d525a2f31aaf161d0"),
To_Unbounded_String ("0xc3fcd3d76192e4007dfb496cca67e13b"),
To_Unbounded_String ("0xd174ab98d277d9f5a5611c2c9f419d9f"),
To_Unbounded_String ("0x57edf4a22be3c955ac49da2e2107b67a"));
begin
for I in Sources'Range loop
Ada.Text_IO.Put_Line ("MD5 (""" & To_String (Sources (I)) & """):");
Ada.Text_IO.Put_Line
(MD5.To_String (MD5.MD5 (To_String (Sources (I)))));
Ada.Text_IO.Put_Line (To_String (Digests (I)) & " (correct value)");
end loop;
end Tester;

output:

MD5 (""):
0xd41d8cd98f00b204e9800998ecf8427e
0xd41d8cd98f00b204e9800998ecf8427e (correct value)
MD5 ("a"):
0x0cc175b9c0f1b6a831c399e269772661
0x0cc175b9c0f1b6a831c399e269772661 (correct value)
MD5 ("abc"):
0x900150983cd24fb0d6963f7d28e17f72
0x900150983cd24fb0d6963f7d28e17f72 (correct value)
MD5 ("message digest"):
0xf96b697d7cb7938d525a2f31aaf161d0
0xf96b697d7cb7938d525a2f31aaf161d0 (correct value)
MD5 ("abcdefghijklmnopqrstuvwxyz"):
0xc3fcd3d76192e4007dfb496cca67e13b
0xc3fcd3d76192e4007dfb496cca67e13b (correct value)
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"):
0xd174ab98d277d9f5a5611c2c9f419d9f
0xd174ab98d277d9f5a5611c2c9f419d9f (correct value)
MD5 ("12345678901234567890123456789012345678901234567890123456789012345678901234567890"):
0x57edf4a22be3c955ac49da2e2107b67a
0x57edf4a22be3c955ac49da2e2107b67a (correct value)

AutoHotkey[edit]

See the implementation at MD5#AutoHotkey.

BBC BASIC[edit]

      PRINT FN_MD5("")
PRINT FN_MD5("a")
PRINT FN_MD5("abc")
PRINT FN_MD5("message digest")
PRINT FN_MD5("abcdefghijklmnopqrstuvwxyz")
PRINT FN_MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
PRINT FN_MD5(STRING$(8,"1234567890"))
END
 
DEF FN_MD5(message$)
LOCAL a%, b%, c%, d%, f%, g%, h0%, h1%, h2%, h3%, i%, bits%, chunk%, temp%
LOCAL r&(), k%(), w%()
DIM r&(63), k%(63), w%(15)
 
REM r specifies the per-round shift amounts:
r&() = 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, \
\ 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \
\ 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \
\ 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
 
REM Use binary integer part of the sines of integers (Radians) as constants:
FOR i% = 0 TO 63
k%(i%) = FN32(INT(ABS(SIN(i% + 1.0#)) * 2^32))
NEXT
 
REM Initialize variables:
h0% = &67452301
h1% = &EFCDAB89
h2% = &98BADCFE
h3% = &10325476
 
bits% = LEN(message$)*8
 
REM Append '1' bit to message:
message$ += CHR$&80
 
REM Append '0' bits until message length in bits = 448 (mod 512):
WHILE (LEN(message$) MOD 64) <> 56
message$ += CHR$0
ENDWHILE
 
REM Append length of message (before pre-processing), in bits, as
REM 64-bit little-endian integer:
FOR i% = 0 TO 56 STEP 8
message$ += CHR$(bits% >>> i%)
NEXT
 
REM Process the message in successive 512-bit chunks:
FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
 
REM Break chunk into sixteen 32-bit little-endian words:
FOR i% = 0 TO 15
w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
NEXT i%
 
REM Initialize hash value for this chunk:
a% = h0%
b% = h1%
c% = h2%
d% = h3%
 
REM Main loop:
FOR i% = 0 TO 63
CASE TRUE OF
WHEN i% <= 15:
f% = d% EOR (b% AND (c% EOR d%))
g% = i%
WHEN 16 <= i% AND i% <= 31:
f% = c% EOR (d% AND (b% EOR c%))
g% = (5 * i% + 1) MOD 16
WHEN 32 <= i% AND i% <= 47:
f% = b% EOR c% EOR d%
g% = (3 * i% + 5) MOD 16
OTHERWISE:
f% = c% EOR (b% OR (NOT d%))
g% = (7 * i%) MOD 16
ENDCASE
 
temp% = d%
d% = c%
c% = b%
b% = FN32(b% + FNlrot(FN32(a% + f%) + FN32(k%(i%) + w%(g%)), r&(i%)))
a% = temp%
 
NEXT i%
 
REM Add this chunk's hash to result so far:
h0% = FN32(h0% + a%)
h1% = FN32(h1% + b%)
h2% = FN32(h2% + c%)
h3% = FN32(h3% + d%)
 
NEXT chunk%
 
= FNrevhex(h0%) + FNrevhex(h1%) + FNrevhex(h2%) + FNrevhex(h3%)
 
DEF FNrevhex(A%)
SWAP ?(^A%+0),?(^A%+3)
SWAP ?(^A%+1),?(^A%+2)
= RIGHT$("0000000"+STR$~A%,8)
 
DEF FNlrot(n#, r%)
n# = FN32(n#)
= (n# << r%) OR (n# >>> (32 - r%))
 
DEF FN32(n#)
WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
= n#

C[edit]

See the implementation at MD5#C. Also, RFC 1321 already provides C code.

C#[edit]

Handwritten implementation ([1]):

 
public class MD5
{
/***********************VARIABLES************************************/
 
 
/***********************Statics**************************************/
/// <summary>
/// lookup table 4294967296*sin(i)
/// </summary>
protected readonly static uint [] T =new uint[64]
{ 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,
0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
0x6b901122,0xfd987193,0xa679438e,0x49b40821,
0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,
0xd62f105d,0x2441453,0xd8a1e681,0xe7d3fbc8,
0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,
0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,
0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
0x289b7ec6,0xeaa127fa,0xd4ef3085,0x4881d05,
0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,
0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,
0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391};
 
/*****instance variables**************/
/// <summary>
/// X used to proces data in
/// 512 bits chunks as 16 32 bit word
/// </summary>
protected uint [] X = new uint [16];
 
/// <summary>
/// the finger print obtained.
/// </summary>
protected Digest dgFingerPrint;
 
/// <summary>
/// the input bytes
/// </summary>
protected byte [] m_byteInput;
 
 
 
/**********************EVENTS AND DELEGATES*******************************************/
 
public delegate void ValueChanging (object sender,MD5ChangingEventArgs Changing);
public delegate void ValueChanged (object sender,MD5ChangedEventArgs Changed);
 
 
public event ValueChanging OnValueChanging;
public event ValueChanged OnValueChanged;
 
 
 
/********************************************************************/
/***********************PROPERTIES ***********************/
/// <summary>
///gets or sets as string
/// </summary>
public string Value
{
get
{
string st ;
char [] tempCharArray= new Char[m_byteInput.Length];
 
for(int i =0; i<m_byteInput.Length;i++)
tempCharArray[i]=(char)m_byteInput[i];
 
st= new String(tempCharArray);
return st;
}
set
{
/// raise the event to notify the changing
if (this.OnValueChanging !=null)
this.OnValueChanging(this,new MD5ChangingEventArgs(value));
 
 
m_byteInput=new byte[value.Length];
for (int i =0; i<value.Length;i++)
m_byteInput[i]=(byte)value[i];
dgFingerPrint=CalculateMD5Value();
 
/// raise the event to notify the change
if (this.OnValueChanged !=null)
this.OnValueChanged(this,new MD5ChangedEventArgs(value,dgFingerPrint.ToString()));
 
}
}
 
/// <summary>
/// get/sets as byte array
/// </summary>
public byte [] ValueAsByte
{
get
{
byte [] bt = new byte[m_byteInput.Length];
for (int i =0; i<m_byteInput.Length;i++)
bt[i]=m_byteInput[i];
return bt;
}
set
{
/// raise the event to notify the changing
if (this.OnValueChanging !=null)
this.OnValueChanging(this,new MD5ChangingEventArgs(value));
 
m_byteInput=new byte[value.Length];
for (int i =0; i<value.Length;i++)
m_byteInput[i]=value[i];
dgFingerPrint=CalculateMD5Value();
 
 
/// notify the changed value
if (this.OnValueChanged !=null)
this.OnValueChanged(this,new MD5ChangedEventArgs(value,dgFingerPrint.ToString()));
}
}
 
//gets the signature/figner print as string
public string FingerPrint
{
get
{
return dgFingerPrint.ToString();
}
}
 
 
/*************************************************************************/
/// <summary>
/// Constructor
/// </summary>
public MD5()
{
Value="";
}
 
 
/******************************************************************************/
/*********************METHODS**************************/
 
/// <summary>
/// calculat md5 signature of the string in Input
/// </summary>
/// <returns> Digest: the finger print of msg</returns>
protected Digest CalculateMD5Value()
{
/***********vairable declaration**************/
byte [] bMsg; //buffer to hold bits
uint N; //N is the size of msg as word (32 bit)
Digest dg =new Digest(); // the value to be returned
 
// create a buffer with bits padded and length is alos padded
bMsg=CreatePaddedBuffer();
 
N=(uint)(bMsg.Length*8)/32; //no of 32 bit blocks
 
for (uint i=0; i<N/16;i++)
{
CopyBlock(bMsg,i);
PerformTransformation(ref dg.A,ref dg.B,ref dg.C,ref dg.D);
}
return dg;
}
 
/********************************************************
* TRANSFORMATIONS : FF , GG , HH , II acc to RFC 1321
* where each Each letter represnets the aux function used
*********************************************************/

 
 
 
/// <summary>
/// perform transformatio using f(((b&c) | (~(b)&d))
/// </summary>
protected void TransF(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i )
{
a = b + MD5Helper.RotateLeft((a + ((b&c) | (~(b)&d)) + X[k] + T[i-1]), s);
}
 
/// <summary>
/// perform transformatio using g((b&d) | (c & ~d) )
/// </summary>
protected void TransG(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i )
{
a = b + MD5Helper.RotateLeft((a + ((b&d) | (c & ~d) ) + X[k] + T[i-1]), s);
}
 
/// <summary>
/// perform transformatio using h(b^c^d)
/// </summary>
protected void TransH(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i )
{
a = b + MD5Helper.RotateLeft((a + (b^c^d) + X[k] + T[i-1]), s);
}
 
/// <summary>
/// perform transformatio using i (c^(b|~d))
/// </summary>
protected void TransI(ref uint a, uint b, uint c, uint d,uint k,ushort s, uint i )
{
a = b + MD5Helper.RotateLeft((a + (c^(b|~d))+ X[k] + T[i-1]), s);
}
 
 
 
/// <summary>
/// Perform All the transformation on the data
/// </summary>
/// <param name="A">A</param>
/// <param name="B">B </param>
/// <param name="C">C</param>
/// <param name="D">D</param>
protected void PerformTransformation(ref uint A,ref uint B,ref uint C, ref uint D)
{
//// saving ABCD to be used in end of loop
 
uint AA,BB,CC,DD;
 
AA=A;
BB=B;
CC=C;
DD=D;
 
/* Round 1
* [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
* [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
* [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
* [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
* * */

TransF(ref A,B,C,D,0,7,1);TransF(ref D,A,B,C,1,12,2);TransF(ref C,D,A,B,2,17,3);TransF(ref B,C,D,A,3,22,4);
TransF(ref A,B,C,D,4,7,5);TransF(ref D,A,B,C,5,12,6);TransF(ref C,D,A,B,6,17,7);TransF(ref B,C,D,A,7,22,8);
TransF(ref A,B,C,D,8,7,9);TransF(ref D,A,B,C,9,12,10);TransF(ref C,D,A,B,10,17,11);TransF(ref B,C,D,A,11,22,12);
TransF(ref A,B,C,D,12,7,13);TransF(ref D,A,B,C,13,12,14);TransF(ref C,D,A,B,14,17,15);TransF(ref B,C,D,A,15,22,16);
/** rOUND 2
**[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
*[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
*[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
*[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]
*/

TransG(ref A,B,C,D,1,5,17);TransG(ref D,A,B,C,6,9,18);TransG(ref C,D,A,B,11,14,19);TransG(ref B,C,D,A,0,20,20);
TransG(ref A,B,C,D,5,5,21);TransG(ref D,A,B,C,10,9,22);TransG(ref C,D,A,B,15,14,23);TransG(ref B,C,D,A,4,20,24);
TransG(ref A,B,C,D,9,5,25);TransG(ref D,A,B,C,14,9,26);TransG(ref C,D,A,B,3,14,27);TransG(ref B,C,D,A,8,20,28);
TransG(ref A,B,C,D,13,5,29);TransG(ref D,A,B,C,2,9,30);TransG(ref C,D,A,B,7,14,31);TransG(ref B,C,D,A,12,20,32);
/* rOUND 3
* [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
* [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
* [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
* [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
* */

TransH(ref A,B,C,D,5,4,33);TransH(ref D,A,B,C,8,11,34);TransH(ref C,D,A,B,11,16,35);TransH(ref B,C,D,A,14,23,36);
TransH(ref A,B,C,D,1,4,37);TransH(ref D,A,B,C,4,11,38);TransH(ref C,D,A,B,7,16,39);TransH(ref B,C,D,A,10,23,40);
TransH(ref A,B,C,D,13,4,41);TransH(ref D,A,B,C,0,11,42);TransH(ref C,D,A,B,3,16,43);TransH(ref B,C,D,A,6,23,44);
TransH(ref A,B,C,D,9,4,45);TransH(ref D,A,B,C,12,11,46);TransH(ref C,D,A,B,15,16,47);TransH(ref B,C,D,A,2,23,48);
/*ORUNF 4
*[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
*[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
*[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
*[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
* */

TransI(ref A,B,C,D,0,6,49);TransI(ref D,A,B,C,7,10,50);TransI(ref C,D,A,B,14,15,51);TransI(ref B,C,D,A,5,21,52);
TransI(ref A,B,C,D,12,6,53);TransI(ref D,A,B,C,3,10,54);TransI(ref C,D,A,B,10,15,55);TransI(ref B,C,D,A,1,21,56);
TransI(ref A,B,C,D,8,6,57);TransI(ref D,A,B,C,15,10,58);TransI(ref C,D,A,B,6,15,59);TransI(ref B,C,D,A,13,21,60);
TransI(ref A,B,C,D,4,6,61);TransI(ref D,A,B,C,11,10,62);TransI(ref C,D,A,B,2,15,63);TransI(ref B,C,D,A,9,21,64);
 
 
A=A+AA;
B=B+BB;
C=C+CC;
D=D+DD;
 
 
}
 
 
/// <summary>
/// Create Padded buffer for processing , buffer is padded with 0 along
/// with the size in the end
/// </summary>
/// <returns>the padded buffer as byte array</returns>
protected byte[] CreatePaddedBuffer()
{
uint pad; //no of padding bits for 448 mod 512
byte [] bMsg; //buffer to hold bits
ulong sizeMsg; //64 bit size pad
uint sizeMsgBuff; //buffer size in multiple of bytes
int temp=(448-((m_byteInput.Length*8)%512)); //temporary
 
 
pad = (uint )((temp+512)%512); //getting no of bits to be pad
if (pad==0) ///pad is in bits
pad=512; //at least 1 or max 512 can be added
 
sizeMsgBuff= (uint) ((m_byteInput.Length)+ (pad/8)+8);
sizeMsg=(ulong)m_byteInput.Length*8;
bMsg=new byte[sizeMsgBuff]; ///no need to pad with 0 coz new bytes
// are already initialize to 0 :)
 
 
 
 
////copying string to buffer
for (int i =0; i<m_byteInput.Length;i++)
bMsg[i]=m_byteInput[i];
 
bMsg[m_byteInput.Length]|=0x80; ///making first bit of padding 1,
 
//wrting the size value
for (int i =8; i >0;i--)
bMsg[sizeMsgBuff-i]=(byte) (sizeMsg>>((8-i)*8) & 0x00000000000000ff);
 
return bMsg;
}
 
 
/// <summary>
/// Copies a 512 bit block into X as 16 32 bit words
/// </summary>
/// <param name="bMsg"> source buffer</param>
/// <param name="block">no of block to copy starting from 0</param>
protected void CopyBlock(byte[] bMsg,uint block)
{
 
block=block<<6;
for (uint j=0; j<61;j+=4)
{
X[j>>2]=(((uint) bMsg[block+(j+3)]) <<24 ) |
(((uint) bMsg[block+(j+2)]) <<16 ) |
(((uint) bMsg[block+(j+1)]) <<8 ) |
(((uint) bMsg[block+(j)]) ) ;
 
}
}
}
 
 

Standard library-based implementation:

 
System.Security.Cryptography.MD5CryptoServiceProvider x = new System.Security.Cryptography.MD5CryptoServiceProvider();
byte[] bs = System.Text.Encoding.UTF8.GetBytes(password);
bs = x.ComputeHash(bs); //this function is not in the above classdefinition
System.Text.StringBuilder s = new System.Text.StringBuilder();
foreach (byte b in bs)
{
s.Append(b.ToString("x2").ToLower());
}
password = s.ToString();
 

CoffeeScript[edit]

 
# Array sum helper function.
sum = (array) ->
array.reduce (x, y) -> x + y
 
md5 = do ->
# Per-round shift amounts.
s = [738695, 669989, 770404, 703814]
s = (s[i >> 4] >> i % 4 * 5 & 31 for i in [0..63])
 
# Constants cache generated by sine.
K = (Math.floor 2**32 * Math.abs Math.sin i for i in [1..64])
 
# Bitwise left rotate helper function.
lrot = (x, y) ->
x << y | x >>> 32 - y;
 
(input) ->
# Initialize values.
d0 = 0x10325476;
a0 = 0x67452301;
b0 = ~d0
c0 = ~a0;
 
# Convert the message to 32-bit words, little-endian.
M =
for i in [0...input.length] by 4
sum (input.charCodeAt(i + j) << j*8 for j in [0..3])
 
# Pre-processing: append a 1 bit, then message length % 2^64.
len = input.length * 8
M[len >> 5] |= 128 << len % 32
M[(len + 64 >>> 9 << 4) + 14] = len
 
# Process the message in chunks of 16 32-bit words.
for x in [0...M.length] by 16
[A, B, C, D] = [a0, b0, c0, d0]
 
# Main loop.
for i in [0..63]
if i < 16
F = B & C | ~B & D
g = i
else if i < 32
F = B & D | C & ~D
g = i * 5 + 1
else if i < 48
F = B ^ C ^ D
g = i * 3 + 5
else
F = C ^ (B | ~D)
g = i * 7
 
[A, B, C, D] =
[D, B + lrot(A + F + K[i] + (M[x + g % 16] ? 0), s[i]), B, C]
 
a0 += A
b0 += B
c0 += C
d0 += D
 
# Convert the four words back to a string.
return (
for x in [a0, b0, c0, d0]
(String.fromCharCode x >>> 8 * y & 255 for y in [0..3]).join ''
).join ''
 

This implementation is more focused towards brevity rather than speed. Use a javascript MD5 implementation if speed is desired. Fork this code on github.

Note: this only works on byte strings. To use arbitrary Javascript strings, you must first encode as UTF-8.

And tests:

 
str2hex = do ->
hex = ['0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f']
hex = (hex[x >> 4] + hex[x & 15] for x in [0..255])
(str) ->
(hex[c.charCodeAt()] for c in str).join ''
 
console.log str2hex md5 message for message in [
""
"a"
"abc"
"message digest"
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
"12345678901234567890123456789012345678901234567890123456789012345678901234567890"
]
 

Output:

d41d8cd98f00b204e9800998ecf8427e
0cc175b9c0f1b6a831c399e269772661
900150983cd24fb0d6963f7d28e17f72
f96b697d7cb7938d525a2f31aaf161d0
c3fcd3d76192e4007dfb496cca67e13b
d174ab98d277d9f5a5611c2c9f419d9f
57edf4a22be3c955ac49da2e2107b67a

Common Lisp[edit]

This code requires the BABEL package for converting a string to an octet buffer.

(defpackage #:md5
(:use #:cl))
 
(in-package #:md5)
 
(require :babel)
 
(deftype word () '(unsigned-byte 32))
(deftype octet () '(unsigned-byte 8))
(deftype octets () '(vector octet))
 
(defparameter *s*
(make-array 16 :element-type 'word
:initial-contents '(7 12 17 22
5 9 14 20
4 11 16 23
6 10 15 21)))
 
(defun s (i)
(declare ((integer 0 63) i))
(aref *s* (+ (ash (ash i -4) 2)
(ldb (byte 2 0) i))))
 
(defparameter *k*
(loop with result = (make-array 64 :element-type 'word)
for i from 0 below 64
do (setf (aref result i) (floor (* (ash 1 32) (abs (sin (1+ (float i 1d0)))))))
finally (return result)))
 
(defun wrap (bits integer)
(declare (fixnum bits) (integer integer))
(ldb (byte bits 0) integer))
 
(defun integer->8octets (integer)
(declare (integer integer))
(loop for n = (wrap 64 integer) then (ash n -8)
repeat 8
collect (wrap 8 n)))
 
(defun pad-octets (octets)
(declare (octets octets))
(let* ((octets-length (length octets))
(zero-pad-length (- 64 (mod (+ octets-length 9) 64)))
(zero-pads (loop repeat zero-pad-length collect 0)))
(concatenate 'octets octets '(#x80) zero-pads (integer->8octets (* 8 octets-length)))))
 
(defun octets->words (octets)
(declare (octets octets))
(loop with result = (make-array (/ (length octets) 4) :element-type 'word)
for n from 0 below (length octets) by 4
for i from 0
do (setf (aref result i)
(dpb (aref octets (+ n 3)) (byte 8 24)
(dpb (aref octets (+ n 2)) (byte 8 16)
(dpb (aref octets (1+ n)) (byte 8 8)
(dpb (aref octets n) (byte 8 0) 0)))))
finally (return result)))
 
(defun words->octets (&rest words)
(loop for word of-type word in words
collect (ldb (byte 8 0) word)
collect (ldb (byte 8 8) word)
collect (ldb (byte 8 16) word)
collect (ldb (byte 8 24) word)))
 
(defun left-rotate (x c)
(declare (integer x) (fixnum c))
(let ((x (wrap 32 x)))
(wrap 32 (logior (ash x c)
(ash x (- c 32))))))
 
(defun md5 (string)
(declare (string string))
(loop with m = (octets->words (pad-octets (babel:string-to-octets string)))
with a0 of-type word = #x67452301
with b0 of-type word = #xefcdab89
with c0 of-type word = #x98badcfe
with d0 of-type word = #x10325476
for j from 0 below (length m) by 16
do (loop for a of-type word = a0 then d
and b of-type word = b0 then new-b
and c of-type word = c0 then b
and d of-type word = d0 then c
for i from 0 below 64
for new-b = (multiple-value-bind (f g)
(ecase (ash i -4)
(0 (values (wrap 32 (logior (logand b c)
(logand (lognot b) d)))
i))
(1 (values (wrap 32 (logior (logand d b)
(logand (lognot d) c)))
(wrap 4 (1+ (* 5 i)))))
(2 (values (wrap 32 (logxor b c d))
(wrap 4 (+ (* 3 i) 5))))
(3 (values (wrap 32 (logxor c
(logior b (lognot d))))
(wrap 4 (* 7 i)))))
(declare (word f g))
(wrap 32 (+ b (left-rotate (+ a f (aref *k* i) (aref m (+ j g)))
(s i)))))
finally (setf a0 (wrap 32 (+ a0 a))
b0 (wrap 32 (+ b0 b))
c0 (wrap 32 (+ c0 c))
d0 (wrap 32 (+ d0 d))))
finally (return (with-output-to-string (s)
(dolist (o (words->octets a0 b0 c0 d0))
(format s "~(~2,'0X~)" o))))))
 
(defun test-cases ()
(assert (string= "d41d8cd98f00b204e9800998ecf8427e"
(md5 "")))
(assert (string= "0cc175b9c0f1b6a831c399e269772661"
(md5 "a")))
(assert (string= "900150983cd24fb0d6963f7d28e17f72"
(md5 "abc")))
(assert (string= "f96b697d7cb7938d525a2f31aaf161d0"
(md5 "message digest")))
(assert (string= "c3fcd3d76192e4007dfb496cca67e13b"
(md5 "abcdefghijklmnopqrstuvwxyz")))
(assert (string= "d174ab98d277d9f5a5611c2c9f419d9f"
(md5 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")))
(assert (string= "57edf4a22be3c955ac49da2e2107b67a"
(md5 "12345678901234567890123456789012345678901234567890123456789012345678901234567890"))))

D[edit]

The standard library Phobos included an MD5 module.

This code generates x86 assembly code by compile time functions, then mix-in the assembly code. It only works on x86 machine.

import std.bitmanip, core.stdc.string, std.conv, std.math, std.array,
std.string;
 
version (D_InlineAsm_X86) {} else {
static assert(false, "For X86 machine only.");
}
 
// CTFE construction of transform expressions.
uint S(in uint n) pure nothrow @safe @nogc {
static immutable aux = [7u, 12, 17, 22, 5, 9, 14, 20, 4, 11,
16, 23, 6, 10, 15, 21];
return aux[(n / 16) * 4 + (n % 4)];
}
 
uint K(in uint n) pure nothrow @safe @nogc {
uint r = 0;
if (n <= 15)
r = n;
else if (n <= 31)
r = 5 * n + 1;
else if (n <= 47)
r = 3 * n + 5;
else
r = 7 * n;
return r % 16;
}
 
uint T(in uint n) pure nothrow @nogc {
return cast(uint)(abs(sin(n + 1.0L)) * (2UL ^^ 32));
}
 
string[] ABCD(in int n) pure nothrow {
enum abcd = ["EAX", "EBX", "ECX", "EDX"];
return abcd[(64 - n) % 4 .. 4] ~ abcd[0 .. (64 - n) % 4];
}
 
string SUB(in int n, in string s) pure nothrow {
return s
.replace("ax", n.ABCD[0])
.replace("bx", n.ABCD[1])
.replace("cx", n.ABCD[2])
.replace("dx", n.ABCD[3]);
}
 
// FF, GG, HH & II expressions part 1 (F, G, H, I).
string fghi1(in int n) pure nothrow @nogc {
switch (n / 16) {
case 0:
// (bb & cc) | (~bb & dd)
return q{
mov ESI, bx;
mov EDI, bx;
not ESI;
and EDI, cx;
and ESI, dx;
or EDI, ESI;
add ax, EDI;
};
case 1:
// (dd & bb) | (~dd & cc)
return q{
mov ESI, dx;
mov EDI, dx;
not ESI;
and EDI, bx;
and ESI, cx;
or EDI, ESI;
add ax, EDI;
};
case 2: // (bb ^ cc ^ dd)
return q{
mov EDI, bx;
xor EDI, cx;
xor EDI, dx;
add ax, EDI;
};
case 3: // (cc ^ (bb | ~dd))
return q{
mov EDI, dx;
not EDI;
or EDI, bx;
xor EDI, cx;
add ax, EDI;
};
default:
assert(false);
}
}
 
// FF, GG, HH & II expressions part 2.
string fghi2(in int n) pure nothrow {
return q{
add ax, [EBP + 4 * KK];
add ax, TT;
} ~ n.fghi1;
}
 
// FF, GG, HH & II expressions prepended with previous parts
// & subsitute ABCD.
string FGHI(in int n) pure nothrow {
// aa = ((aa << SS)|( aa >>> (32 - SS))) + bb = ROL(aa, SS) + bb
return SUB(n, n.fghi2 ~ q{
rol ax, SS;
add ax, bx;
});
}
 
string genExpr(uint n) pure nothrow {
return FGHI(n)
.replace("SS", n.S.text)
.replace("KK", n.K.text)
.replace("TT", "0x" ~ to!string(n.T, 16));
}
 
string genTransformCode(int n) pure nothrow {
return (n < 63) ? n.genExpr ~ genTransformCode(n + 1) : n.genExpr;
}
 
enum string coreZMD5 = 0.genTransformCode;
 
struct ZMD5 {
uint[4] state = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476];
ulong count;
ubyte[64] buffer;
 
ubyte[64] padding = [
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0];
 
private void transform(ubyte* block) pure nothrow @nogc {
uint[16] x = void;
 
version (BigEndian) {
foreach (immutable i; 0 .. 16)
x[i] = littleEndianToNative!uint(*cast(ubyte[4]*)&block[i * 4]);
} else {
(cast(ubyte*)x.ptr)[0 .. 64] = block[0 .. 64];
}
 
auto pState = state.ptr;
auto pBuffer = x.ptr;
 
asm pure nothrow @nogc {
mov ESI, pState[EBP];
mov EDX, [ESI + 3 * 4];
mov ECX, [ESI + 2 * 4];
mov EBX, [ESI + 1 * 4];
mov EAX, [ESI + 0 * 4];
push EBP;
push ESI;
 
mov EBP, pBuffer[EBP];
}
 
mixin("asm pure nothrow @nogc { " ~ coreZMD5 ~ "}");
 
asm pure nothrow @nogc {
pop ESI;
pop EBP;
add [ESI + 0 * 4], EAX;
add [ESI + 1 * 4], EBX;
add [ESI + 2 * 4], ECX;
add [ESI + 3 * 4], EDX;
}
x[] = 0;
}
 
void update(in void[] input) pure nothrow @nogc {
auto inputLen = input.length;
uint index = (count >> 3) & 0b11_1111U;
count += inputLen * 8;
immutable uint partLen = 64 - index;
 
uint i;
if (inputLen >= partLen) {
memcpy(&buffer[index], input.ptr, partLen);
transform(buffer.ptr);
for (i = partLen; i + 63 < inputLen; i += 64)
transform((cast(ubyte[])input)[i .. i + 64].ptr);
index = 0;
} else
i = 0;
 
if (inputLen - i)
memcpy(&buffer[index], &input[i], inputLen - i);
}
 
void finish(ref ubyte[16] digest) pure nothrow @nogc {
ubyte[8] bits = void;
bits[0 .. 8] = nativeToLittleEndian(count)[];
 
immutable uint index = (count >> 3) & 0b11_1111U;
immutable uint padLen = (index < 56) ?
(56 - index) : (120 - index);
update(padding[0 .. padLen]);
update(bits);
 
digest[0 .. 4] = nativeToLittleEndian(state[0])[];
digest[4 .. 8] = nativeToLittleEndian(state[1])[];
digest[8 .. 12] = nativeToLittleEndian(state[2])[];
digest[12 .. 16] = nativeToLittleEndian(state[3])[];
 
// Zeroize sensitive information.
memset(&this, 0, ZMD5.sizeof);
}
}
 
string getDigestString(in void[][] data...) pure {
ZMD5 ctx;
foreach (datum; data)
ctx.update(datum);
ubyte[16] digest;
ctx.finish(digest);
return format("%-(%02X%)", digest);
}
 
 
void main() { // Benchmark code --------------
import std.stdio, std.datetime, std.digest.md;
 
writefln(`md5 digest("") = %-(%02X%)`, "".md5Of);
writefln(`zmd5 digest("") = %s`, "".getDigestString);
 
enum megaBytes = 512;
writefln("\nTest performance / message size %dMBytes:", megaBytes);
auto data = new float[megaBytes * 0x40000 + 13];
 
StopWatch sw;
sw.start;
immutable d1 = data.md5Of;
sw.stop;
immutable time1 = sw.peek.msecs / 1000.0;
writefln("digest(data) = %-(%02X%)", d1);
writefln("std.md5: %8.2f M/sec ( %8.2f secs)",
megaBytes / time1, time1);
 
sw.reset;
sw.start;
immutable d2 = data.getDigestString;
sw.stop;
immutable time2 = sw.peek.msecs / 1000.0;
writefln("digest(data) = %s", d2);
writefln("zmd5  : %8.2f M/sec ( %8.2f secs)",
megaBytes / time2, time2);
}
Output (dmd compiler):
md5  digest("")  = D41D8CD98F00B204E9800998ECF8427E
zmd5 digest("")  = D41D8CD98F00B204E9800998ECF8427E

Test performance / message size 512MBytes:
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
std.md5:    45.85 M/sec  (    11.17 secs)
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
zmd5   :   244.86 M/sec  (     2.09 secs)
Output (ldc2 compiler):
md5  digest("")  = D41D8CD98F00B204E9800998ECF8427E
zmd5 digest("")  = D41D8CD98F00B204E9800998ECF8427E

Test performance / message size 512MBytes:
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
std.md5:   310.12 M/sec  (     1.65 secs)
digest(data) = A36190ECA92203A477EFC4DAB966CE6F
zmd5   :   277.06 M/sec  (     1.85 secs)

As you see this asm is much faster than the D code compiled by dmd, but the D code compiled by ldc2 is a little faster still.

F#[edit]

Pure functional implementation (slower than library function) (Link to original blog [2]):

let fxyz x y z : uint32 = (x &&& y) ||| (~~~x &&& z)
let gxyz x y z : uint32 = (z &&& x) ||| (~~~z &&& y)
let hxyz x y z : uint32 = x ^^^ y ^^^ z
let ixyz x y z : uint32 = y ^^^ (x ||| ~~~z)
let fghi = [ fxyz; gxyz; hxyz; ixyz ] |> List.collect (List.replicate 16)
let g1Idx = id
let g2Idx i = (5 * i + 1) % 16
let g3Idx i = (3 * i + 5) % 16
let g4Idx i = (7 * i) % 16
 
let gIdxs =
[ g1Idx; g2Idx; g3Idx; g4Idx ]
|> List.collect (List.replicate 16)
|> List.map2 (fun idx func -> func idx) [ 0..63 ]
 
let s =
[ [ 7; 12; 17; 22 ]
[ 5; 9; 14; 20 ]
[ 4; 11; 16; 23 ]
[ 6; 10; 15; 21 ] ]
|> List.collect (List.replicate 4)
|> List.concat
 
let k =
[ 1...64. ] |> List.map (sin
>> abs
>> ((*) (2. ** 32.))
>> floor
>> uint32)
 
type MD5 =
{ a : uint32
b : uint32
c : uint32
d : uint32 }
 
let initialMD5 =
{ a = 0x67452301u
b = 0xefcdab89u
c = 0x98badcfeu
d = 0x10325476u }
 
let md5round (msg : uint32 []) { MD5.a = a; MD5.b = b; MD5.c = c; MD5.d = d } i =
let rotateL32 r x = (x <<< r) ||| (x >>> (32 - r))
let f = fghi.[i] b c d
let a' = b + (a + f + k.[i] + msg.[gIdxs.[i]]
|> rotateL32 s.[i])
{ a = d
b = a'
c = b
d = c }
 
let md5plus m (bs : byte []) =
let msg =
bs
|> Array.chunkBySize 4
|> Array.take 16
|> Array.map (fun elt -> System.BitConverter.ToUInt32(elt, 0))
 
let m' = List.fold (md5round msg) m [ 0..63 ]
{ a = m.a + m'.a
b = m.b + m'.b
c = m.c + m'.c
d = m.d + m'.d }
 
let padMessage (msg : byte []) =
let msgLen = Array.length msg
let msgLenInBits = (uint64 msgLen) * 8UL
 
let lastSegmentSize =
let m = msgLen % 64
if m = 0 then 64
else m
 
let padLen =
64 - lastSegmentSize + (if lastSegmentSize >= 56 then 64
else 0)
 
[| yield 128uy
for i in 2..padLen - 8 do
yield 0uy
for i in 0..7 do
yield ((msgLenInBits >>> (8 * i)) |> byte) |]
|> Array.append msg
 
let md5sum (msg : string) =
System.Text.Encoding.ASCII.GetBytes msg
|> padMessage
|> Array.chunkBySize 64
|> Array.fold md5plus initialMD5
|> (fun { MD5.a = a; MD5.b = b; MD5.c = c; MD5.d = d } ->
System.BitConverter.GetBytes a
|> (fun x -> System.BitConverter.GetBytes b |> Array.append x)
|> (fun x -> System.BitConverter.GetBytes c |> Array.append x)
|> (fun x -> System.BitConverter.GetBytes d |> Array.append x))
|> Array.map (sprintf "%02X")
|> Array.reduce (+)

FreeBASIC[edit]

' version 19-10-2016
' MD5 from the Wikipedia page "MD5"
' compile with: fbc -s console
 
' macro for a rotate left
#Macro ROtate_Left (x, n) ' rotate left
(x) = (x) Shl (n) + (x) Shr (32 - (n))
#EndMacro
 
Function MD5(test_str As String) As String
 
Dim As String message = test_str ' strings are passed as ByRef's
 
Dim As UByte sx, s(0 To ...) = { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, _
17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, _
5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, _
16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }
 
Dim As UInteger<32> K(0 To ...) = { &Hd76aa478, &He8c7b756, &H242070db, _
&Hc1bdceee, &Hf57c0faf, &H4787c62a, &Ha8304613, &Hfd469501, &H698098d8, _
&H8b44f7af, &Hffff5bb1, &H895cd7be, &H6b901122, &Hfd987193, &Ha679438e, _
&H49b40821, &Hf61e2562, &Hc040b340, &H265e5a51, &He9b6c7aa, &Hd62f105d, _
&H02441453, &Hd8a1e681, &He7d3fbc8, &H21e1cde6, &Hc33707d6, &Hf4d50d87, _
&H455a14ed, &Ha9e3e905, &Hfcefa3f8, &H676f02d9, &H8d2a4c8a, &Hfffa3942, _
&H8771f681, &H6d9d6122, &Hfde5380c, &Ha4beea44, &H4bdecfa9, &Hf6bb4b60, _
&Hbebfbc70, &H289b7ec6, &Heaa127fa, &Hd4ef3085, &H04881d05, &Hd9d4d039, _
&He6db99e5, &H1fa27cf8, &Hc4ac5665, &Hf4292244, &H432aff97, &Hab9423a7, _
&Hfc93a039, &H655b59c3, &H8f0ccc92, &Hffeff47d, &H85845dd1, &H6fa87e4f, _
&Hfe2ce6e0, &Ha3014314, &H4e0811a1, &Hf7537e82, &Hbd3af235, &H2ad7d2bb, _
&Heb86d391 }
 
' Initialize variables
Dim As UInteger<32> A, a0 = &H67452301
Dim As UInteger<32> B, b0 = &Hefcdab89
Dim As UInteger<32> C, c0 = &H98badcfe
Dim As UInteger<32> D, d0 = &H10325476
Dim As UInteger<32> dtemp, F, g, temp
 
Dim As Long i, j
 
Dim As ULongInt l = Len(message)
' set the first bit after the message to 1
message = message + Chr(1 Shl 7)
' add one char to the length
Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
 
' check if we have enough room for inserting the length
If padding < 8 Then padding = padding + 64
 
message = message + String(padding, Chr(0)) ' adjust length
Dim As ULong l1 = Len(message) ' new length
 
l = l * 8 ' orignal length in bits
' create ubyte ptr to point to l ( = length in bits)
Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
 
For i = 0 To 7 'copy length of message to the last 8 bytes
message[l1 -8 + i] = ub_ptr[i]
Next
 
For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
 
A = a0 : B = b0 : C = c0 : D = d0
 
' break chunk into 16 32bit uinteger
Dim As UInteger<32> Ptr M = Cast(UInteger<32> Ptr, @message[j * 64])
 
For i = 0 To 63
Select Case As Const i
Case 0 To 15
F = (B And C) Or ((Not B) And D)
g = i
Case 16 To 31
F = (B And D) Or (C And (Not D))
g = (i * 5 +1) Mod 16
Case 32 To 47
F = (B Xor C Xor D)
g = (i * 3 +5) Mod 16
Case 48 To 63
F = C Xor (B Or (Not D))
g = (i * 7) Mod 16
End Select
dtemp = D
D = C
C = B
temp = A + F + K(i)+ M[g] : ROtate_left(temp, s(i))
B = B + temp
A = dtemp
Next
 
a0 += A : b0 += B : c0 += C : d0 += D
 
Next
 
Dim As String answer
' convert a0, b0, c0 and d0 in hex, then add, low order first
Dim As String s1 = Hex(a0, 8)
For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
s1 = Hex(b0, 8)
For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
s1 = Hex(c0, 8)
For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
s1 = Hex(d0, 8)
For i = 7 To 1 Step -2 : answer +=Mid(s1, i, 2) : Next
 
Return LCase(answer)
 
End Function
 
 
' ------=< MAIN >=------
 
Dim As String test, hash, md5_hash
Dim As ULong i
 
For i = 1 To 7
Read hash, test
md5_hash = MD5(test)
 
Print
Print test
Print hash
Print md5_hash;
 
If hash = md5_hash Then
Print " PASS"
Else
Print " FAIL"
Beep
End If
 
Next
 
' testdata
Data "d41d8cd98f00b204e9800998ecf8427e", ""
Data "0cc175b9c0f1b6a831c399e269772661", "a"
Data "900150983cd24fb0d6963f7d28e17f72", "abc"
Data "f96b697d7cb7938d525a2f31aaf161d0", "message digest"
Data "c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz"
Data "d174ab98d277d9f5a5611c2c9f419d9f"
Data "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
Data "57edf4a22be3c955ac49da2e2107b67a"
Data "123456789012345678901234567890123456789012345678901234567890" _
+ "12345678901234567890"
 
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e PASS

a
0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661 PASS

abc
900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72 PASS

message digest
f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0 PASS

abcdefghijklmnopqrstuvwxyz
c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b PASS

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f PASS

12345678901234567890123456789012345678901234567890123456789012345678901234567890
57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a PASS

Go[edit]

A limitation from RFC 1321 is that the function md5 takes a string which is a number of whole bytes. Messages of arbitrary bit length are not supported.

package main
 
import (
"fmt"
"math"
"bytes"
"encoding/binary"
)
 
type testCase struct {
hashCode string
string
}
 
var testCases = []testCase{
{"d41d8cd98f00b204e9800998ecf8427e", ""},
{"0cc175b9c0f1b6a831c399e269772661", "a"},
{"900150983cd24fb0d6963f7d28e17f72", "abc"},
{"f96b697d7cb7938d525a2f31aaf161d0", "message digest"},
{"c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz"},
{"d174ab98d277d9f5a5611c2c9f419d9f",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"},
{"57edf4a22be3c955ac49da2e2107b67a", "12345678901234567890" +
"123456789012345678901234567890123456789012345678901234567890"},
}
 
func main() {
for _, tc := range testCases {
fmt.Printf("%s\n%x\n\n", tc.hashCode, md5(tc.string))
}
}
 
var shift = [...]uint{7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21}
var table [64]uint32
 
func init() {
for i := range table {
table[i] = uint32((1 << 32) * math.Abs(math.Sin(float64(i + 1))))
}
}
 
func md5(s string) (r [16]byte) {
padded := bytes.NewBuffer([]byte(s))
padded.WriteByte(0x80)
for padded.Len() % 64 != 56 {
padded.WriteByte(0)
}
messageLenBits := uint64(len(s)) * 8
binary.Write(padded, binary.LittleEndian, messageLenBits)
 
var a, b, c, d uint32 = 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476
var buffer [16]uint32
for binary.Read(padded, binary.LittleEndian, buffer[:]) == nil { // read every 64 bytes
a1, b1, c1, d1 := a, b, c, d
for j := 0; j < 64; j++ {
var f uint32
bufferIndex := j
round := j >> 4
switch round {
case 0:
f = (b1 & c1) | (^b1 & d1)
case 1:
f = (b1 & d1) | (c1 & ^d1)
bufferIndex = (bufferIndex*5 + 1) & 0x0F
case 2:
f = b1 ^ c1 ^ d1
bufferIndex = (bufferIndex*3 + 5) & 0x0F
case 3:
f = c1 ^ (b1 | ^d1)
bufferIndex = (bufferIndex * 7) & 0x0F
}
sa := shift[(round<<2)|(j&3)]
a1 += f + buffer[bufferIndex] + table[j]
a1, d1, c1, b1 = d1, c1, b1, a1<<sa|a1>>(32-sa)+b1
}
a, b, c, d = a+a1, b+b1, c+c1, d+d1
}
 
binary.Write(bytes.NewBuffer(r[:0]), binary.LittleEndian, []uint32{a, b, c, d})
return
}

Output:

d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e

0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661

900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72

f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0

c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b

d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f

57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a

Haskell[edit]

import Control.Monad (replicateM)
 
import qualified Data.ByteString.Lazy as BL
import qualified Data.ByteString.Lazy.Char8 as BLC
import Data.Binary.Get
import Data.Binary.Put
import Data.Bits
 
import Data.Array (Array, listArray, (!))
import Data.List (foldl)
import Data.Word (Word32)
 
import Numeric (showHex)
 
 
-- functions
type Fun = Word32 -> Word32 -> Word32 -> Word32
 
funF, funG, funH, funI :: Fun
funF x y z = (x .&. y) .|. (complement x .&. z)
funG x y z = (x .&. z) .|. (complement z .&. y)
funH x y z = x `xor` y `xor` z
funI x y z = y `xor` (complement z .|. x)
 
idxF, idxG, idxH, idxI :: Int -> Int
idxF i = i
idxG i = (5 * i + 1) `mod` 16
idxH i = (3 * i + 5) `mod` 16
idxI i = 7 * i `mod` 16
 
 
-- arrays
funA :: Array Int Fun
funA = listArray (1,64) $ replicate 16 =<< [funF, funG, funH, funI]
 
idxA :: Array Int Int
idxA = listArray (1,64) $ zipWith ($) (replicate 16 =<< [idxF, idxG, idxH, idxI]) [0..63]
 
rotA :: Array Int Int
rotA = listArray (1,64) $ concat . replicate 4 =<<
[[7, 12, 17, 22], [5, 9, 14, 20], [4, 11, 16, 23], [6, 10, 15, 21]]
 
sinA :: Array Int Word32
sinA = listArray (1,64) $ map (floor . (*mult) . abs . sin) [1..64]
where mult = 2 ** 32 :: Double
 
 
-- to lazily calculate MD5 sum for standart input:
-- main = putStrLn . md5sum =<< BL.getContents
 
main :: IO ()
main = mapM_ (putStrLn . md5sum . BLC.pack)
[ ""
, "a"
, "abc"
, "message digest"
, "abcdefghijklmnopqrstuvwxyz"
, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
, "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
]
 
 
md5sum :: BL.ByteString -> String
md5sum input =
let MD5 a b c d = getMD5 initial `runGet` input
in foldr hex [] . BL.unpack . runPut $ mapM_ putWord32le [a,b,c,d]
where
initial = MD5 0x67452301 0xEFCDAB89 0x98BADCFE 0x10325476
 
hex x s | x < 16 = '0' : showHex x s -- quick hack: like "%02x"
| otherwise = showHex x s
 
 
data MD5 = MD5
{ a :: {-# UNPACK #-} !Word32
, b :: {-# UNPACK #-} !Word32
, c :: {-# UNPACK #-} !Word32
, d :: {-# UNPACK #-} !Word32
}
 
 
getMD5 :: MD5 -> Get MD5
getMD5 md5 = do
chunk <- getLazyByteString 64
let len = BL.length chunk
 
if len == 64
then getMD5 $! md5 <+> chunk -- apply and process next chunk
 
else do -- input is totally eaten, finalize
bytes <- bytesRead
let fin = runPut . putWord64le $ fromIntegral (bytes - 64 + len) * 8
pad n = chunk `BL.append` (0x80 `BL.cons` BL.replicate (n - 1) 0x00)
 
return $ if len >= 56
then md5 <+> pad (64 - len) <+> BL.replicate 56 0x00 `BL.append` fin
else md5 <+> pad (56 - len) `BL.append` fin
 
 
(<+>) :: MD5 -> BL.ByteString -> MD5
infixl 5 <+>
md5@(MD5 a b c d) <+> bs =
let datA = listArray (0,15) $ replicateM 16 getWord32le `runGet` bs
MD5 a' b' c' d' = foldl' (md5round datA) md5 [1..64]
in MD5 (a + a'
) (b + b') (c + c') (d + d')
 
 
md5round :: Array Int Word32 -> MD5 -> Int -> MD5
md5round datA (MD5 a b c d) i =
let f = funA ! i
w = datA ! (idxA ! i)
a'
= b + (a + f b c d + w + sinA ! i) `rotateL` rotA ! i
in MD5 d a' b c

Icon and Unicon[edit]

The following program is based on part on the Wikipedia pseudo-code and in part on the reference implementation in RFC 1321. The implementation uses large integers. The solution works in both Icon and Unicon. One limitation of this implementation is that will not handle arbitrary (bit) length messages - all are byte aligned. Another small challenge was that Icon/Unicon bit manipulation functions work on signed integers (and large integers), as a result there are no native rotation and negation functions.

procedure main()  # validate against the RFC test strings and more
testMD5("The quick brown fox jumps over the lazy dog", 16r9e107d9d372bb6826bd81d3542a419d6)
testMD5("The quick brown fox jumps over the lazy dog.", 16re4d909c290d0fb1ca068ffaddf22cbd0)
testMD5("", 16rd41d8cd98f00b204e9800998ecf8427e) #R = MD5 test suite from RFC
testMD5("a", 16r0cc175b9c0f1b6a831c399e269772661) #R
testMD5("abc", 16r900150983cd24fb0d6963f7d28e17f72) #R
testMD5("message digest", 16rf96b697d7cb7938d525a2f31aaf161d0) #R
testMD5("abcdefghijklmnopqrstuvwxyz", 16rc3fcd3d76192e4007dfb496cca67e13b) #R
testMD5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 16rd174ab98d277d9f5a5611c2c9f419d9f) #R
testMD5("12345678901234567890123456789012345678901234567890123456789012345678901234567890", 16r57edf4a22be3c955ac49da2e2107b67a) #R
end
 
procedure testMD5(s,rh) # compute the MD5 hash and compare it to reference value
write("Message(length=",*s,") = ",image(s))
write("Digest = ",hexstring(h := MD5(s)),if h = rh then " matches reference hash" else (" does not match reference hash = " || hexstring(rh)),"\n")
end
 
link hexcvt # for testMD5
 
$define B32 4 # 32 bits
$define B64 8 # 64 bits in bytes
$define B512 64 # 512 bits in bytes
$define M32 16r100000000 # 2^32
$define M64 16r10000000000000000 # 2^64
 
procedure MD5(s) #: return MD5 hash of message s
local w,a,b,c,d,i,t,m
local mlength,message,hash
static rs,ks,istate,maxpad,g
 
initial {
every (rs := []) |||:=
(t := [ 7, 12, 17, 22] | [ 5, 9, 14, 20] | [ 4, 11, 16, 23] | [ 6, 10, 15, 21]) ||| t ||| t ||| t
every put(ks := [],integer(M32 * abs(sin(i := 1 to 64))))
istate := [ 16r67452301, 16rEFCDAB89, 16r98BADCFE, 16r10325476 ] # "Magic" IV
maxpad := left(char(16r80),B512+B64,char(16r00)) # maximum possible padding
g := []
every i := 0 to 63 do # precompute offsets
case round := i/16 of {
0 : put(g,i + 1)
1 : put(g,(5*i+1) % 16 + 1)
2 : put(g,(3*i+5) % 16 + 1)
3 : put(g,(7*i) % 16 + 1)
}
if not (*rs = *ks = 64) then runerr(500,"MD5 setup error")
}
# 1. Construct prefix
t := (*s*8)%M64 # original message length
s ||:= maxpad # append maximum padding
s[0-:*s%B512] := "" # trim to final length
s[0-:B64] := reverse(unsigned2string(t,B64) ) # as little endian length
 
message := [] # 2. Subdivide message
s ? while put(message,move(B512)) # into 512 bit blocks
 
# 3. Transform message ...
state := copy(istate) # Initialize hashes
every m := !message do { # For each message block
w := []
m ? while put(w,unsigned(reverse(move(B32)))) # break into little-endian words
 
a := state[1] # pick up hashes
b := state[2]
c := state[3]
d := state[4]
 
every i := 1 to 64 do { # Process 4 rounds of hashes
case round := (i-1)/16 of {
0 : a +:= ixor(d, iand(b,ixor(c,d))) # 0..15 - alternate F
1 : a +:= ixor(c,iand(d,ixor(b,c))) # 16..31 - alternate G
2 : a +:= ixor(b,ixor(c,d)) # 32..47 - H
3 : a +:= ixor(c,ior(b,ixor(d,16rffffffff))) # 48..64 - alternate I
} # Core of FF, GG, HH, II
a +:= ks[i] + w[g[i]] # and the rest
a %:= M32
a := ior( ishift(a,rs[i]), ishift(a,-(32-rs[i]))) # 32bit rotate
a +:= b
a :=: b :=: c :=: d # rotate variables
}
 
state[1] +:= a # Add back new hashes
state[2] +:= b
state[3] +:= c
state[4] +:= d
every !state %:= M32 # mod 2^32
}
every (hash := "") ||:= reverse(unsigned2string(!state,4)) # little-endian digest
return unsigned(hash)
end
 
procedure unsigned2string(i,w) # uint to string pad to w bytes
local s
if i < 0 then runerr(500,i)
s := ""
while (0 < i) | (*s < \w) do {
s ||:= char(i % 256)
i /:= 256
}
return reverse(s)
end
 
link unsigned # string to unsigned integer
The provides unsigned and hexcvt Sample Output (abridged):
Message(length=43) = "The quick brown fox jumps over the lazy dog"
Digest = 9E107D9D372BB6826BD81D3542A419D6 matches reference hash

Message(length=44) = "The quick brown fox jumps over the lazy dog."
Digest = E4D909C290D0FB1CA068FFADDF22CBD0 matches reference hash

Message(length=0) = ""
Digest = D41D8CD98F00B204E9800998ECF8427E matches reference hash

Message(length=1) = "a"
Digest = CC175B9C0F1B6A831C399E269772661 matches reference hash
...

J[edit]

Note: the following code was extracted from http://www.jsoftware.com/wsvn/addons/trunk/convert/misc/md5.ijs

NB. convert/misc/md5
NB. RSA Data Security, Inc. MD5 Message-Digest Algorithm
NB. version: 1.0.2
NB.
NB. See RFC 1321 for license details
NB. J implementation -- (C) 2003 Oleg Kobchenko;
NB.
NB. 09/04/2003 Oleg Kobchenko
NB. 03/31/2007 Oleg Kobchenko j601, JAL
NB. 12/17/2015 G.Pruss 64-bit
NB. ~60+ times slower than using the jqt library
 
require 'convert'
coclass 'pcrypt'
 
NB. lt= (*. -.)~ gt= *. -. ge= +. -. xor= ~:
'`lt gt ge xor'=: (20 b.)`(18 b.)`(27 b.)`(22 b.)
'`and or sh'=: (17 b.)`(23 b.)`(33 b.)
 
3 : 0 ''
if. IF64 do.
rot=: (16bffffffff and sh or ] sh~ 32 -~ [) NB. (y << x) | (y >>> (32 - x))
add=: ((16bffffffff&and)@+)"0
else.
rot=: (32 b.)
add=: (+&(_16&sh) (16&sh@(+ _16&sh) or and&65535@]) +&(and&65535))"0
end.
EMPTY
)
 
hexlist=: tolower@:,@:hfd@:,@:(|."1)@(256 256 256 256&#:)
 
cmn=: 4 : 0
'x s t'=. x [ 'q a b'=. y
b add s rot (a add q) add (x add t)
)
 
ff=: cmn (((1&{ and 2&{) or 1&{ lt 3&{) , 2&{.)
gg=: cmn (((1&{ and 3&{) or 2&{ gt 3&{) , 2&{.)
hh=: cmn (((1&{ xor 2&{)xor 3&{ ) , 2&{.)
ii=: cmn (( 2&{ xor 1&{ ge 3&{ ) , 2&{.)
op=: ff`gg`hh`ii
 
I=: ".;._2(0 : 0)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9
)
S=: 4 4$7 12 17 22 5 9 14 20 4 11 16 23 6 10 15 21
 
T=: |:".;._2(0 : 0)
_680876936 _165796510 _378558 _198630844
_389564586 _1069501632 _2022574463 1126891415
606105819 643717713 1839030562 _1416354905
_1044525330 _373897302 _35309556 _57434055
_176418897 _701558691 _1530992060 1700485571
1200080426 38016083 1272893353 _1894986606
_1473231341 _660478335 _155497632 _1051523
_45705983 _405537848 _1094730640 _2054922799
1770035416 568446438 681279174 1873313359
_1958414417 _1019803690 _358537222 _30611744
_42063 _187363961 _722521979 _1560198380
_1990404162 1163531501 76029189 1309151649
1804603682 _1444681467 _640364487 _145523070
_40341101 _51403784 _421815835 _1120210379
_1502002290 1735328473 530742520 718787259
1236535329 _1926607734 _995338651 _343485551
)
 
norm=: 3 : 0
n=. 16 * 1 + _6 sh 8 + #y
b=. n#0 [ y=. a.i.y
for_i. i. #y do.
b=. ((j { b) or (8*4|i) sh i{y) (j=. _2 sh i) } b
end.
b=. ((j { b) or (8*4|i) sh 128) (j=._2 sh i=.#y) } b
_16]\ (8 * #y) (n-2) } b
)
 
NB.*md5 v MD5 Message-Digest Algorithm
NB. diagest=. md5 message
md5=: 3 : 0
X=. norm y
q=. r=. 1732584193 _271733879 _1732584194 271733878
for_x. X do.
for_j. i.4 do.
l=. ((j{I){x) ,. (16$j{S) ,. j{T
for_i. i.16 do.
r=. _1|.((i{l) (op@.j) r),}.r
end.
end.
q=. r=. r add q
end.
hexlist r
)
 
md5_z_=: md5_pcrypt_
   md5''
d41d8cd98f00b204e9800998ecf8427e
md5'a'
0cc175b9c0f1b6a831c399e269772661
md5'abc'
900150983cd24fb0d6963f7d28e17f72
md5'message digest'
f96b697d7cb7938d525a2f31aaf161d0
md5'abcdefghijklmnopqrstuvwxyz'
c3fcd3d76192e4007dfb496cca67e13b
md5'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
d174ab98d277d9f5a5611c2c9f419d9f
md5'12345678901234567890123456789012345678901234567890123456789012345678901234567890'
57edf4a22be3c955ac49da2e2107b67a
 

Java[edit]

Works with: Java version 1.5+

Based on RFC-1321.

class MD5
{
 
private static final int INIT_A = 0x67452301;
private static final int INIT_B = (int)0xEFCDAB89L;
private static final int INIT_C = (int)0x98BADCFEL;
private static final int INIT_D = 0x10325476;
 
private static final int[] SHIFT_AMTS = {
7, 12, 17, 22,
5, 9, 14, 20,
4, 11, 16, 23,
6, 10, 15, 21
};
 
private static final int[] TABLE_T = new int[64];
static
{
for (int i = 0; i < 64; i++)
TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)));
}
 
public static byte[] computeMD5(byte[] message)
{
int messageLenBytes = message.length;
int numBlocks = ((messageLenBytes + 8) >>> 6) + 1;
int totalLen = numBlocks << 6;
byte[] paddingBytes = new byte[totalLen - messageLenBytes];
paddingBytes[0] = (byte)0x80;
 
long messageLenBits = (long)messageLenBytes << 3;
for (int i = 0; i < 8; i++)
{
paddingBytes[paddingBytes.length - 8 + i] = (byte)messageLenBits;
messageLenBits >>>= 8;
}
 
int a = INIT_A;
int b = INIT_B;
int c = INIT_C;
int d = INIT_D;
int[] buffer = new int[16];
for (int i = 0; i < numBlocks; i ++)
{
int index = i << 6;
for (int j = 0; j < 64; j++, index++)
buffer[j >>> 2] = ((int)((index < messageLenBytes) ? message[index] : paddingBytes[index - messageLenBytes]) << 24) | (buffer[j >>> 2] >>> 8);
int originalA = a;
int originalB = b;
int originalC = c;
int originalD = d;
for (int j = 0; j < 64; j++)
{
int div16 = j >>> 4;
int f = 0;
int bufferIndex = j;
switch (div16)
{
case 0:
f = (b & c) | (~b & d);
break;
 
case 1:
f = (b & d) | (c & ~d);
bufferIndex = (bufferIndex * 5 + 1) & 0x0F;
break;
 
case 2:
f = b ^ c ^ d;
bufferIndex = (bufferIndex * 3 + 5) & 0x0F;
break;
 
case 3:
f = c ^ (b | ~d);
bufferIndex = (bufferIndex * 7) & 0x0F;
break;
}
int temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)]);
a = d;
d = c;
c = b;
b = temp;
}
 
a += originalA;
b += originalB;
c += originalC;
d += originalD;
}
 
byte[] md5 = new byte[16];
int count = 0;
for (int i = 0; i < 4; i++)
{
int n = (i == 0) ? a : ((i == 1) ? b : ((i == 2) ? c : d));
for (int j = 0; j < 4; j++)
{
md5[count++] = (byte)n;
n >>>= 8;
}
}
return md5;
}
 
public static String toHexString(byte[] b)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < b.length; i++)
{
sb.append(String.format("%02X", b[i] & 0xFF));
}
return sb.toString();
}
 
public static void main(String[] args)
{
String[] testStrings = { "", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "12345678901234567890123456789012345678901234567890123456789012345678901234567890" };
for (String s : testStrings)
System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"");
return;
}
 
}

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
Works with: Java version 1.5+

Using ByteBuffers

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
 
class MD5
{
 
private static final int INIT_A = 0x67452301;
private static final int INIT_B = (int)0xEFCDAB89L;
private static final int INIT_C = (int)0x98BADCFEL;
private static final int INIT_D = 0x10325476;
 
private static final int[] SHIFT_AMTS = {
7, 12, 17, 22,
5, 9, 14, 20,
4, 11, 16, 23,
6, 10, 15, 21
};
 
private static final int[] TABLE_T = new int[64];
static
{
for (int i = 0; i < 64; i++)
TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)));
}
 
public static byte[] computeMD5(byte[] message)
{
ByteBuffer padded = ByteBuffer.allocate((((message.length + 8) / 64) + 1) * 64).order(ByteOrder.LITTLE_ENDIAN);
padded.put(message);
padded.put((byte)0x80);
long messageLenBits = (long)message.length * 8;
padded.putLong(padded.capacity() - 8, messageLenBits);
 
padded.rewind();
 
int a = INIT_A;
int b = INIT_B;
int c = INIT_C;
int d = INIT_D;
while (padded.hasRemaining()) {
// obtain a slice of the buffer from the current position,
// and view it as an array of 32-bit ints
IntBuffer chunk = padded.slice().order(ByteOrder.LITTLE_ENDIAN).asIntBuffer();
int originalA = a;
int originalB = b;
int originalC = c;
int originalD = d;
for (int j = 0; j < 64; j++)
{
int div16 = j >>> 4;
int f = 0;
int bufferIndex = j;
switch (div16)
{
case 0:
f = (b & c) | (~b & d);
break;
 
case 1:
f = (b & d) | (c & ~d);
bufferIndex = (bufferIndex * 5 + 1) & 0x0F;
break;
 
case 2:
f = b ^ c ^ d;
bufferIndex = (bufferIndex * 3 + 5) & 0x0F;
break;
 
case 3:
f = c ^ (b | ~d);
bufferIndex = (bufferIndex * 7) & 0x0F;
break;
}
int temp = b + Integer.rotateLeft(a + f + chunk.get(bufferIndex) + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)]);
a = d;
d = c;
c = b;
b = temp;
}
 
a += originalA;
b += originalB;
c += originalC;
d += originalD;
padded.position(padded.position() + 64);
}
 
ByteBuffer md5 = ByteBuffer.allocate(16).order(ByteOrder.LITTLE_ENDIAN);
for (int n : new int[]{a, b, c, d})
{
md5.putInt(n);
}
return md5.array();
}
 
public static String toHexString(byte[] b)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < b.length; i++)
{
sb.append(String.format("%02X", b[i] & 0xFF));
}
return sb.toString();
}
 
public static void main(String[] args)
{
String[] testStrings = { "", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "12345678901234567890123456789012345678901234567890123456789012345678901234567890" };
for (String s : testStrings)
System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"");
return;
}
 
}

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

Kotlin[edit]

Translation of: Java
// version 1.1.3
 
object MD5 {
 
private val INIT_A = 0x67452301
private val INIT_B = 0xEFCDAB89L.toInt()
private val INIT_C = 0x98BADCFEL.toInt()
private val INIT_D = 0x10325476
 
private val SHIFT_AMTS = intArrayOf(
7, 12, 17, 22,
5, 9, 14, 20,
4, 11, 16, 23,
6, 10, 15, 21
)
 
private val TABLE_T = IntArray(64) {
((1L shl 32) * Math.abs(Math.sin(it + 1.0))).toLong().toInt()
}
 
fun compute(message: ByteArray): ByteArray {
val messageLenBytes = message.size
val numBlocks = ((messageLenBytes + 8) ushr 6) + 1
val totalLen = numBlocks shl 6
val paddingBytes = ByteArray(totalLen - messageLenBytes)
paddingBytes[0] = 0x80.toByte()
var messageLenBits = (messageLenBytes shl 3).toLong()
 
for (i in 0..7) {
paddingBytes[paddingBytes.size - 8 + i] = messageLenBits.toByte()
messageLenBits = messageLenBits ushr 8
}
 
var a = INIT_A
var b = INIT_B
var c = INIT_C
var d = INIT_D
val buffer = IntArray(16)
 
for (i in 0 until numBlocks) {
var index = i shl 6
 
for (j in 0..63) {
val temp = if (index < messageLenBytes) message[index] else
paddingBytes[index - messageLenBytes]
buffer[j ushr 2] = (temp.toInt() shl 24) or (buffer[j ushr 2] ushr 8)
index++
}
 
val originalA = a
val originalB = b
val originalC = c
val originalD = d
 
for (j in 0..63) {
val div16 = j ushr 4
var f = 0
var bufferIndex = j
when (div16) {
0 -> {
f = (b and c) or (b.inv() and d)
}
 
1 -> {
f = (b and d) or (c and d.inv())
bufferIndex = (bufferIndex * 5 + 1) and 0x0F
}
 
2 -> {
f = b xor c xor d;
bufferIndex = (bufferIndex * 3 + 5) and 0x0F
}
 
3 -> {
f = c xor (b or d.inv());
bufferIndex = (bufferIndex * 7) and 0x0F
}
}
 
val temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] +
TABLE_T[j], SHIFT_AMTS[(div16 shl 2) or (j and 3)])
a = d
d = c
c = b
b = temp
}
 
a += originalA
b += originalB
c += originalC
d += originalD
}
 
val md5 = ByteArray(16)
var count = 0
 
for (i in 0..3) {
var n = if (i == 0) a else (if (i == 1) b else (if (i == 2) c else d))
 
for (j in 0..3) {
md5[count++] = n.toByte()
n = n ushr 8
}
}
return md5
}
}
 
fun ByteArray.toHexString(): String {
val sb = StringBuilder()
for (b in this) sb.append(String.format("%02x", b.toInt() and 0xFF))
return sb.toString()
}
 
fun main(args: Array<String>) {
val testStrings = arrayOf(
"",
"a",
"abc",
"message digest",
"abcdefghijklmnopqrstuvwxyz",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
"12345678901234567890123456789012345678901234567890123456789012345678901234567890"
)
 
println("${"hash code".padStart(34)} <== string")
for (s in testStrings) {
println("0x${MD5.compute(s.toByteArray()).toHexString()} <== \"$s\"")
}
}
Output:
                         hash code <== string
0xd41d8cd98f00b204e9800998ecf8427e <== ""
0x0cc175b9c0f1b6a831c399e269772661 <== "a"
0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"

Liberty BASIC[edit]

See the implementation at MD5#Liberty BASIC.

Mathematica[edit]

md5[string_String] := 
Module[{r = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17,
22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4,
11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10,
15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21},
k = Table[Floor[[email protected]@i], {i, 1, 64}], h0 = 16^^67452301,
h1 = 16^^efcdab89, h2 = 16^^98badcfe, h3 = 16^^10325476,
data = Partition[
Join[FromDigits[Reverse@#, 256] & /@
Partition[
PadRight[Append[#, 128], Mod[56, 64, Length@# + 1]], 4],
[email protected][8 Length@#, 2^32, 2]] &@
ImportString[string, "Binary"], 16], a, b, c, d, f, g},
Do[{a, b, c, d} = {h0, h1, h2, h3};
Do[Which[1 <= i <= 16,
f = BitOr[BitAnd[b, c], BitAnd[BitNot[b], d]]; g = i - 1,
17 <= i <= 32, f = BitOr[BitAnd[d, b], BitAnd[BitNot[d], c]];
g = Mod[5 i - 4, 16], 33 <= i <= 48, f = BitXor[b, c, d];
g = Mod[3 i + 2, 16], 49 <= i <= 64,
f = BitXor[c, BitOr[b, BitNot[d] + 2^32]];
g = Mod[7 i - 7, 16]]; {a, b, c, d} = {d,
BitOr[BitShiftLeft[#1, #2], BitShiftRight[#1, 32 - #2]] &[
Mod[a + f + k[[i]] + w[[g + 1]], 2^32], r[[i]]] + b, b,
c}, {i, 1, 64}]; {h0, h1, h2, h3} =
Mod[{h0, h1, h2, h3} + {a, b, c, d}, 2^32], {w, data}];
"0x" ~~ IntegerString[
FromDigits[
Flatten[[email protected][#, 256, 4] & /@ {h0, h1, h2, h3}],
256], 16, 32]]
 

Example:

md5["12345678901234567890123456789012345678901234567890123456789012345678901234567890"]

Output:

0x57edf4a22be3c955ac49da2e2107b67a

MATLAB / Octave[edit]

See the implementation at MD5#MATLAB.

Modula-3[edit]

INTERFACE MD5;
 
IMPORT Word;
 
TYPE Digest = ARRAY [0..15] OF CHAR;
TYPE Buffer = ARRAY [0..63] OF CHAR;
 
TYPE T = RECORD
state: ARRAY [0..3] OF Word.T;
count: ARRAY [0..1] OF Word.T;
buffer: Buffer;
END;
 
PROCEDURE Init(VAR md5ctx: T);
PROCEDURE Update(VAR md5ctx: T; input: TEXT);
PROCEDURE Final(VAR md5ctx: T): Digest;
PROCEDURE ToText(hash: Digest): TEXT;
 
END MD5.
MODULE MD5;
 
IMPORT Word, Text, Fmt;
 
CONST S11 = 7; S12 = 12; S13 = 17; S14 = 22;
S21 = 5; S22 = 9; S23 = 14; S24 = 20;
S31 = 4; S32 = 11; S33 = 16; S34 = 23;
S41 = 6; S42 = 10; S43 = 15; S44 = 21;
pad1 = "\200\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
pad2 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
pad3 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
pad4 = "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000";
padding = pad1 & pad2 & pad3 & pad4;
 
PROCEDURE Init(VAR md5ctx: T) =
BEGIN
<*ASSERT Word.Size = 32*>
md5ctx.count[0] := 0;
md5ctx.count[1] := 0;
 
md5ctx.state[0] := 16_67452301;
md5ctx.state[1] := 16_efcdab89;
md5ctx.state[2] := 16_98badcfe;
md5ctx.state[3] := 16_10325476;
END Init;
 
PROCEDURE Transform(VAR state: ARRAY [0..3] OF Word.T;
VAR input: Buffer) =
VAR a, b, c, d: INTEGER;
x: ARRAY [0..15] OF INTEGER;
 
PROCEDURE Decode(VAR x: ARRAY [0..15] OF INTEGER;
VAR input: Buffer) =
BEGIN
FOR i := 0 TO 15 DO
x[i] := Word.Insert(x[i], ORD(input[4*i+0]), 0, 8);
x[i] := Word.Insert(x[i], ORD(input[4*i+1]), 8, 8);
x[i] := Word.Insert(x[i], ORD(input[4*i+2]), 16, 8);
x[i] := Word.Insert(x[i], ORD(input[4*i+3]), 24, 8);
END;
END Decode;
 
PROCEDURE FF(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
PROCEDURE F(x, y, z: INTEGER): INTEGER =
BEGIN
RETURN Word.Or(Word.And(x, y), Word.And(Word.Not(x), z));
END F;
BEGIN
a := b + Word.Rotate(a + F(b, c, d) + x + ac, s);
END FF;
 
PROCEDURE GG(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
PROCEDURE G(x, y, z: INTEGER): INTEGER =
BEGIN
RETURN Word.Or(Word.And(x, z), Word.And(y, Word.Not(z)));
END G;
BEGIN
a := b + Word.Rotate(a + G(b, c, d) + x + ac, s);
END GG;
 
PROCEDURE HH(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
PROCEDURE H(x, y, z: INTEGER): INTEGER =
BEGIN
RETURN Word.Xor(x, Word.Xor(y,z));
END H;
BEGIN
a := b + Word.Rotate(a + H(b, c, d) + x + ac, s);
END HH;
 
PROCEDURE II(VAR a: INTEGER; b, c, d, x, s, ac: INTEGER) =
PROCEDURE I(x, y, z: INTEGER): INTEGER =
BEGIN
RETURN Word.Xor(y, Word.Or(x, Word.Not(z)))
END I;
BEGIN
a := b + Word.Rotate(a + I(b, c, d) + x + ac, s)
END II;
 
BEGIN
Decode(x, input);
 
a := state[0];
b := state[1];
c := state[2];
d := state[3];
 
(* Round 1 *)
FF(a, b, c, d, x[ 0], S11, 16_d76aa478); (* 1 *)
FF(d, a, b, c, x[ 1], S12, 16_e8c7b756); (* 2 *)
FF(c, d, a, b, x[ 2], S13, 16_242070db); (* 3 *)
FF(b, c, d, a, x[ 3], S14, 16_c1bdceee); (* 4 *)
FF(a, b, c, d, x[ 4], S11, 16_f57c0faf); (* 5 *)
FF(d, a, b, c, x[ 5], S12, 16_4787c62a); (* 6 *)
FF(c, d, a, b, x[ 6], S13, 16_a8304613); (* 7 *)
FF(b, c, d, a, x[ 7], S14, 16_fd469501); (* 8 *)
FF(a, b, c, d, x[ 8], S11, 16_698098d8); (* 9 *)
FF(d, a, b, c, x[ 9], S12, 16_8b44f7af); (* 10 *)
FF(c, d, a, b, x[10], S13, 16_ffff5bb1); (* 11 *)
FF(b, c, d, a, x[11], S14, 16_895cd7be); (* 12 *)
FF(a, b, c, d, x[12], S11, 16_6b901122); (* 13 *)
FF(d, a, b, c, x[13], S12, 16_fd987193); (* 14 *)
FF(c, d, a, b, x[14], S13, 16_a679438e); (* 15 *)
FF(b, c, d, a, x[15], S14, 16_49b40821); (* 16 *)
 
(* Round 2 *)
GG(a, b, c, d, x[ 1], S21, 16_f61e2562); (* 17 *)
GG(d, a, b, c, x[ 6], S22, 16_c040b340); (* 18 *)
GG(c, d, a, b, x[11], S23, 16_265e5a51); (* 19 *)
GG(b, c, d, a, x[ 0], S24, 16_e9b6c7aa); (* 20 *)
GG(a, b, c, d, x[ 5], S21, 16_d62f105d); (* 21 *)
GG(d, a, b, c, x[10], S22, 16_02441453); (* 22 *)
GG(c, d, a, b, x[15], S23, 16_d8a1e681); (* 23 *)
GG(b, c, d, a, x[ 4], S24, 16_e7d3fbc8); (* 24 *)
GG(a, b, c, d, x[ 9], S21, 16_21e1cde6); (* 25 *)
GG(d, a, b, c, x[14], S22, 16_c33707d6); (* 26 *)
GG(c, d, a, b, x[ 3], S23, 16_f4d50d87); (* 27 *)
GG(b, c, d, a, x[ 8], S24, 16_455a14ed); (* 28 *)
GG(a, b, c, d, x[13], S21, 16_a9e3e905); (* 29 *)
GG(d, a, b, c, x[ 2], S22, 16_fcefa3f8); (* 30 *)
GG(c, d, a, b, x[ 7], S23, 16_676f02d9); (* 31 *)
GG(b, c, d, a, x[12], S24, 16_8d2a4c8a); (* 32 *)
 
(* Round 3 *)
HH(a, b, c, d, x[ 5], S31, 16_fffa3942); (* 33 *)
HH(d, a, b, c, x[ 8], S32, 16_8771f681); (* 34 *)
HH(c, d, a, b, x[11], S33, 16_6d9d6122); (* 35 *)
HH(b, c, d, a, x[14], S34, 16_fde5380c); (* 36 *)
HH(a, b, c, d, x[ 1], S31, 16_a4beea44); (* 37 *)
HH(d, a, b, c, x[ 4], S32, 16_4bdecfa9); (* 38 *)
HH(c, d, a, b, x[ 7], S33, 16_f6bb4b60); (* 39 *)
HH(b, c, d, a, x[10], S34, 16_bebfbc70); (* 40 *)
HH(a, b, c, d, x[13], S31, 16_289b7ec6); (* 41 *)
HH(d, a, b, c, x[ 0], S32, 16_eaa127fa); (* 42 *)
HH(c, d, a, b, x[ 3], S33, 16_d4ef3085); (* 43 *)
HH(b, c, d, a, x[ 6], S34, 16_04881d05); (* 44 *)
HH(a, b, c, d, x[ 9], S31, 16_d9d4d039); (* 45 *)
HH(d, a, b, c, x[12], S32, 16_e6db99e5); (* 46 *)
HH(c, d, a, b, x[15], S33, 16_1fa27cf8); (* 47 *)
HH(b, c, d, a, x[ 2], S34, 16_c4ac5665); (* 48 *)
 
(* Round 4 *)
II(a, b, c, d, x[ 0], S41, 16_f4292244); (* 49 *)
II(d, a, b, c, x[ 7], S42, 16_432aff97); (* 50 *)
II(c, d, a, b, x[14], S43, 16_ab9423a7); (* 51 *)
II(b, c, d, a, x[ 5], S44, 16_fc93a039); (* 52 *)
II(a, b, c, d, x[12], S41, 16_655b59c3); (* 53 *)
II(d, a, b, c, x[ 3], S42, 16_8f0ccc92); (* 54 *)
II(c, d, a, b, x[10], S43, 16_ffeff47d); (* 55 *)
II(b, c, d, a, x[ 1], S44, 16_85845dd1); (* 56 *)
II(a, b, c, d, x[ 8], S41, 16_6fa87e4f); (* 57 *)
II(d, a, b, c, x[15], S42, 16_fe2ce6e0); (* 58 *)
II(c, d, a, b, x[ 6], S43, 16_a3014314); (* 59 *)
II(b, c, d, a, x[13], S44, 16_4e0811a1); (* 60 *)
II(a, b, c, d, x[ 4], S41, 16_f7537e82); (* 61 *)
II(d, a, b, c, x[11], S42, 16_bd3af235); (* 62 *)
II(c, d, a, b, x[ 2], S43, 16_2ad7d2bb); (* 63 *)
II(b, c, d, a, x[ 9], S44, 16_eb86d391); (* 64 *)
 
state[0] := Word.Plus(state[0], a);
state[1] := Word.Plus(state[1], b);
state[2] := Word.Plus(state[2], c);
state[3] := Word.Plus(state[3], d);
END Transform;
 
PROCEDURE Update(VAR md5ctx: T; input: TEXT) =
VAR index, i, j, partLen: Word.T;
locbuff: Buffer;
 
BEGIN
index := Word.And(Word.Shift(md5ctx.count[0], -3), 16_3F);
md5ctx.count[0] :=
Word.Plus(md5ctx.count[0], Word.Shift(Text.Length(input), 3));
 
IF md5ctx.count[0] < Text.Length(input) THEN
INC(md5ctx.count[1]);
END;
md5ctx.count[1] := md5ctx.count[1] + Word.Shift(Text.Length(input), -29);
partLen := 64 - index;
IF Text.Length(input) >= partLen THEN
FOR i := index TO 63 DO
md5ctx.buffer[i] := Text.GetChar(input, i-index);
END;
Transform(md5ctx.state, md5ctx.buffer);
i := partLen;
WHILE (i + 63) < Text.Length(input) DO
FOR j := 0 TO 63 DO
locbuff[j] := Text.GetChar(input, i+j);
END;
Transform(md5ctx.state, locbuff);
INC(i, 64);
END;
index := 0;
ELSE
i := 0;
END;
 
j := 0;
WHILE i+j < Text.Length(input) DO
md5ctx.buffer[j+index] := Text.GetChar(input, i+j);
INC(j);
END;
END Update;
 
PROCEDURE Final(VAR md5ctx: T): Digest=
VAR bits: ARRAY [0..7] OF CHAR;
index, padLen: INTEGER;
digest: Digest;
 
PROCEDURE Encode(VAR output: ARRAY OF CHAR;
VAR input: ARRAY OF Word.T;
count: INTEGER) =
BEGIN
FOR i := 0 TO count DO
output[i*4+0] := VAL(Word.Extract(input[i], 0, 8), CHAR);
output[i*4+1] := VAL(Word.Extract(input[i], 8, 8), CHAR);
output[i*4+2] := VAL(Word.Extract(input[i], 16, 8), CHAR);
output[i*4+3] := VAL(Word.Extract(input[i], 24, 8), CHAR)
END;
END Encode;
BEGIN
Encode(bits, md5ctx.count, 1);
index := Word.And(Word.Shift(md5ctx.count[0], -3), 16_3F);
IF index < 56 THEN
padLen := 56 - index;
ELSE
padLen := 120 - index;
END;
Update(md5ctx, Text.Sub(padding, 0, padLen));
Update(md5ctx, Text.FromChars(bits));
Encode(digest, md5ctx.state, 3);
RETURN digest;
END Final;
 
PROCEDURE ToText(hash: Digest): TEXT =
VAR buf: TEXT := "";
BEGIN
FOR i := 0 TO 15 DO
buf := buf & Fmt.Pad(Fmt.Int(ORD(hash[i]), 16), 2, '0');
END;
RETURN buf;
END ToText;
 
BEGIN
END MD5.

Example usage:

MODULE Main;
 
IMPORT MD5, IO;
 
VAR md5ctx: MD5.T;
 
BEGIN
MD5.Init(md5ctx);
MD5.Update(md5ctx, "The quick brown fox jumped over the lazy dog's back");
IO.Put(MD5.ToText(MD5.Final(md5ctx)) & "\n");
END Main.

Output:

e38ca1d920c4b8b8d3946b2c72f01680

Nim[edit]

import sequtils
 
const
ChunkSize = 512 div 8
SumSize = 128 div 8
 
proc extractChunk(msg : seq[uint8], chunk: var openarray[uint32], offset: int) =
var
srcIndex = offset
 
for dstIndex in 0 .. < 16:
chunk[dstIndex] = 0
for ii in 0 .. < 4:
chunk[dstIndex] = chunk[dstIndex] shr 8
chunk[dstIndex] = chunk[dstIndex] or (msg[srcIndex].uint32 shl 24)
srcIndex.inc
 
proc leftRotate(val: uint32, shift: int) : uint32 =
result = (val shl shift) or (val shr (32 - shift))
 
proc md5Sum(msg : seq[uint8]) : array[SumSize, uint8] =
const
s : array[ChunkSize, int] =
[ 7, 12, 17, 22, 7, 12, 17, 22,
7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20,
5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23,
4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21,
6, 10, 15, 21, 6, 10, 15, 21 ]
 
K : array[ChunkSize, uint32] =
[ 0xd76aa478'u32, 0xe8c7b756'u32, 0x242070db'u32, 0xc1bdceee'u32,
0xf57c0faf'u32, 0x4787c62a'u32, 0xa8304613'u32, 0xfd469501'u32,
0x698098d8'u32, 0x8b44f7af'u32, 0xffff5bb1'u32, 0x895cd7be'u32,
0x6b901122'u32, 0xfd987193'u32, 0xa679438e'u32, 0x49b40821'u32,
0xf61e2562'u32, 0xc040b340'u32, 0x265e5a51'u32, 0xe9b6c7aa'u32,
0xd62f105d'u32, 0x02441453'u32, 0xd8a1e681'u32, 0xe7d3fbc8'u32,
0x21e1cde6'u32, 0xc33707d6'u32, 0xf4d50d87'u32, 0x455a14ed'u32,
0xa9e3e905'u32, 0xfcefa3f8'u32, 0x676f02d9'u32, 0x8d2a4c8a'u32,
0xfffa3942'u32, 0x8771f681'u32, 0x6d9d6122'u32, 0xfde5380c'u32,
0xa4beea44'u32, 0x4bdecfa9'u32, 0xf6bb4b60'u32, 0xbebfbc70'u32,
0x289b7ec6'u32, 0xeaa127fa'u32, 0xd4ef3085'u32, 0x04881d05'u32,
0xd9d4d039'u32, 0xe6db99e5'u32, 0x1fa27cf8'u32, 0xc4ac5665'u32,
0xf4292244'u32, 0x432aff97'u32, 0xab9423a7'u32, 0xfc93a039'u32,
0x655b59c3'u32, 0x8f0ccc92'u32, 0xffeff47d'u32, 0x85845dd1'u32,
0x6fa87e4f'u32, 0xfe2ce6e0'u32, 0xa3014314'u32, 0x4e0811a1'u32,
0xf7537e82'u32, 0xbd3af235'u32, 0x2ad7d2bb'u32, 0xeb86d391'u32 ]
 
 
# Pad with 1-bit, and fill with 0's up to 448 bits mod 512
var paddedMsgSize = msg.len + 1
var remain = (msg.len + 1) mod ChunkSize
if remain > (448 div 8):
paddedMsgSize += ChunkSize - remain + (448 div 8)
else:
paddedMsgSize += (448 div 8) - remain
 
var paddingSize = paddedMsgSize - msg.len
var padding = newSeq[uint8](paddingSize)
padding[0] = 0x80
 
# Pad with number of *bits* in original message, little-endian
var sizePadding = newSeq[uint8](8)
var size = msg.len * 8
for ii in 0 .. < 4:
sizePadding[ii] = uint8(size and 0xff)
size = size shr 8
 
var paddedMsg = concat(msg, padding, sizePadding)
 
var accum = [ 0x67452301'u32, 0xefcdab89'u32, 0x98badcfe'u32, 0x10325476'u32 ]
 
for offset in countup(0, paddedMsg.len - 1, ChunkSize):
var A = accum[0]
var B = accum[1]
var C = accum[2]
var D = accum[3]
var F : uint32
var g : int
var M : array[16, uint32]
var dTemp : uint32
 
extractChunk(paddedMsg, M, offset)
 
# This is pretty much the same as Wikipedia's MD5 entry
for ii in 0 .. 63:
if ii <= 15:
F = (B and C) or ((not B) and D)
g = ii
 
elif ii <= 31:
F = (D and B) or ((not D) and C)
g = (5 * ii + 1) mod 16
 
elif ii <= 47:
F = B xor C xor D
g = (3 * ii + 5) mod 16
 
else:
F = C xor (B or (not D))
g = (7 * ii) mod 16
 
dTemp = D
D = C
C = B
B = B + leftRotate((A + F + K[ii] + M[g]), s[ii])
A = dTemp
 
accum[0] += A
accum[1] += B
accum[2] += C
accum[3] += D
 
# Convert four 32-bit accumulators to 16 byte array, little-endian
var dstIdx : int
for acc in accum:
var tmp = acc
 
for ii in 0 .. < 4:
result[dstIdx] = uint8(tmp and 0xff)
tmp = tmp shr 8
dstIdx.inc
 
# Only needed to convert from string to uint8 sequence
iterator items * (str : string) : uint8 =
for ii in 0 .. < len(str):
yield str[ii].uint8
 
proc main =
var msg = ""
var sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0xD4'u8, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E ] )
 
msg = "The quick brown fox jumps over the lazy dog"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0x9E'u8, 0x10, 0x7D, 0x9D, 0x37, 0x2B, 0xB6, 0x82,
0x6B, 0xD8, 0x1D, 0x35, 0x42, 0xA4, 0x19, 0xD6 ] )
 
msg = "The quick brown fox jumps over the lazy dog."
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0xE4'u8, 0xD9, 0x09, 0xC2, 0x90, 0xD0, 0xFB, 0x1C,
0xA0, 0x68, 0xFF, 0xAD, 0xDF, 0x22, 0xCB, 0xD0 ])
 
 
# Message size around magic 512 bits
msg = "01234567890123456789012345678901234567890123456789012345678901234"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0xBE'u8, 0xB9, 0xF4, 0x8B, 0xC8, 0x02, 0xCA, 0x5C,
0xA0, 0x43, 0xBC, 0xC1, 0x5E, 0x21, 0x9A, 0x5A ])
 
msg = "0123456789012345678901234567890123456789012345678901234567890123"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0x7F'u8, 0x7B, 0xFD, 0x34, 0x87, 0x09, 0xDE, 0xEA,
0xAC, 0xE1, 0x9E, 0x3F, 0x53, 0x5F, 0x8C, 0x54 ])
 
msg = "012345678901234567890123456789012345678901234567890123456789012"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0xC5'u8, 0xE2, 0x56, 0x43, 0x7E, 0x75, 0x80, 0x92,
0xDB, 0xFE, 0x06, 0x28, 0x3E, 0x48, 0x90, 0x19 ])
 
 
# Message size around magic 448 bits
msg = "01234567890123456789012345678901234567890123456789012345"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0x8A'u8, 0xF2, 0x70, 0xB2, 0x84, 0x76, 0x10, 0xE7,
0x42, 0xB0, 0x79, 0x1B, 0x53, 0x64, 0x8C, 0x09 ])
 
msg = "0123456789012345678901234567890123456789012345678901234"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0x6E'u8, 0x7A, 0x4F, 0xC9, 0x2E, 0xB1, 0xC3, 0xF6,
0xE6, 0x52, 0x42, 0x5B, 0xCC, 0x8D, 0x44, 0xB5 ])
 
msg = "012345678901234567890123456789012345678901234567890123"
sum = md5Sum(toSeq(msg.items()))
assert(sum == [ 0x3D'u8, 0xFF, 0x83, 0xC8, 0xFA, 0xDD, 0x26, 0x37,
0x0D, 0x5B, 0x09, 0x84, 0x09, 0x64, 0x44, 0x57 ])
 
main()

ooRexx[edit]

Works with: ooRexx version 4.2.0 (and later)
 
#!/usr/bin/rexx
 
/* Expected results:
0xd41d8cd98f00b204e9800998ecf8427e <== ""
0x0cc175b9c0f1b6a831c399e269772661 <== "a"
0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
0xd174ab98d277d9f5a5611c2c9f419d9f <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57edf4a22be3c955ac49da2e2107b67a <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
*/

 
md5 = .md5~new; md5~update(""); say md5~digest
md5 = .md5~new; md5~update("a"); say md5~digest
md5 = .md5~new; md5~update("abc"); say md5~digest
md5 = .md5~new; md5~update("message digest"); say md5~digest
md5 = .md5~new("abcdefghijklmnopqrstuvwxyz"); say md5~digest
md5 = .md5~new("ABCDEFGHIJKLMNOPQRSTUVWXYZ"); md5~update("abcdefghijklmnopqrstuvwxyz0123456789"); say md5~digest
md5 = .md5~new; md5~update("12345678901234567890123456789012345678901234567890123456789012345678901234567890"); say md5~digest
 
-- requires OORexx 4.2.0 or later
-- standard numeric digits of 9 is not enough in this case
::options digits 20
 
-- Implementation mainly based on pseudocode in https://en.wikipedia.org/wiki/MD5
::class md5 public
 
::method init
expose a0 b0 c0 d0 count buffer index K. s -- instance variables
use strict arg chunk=""
-- Initialize message digest
a0 = .int32~new('67452301'x,"C") -- A
b0 = .int32~new('efcdab89'x,"C") -- B
c0 = .int32~new('98badcfe'x,"C") -- C
d0 = .int32~new('10325476'x,"C") -- D
-- The 512 bit chunk buffer
buffer = .mutablebuffer~new('00'x~copies(64),64)
-- The position in the buffer to insert new input
index = 1
-- message bytecount
count = 0
-- initialize leftrotate amounts
nrs = .array~of(7,12,17,22)
s = nrs~union(nrs)~union(nrs)~union(nrs)
nrs = .array~of(5,9,14,20)
s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs)
nrs = .array~of(4,11,16,23)
s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs)
nrs = .array~of(6,10,15,21)
s = s~union(nrs)~union(nrs)~union(nrs)~union(nrs)
-- initialize sinus derived constants.
-- sin function from RXMath Library shipped with OORexx
-- see ::routine directive at the end of the code
do i=0 to 63
K.i = .int32~new(((2**32)*(sin(i+1,16,R)~abs))~floor)
end
-- process initial string if any
self~update(chunk)
exit
 
::method update
expose a0 b0 c0 d0 count buffer index K. s -- instance variables
use strict arg chunk
count += chunk~length
if chunk~length<65-index then do
buffer~overlay(chunk,index)
index += chunk~length
end
else do
split = 65-index+1
parse var chunk part =(split) chunk
buffer~overlay(part,index)
index = 65
end
-- Only proces completely filled buffer
do while index=65
A = a0
B = b0
C = c0
D = d0
do i=0 to 63
select
when i<16 then do
F = D~xor(B~and(C~xor(D)))
g = i
end
when i<32 then do
F = C~xor(D~and(B~xor(C)))
g = (5*i+1)//16
end
when i<48 then do
F = B~xor(C)~xor(D)
g = (3*i+5)//16
end
otherwise do
F = C~xor(B~or(D~xor(.int32~new('ffffffff'x,"C"))))
g = (7*i)//16
end
end
M = .int32~new(buffer~substr(g*4+1,4)~reverse,"C") -- 32bit word in little-endian
dTemp = D
D = C
C = B
B = (B + (A+F+K.i+M)~bitrotate(s[i+1]))
A = dTemp
end
a0 = a0+A
b0 = b0+B
c0 = c0+C
d0 = d0+D
parse var chunk part 65 chunk
index = part~length+1
buffer~overlay(part,1,part~length)
end
exit
 
::method digest
expose a0 b0 c0 d0 count buffer index K s -- instance variables
padlen = 64
if index<57 then padlen = 57-index
if index>57 then padlen = 121-index
padding = '00'x~copies(padlen)~bitor('80'x)
bitcount = count*8//2**64
lowword = bitcount//2**32
hiword = bitcount%2**32
lowcount = lowword~d2c(4)~reverse -- make it little-endian
hicount = hiword~d2c(4)~reverse -- make it little-endian
self~update(padding || lowcount || hicount)
return a0~string || b0~string || c0~string || d0~string
 
-- A convenience class to encapsulate operations on non OORexx-like
-- things as little-endian 32-bit words
::class int32 public
 
::attribute arch class
 
::method init class
self~arch = "little-endian" -- can be adapted for multiple architectures
 
-- Method to create an int32 like object
-- Input can be a OORexx whole number (type="I") or
-- a character string of 4 bytes (type="C")
-- input truncated or padded to 32-bit word/string
::method init
expose char4 int32
use strict arg input, type="Integer"
-- type must be one of "I"nteger or "C"haracter
t = type~subchar(1)~upper
select
when t=='I' then do
char4 = input~d2c(4)
int32 = char4~c2d
end
when t=='C' then do
char4 = input~right(4,'00'x)
int32 = char4~c2d
end
otherwise do
raise syntax 93.915 array("IC",type)
end
end
exit
 
::method xor -- wrapper for OORexx bitxor method
expose char4
use strict arg other
return .int32~new(char4~bitxor(other~char),"C")
 
::method and -- wrapper for OORexx bitand method
expose char4
use strict arg other
return .int32~new(char4~bitand(other~char),"C")
 
::method or -- wrapper for OORexx bitor method
expose char4
use strict arg other
return .int32~new(char4~bitor(other~char),"C")
 
::method bitleft -- OORexx shift (<<) implementation
expose char4
use strict arg bits
bstring = char4~c2x~x2b
bstring = bstring~substr(bits+1)~left(bstring~length,'0')
return .int32~new(bstring~b2x~x2d)
 
::method bitright -- OORexx shift (>>) implementation
expose char4
use strict arg bits, signed=.false
bstring = char4~c2x~x2b
fill = '0'
if signed then fill = bstring~subchar(1)
bstring = bstring~left(bstring~length-bits)~right(bstring~length,fill)
return .int32~new(bstring~b2x~x2d)
 
::method bitnot -- OORexx not implementation
expose char4
return .int32~new(char4~bitxor('ffffffff'x)~c2d,"C")
 
::method bitrotate -- OORexx (left) rotate method
expose char4
use strict arg bits, direction='left'
d = direction~subchar(1)~upper
if d=='L' then do
leftpart = self~bitleft(bits)
rightpart = self~bitright(32-bits)
end
else do
leftpart = self~bitleft(32-bits)
rightpart = self~bitright(bits)
end
return rightpart~or(leftpart)
 
::method int -- retrieve integer as number
expose int32
return int32
 
::method char -- retrieve integer as characters
expose char4
return char4
 
::method '+' -- OORexx method to add 2 .int32 instances
expose int32
use strict arg other
return .int32~new(int32+other~int)
 
::method string -- retrieve integer as hexadecimal string
expose char4
return char4~reverse~c2x~lower
 
-- Simplify function names for the necessary 'RxMath' functions
::routine sin EXTERNAL "LIBRARY rxmath RxCalcSin"
 

Perl[edit]

Works with: Perl version 5.10.1 (and later)
use strict;
use warnings;
use integer;
use Test::More;
 
BEGIN { plan tests => 7 }
 
sub A() { 0x67_45_23_01 }
sub B() { 0xef_cd_ab_89 }
sub C() { 0x98_ba_dc_fe }
sub D() { 0x10_32_54_76 }
sub MAX() { 0xFFFFFFFF }
 
sub padding {
my $l = length (my $msg = shift() . chr(128));
$msg .= "\0" x (($l%64<=56?56:120)-$l%64);
$l = ($l-1)*8;
$msg .= pack 'VV', $l & MAX , ($l >> 16 >> 16);
}
 
sub rotate_left($$) {
($_[0] << $_[1]) | (( $_[0] >> (32 - $_[1]) ) & ((1 << $_[1]) - 1));
}
 
sub gen_code {
# Discard upper 32 bits on 64 bit archs.
my $MSK = ((1 << 16) << 16) ? ' & ' . MAX : '';
my %f = (
FF => "X0=rotate_left((X3^(X1&(X2^X3)))+X0+X4+X6$MSK,X5)+X1$MSK;",
GG => "X0=rotate_left((X2^(X3&(X1^X2)))+X0+X4+X6$MSK,X5)+X1$MSK;",
HH => "X0=rotate_left((X1^X2^X3)+X0+X4+X6$MSK,X5)+X1$MSK;",
II => "X0=rotate_left((X2^(X1|(~X3)))+X0+X4+X6$MSK,X5)+X1$MSK;",
);
 
my %s = ( # shift lengths
S11 => 7, S12 => 12, S13 => 17, S14 => 22, S21 => 5, S22 => 9, S23 => 14,
S24 => 20, S31 => 4, S32 => 11, S33 => 16, S34 => 23, S41 => 6, S42 => 10,
S43 => 15, S44 => 21
);
 
my $insert = "\n";
while(defined( my $data = <DATA> )) {
chomp $data;
next unless $data =~ /^[FGHI]/;
my ($func,@x) = split /,/, $data;
my $c = $f{$func};
$c =~ s/X(\d)/$x[$1]/g;
$c =~ s/(S\d{2})/$s{$1}/;
$c =~ s/^(.*)=rotate_left\((.*),(.*)\)\+(.*)$//;
 
my $su = 32 - $3;
my $sh = (1 << $3) - 1;
 
$c = "$1=(((\$r=$2)<<$3)|((\$r>>$su)&$sh))+$4";
 
$insert .= "\t$c\n";
}
close DATA;
 
my $dump = '
sub round {
my ($a,$b,$c,$d) = @_[0 .. 3];
my $r;'
. $insert . '
$_[0]+$a'
. $MSK . ', $_[1]+$b ' . $MSK .
', $_[2]+$c' . $MSK . ', $_[3]+$d' . $MSK . ';
}'
;
eval $dump;
}
 
gen_code();
 
sub _encode_hex { unpack 'H*', $_[0] }
 
sub md5 {
my $message = padding(join'',@_);
my ($a,$b,$c,$d) = (A,B,C,D);
my $i;
for $i (0 .. (length $message)/64-1) {
my @X = unpack 'V16', substr $message,$i*64,64;
($a,$b,$c,$d) = round($a,$b,$c,$d,@X);
}
pack 'V4',$a,$b,$c,$d;
}
 
my $strings = {
'd41d8cd98f00b204e9800998ecf8427e' => '',
'0cc175b9c0f1b6a831c399e269772661' => 'a',
'900150983cd24fb0d6963f7d28e17f72' => 'abc',
'f96b697d7cb7938d525a2f31aaf161d0' => 'message digest',
'c3fcd3d76192e4007dfb496cca67e13b' => 'abcdefghijklmnopqrstuvwxyz',
'd174ab98d277d9f5a5611c2c9f419d9f' => 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
'57edf4a22be3c955ac49da2e2107b67a' => '12345678901234567890123456789012345678901234567890123456789012345678901234567890',
};
 
for my $k (keys %$strings) {
my $digest = _encode_hex md5($strings->{$k});
is($digest, $k, "$digest is MD5 digest $strings->{$k}");
}
 
__DATA__
FF,$a,$b,$c,$d,$_[4],7,0xd76aa478,/* 1 */
FF,$d,$a,$b,$c,$_[5],12,0xe8c7b756,/* 2 */
FF,$c,$d,$a,$b,$_[6],17,0x242070db,/* 3 */
FF,$b,$c,$d,$a,$_[7],22,0xc1bdceee,/* 4 */
FF,$a,$b,$c,$d,$_[8],7,0xf57c0faf,/* 5 */
FF,$d,$a,$b,$c,$_[9],12,0x4787c62a,/* 6 */
FF,$c,$d,$a,$b,$_[10],17,0xa8304613,/* 7 */
FF,$b,$c,$d,$a,$_[11],22,0xfd469501,/* 8 */
FF,$a,$b,$c,$d,$_[12],7,0x698098d8,/* 9 */
FF,$d,$a,$b,$c,$_[13],12,0x8b44f7af,/* 10 */
FF,$c,$d,$a,$b,$_[14],17,0xffff5bb1,/* 11 */
FF,$b,$c,$d,$a,$_[15],22,0x895cd7be,/* 12 */
FF,$a,$b,$c,$d,$_[16],7,0x6b901122,/* 13 */
FF,$d,$a,$b,$c,$_[17],12,0xfd987193,/* 14 */
FF,$c,$d,$a,$b,$_[18],17,0xa679438e,/* 15 */
FF,$b,$c,$d,$a,$_[19],22,0x49b40821,/* 16 */
GG,$a,$b,$c,$d,$_[5],5,0xf61e2562,/* 17 */
GG,$d,$a,$b,$c,$_[10],9,0xc040b340,/* 18 */
GG,$c,$d,$a,$b,$_[15],14,0x265e5a51,/* 19 */
GG,$b,$c,$d,$a,$_[4],20,0xe9b6c7aa,/* 20 */
GG,$a,$b,$c,$d,$_[9],5,0xd62f105d,/* 21 */
GG,$d,$a,$b,$c,$_[14],9,0x2441453,/* 22 */
GG,$c,$d,$a,$b,$_[19],14,0xd8a1e681,/* 23 */
GG,$b,$c,$d,$a,$_[8],20,0xe7d3fbc8,/* 24 */
GG,$a,$b,$c,$d,$_[13],5,0x21e1cde6,/* 25 */
GG,$d,$a,$b,$c,$_[18],9,0xc33707d6,/* 26 */
GG,$c,$d,$a,$b,$_[7],14,0xf4d50d87,/* 27 */
GG,$b,$c,$d,$a,$_[12],20,0x455a14ed,/* 28 */
GG,$a,$b,$c,$d,$_[17],5,0xa9e3e905,/* 29 */
GG,$d,$a,$b,$c,$_[6],9,0xfcefa3f8,/* 30 */
GG,$c,$d,$a,$b,$_[11],14,0x676f02d9,/* 31 */
GG,$b,$c,$d,$a,$_[16],20,0x8d2a4c8a,/* 32 */
HH,$a,$b,$c,$d,$_[9],4,0xfffa3942,/* 33 */
HH,$d,$a,$b,$c,$_[12],11,0x8771f681,/* 34 */
HH,$c,$d,$a,$b,$_[15],16,0x6d9d6122,/* 35 */
HH,$b,$c,$d,$a,$_[18],23,0xfde5380c,/* 36 */
HH,$a,$b,$c,$d,$_[5],4,0xa4beea44,/* 37 */
HH,$d,$a,$b,$c,$_[8],11,0x4bdecfa9,/* 38 */
HH,$c,$d,$a,$b,$_[11],16,0xf6bb4b60,/* 39 */
HH,$b,$c,$d,$a,$_[14],23,0xbebfbc70,/* 40 */
HH,$a,$b,$c,$d,$_[17],4,0x289b7ec6,/* 41 */
HH,$d,$a,$b,$c,$_[4],11,0xeaa127fa,/* 42 */
HH,$c,$d,$a,$b,$_[7],16,0xd4ef3085,/* 43 */
HH,$b,$c,$d,$a,$_[10],23,0x4881d05,/* 44 */
HH,$a,$b,$c,$d,$_[13],4,0xd9d4d039,/* 45 */
HH,$d,$a,$b,$c,$_[16],11,0xe6db99e5,/* 46 */
HH,$c,$d,$a,$b,$_[19],16,0x1fa27cf8,/* 47 */
HH,$b,$c,$d,$a,$_[6],23,0xc4ac5665,/* 48 */
II,$a,$b,$c,$d,$_[4],6,0xf4292244,/* 49 */
II,$d,$a,$b,$c,$_[11],10,0x432aff97,/* 50 */
II,$c,$d,$a,$b,$_[18],15,0xab9423a7,/* 51 */
II,$b,$c,$d,$a,$_[9],21,0xfc93a039,/* 52 */
II,$a,$b,$c,$d,$_[16],6,0x655b59c3,/* 53 */
II,$d,$a,$b,$c,$_[7],10,0x8f0ccc92,/* 54 */
II,$c,$d,$a,$b,$_[14],15,0xffeff47d,/* 55 */
II,$b,$c,$d,$a,$_[5],21,0x85845dd1,/* 56 */
II,$a,$b,$c,$d,$_[12],6,0x6fa87e4f,/* 57 */
II,$d,$a,$b,$c,$_[19],10,0xfe2ce6e0,/* 58 */
II,$c,$d,$a,$b,$_[10],15,0xa3014314,/* 59 */
II,$b,$c,$d,$a,$_[17],21,0x4e0811a1,/* 60 */
II,$a,$b,$c,$d,$_[8],6,0xf7537e82,/* 61 */
II,$d,$a,$b,$c,$_[15],10,0xbd3af235,/* 62 */
II,$c,$d,$a,$b,$_[6],15,0x2ad7d2bb,/* 63 */
II,$b,$c,$d,$a,$_[13],21,0xeb86d391,/* 64 */
Output:
1..7
ok 1 - c3fcd3d76192e4007dfb496cca67e13b is MD5 digest abcdefghijklmnopqrstuvwxyz
ok 2 - f96b697d7cb7938d525a2f31aaf161d0 is MD5 digest message digest
ok 3 - 900150983cd24fb0d6963f7d28e17f72 is MD5 digest abc
ok 4 - d41d8cd98f00b204e9800998ecf8427e is MD5 digest
ok 5 - 57edf4a22be3c955ac49da2e2107b67a is MD5 digest 12345678901234567890123456789012345678901234567890123456789012345678901234567890
ok 6 - 0cc175b9c0f1b6a831c399e269772661 is MD5 digest a
ok 7 - d174ab98d277d9f5a5611c2c9f419d9f is MD5 digest ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

Perl 6[edit]

Works with: rakudo version 2015-09-22
sub infix:<>(uint32 $a, uint32 $b --> uint32) { ($a + $b) +& 0xffffffff }
sub infix:«<<<»(uint32 $a, UInt $n --> uint32) { ($a +< $n) +& 0xffffffff +| ($a +> (32-$n)) }
 
constant FGHI = { ($^a +& $^b) +| (+^$a +& $^c) },
{ ($^a +& $^c) +| ($^b +& +^$c) },
{ $^a +^ $^b +^ $^c },
{ $^b +^ ($^a +| +^$^c) };
 
constant _S = flat (7, 12, 17, 22) xx 4,
(5, 9, 14, 20) xx 4,
(4, 11, 16, 23) xx 4,
(6, 10, 15, 21) xx 4;
 
constant T = (floor(abs(sin($_ + 1)) * 2**32) for ^64);
 
constant k = flat ( $_ for ^16),
((5*$_ + 1) % 16 for ^16),
((3*$_ + 5) % 16 for ^16),
((7*$_ ) % 16 for ^16);
 
sub little-endian($w, $n, *@v) {
my \step1 = ($w X* ^$n).eager; # temporary bug workaround
my \step2 = (@v X+> step1);
step2 X% (2 ** $w);
}
 
sub md5-pad(Blob $msg)
{
my \bits = 8 * $msg.elems;
my @padded = flat $msg.list, 0x80, 0x00 xx (-(bits div 8 + 1 + 8) % 64);
flat @padded.map({ :256[$^d,$^c,$^b,$^a] }), little-endian(32, 2, bits);
}
 
sub md5-block(@H, @X)
{
my uint32 ($A, $B, $C, $D) = @H;
($A, $B, $C, $D) = ($D, $B(($A ⊞ FGHI[$_ div 16]($B, $C, $D) ⊞ T[$_]@X[k[$_]]) <<< _S[$_]), $B, $C) for ^64;
@H «⊞=» ($A, $B, $C, $D);
}
 
sub md5(Blob $msg --> Blob)
{
my uint32 @M = md5-pad($msg);
my uint32 @H = 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476;
md5-block(@H, @M[$_ .. $_+15]) for 0, 16 ...^ +@M;
Blob.new: little-endian(8, 4, @H);
}
 
use Test;
plan 7;
 
for 'd41d8cd98f00b204e9800998ecf8427e', '',
'0cc175b9c0f1b6a831c399e269772661', 'a',
'900150983cd24fb0d6963f7d28e17f72', 'abc',
'f96b697d7cb7938d525a2f31aaf161d0', 'message digest',
'c3fcd3d76192e4007dfb496cca67e13b', 'abcdefghijklmnopqrstuvwxyz',
'd174ab98d277d9f5a5611c2c9f419d9f', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
'57edf4a22be3c955ac49da2e2107b67a', '12345678901234567890123456789012345678901234567890123456789012345678901234567890'
-> $expected, $msg {
my $digest = md5($msg.encode('ascii')).list».fmt('%02x').join;
is($digest, $expected, "$digest is MD5 digest of '$msg'");
}
Output:
1..7
ok 1 - d41d8cd98f00b204e9800998ecf8427e is MD5 digest of ''
ok 2 - 0cc175b9c0f1b6a831c399e269772661 is MD5 digest of 'a'
ok 3 - 900150983cd24fb0d6963f7d28e17f72 is MD5 digest of 'abc'
ok 4 - f96b697d7cb7938d525a2f31aaf161d0 is MD5 digest of 'message digest'
ok 5 - c3fcd3d76192e4007dfb496cca67e13b is MD5 digest of 'abcdefghijklmnopqrstuvwxyz'
ok 6 - d174ab98d277d9f5a5611c2c9f419d9f is MD5 digest of 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
ok 7 - 57edf4a22be3c955ac49da2e2107b67a is MD5 digest of '12345678901234567890123456789012345678901234567890123456789012345678901234567890'

Phix[edit]

Non-optimised. Originally written by Davi Tassinari de Figueiredo. Included in the distribution as demo\rosetta\md5.exw

function uxor(atom data1,atom data2)
atom result = xor_bits(data1,data2)
if result<0 then result += #100000000 end if
return result
end function
 
function uor(atom data1,atom data2)
atom result = or_bits(data1,data2)
if result<0 then result += #100000000 end if
return result
end function
 
function r32(atom a)
return remainder(a,#100000000)
end function
 
function rol(atom word,integer bits)
-- left rotate the bits of a 32-bit number by the specified number of bits
return r32(word*power(2,bits))+floor(word/power(2,32-bits))
end function
 
constant K =
{#d76aa478, #e8c7b756, #242070db, #c1bdceee, #f57c0faf, #4787c62a, #a8304613, #fd469501,
#698098d8, #8b44f7af, #ffff5bb1, #895cd7be, #6b901122, #fd987193, #a679438e, #49b40821,
#f61e2562, #c040b340, #265e5a51, #e9b6c7aa, #d62f105d, #02441453, #d8a1e681, #e7d3fbc8,
#21e1cde6, #c33707d6, #f4d50d87, #455a14ed, #a9e3e905, #fcefa3f8, #676f02d9, #8d2a4c8a,
#fffa3942, #8771f681, #6d9d6122, #fde5380c, #a4beea44, #4bdecfa9, #f6bb4b60, #bebfbc70,
#289b7ec6, #eaa127fa, #d4ef3085, #04881d05, #d9d4d039, #e6db99e5, #1fa27cf8, #c4ac5665,
#f4292244, #432aff97, #ab9423a7, #fc93a039, #655b59c3, #8f0ccc92, #ffeff47d, #85845dd1,
#6fa87e4f, #fe2ce6e0, #a3014314, #4e0811a1, #f7537e82, #bd3af235, #2ad7d2bb, #eb86d391}
 
constant m_block = {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,
2, 7,12, 1, 6,11,16, 5,10,15, 4, 9,14, 3, 8,13,
6, 9,12,15, 2, 5, 8,11,14, 1, 4, 7,10,13,16, 3,
1, 8,15, 6,13, 4,11, 2, 9,16, 7,14, 5,12, 3,10}
 
constant c_words = {#67452301,#efcdab89,#98badcfe,#10325476}
 
sequence words
 
function divide_in_words(sequence message)
-- Divides the string into words (32-bit numbers)
sequence res
res = repeat(0,length(message)/4)
for word=1 to length(message)/4 do
res[word] = bytes_to_int(message[word*4-3..word*4])
end for
return res
end function
 
procedure process_block(sequence block)
-- Updates the words according to the contents of the block
atom a,b,c,d
 
block = divide_in_words(block)
 
a = words[1]
b = words[2]
c = words[3]
d = words[4]
 
-- Round 1
for step=1 to 16 by 4 do
a = r32(b+rol(r32(a+block[m_block[step ]]+K[step ]+uor(and_bits(b,c),and_bits(not_bits(b),d))), 7))
d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uor(and_bits(a,b),and_bits(not_bits(a),c))),12))
c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uor(and_bits(d,a),and_bits(not_bits(d),b))),17))
b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uor(and_bits(c,d),and_bits(not_bits(c),a))),22))
end for
 
-- Round 2
for step=17 to 32 by 4 do
a = r32(b+rol(r32(a+block[m_block[step ]]+K[step ]+uor(and_bits(b,d),and_bits(c,not_bits(d)))), 5))
d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uor(and_bits(a,c),and_bits(b,not_bits(c)))), 9))
c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uor(and_bits(d,b),and_bits(a,not_bits(b)))),14))
b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uor(and_bits(c,a),and_bits(d,not_bits(a)))),20))
end for
 
-- Round 3
for step=33 to 48 by 4 do
a = r32(b+rol(r32(a+block[m_block[step ]]+K[step ]+uxor(b,xor_bits(c,d))), 4))
d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uxor(a,xor_bits(b,c))),11))
c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uxor(d,xor_bits(a,b))),16))
b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uxor(c,xor_bits(d,a))),23))
end for
 
-- Round 4
for step=49 to 64 by 4 do
a = r32(b+rol(r32(a+block[m_block[step ]]+K[step ]+uxor(c,or_bits(b,not_bits(d)))), 6))
d = r32(a+rol(r32(d+block[m_block[step+1]]+K[step+1]+uxor(b,or_bits(a,not_bits(c)))),10))
c = r32(d+rol(r32(c+block[m_block[step+2]]+K[step+2]+uxor(a,or_bits(d,not_bits(b)))),15))
b = r32(c+rol(r32(b+block[m_block[step+3]]+K[step+3]+uxor(d,or_bits(c,not_bits(a)))),21))
end for
 
-- Update the words
words[1] = r32(words[1]+a)
words[2] = r32(words[2]+b)
words[3] = r32(words[3]+c)
words[4] = r32(words[4]+d)
end procedure
 
function pad_message(sequence message)
-- Add bytes to the end of the message so it can be divided
-- in an exact number of 64-byte blocks.
integer bytes_to_add
bytes_to_add = 64-remainder(length(message)+9,64)
if bytes_to_add=64 then bytes_to_add = 0 end if
 
message = message&#80&repeat(0,bytes_to_add)&
int_to_bytes(length(message)*8)&{0,0,0,0}
 
return message
end function
 
 
function md5(sequence message)
-- Given a string, returns a 16-byte hash of it.
 
words = c_words -- Initialize the H words
 
message = pad_message(message) -- Add bytes to the message
 
-- Process each 64-byte block
for block=1 to length(message) by 64 do
process_block(message[block..block+63])
end for
 
-- Convert hash into bytes
return int_to_bytes(words[1])& -- Return the hash
int_to_bytes(words[2])&
int_to_bytes(words[3])&
int_to_bytes(words[4])
 
end function
 
constant fmt = "0x%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n"
 
printf(1,fmt,md5(""))
printf(1,fmt,md5("a"))
printf(1,fmt,md5("abc"))
printf(1,fmt,md5("message digest"))
printf(1,fmt,md5("abcdefghijklmnopqrstuvwxyz"))
printf(1,fmt,md5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"))
printf(1,fmt,md5("12345678901234567890123456789012345678901234567890123456789012345678901234567890"))
Output:
0xd41d8cd98f00b204e9800998ecf8427e
0x0cc175b9c0f1b6a831c399e269772661
0x900150983cd24fb0d6963f7d28e17f72
0xf96b697d7cb7938d525a2f31aaf161d0
0xc3fcd3d76192e4007dfb496cca67e13b
0xd174ab98d277d9f5a5611c2c9f419d9f
0x57edf4a22be3c955ac49da2e2107b67a


PicoLisp[edit]

This is an implementation of the pseudo-code in the Wikipedia article. Special care had to be taken with modulo 32-bit arithmetics, as PicoLisp supports only numbers of unspecified size.

(scl 12)
(load "@lib/math.l") # For 'sin'
 
(de *Md5-R
7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21 )
 
(de *Md5-K
~(make
(for I 64
(link
(/ (* (abs (sin (* I 1.0))) `(** 2 32)) 1.0) ) ) ) )
 
(de mod32 (N)
(& N `(hex "FFFFFFFF")) )
 
(de not32 (N)
(x| N `(hex "FFFFFFFF")) )
 
(de add32 @
(mod32 (pass +)) )
 
(de leftRotate (X C)
(| (mod32 (>> (- C) X)) (>> (- 32 C) X)) )
 
(de md5 (Str)
(let Len (length Str)
(setq Str
(conc
(need
(- 8 (* 64 (/ (+ Len 1 8 63) 64))) # Pad to 64-8 bytes
(conc
(mapcar char (chop Str)) # Works only with ASCII characters
(cons `(hex "80")) ) # '1' bit
0 ) # Pad with '0'
(make
(setq Len (* 8 Len))
(do 8
(link (& Len 255))
(setq Len (>> 8 Len )) ) ) ) ) )
(let
(H0 `(hex "67452301")
H1 `(hex "EFCDAB89")
H2 `(hex "98BADCFE")
H3 `(hex "10325476") )
(while Str
(let
(A H0 B H1 C H2 D H3
W (make
(do 16
(link
(apply |
(mapcar >> (0 -8 -16 -24) (cut 4 'Str)) ) ) ) ) )
(use (Tmp F G)
(for I 64
(cond
((>= 16 I)
(setq
F (| (& B C) (& (not32 B) D))
G I ) )
((>= 32 I)
(setq
F (| (& D B) (& (not32 D) C))
G (inc (& (inc (* 5 (dec I))) 15)) ) )
((>= 48 I)
(setq
F (x| B C D)
G (inc (& (+ 5 (* 3 (dec I))) 15)) ) )
(T
(setq
F (x| C (| B (not32 D)))
G (inc (& (* 7 (dec I)) 15)) ) ) )
(setq
Tmp D
D C
C B
B
(add32 B
(leftRotate
(add32 A F (get *Md5-K I) (get W G))
(get *Md5-R I) ) )
A Tmp ) ) )
(setq
H0 (add32 H0 A)
H1 (add32 H1 B)
H2 (add32 H2 C)
H3 (add32 H3 D) ) ) )
(pack
(make
(for N (list H0 H1 H2 H3)
(do 4 # Convert to little endian hex string
(link (pad 2 (hex (& N 255))))
(setq N (>> 8 N)) ) ) ) ) ) )

Output:

: (md5 "")
-> "D41D8CD98F00B204E9800998ECF8427E"
: (md5 "a")
-> "0CC175B9C0F1B6A831C399E269772661"
: (md5 "abc")
-> "900150983CD24FB0D6963F7D28E17F72"
: (md5 "message digest")
-> "F96B697D7CB7938D525A2F31AAF161D0"
: (md5 "abcdefghijklmnopqrstuvwxyz")
-> "C3FCD3D76192E4007DFB496CCA67E13B"
: (md5 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
-> "D174AB98D277D9F5A5611C2C9F419D9F"
: (md5 "12345678901234567890123456789012345678901234567890123456789012345678901234567890")
-> "57EDF4A22BE3C955AC49DA2E2107B67A"

Python[edit]

Works with: Python version 3.2

Note that the following code focuses on brevity and elegance instead of performance, since Python isn't very good at number crunching anyway. If performance is important, the best solution is to use the built-in md5 module, written in C.

import math
 
rotate_amounts = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]
 
constants = [int(abs(math.sin(i+1)) * 2**32) & 0xFFFFFFFF for i in range(64)]
 
init_values = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]
 
functions = 16*[lambda b, c, d: (b & c) | (~b & d)] + \
16*[lambda b, c, d: (d & b) | (~d & c)] + \
16*[lambda b, c, d: b ^ c ^ d] + \
16*[lambda b, c, d: c ^ (b | ~d)]
 
index_functions = 16*[lambda i: i] + \
16*[lambda i: (5*i + 1)%16] + \
16*[lambda i: (3*i + 5)%16] + \
16*[lambda i: (7*i)%16]
 
def left_rotate(x, amount):
x &= 0xFFFFFFFF
return ((x<<amount) | (x>>(32-amount))) & 0xFFFFFFFF
 
def md5(message):
 
message = bytearray(message) #copy our input into a mutable buffer
orig_len_in_bits = (8 * len(message)) & 0xffffffffffffffff
message.append(0x80)
while len(message)%64 != 56:
message.append(0)
message += orig_len_in_bits.to_bytes(8, byteorder='little')
 
hash_pieces = init_values[:]
 
for chunk_ofst in range(0, len(message), 64):
a, b, c, d = hash_pieces
chunk = message[chunk_ofst:chunk_ofst+64]
for i in range(64):
f = functions[i](b, c, d)
g = index_functions[i](i)
to_rotate = a + f + constants[i] + int.from_bytes(chunk[4*g:4*g+4], byteorder='little')
new_b = (b + left_rotate(to_rotate, rotate_amounts[i])) & 0xFFFFFFFF
a, b, c, d = d, new_b, b, c
for i, val in enumerate([a, b, c, d]):
hash_pieces[i] += val
hash_pieces[i] &= 0xFFFFFFFF
 
return sum(x<<(32*i) for i, x in enumerate(hash_pieces))
 
def md5_to_hex(digest):
raw = digest.to_bytes(16, byteorder='little')
return '{:032x}'.format(int.from_bytes(raw, byteorder='big'))
 
if __name__=='__main__':
demo = [b"", b"a", b"abc", b"message digest", b"abcdefghijklmnopqrstuvwxyz",
b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
b"12345678901234567890123456789012345678901234567890123456789012345678901234567890"]
for message in demo:
print(md5_to_hex(md5(message)),' <= "',message.decode('ascii'),'"', sep='')
 

Implementation notes:

  • The code works with whole bytes, arbitrary message length is not supported.
  • Instead of doing an if-else chain in the inner loop, we build a list of functions to use for each iteration. An if-else chain would probably be faster, but this shows off the language features better.
  • Python integers don't ever overflow (they are implemented internally as bignums), so the code actually has to emulate 32-bit overflow by masking manually where it matters. On the other hand, this allows us to return the digest as a regular 128-bit number instead of a bytes object.
  • The code makes heavy use of int.from_bytes() and int.to_bytes() to convert between bytes and integers. These methods were introduced in Python 3.2. In earlier versions, you needed to use more cumbersome ways to convert between the two types.
  • The multiple assignment feature allows us to easily decompose the four items in hash_pieces into individual variables, and to shuffle around the four helper variables at the end of every iteration without introducing a temporary variable.

Racket[edit]

For an implementation of md5 in Racket see: github.com/racket/racket/blob/master/racket/collects/file/md5.rkt

 
#lang racket
(require file/md5)
(md5 #"Rosetta Code")
 

Output:

 
#"cca1bf66b09554e10f837838c3d3efb1"
 

REXX[edit]

This REXX program uses the test suite that is from the IETF RFC (1321) contained in the   MD5 Message─Digest Algorithm,   April 1992.

/*REXX program tests the MD5 procedure (below) as per a test suite from IETF RFC (1321).*/
@.1 = /*─────MD5 test suite [from above doc].*/
@.2 = 'a'
@.3 = 'abc'
@.4 = 'message digest'
@.5 = 'abcdefghijklmnopqrstuvwxyz'
@.6 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
@.7 = 12345678901234567890123456789012345678901234567890123456789012345678901234567890
@.0 = 7 /* [↑] last value doesn't need quotes.*/
do m=1 for @.0; say /*process each of the seven messages. */
say ' in =' @.m /*display the in message. */
say 'out =' MD5(@.m) /* " " out " */
end /*m*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
MD5: procedure; parse arg !; numeric digits 20 /*insure there's enough decimal digits.*/
a= '67452301'x; b= "efcdab89"x; c= '98badcfe'x; d= "10325476"x
#=length(!) /*length in bytes of the input message.*/
L=# *8 //512; if L<448 then plus=448 - L /*is the length less than 448 ? */
if L>448 then plus=960 - L /* " " " greater " " */
if L=448 then plus=512 /* " " " equal to " */
/* [↓] a little of this, ··· */
$=! || "80"x || copies('0'x,plus%8-1)reverse(right(d2c(8*#), 4, '0'x)) || '00000000'x
/* [↑] ··· and a little of that.*/
do j=0 for length($) % 64 /*process the message (lots of steps).*/
a_=a; b_=b; c_=c; d_=d /*save the original values for later.*/
chunk=j * 64 /*calculate the size of the chunks. */
do k=1 for 16 /*process the message in chunks. */
 !.k=reverse( substr($, chunk + 1 + 4*(k-1), 4) ) /*magic stuff.*/
end /*k*/ /*────step────*/
a = .p1( a, b, c, d, 0, 7, 3614090360) /*■■■■ 1 ■■■■*/
d = .p1( d, a, b, c, 1, 12, 3905402710) /*■■■■ 2 ■■■■*/
c = .p1( c, d, a, b, 2, 17, 606105819) /*■■■■ 3 ■■■■*/
b = .p1( b, c, d, a, 3, 22, 3250441966) /*■■■■ 4 ■■■■*/
a = .p1( a, b, c, d, 4, 7, 4118548399) /*■■■■ 5 ■■■■*/
d = .p1( d, a, b, c, 5, 12, 1200080426) /*■■■■ 6 ■■■■*/
c = .p1( c, d, a, b, 6, 17, 2821735955) /*■■■■ 7 ■■■■*/
b = .p1( b, c, d, a, 7, 22, 4249261313) /*■■■■ 8 ■■■■*/
a = .p1( a, b, c, d, 8, 7, 1770035416) /*■■■■ 9 ■■■■*/
d = .p1( d, a, b, c, 9, 12, 2336552879) /*■■■■ 10 ■■■■*/
c = .p1( c, d, a, b, 10, 17, 4294925233) /*■■■■ 11 ■■■■*/
b = .p1( b, c, d, a, 11, 22, 2304563134) /*■■■■ 12 ■■■■*/
a = .p1( a, b, c, d, 12, 7, 1804603682) /*■■■■ 13 ■■■■*/
d = .p1( d, a, b, c, 13, 12, 4254626195) /*■■■■ 14 ■■■■*/
c = .p1( c, d, a, b, 14, 17, 2792965006) /*■■■■ 15 ■■■■*/
b = .p1( b, c, d, a, 15, 22, 1236535329) /*■■■■ 16 ■■■■*/
a = .p2( a, b, c, d, 1, 5, 4129170786) /*■■■■ 17 ■■■■*/
d = .p2( d, a, b, c, 6, 9, 3225465664) /*■■■■ 18 ■■■■*/
c = .p2( c, d, a, b, 11, 14, 643717713) /*■■■■ 19 ■■■■*/
b = .p2( b, c, d, a, 0, 20, 3921069994) /*■■■■ 20 ■■■■*/
a = .p2( a, b, c, d, 5, 5, 3593408605) /*■■■■ 21 ■■■■*/
d = .p2( d, a, b, c, 10, 9, 38016083) /*■■■■ 22 ■■■■*/
c = .p2( c, d, a, b, 15, 14, 3634488961) /*■■■■ 23 ■■■■*/
b = .p2( b, c, d, a, 4, 20, 3889429448) /*■■■■ 24 ■■■■*/
a = .p2( a, b, c, d, 9, 5, 568446438) /*■■■■ 25 ■■■■*/
d = .p2( d, a, b, c, 14, 9, 3275163606) /*■■■■ 26 ■■■■*/
c = .p2( c, d, a, b, 3, 14, 4107603335) /*■■■■ 27 ■■■■*/
b = .p2( b, c, d, a, 8, 20, 1163531501) /*■■■■ 28 ■■■■*/
a = .p2( a, b, c, d, 13, 5, 2850285829) /*■■■■ 29 ■■■■*/
d = .p2( d, a, b, c, 2, 9, 4243563512) /*■■■■ 30 ■■■■*/
c = .p2( c, d, a, b, 7, 14, 1735328473) /*■■■■ 31 ■■■■*/
b = .p2( b, c, d, a, 12, 20, 2368359562) /*■■■■ 32 ■■■■*/
a = .p3( a, b, c, d, 5, 4, 4294588738) /*■■■■ 33 ■■■■*/
d = .p3( d, a, b, c, 8, 11, 2272392833) /*■■■■ 34 ■■■■*/
c = .p3( c, d, a, b, 11, 16, 1839030562) /*■■■■ 35 ■■■■*/
b = .p3( b, c, d, a, 14, 23, 4259657740) /*■■■■ 36 ■■■■*/
a = .p3( a, b, c, d, 1, 4, 2763975236) /*■■■■ 37 ■■■■*/
d = .p3( d, a, b, c, 4, 11, 1272893353) /*■■■■ 38 ■■■■*/
c = .p3( c, d, a, b, 7, 16, 4139469664) /*■■■■ 39 ■■■■*/
b = .p3( b, c, d, a, 10, 23, 3200236656) /*■■■■ 40 ■■■■*/
a = .p3( a, b, c, d, 13, 4, 681279174) /*■■■■ 41 ■■■■*/
d = .p3( d, a, b, c, 0, 11, 3936430074) /*■■■■ 42 ■■■■*/
c = .p3( c, d, a, b, 3, 16, 3572445317) /*■■■■ 43 ■■■■*/
b = .p3( b, c, d, a, 6, 23, 76029189) /*■■■■ 44 ■■■■*/
a = .p3( a, b, c, d, 9, 4, 3654602809) /*■■■■ 45 ■■■■*/
d = .p3( d, a, b, c, 12, 11, 3873151461) /*■■■■ 46 ■■■■*/
c = .p3( c, d, a, b, 15, 16, 530742520) /*■■■■ 47 ■■■■*/
b = .p3( b, c, d, a, 2, 23, 3299628645) /*■■■■ 48 ■■■■*/
a = .p4( a, b, c, d, 0, 6, 4096336452) /*■■■■ 49 ■■■■*/
d = .p4( d, a, b, c, 7, 10, 1126891415) /*■■■■ 50 ■■■■*/
c = .p4( c, d, a, b, 14, 15, 2878612391) /*■■■■ 51 ■■■■*/
b = .p4( b, c, d, a, 5, 21, 4237533241) /*■■■■ 52 ■■■■*/
a = .p4( a, b, c, d, 12, 6, 1700485571) /*■■■■ 53 ■■■■*/
d = .p4( d, a, b, c, 3, 10, 2399980690) /*■■■■ 54 ■■■■*/
c = .p4( c, d, a, b, 10, 15, 4293915773) /*■■■■ 55 ■■■■*/
b = .p4( b, c, d, a, 1, 21, 2240044497) /*■■■■ 56 ■■■■*/
a = .p4( a, b, c, d, 8, 6, 1873313359) /*■■■■ 57 ■■■■*/
d = .p4( d, a, b, c, 15, 10, 4264355552) /*■■■■ 58 ■■■■*/
c = .p4( c, d, a, b, 6, 15, 2734768916) /*■■■■ 59 ■■■■*/
b = .p4( b, c, d, a, 13, 21, 1309151649) /*■■■■ 60 ■■■■*/
a = .p4( a, b, c, d, 4, 6, 4149444226) /*■■■■ 61 ■■■■*/
d = .p4( d, a, b, c, 11, 10, 3174756917) /*■■■■ 62 ■■■■*/
c = .p4( c, d, a, b, 2, 15, 718787259) /*■■■■ 63 ■■■■*/
b = .p4( b, c, d, a, 9, 21, 3951481745) /*■■■■ 64 ■■■■*/
a = .a(a_, a); b=.a(b_, b); c=.a(c_, c); d=.a(d_, d)
end /*j*/
return .rx(a).rx(b).rx(c).rx(d) /*same as: .rx(a) || .rx(b) || ··· */
/*──────────────────────────────────────────────────────────────────────────────────────*/
.a: return right( d2c( c2d( arg(1) ) + c2d( arg(2) ) ), 4, '0'x)
.h: return bitxor( bitxor( arg(1), arg(2) ), arg(3) )
.i: return bitxor( arg(2), bitor(arg(1), bitxor(arg(3), 'ffffffff'x) ) )
.f: return bitor( bitand(arg(1), arg(2)), bitand(bitxor(arg(1), 'ffffffff'x), arg(3) ) )
.g: return bitor( bitand(arg(1), arg(3)), bitand(arg(2), bitxor(arg(3), 'ffffffff'x) ) )
.rx: return c2x( reverse( arg(1) ) )
.Lr: procedure; parse arg _,#; if #==0 then return _ /*left bit rotate.*/
 ?=x2b(c2x(_)); return x2c( b2x( right(? || left(?, #), length(?) ) ) )
.p1: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1
return .a(.Lr(right(d2c(_+c2d(w) + c2d(.f(x,y,z)) + c2d(!.n)),4,'0'x),m),x)
.p2: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1
return .a(.Lr(right(d2c(_+c2d(w) + c2d(.g(x,y,z)) + c2d(!.n)),4,'0'x),m),x)
.p3: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1
return .a(.Lr(right(d2c(_+c2d(w) + c2d(.h(x,y,z)) + c2d(!.n)),4,'0'x),m),x)
.p4: procedure expose !.; parse arg w,x,y,z,n,m,_; n=n + 1
return .a(.Lr(right(d2c(c2d(w) + c2d(.i(x,y,z)) + c2d(!.n)+_),4,'0'x),m),x)
output   when using the default input:
 in =
out = D41D8CD98F00B204E9800998ECF8427E

 in = a
out = 0CC175B9C0F1B6A831C399E269772661

 in = abc
out = 900150983CD24FB0D6963F7D28E17F72

 in = message digest
out = F96B697D7CB7938D525A2F31AAF161D0

 in = abcdefghijklmnopqrstuvwxyz
out = C3FCD3D76192E4007DFB496CCA67E13B

 in = ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
out = D174AB98D277D9F5A5611C2C9F419D9F

 in = 12345678901234567890123456789012345678901234567890123456789012345678901234567890
out = 57EDF4A22BE3C955AC49DA2E2107B67A

RPG[edit]

Based on my Java implementation. Uses free-form RPG and a CTDATA section to hold lookup tables. Converts input from EBCDIC to ASCII before hashing.

**FREE
Ctl-opt MAIN(Main);
Ctl-opt DFTACTGRP(*NO) ACTGRP(*NEW);
 
dcl-pr QDCXLATE EXTPGM('QDCXLATE');
dataLen packed(5 : 0) CONST;
data char(32767) options(*VARSIZE);
conversionTable char(10) CONST;
end-pr;
 
dcl-c MASK32 CONST(4294967295);
dcl-s SHIFT_AMTS int(3) dim(16) CTDATA PERRCD(16);
dcl-s MD5_TABLE_T int(20) dim(64) CTDATA PERRCD(4);
 
dcl-proc Main;
dcl-s inputData char(45);
dcl-s inputDataLen int(10) INZ(0);
dcl-s outputHash char(16);
dcl-s outputHashHex char(32);
 
DSPLY 'Input: ' '' inputData;
inputData = %trim(inputData);
inputDataLen = %len(%trim(inputData));
DSPLY ('Input=' + inputData);
DSPLY ('InputLen=' + %char(inputDataLen));
 
// Convert from EBCDIC to ASCII
if inputDataLen > 0;
QDCXLATE(inputDataLen : inputData : 'QTCPASC');
endif;
CalculateMD5(inputData : inputDataLen : outputHash);
// Convert to hex
ConvertToHex(outputHash : 16 : outputHashHex);
DSPLY ('MD5: ' + outputHashHex);
return;
end-proc;
 
dcl-proc CalculateMD5;
dcl-pi *N;
message char(65535) options(*VARSIZE) CONST;
messageLen int(10) value;
outputHash char(16);
end-pi;
dcl-s numBlocks int(10);
dcl-s padding char(72);
dcl-s a int(20) INZ(1732584193);
dcl-s b int(20) INZ(4023233417);
dcl-s c int(20) INZ(2562383102);
dcl-s d int(20) INZ(271733878);
dcl-s buffer int(20) dim(16) INZ(0);
dcl-s i int(10);
dcl-s j int(10);
dcl-s k int(10);
dcl-s multiplier int(20);
dcl-s index int(10);
dcl-s originalA int(20);
dcl-s originalB int(20);
dcl-s originalC int(20);
dcl-s originalD int(20);
dcl-s div16 int(10);
dcl-s f int(20);
dcl-s tempInt int(20);
dcl-s bufferIndex int(10);
dcl-ds byteToInt QUALIFIED;
n int(5) INZ(0);
c char(1) OVERLAY(n : 2);
end-ds;
 
numBlocks = (messageLen + 8) / 64 + 1;
MD5_FillPadding(messageLen : numBlocks : padding);
for i = 0 to numBlocks - 1;
index = i * 64;
 
// Read message as little-endian 32-bit words
for j = 1 to 16;
multiplier = 1;
for k = 1 to 4;
index += 1;
if index <= messageLen;
byteToInt.c = %subst(message : index : 1);
else;
byteToInt.c = %subst(padding : index - messageLen : 1);
endif;
buffer(j) += multiplier * byteToInt.n;
multiplier *= 256;
endfor;
endfor;
 
originalA = a;
originalB = b;
originalC = c;
originalD = d;
 
for j = 0 to 63;
div16 = j / 16;
select;
when div16 = 0;
f = %bitor(%bitand(b : c) : %bitand(%bitnot(b) : d));
bufferIndex = j;
 
when div16 = 1;
f = %bitor(%bitand(b : d) : %bitand(c : %bitnot(d)));
bufferIndex = %bitand(j * 5 + 1 : 15);
 
when div16 = 2;
f = %bitxor(b : %bitxor(c : d));
bufferIndex = %bitand(j * 3 + 5 : 15);
 
when div16 = 3;
f = %bitxor(c : %bitor(b : Mask32Bit(%bitnot(d))));
bufferIndex = %bitand(j * 7 : 15);
endsl;
tempInt = Mask32Bit(b + RotateLeft32Bit(a + f + buffer(bufferIndex + 1) + MD5_TABLE_T(j + 1) :
SHIFT_AMTS(div16 * 4 + %bitand(j : 3) + 1)));
a = d;
d = c;
c = b;
b = tempInt;
endfor;
a = Mask32Bit(a + originalA);
b = Mask32Bit(b + originalB);
c = Mask32Bit(c + originalC);
d = Mask32Bit(d + originalD);
endfor;
 
for i = 0 to 3;
if i = 0;
tempInt = a;
elseif i = 1;
tempInt = b;
elseif i = 2;
tempInt = c;
else;
tempInt = d;
endif;
 
for j = 0 to 3;
byteToInt.n = %bitand(tempInt : 255);
 %subst(outputHash : i * 4 + j + 1 : 1) = byteToInt.c;
tempInt /= 256;
endfor;
endfor;
return;
end-proc;
 
dcl-proc MD5_FillPadding;
dcl-pi *N;
messageLen int(10);
numBlocks int(10);
padding char(72);
end-pi;
dcl-s totalLen int(10);
dcl-s paddingSize int(10);
dcl-ds *N;
messageLenBits int(20);
mlb_bytes char(8) OVERLAY(messageLenBits);
end-ds;
dcl-s i int(10);
 
 %subst(padding : 1 : 1) = X'80';
totalLen = numBlocks * 64;
paddingSize = totalLen - messageLen; // 9 to 72
messageLenBits = messageLen;
messageLenBits *= 8;
for i = 1 to 8;
 %subst(padding : paddingSize - i + 1 : 1) = %subst(mlb_bytes : i : 1);
endfor;
for i = 2 to paddingSize - 8;
 %subst(padding : i : 1) = X'00';
endfor;
return;
end-proc;
 
dcl-proc RotateLeft32Bit;
dcl-pi *N int(20);
n int(20) value;
amount int(3) value;
end-pi;
dcl-s i int(3);
 
n = Mask32Bit(n);
for i = 1 to amount;
n *= 2;
if n >= 4294967296;
n -= MASK32;
endif;
endfor;
return n;
end-proc;
 
dcl-proc Mask32Bit;
dcl-pi *N int(20);
n int(20) value;
end-pi;
return %bitand(n : MASK32);
end-proc;
 
dcl-proc ConvertToHex;
dcl-pi *N;
inputData char(32767) options(*VARSIZE) CONST;
inputDataLen int(10) value;
outputData char(65534) options(*VARSIZE);
end-pi;
dcl-c HEX_CHARS CONST('0123456789ABCDEF');
dcl-s i int(10);
dcl-s outputOffset int(10) INZ(1);
dcl-ds dataStruct QUALIFIED;
numField int(5) INZ(0);
// IBM i is big-endian
charField char(1) OVERLAY(numField : 2);
end-ds;
 
for i = 1 to inputDataLen;
dataStruct.charField = %BitAnd(%subst(inputData : i : 1) : X'F0');
dataStruct.numField /= 16;
 %subst(outputData : outputOffset : 1) = %subst(HEX_CHARS : dataStruct.numField + 1 : 1);
outputOffset += 1;
dataStruct.charField = %BitAnd(%subst(inputData : i : 1) : X'0F');
 %subst(outputData : outputOffset : 1) = %subst(HEX_CHARS : dataStruct.numField + 1 : 1);
outputOffset += 1;
endfor;
return;
end-proc;
 
**CTDATA SHIFT_AMTS
7 12 17 22 5 9 14 20 4 11 16 23 6 10 15 21
**CTDATA MD5_TABLE_T
3614090360 3905402710 606105819 3250441966
4118548399 1200080426 2821735955 4249261313
1770035416 2336552879 4294925233 2304563134
1804603682 4254626195 2792965006 1236535329
4129170786 3225465664 643717713 3921069994
3593408605 38016083 3634488961 3889429448
568446438 3275163606 4107603335 1163531501
2850285829 4243563512 1735328473 2368359562
4294588738 2272392833 1839030562 4259657740
2763975236 1272893353 4139469664 3200236656
681279174 3936430074 3572445317 76029189
3654602809 3873151461 530742520 3299628645
4096336452 1126891415 2878612391 4237533241
1700485571 2399980690 4293915773 2240044497
1873313359 4264355552 2734768916 1309151649
4149444226 3174756917 718787259 3951481745

Sample output:

 DSPLY  Input:
 abcdefghijklmnopqrstuvwxyz
 DSPLY  Input=abcdefghijklmnopqrstuvwxyz
 DSPLY  InputLen=26
 DSPLY  MD5: C3FCD3D76192E4007DFB496CCA67E13B

Seed7[edit]

The example below contains the implementation of the function md5 from the library msgdigest.s7i.

$ include "seed7_05.s7i";
include "bytedata.s7i";
include "bin32.s7i";
include "float.s7i";
include "math.s7i";
 
# Use binary integer part of the sines of integers (Radians) as constants:
const func array integer: createMd5Table is func
result
var array integer: k is 64 times 0;
local
var integer: index is 0;
begin
for index range 1 to 64 do
k[index] := trunc(abs(sin(flt(index))) * 2.0 ** 32);
end for;
end func;
 
const func string: md5 (in var string: message) is func
result
var string: digest is "";
local
# Specify the per-round shift amounts
const array integer: shiftAmount is [] (
7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21);
const array integer: k is createMd5Table;
var integer: length is 0;
var integer: chunkIndex is 0;
var integer: index is 0;
var array bin32: m is 16 times bin32.value;
var integer: a0 is 16#67452301; # a
var integer: b0 is 16#efcdab89; # b
var integer: c0 is 16#98badcfe; # c
var integer: d0 is 16#10325476; # d
var bin32: a is bin32(0);
var bin32: b is bin32(0);
var bin32: c is bin32(0);
var bin32: d is bin32(0);
var bin32: f is bin32(0);
var integer: g is 0;
var bin32: temp is bin32(0);
begin
length := length(message);
# Append the bit '1' to the message.
message &:= '\16#80;';
# Append '0' bits, so that the resulting bit length is congruent to 448 (mod 512).
message &:= "\0;" mult 63 - (length + 8) mod 64;
# Append length of message (before pre-processing), in bits, as 64-bit little-endian integer.
message &:= int64AsEightBytesLe(8 * length);
 
# Process the message in successive 512-bit chunks:
for chunkIndex range 1 to length(message) step 64 do
# Break chunk into sixteen 32-bit little-endian words.
for index range 1 to 16 do
m[index] := bin32(bytes2Int(message[chunkIndex + 4 * pred(index) len 4], UNSIGNED, LE));
end for;
 
a := bin32(a0 mod 16#100000000);
b := bin32(b0 mod 16#100000000);
c := bin32(c0 mod 16#100000000);
d := bin32(d0 mod 16#100000000);
 
for index range 1 to 64 do
if index <= 16 then
f := d >< (b & (c >< d));
g := index;
elsif index <= 32 then
f := c >< (d & (b >< c));
g := (5 * index - 4) mod 16 + 1;
elsif index <= 48 then
f := b >< c >< d;
g := (3 * index + 2) mod 16 + 1;
else
f := c >< (b | (bin32(16#ffffffff) >< d));
g := (7 * pred(index)) mod 16 + 1;
end if;
 
temp := d;
d := c;
c := b;
b := bin32((ord(b) +
ord(rotLeft(bin32((ord(a) + ord(f) + k[index] + ord(m[g])) mod 16#100000000),
shiftAmount[index]))) mod 16#100000000);
a := temp;
end for;
 
# Add this chunk's hash to result so far:
a0 +:= ord(a);
b0 +:= ord(b);
c0 +:= ord(c);
d0 +:= ord(d);
end for;
 
# Produce the final hash value:
digest := int32AsFourBytesLe(a0) &
int32AsFourBytesLe(b0) &
int32AsFourBytesLe(c0) &
int32AsFourBytesLe(d0);
end func;
 
const func boolean: checkMd5 (in string: message, in string: hexMd5) is
return hex(md5(message)) = hexMd5;
 
const proc: main is func
begin
if checkMd5("", "d41d8cd98f00b204e9800998ecf8427e") and
checkMd5("a", "0cc175b9c0f1b6a831c399e269772661") and
checkMd5("abc", "900150983cd24fb0d6963f7d28e17f72") and
checkMd5("message digest", "f96b697d7cb7938d525a2f31aaf161d0") and
checkMd5("abcdefghijklmnopqrstuvwxyz", "c3fcd3d76192e4007dfb496cca67e13b") and
checkMd5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "d174ab98d277d9f5a5611c2c9f419d9f") and
checkMd5("12345678901234567890123456789012345678901234567890123456789012345678901234567890", "57edf4a22be3c955ac49da2e2107b67a") then
writeln("md5 is computed correct");
else
writeln("There is an error in the md5 function");
end if;
end func;

Original source: [3]

Output:
md5 is computed correct

Sidef[edit]

Translation of: Perl 6
class MD5(String msg) {
 
method init {
msg = msg.bytes
}
 
const FGHI = [
{|a,b,c| (a & b) | (~a & c) },
{|a,b,c| (a & c) | (b & ~c) },
{|a,b,c| (a ^ b ^ c) },
{|a,b,c| (b ^ (a | ~c)) },
]
 
const S = [
[7, 12, 17, 22] * 4,
[5, 9, 14, 20] * 4,
[4, 11, 16, 23] * 4,
[6, 10, 15, 21] * 4,
].flat
 
const T = 64.of {|i| floor(abs(sin(i+1)) * 1<<32) }
 
const K = [
^16 -> map {|n| n },
^16 -> map {|n| (5*n + 1) % 16 },
^16 -> map {|n| (3*n + 5) % 16 },
^16 -> map {|n| (7*n ) % 16 },
].flat
 
func radix(Number b, Array a) {
^a -> map {|i| b**i * a[i] }.sum(0)
}
 
func little_endian(Number w, Number n, Array v) {
var step1 = (^n »*» w)
var step2 = (v ~X>> step1)
step2 »%» (1 << w)
}
 
func block(Number a, Number b) { (a + b) & 0xffffffff }
func srble(Number a, Number n) { (a << n) & 0xffffffff | (a >> (32-n)) }
 
func md5_pad(msg) {
var bits = 8*msg.len
var padded = [msg..., 128, [0] * (-(floor(bits / 8) + 1 + 8) % 64)].flat
 
gather {
padded.each_slice(4, {|*a|
take(radix(256, a))
})
take(little_endian(32, 2, [bits]))
}.flat
}
 
func md5_block(Array H, Array X) {
var (A, B, C, D) = H...
 
for i in ^64 {
(A, B, C, D) = (D,
block(B, srble(
block(
block(
block(A, FGHI[floor(i / 16)](B, C, D)), T[i]
), X[K[i]]
), S[i])
), B, C)
}
 
for k,v in ([A, B, C, D].kv) {
H[k] = block(H[k], v)
}
 
return H
}
 
method md5_hex {
self.md5.map {|n| '%02x' % n }.join
}
 
method md5 {
var M = md5_pad(msg)
var H = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]
 
for i in (range(0, M.end, 16)) {
md5_block(H, M.ft(i, i+15))
}
 
little_endian(8, 4, H)
}
}
 
var tests = [
['d41d8cd98f00b204e9800998ecf8427e', ''],
['0cc175b9c0f1b6a831c399e269772661', 'a'],
['900150983cd24fb0d6963f7d28e17f72', 'abc'],
['f96b697d7cb7938d525a2f31aaf161d0', 'message digest'],
['c3fcd3d76192e4007dfb496cca67e13b', 'abcdefghijklmnopqrstuvwxyz'],
['d174ab98d277d9f5a5611c2c9f419d9f', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'],
['57edf4a22be3c955ac49da2e2107b67a', '12345678901234567890123456789012345678901234567890123456789012345678901234567890'],
]
 
for md5,msg in tests {
var hash = MD5(msg).md5_hex
say "#{hash} : #{msg}"
 
if (hash != md5) {
say "\tHowever, that is incorrect (expected: #{md5})"
}
}
Output:
d41d8cd98f00b204e9800998ecf8427e : 
0cc175b9c0f1b6a831c399e269772661 : a
900150983cd24fb0d6963f7d28e17f72 : abc
f96b697d7cb7938d525a2f31aaf161d0 : message digest
c3fcd3d76192e4007dfb496cca67e13b : abcdefghijklmnopqrstuvwxyz
d174ab98d277d9f5a5611c2c9f419d9f : ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
57edf4a22be3c955ac49da2e2107b67a : 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Swift[edit]

Swift implementation of the pseudo-code found in the Wikipedia article.

Original source: CryptoSwift

 
import Foundation
public class MD5 {
/** specifies the per-round shift amounts */
private let s: [UInt32] = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]
 
/** binary integer part of the sines of integers (Radians) */
private let K: [UInt32] = (0 ..< 64).map { UInt32(0x100000000 * abs(sin(Double($0 + 1)))) }
 
let a0: UInt32 = 0x67452301
let b0: UInt32 = 0xefcdab89
let c0: UInt32 = 0x98badcfe
let d0: UInt32 = 0x10325476
 
private var message: NSData
 
//MARK: Public
 
public init(_ message: NSData) {
self.message = message
}
 
public func calculate() -> NSData? {
var tmpMessage: NSMutableData = NSMutableData(data: message)
let wordSize = sizeof(UInt32)
 
var aa = a0
var bb = b0
var cc = c0
var dd = d0
 
// Step 1. Append Padding Bits
tmpMessage.appendBytes([0x80]) // append one bit (Byte with one bit) to message
 
// append "0" bit until message length in bits ≡ 448 (mod 512)
while tmpMessage.length % 64 != 56 {
tmpMessage.appendBytes([0x00])
}
 
// Step 2. Append Length a 64-bit representation of lengthInBits
var lengthInBits = (message.length * 8)
var lengthBytes = lengthInBits.bytes(64 / 8)
tmpMessage.appendBytes(reverse(lengthBytes));
 
// Process the message in successive 512-bit chunks:
let chunkSizeBytes = 512 / 8
var leftMessageBytes = tmpMessage.length
for var i = 0; i < tmpMessage.length; i = i + chunkSizeBytes, leftMessageBytes -= chunkSizeBytes {
let chunk = tmpMessage.subdataWithRange(NSRange(location: i, length: min(chunkSizeBytes,leftMessageBytes)))
 
// break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15
// println("wordSize \(wordSize)");
var M:[UInt32] = [UInt32](count: 16, repeatedValue: 0)
for x in 0..<M.count {
var range = NSRange(location:x * wordSize, length: wordSize)
chunk.getBytes(&M[x], range:range);
}
 
// Initialize hash value for this chunk:
var A:UInt32 = a0
var B:UInt32 = b0
var C:UInt32 = c0
var D:UInt32 = d0
 
var dTemp:UInt32 = 0
 
// Main loop
for j in 0...63 {
var g = 0
var F:UInt32 = 0
 
switch (j) {
case 0...15:
F = (B & C) | ((~B) & D)
g = j
break
case 16...31:
F = (D & B) | (~D & C)
g = (5 * j + 1) % 16
break
case 32...47:
F = B ^ C ^ D
g = (3 * j + 5) % 16
break
case 48...63:
F = C ^ (B | (~D))
g = (7 * j) % 16
break
default:
break
}
dTemp = D
D = C
C = B
B = B &+ rotateLeft((A &+ F &+ K[j] &+ M[g]), s[j])
A = dTemp
}
 
aa = aa &+ A
bb = bb &+ B
cc = cc &+ C
dd = dd &+ D
}
 
var buf: NSMutableData = NSMutableData();
buf.appendBytes(&aa, length: wordSize)
buf.appendBytes(&bb, length: wordSize)
buf.appendBytes(&cc, length: wordSize)
buf.appendBytes(&dd, length: wordSize)
 
return buf.copy() as? NSData;
}
 
//MARK: Class
class func calculate(message: NSData) -> NSData?
{
return MD5(message).calculate();
}
 
//MARK: Private
private func rotateLeft(x:UInt32, _ n:UInt32) -> UInt32 {
return (x &<< n) | (x &>> (32 - n))
}
}
 

From-scratch implementation based on the solutions on this page without needing any external libraries:

import Foundation
 
let shift : [UInt32] = [7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21]
let table: [UInt32] = (0 ..< 64).map { UInt32(0x100000000 * abs(sin(Double($0 + 1)))) }
 
func md5(var message: [UInt8]) -> [UInt8] {
var messageLenBits = UInt64(message.count) * 8
message.append(0x80)
while message.count % 64 != 56 {
message.append(0)
}
 
var lengthBytes = [UInt8](count: 8, repeatedValue: 0)
UnsafeMutablePointer<UInt64>(lengthBytes).memory = messageLenBits.littleEndian
message += lengthBytes
 
var a : UInt32 = 0x67452301
var b : UInt32 = 0xEFCDAB89
var c : UInt32 = 0x98BADCFE
var d : UInt32 = 0x10325476
for chunkOffset in stride(from: 0, to: message.count, by: 64) {
let chunk = UnsafePointer<UInt32>(UnsafePointer<UInt8>(message) + chunkOffset)
let originalA = a
let originalB = b
let originalC = c
let originalD = d
for j in 0 ..< 64 {
var f : UInt32 = 0
var bufferIndex = j
let round = j >> 4
switch round {
case 0:
f = (b & c) | (~b & d)
case 1:
f = (b & d) | (c & ~d)
bufferIndex = (bufferIndex*5 + 1) & 0x0F
case 2:
f = b ^ c ^ d
bufferIndex = (bufferIndex*3 + 5) & 0x0F
case 3:
f = c ^ (b | ~d)
bufferIndex = (bufferIndex * 7) & 0x0F
default:
assert(false)
}
let sa = shift[(round<<2)|(j&3)]
let tmp = a &+ f &+ UInt32(littleEndian: chunk[bufferIndex]) &+ table[j]
a = d
d = c
c = b
b = b &+ (tmp << sa | tmp >> (32-sa))
}
a = a &+ originalA
b = b &+ originalB
c = c &+ originalC
d = d &+ originalD
}
 
var result = [UInt8](count: 16, repeatedValue: 0)
for (i, n) in enumerate([a, b, c, d]) {
UnsafeMutablePointer<UInt32>(result)[i] = n.littleEndian
}
return result
}
 
func toHexString(bytes: [UInt8]) -> String {
return "".join(bytes.map { String(format:"%02x", $0) })
}
 
for (hashCode, string) in [
("d41d8cd98f00b204e9800998ecf8427e", ""),
("0cc175b9c0f1b6a831c399e269772661", "a"),
("900150983cd24fb0d6963f7d28e17f72", "abc"),
("f96b697d7cb7938d525a2f31aaf161d0", "message digest"),
("c3fcd3d76192e4007dfb496cca67e13b", "abcdefghijklmnopqrstuvwxyz"),
("d174ab98d277d9f5a5611c2c9f419d9f",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"),
("57edf4a22be3c955ac49da2e2107b67a", "12345678901234567890" +
"123456789012345678901234567890123456789012345678901234567890")] {
println(hashCode)
println(toHexString(md5(Array(string.utf8))))
println()
}
Output:
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e

0cc175b9c0f1b6a831c399e269772661
0cc175b9c0f1b6a831c399e269772661

900150983cd24fb0d6963f7d28e17f72
900150983cd24fb0d6963f7d28e17f72

f96b697d7cb7938d525a2f31aaf161d0
f96b697d7cb7938d525a2f31aaf161d0

c3fcd3d76192e4007dfb496cca67e13b
c3fcd3d76192e4007dfb496cca67e13b

d174ab98d277d9f5a5611c2c9f419d9f
d174ab98d277d9f5a5611c2c9f419d9f

57edf4a22be3c955ac49da2e2107b67a
57edf4a22be3c955ac49da2e2107b67a

Tcl[edit]

This code is extracted from the md5 package in
Library: tcllib
, and is originally due to Don Libes's transcription of the code in the MD5 specification. It should not be deployed in production normally; the md5 package should be used in preference as it is usually built to be faster.
# We just define the body of md5::md5 here; later we regsub to inline a few
# function calls for speed
variable ::md5::md5body {
### Step 1. Append Padding Bits
 
set msgLen [string length $msg]
 
set padLen [expr {56 - $msgLen%64}]
if {$msgLen % 64 > 56} {
incr padLen 64
}
 
# pad even if no padding required
if {$padLen == 0} {
incr padLen 64
}
 
# append single 1b followed by 0b's
append msg [binary format "a$padLen" \200]
 
### Step 2. Append Length
 
# RFC doesn't say whether to use little- or big-endian; code demonstrates
# little-endian.
# This step limits our input to size 2^32b or 2^24B
append msg [binary format "i1i1" [expr {8*$msgLen}] 0]
 
### Step 3. Initialize MD Buffer
 
set A [expr 0x67452301]
set B [expr 0xefcdab89]
set C [expr 0x98badcfe]
set D [expr 0x10325476]
 
### Step 4. Process Message in 16-Word Blocks
 
# process each 16-word block
# RFC doesn't say whether to use little- or big-endian; code says
# little-endian.
binary scan $msg i* blocks
 
# loop over the message taking 16 blocks at a time
 
foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {
# Save A as AA, B as BB, C as CC, and D as DD.
set AA $A
set BB $B
set CC $C
set DD $D
 
# Round 1.
# Let [abcd k s i] denote the operation
# a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s).
# [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X0 + $T01}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X1 + $T02}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X2 + $T03}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X3 + $T04}] 22]}]
# [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X4 + $T05}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X5 + $T06}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X6 + $T07}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X7 + $T08}] 22]}]
# [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X8 + $T09}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X9 + $T10}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X10 + $T11}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X11 + $T12}] 22]}]
# [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X12 + $T13}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X13 + $T14}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X14 + $T15}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X15 + $T16}] 22]}]
 
# Round 2.
# Let [abcd k s i] denote the operation
# a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X1 + $T17}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X6 + $T18}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X11 + $T19}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X0 + $T20}] 20]}]
# [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X5 + $T21}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X10 + $T22}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X15 + $T23}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X4 + $T24}] 20]}]
# [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X9 + $T25}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X14 + $T26}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X3 + $T27}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X8 + $T28}] 20]}]
# [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X13 + $T29}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X2 + $T30}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X7 + $T31}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X12 + $T32}] 20]}]
 
# Round 3.
# Let [abcd k s t] [sic] denote the operation
# a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X5 + $T33}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X8 + $T34}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X11 + $T35}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X14 + $T36}] 23]}]
# [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X1 + $T37}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X4 + $T38}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X7 + $T39}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X10 + $T40}] 23]}]
# [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X13 + $T41}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X0 + $T42}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X3 + $T43}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X6 + $T44}] 23]}]
# [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X9 + $T45}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X12 + $T46}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X15 + $T47}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X2 + $T48}] 23]}]
 
# Round 4.
# Let [abcd k s t] [sic] denote the operation
# a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X0 + $T49}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X7 + $T50}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X14 + $T51}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X5 + $T52}] 21]}]
# [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X12 + $T53}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X3 + $T54}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X10 + $T55}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X1 + $T56}] 21]}]
# [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X8 + $T57}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X15 + $T58}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X6 + $T59}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X13 + $T60}] 21]}]
# [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X4 + $T61}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X11 + $T62}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X2 + $T63}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X9 + $T64}] 21]}]
 
# Then perform the following additions. (That is increment each of the
# four registers by the value it had before this block was started.)
incr A $AA
incr B $BB
incr C $CC
incr D $DD
}
 
### Step 5. Output
 
# ... begin with the low-order byte of A, and end with the high-order byte
# of D.
 
return [bytes $A][bytes $B][bytes $C][bytes $D]
}
 
### Here we inline/regsub the functions F, G, H, I and <<<
 
namespace eval ::md5 {
#proc md5pure::F {x y z} {expr {(($x & $y) | ((~$x) & $z))}}
regsub -all -- {\[ *F +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \2) | ((~\1) \& \3))} md5body
 
#proc md5pure::G {x y z} {expr {(($x & $z) | ($y & (~$z)))}}
regsub -all -- {\[ *G +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \3) | (\2 \& (~\3)))} md5body
 
#proc md5pure::H {x y z} {expr {$x ^ $y ^ $z}}
regsub -all -- {\[ *H +(\$.) +(\$.) +(\$.) *\]} $md5body {(\1 ^ \2 ^ \3)} md5body
 
#proc md5pure::I {x y z} {expr {$y ^ ($x | (~$z))}}
regsub -all -- {\[ *I +(\$.) +(\$.) +(\$.) *\]} $md5body {(\2 ^ (\1 | (~\3)))} md5body
 
# inline <<< (bitwise left-rotate)
regsub -all -- {\[ *<<< +\[ *expr +({[^\}]*})\] +([0-9]+) *\]} $md5body {(([set x [expr \1]] << \2) | (($x >> R\2) \& S\2))} md5body
 
# now replace the R and S
variable map {}
variable i
foreach i {
7 12 17 22
5 9 14 20
4 11 16 23
6 10 15 21
} {
lappend map R$i [expr {32 - $i}] S$i [expr {0x7fffffff >> (31-$i)}]
}
 
# inline the values of T
variable tName
variable tVal
foreach tName {
T01 T02 T03 T04 T05 T06 T07 T08 T09 T10
T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
T21 T22 T23 T24 T25 T26 T27 T28 T29 T30
T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
T41 T42 T43 T44 T45 T46 T47 T48 T49 T50
T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T61 T62 T63 T64
} tVal {
0xd76aa478 0xe8c7b756 0x242070db 0xc1bdceee
0xf57c0faf 0x4787c62a 0xa8304613 0xfd469501
0x698098d8 0x8b44f7af 0xffff5bb1 0x895cd7be
0x6b901122 0xfd987193 0xa679438e 0x49b40821
 
0xf61e2562 0xc040b340 0x265e5a51 0xe9b6c7aa
0xd62f105d 0x2441453 0xd8a1e681 0xe7d3fbc8
0x21e1cde6 0xc33707d6 0xf4d50d87 0x455a14ed
0xa9e3e905 0xfcefa3f8 0x676f02d9 0x8d2a4c8a
 
0xfffa3942 0x8771f681 0x6d9d6122 0xfde5380c
0xa4beea44 0x4bdecfa9 0xf6bb4b60 0xbebfbc70
0x289b7ec6 0xeaa127fa 0xd4ef3085 0x4881d05
0xd9d4d039 0xe6db99e5 0x1fa27cf8 0xc4ac5665
 
0xf4292244 0x432aff97 0xab9423a7 0xfc93a039
0x655b59c3 0x8f0ccc92 0xffeff47d 0x85845dd1
0x6fa87e4f 0xfe2ce6e0 0xa3014314 0x4e0811a1
0xf7537e82 0xbd3af235 0x2ad7d2bb 0xeb86d391
} {
lappend map \$$tName $tVal
}
set md5body [string map $map $md5body]
 
# Finally, define the proc
proc md5 {msg} $md5body
 
# unset auxiliary variables
unset md5body tName tVal map
 
proc byte0 {i} {expr {0xff & $i}}
proc byte1 {i} {expr {(0xff00 & $i) >> 8}}
proc byte2 {i} {expr {(0xff0000 & $i) >> 16}}
proc byte3 {i} {expr {((0xff000000 & $i) >> 24) & 0xff}}
proc bytes {i} {
format %0.2x%0.2x%0.2x%0.2x [byte0 $i] [byte1 $i] [byte2 $i] [byte3 $i]
}
}

Demonstration code:

foreach {hash <- string} {
0xd41d8cd98f00b204e9800998ecf8427e ==> ""
0x0cc175b9c0f1b6a831c399e269772661 ==> "a"
0x900150983cd24fb0d6963f7d28e17f72 ==> "abc"
0xf96b697d7cb7938d525a2f31aaf161d0 ==> "message digest"
0xc3fcd3d76192e4007dfb496cca67e13b ==> "abcdefghijklmnopqrstuvwxyz"
0xd174ab98d277d9f5a5611c2c9f419d9f ==> "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57edf4a22be3c955ac49da2e2107b67a ==> "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
} {
puts "“$string” -> [md5::md5 $string] (officially: $hash)"
}

x86 Assembly[edit]

Works with: nasm

Uses DOS interrupts for display.

section .text
org 0x100
mov di, md5_for_display
mov si, test_input_1
mov cx, test_input_1_len
call compute_md5
call display_md5
mov si, test_input_2
mov cx, test_input_2_len
call compute_md5
call display_md5
mov si, test_input_3
mov cx, test_input_3_len
call compute_md5
call display_md5
mov si, test_input_4
mov cx, test_input_4_len
call compute_md5
call display_md5
mov si, test_input_5
mov cx, test_input_5_len
call compute_md5
call display_md5
mov si, test_input_6
mov cx, test_input_6_len
call compute_md5
call display_md5
mov si, test_input_7
mov cx, test_input_7_len
call compute_md5
call display_md5
mov ax, 0x4c00
int 21h
 
md5_for_display times 16 db 0
HEX_CHARS db '0123456789ABCDEF'
 
display_md5:
mov ah, 9
mov dx, display_str_1
int 0x21
push cx
push si
mov cx, 16
mov si, di
xor bx, bx
.loop:
lodsb
mov bl, al
and bl, 0x0F
push bx
mov bl, al
shr bx, 4
mov ah, 2
mov dl, [HEX_CHARS + bx]
int 0x21
pop bx
mov dl, [HEX_CHARS + bx]
int 0x21
dec cx
jnz .loop
mov ah, 9
mov dx, display_str_2
int 0x21
pop si
pop cx
test cx, cx
jz do_newline
mov ah, 2
display_string:
lodsb
mov dl, al
int 0x21
dec cx
jnz display_string
do_newline:
mov ah, 9
mov dx, display_str_3
int 0x21
ret;
 
compute_md5:
; si --> input bytes, cx = input len, di --> 16-byte output buffer
; assumes all in the same segment
cld
pusha
push di
push si
mov [message_len], cx
 
mov bx, cx
shr bx, 6
mov [ending_bytes_block_num], bx
mov [num_blocks], bx
inc word [num_blocks]
shl bx, 6
add si, bx
and cx, 0x3f
push cx
mov di, ending_bytes
rep movsb
mov al, 0x80
stosb
pop cx
sub cx, 55
neg cx
jge add_padding
add cx, 64
inc word [num_blocks]
add_padding:
mov al, 0
rep stosb
xor eax, eax
mov ax, [message_len]
shl eax, 3
mov cx, 8
store_message_len:
stosb
shr eax, 8
dec cx
jnz store_message_len
pop si
mov [md5_a], dword INIT_A
mov [md5_b], dword INIT_B
mov [md5_c], dword INIT_C
mov [md5_d], dword INIT_D
block_loop:
push cx
cmp cx, [ending_bytes_block_num]
jne backup_abcd
; switch buffers if towards the end where padding needed
mov si, ending_bytes
backup_abcd:
push dword [md5_d]
push dword [md5_c]
push dword [md5_b]
push dword [md5_a]
xor cx, cx
xor eax, eax
main_loop:
push cx
mov ax, cx
shr ax, 4
test al, al
jz pass0
cmp al, 1
je pass1
cmp al, 2
je pass2
; pass3
mov eax, [md5_c]
mov ebx, [md5_d]
not ebx
or ebx, [md5_b]
xor eax, ebx
jmp do_rotate
 
pass0:
mov eax, [md5_b]
mov ebx, eax
and eax, [md5_c]
not ebx
and ebx, [md5_d]
or eax, ebx
jmp do_rotate
 
pass1:
mov eax, [md5_d]
mov edx, eax
and eax, [md5_b]
not edx
and edx, [md5_c]
or eax, edx
jmp do_rotate
 
pass2:
mov eax, [md5_b]
xor eax, [md5_c]
xor eax, [md5_d]
do_rotate:
add eax, [md5_a]
mov bx, cx
shl bx, 1
mov bx, [BUFFER_INDEX_TABLE + bx]
add eax, [si + bx]
mov bx, cx
shl bx, 2
add eax, dword [TABLE_T + bx]
mov bx, cx
ror bx, 2
shr bl, 2
rol bx, 2
mov cl, [SHIFT_AMTS + bx]
rol eax, cl
add eax, [md5_b]
push eax
push dword [md5_b]
push dword [md5_c]
push dword [md5_d]
pop dword [md5_a]
pop dword [md5_d]
pop dword [md5_c]
pop dword [md5_b]
pop cx
inc cx
cmp cx, 64
jb main_loop
; add to original values
pop eax
add [md5_a], eax
pop eax
add [md5_b], eax
pop eax
add [md5_c], eax
pop eax
add [md5_d], eax
; advance pointers
add si, 64
pop cx
inc cx
cmp cx, [num_blocks]
jne block_loop
mov cx, 4
mov si, md5_a
pop di
rep movsd
popa
ret
 
section .data
 
INIT_A equ 0x67452301
INIT_B equ 0xEFCDAB89
INIT_C equ 0x98BADCFE
INIT_D equ 0x10325476
 
SHIFT_AMTS db 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21
 
TABLE_T dd 0xD76AA478, 0xE8C7B756, 0x242070DB, 0xC1BDCEEE, 0xF57C0FAF, 0x4787C62A, 0xA8304613, 0xFD469501, 0x698098D8, 0x8B44F7AF, 0xFFFF5BB1, 0x895CD7BE, 0x6B901122, 0xFD987193, 0xA679438E, 0x49B40821, 0xF61E2562, 0xC040B340, 0x265E5A51, 0xE9B6C7AA, 0xD62F105D, 0x02441453, 0xD8A1E681, 0xE7D3FBC8, 0x21E1CDE6, 0xC33707D6, 0xF4D50D87, 0x455A14ED, 0xA9E3E905, 0xFCEFA3F8, 0x676F02D9, 0x8D2A4C8A, 0xFFFA3942, 0x8771F681, 0x6D9D6122, 0xFDE5380C, 0xA4BEEA44, 0x4BDECFA9, 0xF6BB4B60, 0xBEBFBC70, 0x289B7EC6, 0xEAA127FA, 0xD4EF3085, 0x04881D05, 0xD9D4D039, 0xE6DB99E5, 0x1FA27CF8, 0xC4AC5665, 0xF4292244, 0x432AFF97, 0xAB9423A7, 0xFC93A039, 0x655B59C3, 0x8F0CCC92, 0xFFEFF47D, 0x85845DD1, 0x6FA87E4F, 0xFE2CE6E0, 0xA3014314, 0x4E0811A1, 0xF7537E82, 0xBD3AF235, 0x2AD7D2BB, 0xEB86D391
BUFFER_INDEX_TABLE dw 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 4, 24, 44, 0, 20, 40, 60, 16, 36, 56, 12, 32, 52, 8, 28, 48, 20, 32, 44, 56, 4, 16, 28, 40, 52, 0, 12, 24, 36, 48, 60, 8, 0, 28, 56, 20, 48, 12, 40, 4, 32, 60, 24, 52, 16, 44, 8, 36
ending_bytes_block_num dw 0
ending_bytes times 128 db 0
message_len dw 0
num_blocks dw 0
md5_a dd 0
md5_b dd 0
md5_c dd 0
md5_d dd 0
 
display_str_1 db '0x$'
display_str_2 db ' <== "$'
display_str_3 db '"', 13, 10, '$'
 
test_input_1:
test_input_1_len equ $ - test_input_1
test_input_2 db 'a'
test_input_2_len equ $ - test_input_2
test_input_3 db 'abc'
test_input_3_len equ $ - test_input_3
test_input_4 db 'message digest'
test_input_4_len equ $ - test_input_4
test_input_5 db 'abcdefghijklmnopqrstuvwxyz'
test_input_5_len equ $ - test_input_5
test_input_6 db 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
test_input_6_len equ $ - test_input_6
test_input_7 db '12345678901234567890123456789012345678901234567890123456789012345678901234567890'
test_input_7_len equ $ - test_input_7

Output:

0xD41D8CD98F00B204E9800998ECF8427E <== ""
0x0CC175B9C0F1B6A831C399E269772661 <== "a"
0x900150983CD24FB0D6963F7D28E17F72 <== "abc"
0xF96B697D7CB7938D525A2F31AAF161D0 <== "message digest"
0xC3FCD3D76192E4007DFB496CCA67E13B <== "abcdefghijklmnopqrstuvwxyz"
0xD174AB98D277D9F5A5611C2C9F419D9F <== "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57EDF4A22BE3C955AC49DA2E2107B67A <== "12345678901234567890123456789012345678901234567890123456789012345678901234567890"