Benford's law

From Rosetta Code
Revision as of 03:31, 28 July 2021 by Laurence (talk | contribs) (Added Fōrmulæ solution)
Task
Benford's law
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Benford's_law. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)


Benford's law, also called the first-digit law, refers to the frequency distribution of digits in many (but not all) real-life sources of data.

In this distribution, the number 1 occurs as the first digit about 30% of the time, while larger numbers occur in that position less frequently: 9 as the first digit less than 5% of the time. This distribution of first digits is the same as the widths of gridlines on a logarithmic scale.

Benford's law also concerns the expected distribution for digits beyond the first, which approach a uniform distribution.

This result has been found to apply to a wide variety of data sets, including electricity bills, street addresses, stock prices, population numbers, death rates, lengths of rivers, physical and mathematical constants, and processes described by power laws (which are very common in nature). It tends to be most accurate when values are distributed across multiple orders of magnitude.

A set of numbers is said to satisfy Benford's law if the leading digit   () occurs with probability

For this task, write (a) routine(s) to calculate the distribution of first significant (non-zero) digits in a collection of numbers, then display the actual vs. expected distribution in the way most convenient for your language (table / graph / histogram / whatever).

Use the first 1000 numbers from the Fibonacci sequence as your data set. No need to show how the Fibonacci numbers are obtained.

You can generate them or load them from a file; whichever is easiest.

Display your actual vs expected distribution.


For extra credit: Show the distribution for one other set of numbers from a page on Wikipedia. State which Wikipedia page it can be obtained from and what the set enumerates. Again, no need to display the actual list of numbers or the code to load them.


See also:



11l

Translation of: D

<lang 11l>F get_fibs()

  V a = 1.0
  V b = 1.0
  [Float] r
  L 1000
     r [+]= a
     (a, b) = (b, a + b)
  R r

F benford(seq)

  V freqs = [(0.0, 0.0)] * 9
  V seq_len = 0
  L(d) seq
     I d != 0
        freqs[String(d)[0].code - ‘1’.code][1]++
        seq_len++
  L(&f) freqs
     f = (log10(1.0 + 1.0 / (L.index + 1)), f[1] / seq_len)
  R freqs

print(‘#9 #9 #9’.format(‘Actual’, ‘Expected’, ‘Deviation’))

L(p) benford(get_fibs())

  print(‘#.: #2.2% | #2.2% | #.4%’.format(L.index + 1, p[1] * 100, p[0] * 100, abs(p[1] - p[0]) * 100))</lang>
Output:
   Actual  Expected Deviation
1: 30.10% | 30.10% | 0.0030%
2: 17.70% | 17.61% | 0.0909%
3: 12.50% | 12.49% | 0.0061%
4:  9.60% |  9.69% | 0.0910%
5:  8.00% |  7.92% | 0.0819%
6:  6.70% |  6.69% | 0.0053%
7:  5.60% |  5.80% | 0.1992%
8:  5.30% |  5.12% | 0.1847%
9:  4.50% |  4.58% | 0.0757%

8th

<lang 8th>

n:log10e ` 1 10 ln / ` ;

with: n

n:log10 \ n -- n
   ln log10e * ;
benford \ x -- x
   1 swap / 1+ log10 ;
fibs \ xt n
   swap >r
   0.0 1.0 rot
   ( dup r@ w:exec tuck + ) swap times
   2drop rdrop ;

var counts

init
   a:new ( 0 a:push ) 9 times counts ! ;
leading \ n -- n
   "%g" s:strfmt
   0 s:@ '0 - nip ;
bump-digit \ n --
   1 swap
   counts @ swap 1- ' + a:op! drop ;
count-fibs \ --
   ( leading bump-digit ) 1000 fibs ;
adjust \ --
   counts @  ( 0.001 * ) a:map  counts ! ;
spaces \ n --
   ' space swap times ;
.fw \ s n --
   >r s:len r> rot . swap - spaces ;
.header \ --
   "Digit" 8 .fw "Expected" 10 .fw "Actual" 10 .fw cr ;
.digit \ n --
   >s 8 .fw ;
.actual \ n --
   "%.3f" s:strfmt 10 .fw ;
.expected \ n --
   "%.4f" s:strfmt 10 .fw ;
report \ --
   .header
   counts @
   ( swap 1+ dup benford swap 
     .digit .expected .actual cr )
   a:each drop ;
   
benford-test
   init count-fibs adjust report ;
with

benford-test bye </lang>

Output:
Digit   Expected  Actual
1       0.3010    0.301
2       0.1761    0.177
3       0.1249    0.125
4       0.0969    0.096
5       0.0792    0.080
6       0.0669    0.067
7       0.0580    0.056
8       0.0512    0.053
9       0.0458    0.045

Ada

The program reads the Fibonacci-Numbers from the standard input. Each input line is supposed to hold N, followed by Fib(N).

<lang Ada>with Ada.Text_IO, Ada.Numerics.Generic_Elementary_Functions;

procedure Benford is

  subtype Nonzero_Digit is Natural range 1 .. 9;
  function First_Digit(S: String) return Nonzero_Digit is
     (if S(S'First) in '1' .. '9' 
        then Nonzero_Digit'Value(S(S'First .. S'First))
        else First_Digit(S(S'First+1 .. S'Last)));
     
  package N_IO is new Ada.Text_IO.Integer_IO(Natural);  
     
  procedure Print(D: Nonzero_Digit; Counted, Sum: Natural) is
     package Math is new Ada.Numerics.Generic_Elementary_Functions(Float);
     package F_IO is new Ada.Text_IO.Float_IO(Float);
     Actual: constant Float := Float(Counted) / Float(Sum);
     Expected: constant Float := Math.Log(1.0 + 1.0 / Float(D), Base => 10.0);
     Deviation: constant Float := abs(Expected-Actual);
  begin
     N_IO.Put(D, 5);
     N_IO.Put(Counted, 14);
     F_IO.Put(Float(Sum)*Expected, Fore => 16, Aft => 1, Exp => 0);
     F_IO.Put(100.0*Actual, Fore => 9, Aft => 2, Exp => 0); 
     F_IO.Put(100.0*Expected, Fore => 11, Aft => 2, Exp => 0); 
     F_IO.Put(100.0*Deviation, Fore => 13, Aft => 2, Exp => 0);
  end Print;
  
  Cnt: array(Nonzero_Digit) of Natural := (1 .. 9 => 0);   
  D: Nonzero_Digit;
  Sum: Natural := 0;
  Counter: Positive;       
      

begin

  while not Ada.Text_IO.End_Of_File loop
     -- each line in the input file holds Counter, followed by Fib(Counter)
     N_IO.Get(Counter); 
       -- Counter and skip it, we just don't need it
     D := First_Digit(Ada.Text_IO.Get_Line); 
       -- read the rest of the line and extract the first digit
     Cnt(D) := Cnt(D)+1;
     Sum := Sum + 1;
  end loop;
  Ada.Text_IO.Put_Line(" Digit  Found[total]   Expected[total]    Found[%]" 
                                         & "   Expected[%]   Difference[%]");
  for I in Nonzero_Digit loop
     Print(I, Cnt(I), Sum);
     Ada.Text_IO.New_Line;
  end loop;

end Benford;</lang>

Output:
>./benford < fibo.txt
 Digit  Found[total]   Expected[total]    Found[%]   Expected[%]   Difference[%]
    1           301             301.0       30.10         30.10            0.00
    2           177             176.1       17.70         17.61            0.09
    3           125             124.9       12.50         12.49            0.01
    4            96              96.9        9.60          9.69            0.09
    5            80              79.2        8.00          7.92            0.08
    6            67              66.9        6.70          6.69            0.01
    7            56              58.0        5.60          5.80            0.20
    8            53              51.2        5.30          5.12            0.18
    9            45              45.8        4.50          4.58            0.08

Extra Credit

Input is the list of primes below 100,000 from [1]. Since each line in that file holds prime and only a prime, but no ongoing counter, we must slightly modify the program by commenting out a single line:

<lang Ada> -- N_IO.Get(Counter);</lang>

We can also edit out the declaration of the variable "Counter" ...or live with a compiler warning about never reading or assigning that variable.

Output:

As it turns out, the distribution of the first digits of primes is almost flat and does not seem follow Benford's law:

>./benford < primes-to-100k.txt 
 Digit  Found[total]   Expected[total]    Found[%]   Expected[%]   Difference[%]
    1          1193            2887.5       12.44         30.10           17.67
    2          1129            1689.1       11.77         17.61            5.84
    3          1097            1198.4       11.44         12.49            1.06
    4          1069             929.6       11.14          9.69            1.45
    5          1055             759.5       11.00          7.92            3.08
    6          1013             642.2       10.56          6.69            3.87
    7          1027             556.3       10.71          5.80            4.91
    8          1003             490.7       10.46          5.12            5.34
    9          1006             438.9       10.49          4.58            5.91

Aime

<lang aime>text sum(text a, text b) {

   data d;
   integer e, f, n, r;
   e = ~a;
   f = ~b;
   r = 0;
   n = min(e, f);
   while (n) {
       n -= 1;
       e -= 1;
       f -= 1;
       r += a[e] - '0';
       r += b[f] - '0';
       b_insert(d, 0, r % 10 + '0');
       r /= 10;
   }
   if (f) {
       e = f;
       a = b;
   }
   while (e) {
       e -= 1;
       r += a[e] - '0';
       b_insert(d, 0, r % 10 + '0');
       r /= 10;
   }
   if (r) {
       b_insert(d, 0, r + '0');
   }
   d;

}

text fibs(list l, integer n) {

   integer c, i;
   text a, b, w;
   l[1] = 1;
   a = "0";
   b = "1";
   i = 1;
   while (i < n) {
       w = sum(a, b);
       a = b;
       b = w;
       c = w[0] - '0';
       l[c] = 1 + l[c];
       i += 1;
   }
   w;

}

integer main(void) {

   integer i, n;
   list f;
   real m;
   n = 1000;
   f.pn_integer(0, 10, 0);
   fibs(f, n);
   m = 100r / n;
   o_text("\t\texpected\t   found\n");
   i = 0;
   while (i < 9) {
       i += 1;
       o_form("%8d/p3d3w16//p3d3w16/\n", i, 100 * log10(1 + 1r / i), f[i] * m);
   }
   0;

}</lang>

Output:
		expected	   found
       1          30.102          30.1  
       2          17.609          17.7  
       3          12.493          12.5  
       4           9.691           9.600
       5           7.918           8    
       6           6.694           6.7  
       7           5.799           5.6  
       8           5.115           5.300
       9           4.575           4.5  

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses Algol 68G's LONG LONG INT which has programmer specifiable precision. <lang algol68>BEGIN

   # set the number of digits for LONG LONG INT values #
   PR precision 256 PR
   # returns the probability of the first digit of each non-zero number in s #
   PROC digit probability = ( []LONG LONG INT s )[]REAL:
        BEGIN
           [ 1 : 9 ]REAL result;
           # count the number of times each digit is the first #
           [ 1 : 9 ]INT  count := ( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
           FOR i FROM LWB s TO UPB s DO
               LONG LONG INT v := ABS s[ i ];
               IF v /= 0 THEN
                   WHILE v > 9 DO v OVERAB 10 OD;
                   count[ SHORTEN SHORTEN v ] +:= 1
               FI
           OD;
           # calculate the probability of each digit #
           INT number of elements = ( UPB s + 1 ) - LWB s;
           FOR i TO 9 DO
               result[ i ] := IF number of elements = 0 THEN 0 ELSE count[ i ] / number of elements FI
           OD;
           result
        END # digit probability # ;
   # outputs the digit probabilities of some numbers and those expected by Benford's law #
   PROC compare to benford = ( []REAL actual )VOID:
        FOR i TO 9 DO
           print( ( "Benford: ", fixed( log( 1 + ( 1 / i ) ), -7, 3 ), " actual: ", fixed( actual[ i ], -7, 3 ), newline ) )
        OD # compare to benford # ;
   # generate 1000 fibonacci numbers #
   [ 0 : 1000 ]LONG LONG INT fn;
   fn[ 0 ] := 0;
   fn[ 1 ] := 1;
   FOR i FROM 2 TO UPB fn DO fn[ i ] := fn[ i - 1 ] + fn[ i - 2 ] OD;
   # get the probabilities of each first digit of the fibonacci numbers and #
   # compare to the probabilities expected by Benford's law #
   compare to benford( digit probability( fn ) )

END</lang>

Output:
Benford:   0.301 actual:   0.301
Benford:   0.176 actual:   0.177
Benford:   0.125 actual:   0.125
Benford:   0.097 actual:   0.096
Benford:   0.079 actual:   0.080
Benford:   0.067 actual:   0.067
Benford:   0.058 actual:   0.056
Benford:   0.051 actual:   0.053
Benford:   0.046 actual:   0.045

AutoHotkey

Works with: AutoHotkey_L

(AutoHotkey1.1+)

<lang AutoHotkey>SetBatchLines, -1 fib := NStepSequence(1, 1, 2, 1000) Out := "Digit`tExpected`tObserved`tDeviation`n" n := [] for k, v in fib d := SubStr(v, 1, 1) , n[d] := n[d] ? n[d] + 1 : 1 for k, v in n Exppected := 100 * Log(1+ (1 / k)) , Observed := (v / fib.MaxIndex()) * 100 , Out .= k "`t" Exppected "`t" Observed "`t" Abs(Exppected - Observed) "`n" MsgBox, % Out

NStepSequence(v1, v2, n, k) { a := [v1, v2] Loop, % k - 2 { a[j := A_Index + 2] := 0 Loop, % j < n + 2 ? j - 1 : n a[j] := BigAdd(a[j - A_Index], a[j]) } return, a }

BigAdd(a, b) { if (StrLen(b) > StrLen(a)) t := a, a := b, b := t LenA := StrLen(a) + 1, LenB := StrLen(B) + 1, Carry := 0 Loop, % LenB - 1 Sum := SubStr(a, LenA - A_Index, 1) + SubStr(B, LenB - A_Index, 1) + Carry , Carry := Sum // 10 , Result := Mod(Sum, 10) . Result Loop, % I := LenA - LenB { if (!Carry) { Result := SubStr(a, 1, I) . Result break } Sum := SubStr(a, I, 1) + Carry , Carry := Sum // 10 , Result := Mod(Sum, 10) . Result , I-- } return, (Carry ? Carry : "") . Result }</lang>NStepSequence() is available here. Output:

Digit	Expected	Observed	Deviation
1	30.103000	30.100000	0.003000
2	17.609126	17.700000	0.090874
3	12.493874	12.500000	0.006126
4	9.691001	9.600000	0.091001
5	7.918125	8.000000	0.081875
6	6.694679	6.700000	0.005321
7	5.799195	5.600000	0.199195
8	5.115252	5.300000	0.184748
9	4.575749	4.500000	0.075749

AWK

<lang AWK>

  1. syntax: GAWK -f BENFORDS_LAW.AWK

BEGIN {

   n = 1000
   for (i=1; i<=n; i++) {
     arr[substr(fibonacci(i),1,1)]++
   }
   print("digit expected observed deviation")
   for (i=1; i<=9; i++) {
     expected  = log10(i+1) - log10(i)
     actual    = arr[i] / n
     deviation = expected - actual
     printf("%5d %8.4f %8.4f %9.4f\n",i,expected*100,actual*100,abs(deviation*100))
   }
   exit(0)

} function fibonacci(n, a,b,c,i) {

   a = 0
   b = 1
   for (i=1; i<=n; i++) {
     c = a + b
     a = b
     b = c
   }
   return(c)

} function abs(x) { if (x >= 0) { return x } else { return -x } } function log10(x) { return log(x)/log(10) } </lang>

Output:
digit expected observed deviation
    1  30.1030  30.0000    0.1030
    2  17.6091  17.7000    0.0909
    3  12.4939  12.5000    0.0061
    4   9.6910   9.6000    0.0910
    5   7.9181   8.0000    0.0819
    6   6.6947   6.7000    0.0053
    7   5.7992   5.7000    0.0992
    8   5.1153   5.3000    0.1847
    9   4.5757   4.5000    0.0757

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <math.h>

float *benford_distribution(void) {

   static float prob[9];
   for (int i = 1; i < 10; i++)
       prob[i - 1] = log10f(1 + 1.0 / i);
   return prob;

}

float *get_actual_distribution(char *fn) {

   FILE *input = fopen(fn, "r");
   if (!input)
   {
       perror("Can't open file");
       exit(EXIT_FAILURE);
   }
   int tally[9] = { 0 };
   char c;
   int total = 0;
   while ((c = getc(input)) != EOF)
   {
       /* get the first nonzero digit on the current line */
       while (c < '1' || c > '9')
           c = getc(input);
       tally[c - '1']++;
       total++;
       /* discard rest of line */
       while ((c = getc(input)) != '\n' && c != EOF)
           ;
   }
   fclose(input);
   
   static float freq[9];
   for (int i = 0; i < 9; i++)
       freq[i] = tally[i] / (float) total;
   return freq;

}

int main(int argc, char **argv) {

   if (argc != 2)
   {
       printf("Usage: benford <file>\n");
       return EXIT_FAILURE;
   }
   float *actual = get_actual_distribution(argv[1]);
   float *expected = benford_distribution();  
   puts("digit\tactual\texpected");
   for (int i = 0; i < 9; i++)
       printf("%d\t%.3f\t%.3f\n", i + 1, actual[i], expected[i]);
   return EXIT_SUCCESS;

}</lang>

Output:

Use with a file which should contain a number on each line.

$ ./benford fib1000.txt
digit   actual  expected
1       0.301   0.301
2       0.177   0.176
3       0.125   0.125
4       0.096   0.097
5       0.080   0.079
6       0.067   0.067
7       0.056   0.058
8       0.053   0.051
9       0.045   0.046

C++

<lang cpp>//to cope with the big numbers , I used the Class Library for Numbers( CLN ) //if used prepackaged you can compile writing "g++ -std=c++11 -lcln yourprogram.cpp -o yourprogram"

  1. include <cln/integer.h>
  2. include <cln/integer_io.h>
  3. include <iostream>
  4. include <algorithm>
  5. include <vector>
  6. include <iomanip>
  7. include <sstream>
  8. include <string>
  9. include <cstdlib>
  10. include <cmath>
  11. include <map>

using namespace cln ;

class NextNum { public :

  NextNum ( cl_I & a , cl_I & b ) : first( a ) , second ( b ) { }
  cl_I operator( )( ) {
     cl_I result = first + second ;
     first = second ;
     second = result ;
     return result ;
  }

private :

  cl_I first ;
  cl_I second ;

} ;

void findFrequencies( const std::vector<cl_I> & fibos , std::map<int , int> &numberfrequencies ) {

  for ( cl_I bignumber : fibos ) {
     std::ostringstream os ;
     fprintdecimal ( os , bignumber ) ;//from header file cln/integer_io.h
     int firstdigit = std::atoi( os.str( ).substr( 0 , 1 ).c_str( )) ;
     auto result = numberfrequencies.insert( std::make_pair( firstdigit , 1 ) ) ;
     if ( ! result.second ) 

numberfrequencies[ firstdigit ]++ ;

  }

}

int main( ) {

  std::vector<cl_I> fibonaccis( 1000 ) ;
  fibonaccis[ 0 ] = 0 ;
  fibonaccis[ 1 ] = 1 ;
  cl_I a = 0 ;
  cl_I b = 1 ;
  //since a and b are passed as references to the generator's constructor
  //they are constantly changed !
  std::generate_n( fibonaccis.begin( ) + 2 , 998 , NextNum( a , b ) ) ;
  std::cout << std::endl ;
  std::map<int , int> frequencies ;
  findFrequencies( fibonaccis , frequencies ) ;
  std::cout << "                found                    expected\n" ;
  for ( int i = 1 ; i < 10 ; i++ ) {
     double found = static_cast<double>( frequencies[ i ] ) / 1000 ;
     double expected = std::log10( 1 + 1 / static_cast<double>( i )) ;
     std::cout << i << " :" << std::setw( 16 ) << std::right << found * 100 << " %" ;
     std::cout.precision( 3 ) ;
     std::cout << std::setw( 26 ) << std::right << expected * 100 << " %\n" ;
  }
  return 0 ;

} </lang>

Output:
                found                    expected
1 :            30.1 %                      30.1 %
2 :            17.7 %                      17.6 %
3 :            12.5 %                      12.5 %
4 :             9.5 %                      9.69 %
5 :               8 %                      7.92 %
6 :             6.7 %                      6.69 %
7 :             5.6 %                       5.8 %
8 :             5.3 %                      5.12 %
9 :             4.5 %                      4.58 %

Clojure

<lang lisp>(ns example

 (:gen-class))

(defn abs [x]

 (if (> x 0)
   x
   (- x)))

(defn calc-benford-stats [digits]

 " Frequencies of digits in data "
 (let [y (frequencies digits)
        tot (reduce + (vals y))]
   [y tot]))

(defn show-benford-stats [v]

 " Prints in percent the actual, Benford expected, and difference"
 (let [fd (map (comp first str) v)]        ; first digit of each record
   (doseq [q (range 1 10)
           :let [[y tot] (calc-benford-stats fd)
                 d (first (str q))         ; reference digit
                 f (/ (get y d 0) tot 0.01)  ; percent of occurence of digit
                 p (* (Math/log10 (/ (inc q) q)) 100)  ; Benford expected percent
                 e (abs (- f p))]]                     ; error (difference)
     (println (format "%3d %10.2f %10.2f %10.2f"
                      q
                      f
                      p
                      e)))))
Generate fibonacci results

(def fib (lazy-cat [0N 1N] (map + fib (rest fib))))

(def fib-digits (map (comp first str) (take 10000 fib)))

(def fib-digits (take 10000 fib)) (def header " found-% expected-% diff")

(println "Fibonacci Results") (println header) (show-benford-stats fib-digits)

Universal Constants from Physics (using first column of data)

(println "Universal Constants from Physics") (println header) (let [

     data-parser (fn [s]
                 (let [x (re-find #"\s{10}-?[0|/\.]*([1-9])" s)]
                   (if (not (nil? x))    ; Skips records without number
                     (second x)
                     x)))
     input (slurp "http://physics.nist.gov/cuu/Constants/Table/allascii.txt")
     y (for [line (line-seq (java.io.BufferedReader.
                              (java.io.StringReader. input)))]
         (data-parser line))
     z (filter identity y)]
 (show-benford-stats z))
Sunspots

(println "Sunspots average count per month since 1749") (println header) (let [

     data-parser (fn [s]
                 (nth (re-find #"(.+?\s){3}([1-9])" s) 2))
     ; Sunspot data loaded from file (saved from ;https://solarscience.msfc.nasa.gov/greenwch/SN_m_tot_V2.0.txt")
     ; (note: attempting to load directly from url causes https Trust issues, so saved to file after loading to Browser)
     input (slurp "SN_m_tot_V2.0.txt")
     y (for [line (line-seq (java.io.BufferedReader.
                              (java.io.StringReader. input)))]
         (data-parser line))]
 (show-benford-stats y))

</lang>

Output:
Fibonacci Results
         found-%    expected-%  diff
  1      30.11      30.10       0.01
  2      17.62      17.61       0.01
  3      12.49      12.49       0.00
  4       9.68       9.69       0.01
  5       7.92       7.92       0.00
  6       6.68       6.69       0.01
  7       5.80       5.80       0.00
  8       5.13       5.12       0.01
  9       4.56       4.58       0.02
Universal Constants from Physics
         found-%    expected-%  diff
  1      34.34      30.10       4.23
  2      18.67      17.61       1.07
  3       9.04      12.49       3.46
  4       8.43       9.69       1.26
  5       8.43       7.92       0.52
  6       7.23       6.69       0.53
  7       3.31       5.80       2.49
  8       5.12       5.12       0.01
  9       5.42       4.58       0.85
Sunspots average count per month since 1749
         found-%    expected-%  diff
  1      37.44      30.10       7.34
  2      16.28      17.61       1.33
  3       7.16      12.49       5.34
  4       6.88       9.69       2.81
  5       6.35       7.92       1.57
  6       6.04       6.69       0.66
  7       7.25       5.80       1.45
  8       5.57       5.12       0.46
  9       5.76       4.58       1.18

CoffeeScript

<lang coffeescript>fibgen = () ->

   a = 1; b = 0
   return () ->
       ([a, b] = [b, a+b])[1]

leading = (x) -> x.toString().charCodeAt(0) - 0x30

f = fibgen()

benford = (0 for i in [1..9]) benford[leading(f()) - 1] += 1 for i in [1..1000]

log10 = (x) -> Math.log(x) * Math.LOG10E

actual = benford.map (x) -> x * 0.001 expected = (log10(1 + 1/x) for x in [1..9])

console.log "Leading digital distribution of the first 1,000 Fibonacci numbers" console.log "Digit\tActual\tExpected" for i in [1..9]

   console.log i + "\t" + actual[i - 1].toFixed(3) + '\t' + expected[i - 1].toFixed(3)</lang>
Output:
Leading digital distribution of the first 1,000 Fibonacci numbers
Digit   Actual  Expected
1       0.301   0.301
2       0.177   0.176
3       0.125   0.125
4       0.096   0.097
5       0.080   0.079
6       0.067   0.067
7       0.056   0.058
8       0.053   0.051
9       0.045   0.046

Common Lisp

<lang lisp>(defun calculate-distribution (numbers)

 "Return the frequency distribution of the most significant nonzero 
  digits in the given list of numbers. The first element of the list 
  is the frequency for digit 1, the second for digit 2, and so on."
 
 (defun nonzero-digit-p (c)
   "Check whether the character is a nonzero digit"
   (and (digit-char-p c) (char/= c #\0)))
 (defun first-digit (n)
   "Return the most significant nonzero digit of the number or NIL if
    there is none."
   (let* ((s (write-to-string n))
          (c (find-if #'nonzero-digit-p s)))
     (when c
       (digit-char-p c))))
 (let ((tally (make-array 9 :element-type 'integer :initial-element 0)))
   (loop for n in numbers 
         for digit = (first-digit n)
         when digit 
         do (incf (aref tally (1- digit))))
   (loop with total = (length numbers)
         for digit-count across tally
         collect (/ digit-count total))))

(defun calculate-benford-distribution ()

 "Return the frequency distribution according to Benford's law.
  The first element of the list is the probability for digit 1, the second 
  element the probability for digit 2, and so on."
 (loop for i from 1 to 9
       collect (log (1+ (/ i)) 10)))

(defun benford (numbers)

 "Print a table of the actual and expected distributions for the given
  list of numbers."
 (let ((actual-distribution (calculate-distribution numbers))
       (expected-distribution (calculate-benford-distribution)))
   (write-line "digit actual expected")
   (format T "~:{~3D~9,3F~8,3F~%~}" 
           (map 'list #'list '(1 2 3 4 5 6 7 8 9)
                             actual-distribution
                             expected-distribution))))</lang>
; *fib1000* is a list containing the first 1000 numbers in the Fibonnaci sequence
> (benford *fib1000*)
digit actual expected
  1    0.301   0.301
  2    0.177   0.176
  3    0.125   0.125
  4    0.096   0.097
  5    0.080   0.079
  6    0.067   0.067
  7    0.056   0.058
  8    0.053   0.051
  9    0.045   0.046

Crystal

Translation of: Ruby

<lang ruby>require "big"

EXPECTED = (1..9).map{ |d| Math.log10(1 + 1.0 / d) }

def fib(n)

 a, b = 0.to_big_i, 1.to_big_i
 (0...n).map { ret, a, b = a, b, a + b; ret }

end

  1. powers of 3 as a test sequence

def power_of_threes(n)

 (0...n).map { |k| 3.to_big_i ** k }

end

def heads(s)

 s.map { |a| a.to_s[0].to_i }

end

def show_dist(title, s)

 s = heads(s)
 c = Array.new(10, 0)
 s.each{ |x| c[x] += 1 }
 siz = s.size
 res = (1..9).map{ |d| c[d] / siz }
 puts "\n    %s Benfords deviation" % title
 res.zip(EXPECTED).each_with_index(1) do |(r, e), i|
   puts "%2d: %5.1f%%  %5.1f%%  %5.1f%%" % [i, r*100, e*100, (r - e).abs*100]
 end

end

def random(n)

 (0...n).map { |i| rand(1..n) }

end

show_dist("fibbed", fib(1000)) show_dist("threes", power_of_threes(1000))

  1. just to show that not all kind-of-random sets behave like that

show_dist("random", random(10000))</lang>

Output:
    fibbed Benfords deviation
 1:  30.1%   30.1%    0.0%
 2:  17.7%   17.6%    0.1%
 3:  12.5%   12.5%    0.0%
 4:   9.5%    9.7%    0.2%
 5:   8.0%    7.9%    0.1%
 6:   6.7%    6.7%    0.0%
 7:   5.6%    5.8%    0.2%
 8:   5.3%    5.1%    0.2%
 9:   4.5%    4.6%    0.1%

    threes Benfords deviation
 1:  30.0%   30.1%    0.1%
 2:  17.7%   17.6%    0.1%
 3:  12.3%   12.5%    0.2%
 4:   9.8%    9.7%    0.1%
 5:   7.9%    7.9%    0.0%
 6:   6.6%    6.7%    0.1%
 7:   5.9%    5.8%    0.1%
 8:   5.2%    5.1%    0.1%
 9:   4.6%    4.6%    0.0%

    random Benfords deviation
 1:  11.2%   30.1%   18.9%
 2:  10.8%   17.6%    6.8%
 3:  10.8%   12.5%    1.7%
 4:  11.0%    9.7%    1.3%
 5:  11.1%    7.9%    3.1%
 6:  10.8%    6.7%    4.1%
 7:  10.8%    5.8%    5.0%
 8:  11.2%    5.1%    6.1%
 9:  12.3%    4.6%    7.7%

D

Translation of: Scala

<lang d>import std.stdio, std.range, std.math, std.conv, std.bigint;

double[2][9] benford(R)(R seq) if (isForwardRange!R && !isInfinite!R) {

   typeof(return) freqs = 0;
   uint seqLen = 0;
   foreach (d; seq)
       if (d != 0) {
           freqs[d.text[0] - '1'][1]++;
           seqLen++;
       }
   foreach (immutable i, ref p; freqs)
       p = [log10(1.0 + 1.0 / (i + 1)), p[1] / seqLen];
   return freqs;

}

void main() {

   auto fibs = recurrence!q{a[n - 1] + a[n - 2]}(1.BigInt, 1.BigInt);
   writefln("%9s %9s %9s", "Actual", "Expected", "Deviation");
   foreach (immutable i, immutable p; fibs.take(1000).benford)
       writefln("%d: %5.2f%% | %5.2f%% | %5.4f%%",
                i+1, p[1] * 100, p[0] * 100, abs(p[1] - p[0]) * 100);

}</lang>

Output:
   Actual  Expected Deviation
1: 30.10% | 30.10% | 0.0030%
2: 17.70% | 17.61% | 0.0908%
3: 12.50% | 12.49% | 0.0061%
4:  9.60% |  9.69% | 0.0910%
5:  8.00% |  7.92% | 0.0818%
6:  6.70% |  6.69% | 0.0053%
7:  5.60% |  5.80% | 0.1992%
8:  5.30% |  5.12% | 0.1847%
9:  4.50% |  4.58% | 0.0757%

Alternative Version

The output is the same. <lang d>import std.stdio, std.range, std.math, std.conv, std.bigint,

      std.algorithm, std.array;

auto benford(R)(R seq) if (isForwardRange!R && !isInfinite!R) {

   return seq.filter!q{a != 0}.map!q{a.text[0]-'1'}.array.sort().group;

}

void main() {

   auto fibs = recurrence!q{a[n - 1] + a[n - 2]}(1.BigInt, 1.BigInt);
   auto expected = iota(1, 10).map!(d => log10(1.0 + 1.0 / d));
   enum N = 1_000;
   writefln("%9s %9s %9s", "Actual", "Expected", "Deviation");
   foreach (immutable i, immutable f; fibs.take(N).benford)
       writefln("%d: %5.2f%% | %5.2f%% | %5.4f%%", i + 1,
                f * 100.0 / N, expected[i] * 100,
                abs((f / double(N)) - expected[i]) * 100);

}</lang>

Delphi

See Pascal.

Elixir

<lang elixir>defmodule Benfords_law do

 def distribution(n), do: :math.log10( 1 + (1 / n) )
 
 def task(total \\ 1000) do
   IO.puts "Digit	Actual	Benfords expected"
   fib(total)
   |> Enum.group_by(fn i -> hd(to_char_list(i)) end)
   |> Enum.map(fn {key,list} -> {key - ?0, length(list)} end)
   |> Enum.sort
   |> Enum.each(fn {x,len} -> IO.puts "#{x}	#{len / total}	#{distribution(x)}" end)
 end
 
 defp fib(n) do                        # suppresses zero
   Stream.unfold({1,1}, fn {a,b} -> {a,{b,a+b}} end) |> Enum.take(n)
 end

end

Benfords_law.task</lang>

Output:
Digit   Actual  Benfords expected
1       0.301   0.3010299956639812
2       0.177   0.17609125905568124
3       0.125   0.12493873660829993
4       0.096   0.09691001300805642
5       0.08    0.07918124604762482
6       0.067   0.06694678963061322
7       0.056   0.05799194697768673
8       0.053   0.05115252244738129
9       0.045   0.04575749056067514

Erlang

<lang Erlang> -module( benfords_law ). -export( [actual_distribution/1, distribution/1, task/0] ).

actual_distribution( Ns ) -> lists:foldl( fun first_digit_count/2, dict:new(), Ns ).

distribution( N ) -> math:log10( 1 + (1 / N) ).

task() -> Total = 1000, Fibonaccis = fib( Total ), Actual_dict = actual_distribution( Fibonaccis ), Keys = lists:sort( dict:fetch_keys( Actual_dict) ), io:fwrite( "Digit Actual Benfords expected~n" ), [io:fwrite("~p ~p ~p~n", [X, dict:fetch(X, Actual_dict) / Total, distribution(X)]) || X <- Keys].


fib( N ) -> fib( N, 0, 1, [] ). fib( 0, Current, _, Acc ) -> lists:reverse( [Current | Acc] ); fib( N, Current, Next, Acc ) -> fib( N-1, Next, Current+Next, [Current | Acc] ).

first_digit_count( 0, Dict ) -> Dict; first_digit_count( N, Dict ) -> [Key | _] = erlang:integer_to_list( N ), dict:update_counter( Key - 48, 1, Dict ). </lang>

Output:
7> benfords_law:task().
Digit   Actual  Benfords expected
1       0.301   0.3010299956639812
2       0.177   0.17609125905568124
3       0.125   0.12493873660829993
4       0.096   0.09691001300805642
5       0.08    0.07918124604762482
6       0.067   0.06694678963061322
7       0.056   0.05799194697768673
8       0.053   0.05115252244738129
9       0.045   0.04575749056067514

Factor

<lang factor>USING: assocs compiler.tree.propagation.call-effect formatting kernel math math.functions math.statistics math.text.utils sequences ; IN: rosetta-code.benfords-law

expected ( n -- x ) recip 1 + log10 ;
next-fib ( vec -- vec' )
   [ last2 ] keep [ + ] dip [ push ] keep ;
   
data ( -- seq ) V{ 1 1 } clone 998 [ next-fib ] times ;
1st-digit ( n -- m ) 1 digit-groups last ;
leading ( -- seq ) data [ 1st-digit ] map ;
.header ( -- )
   "Digit" "Expected" "Actual" "%-10s%-10s%-10s\n" printf ;
   
digit-report ( digit digit-count -- digit expected actual )
   dupd [ expected ] dip 1000 /f ;
   
.digit-report ( digit digit-count -- )
   digit-report "%-10d%-10.4f%-10.4f\n" printf ;
main ( -- )
   .header leading histogram [ .digit-report ] assoc-each ;
   

MAIN: main</lang>

Output:
Digit     Expected  Actual    
1         0.3010    0.3010    
2         0.1761    0.1770    
3         0.1249    0.1250    
4         0.0969    0.0960    
5         0.0792    0.0800    
6         0.0669    0.0670    
7         0.0580    0.0560    
8         0.0512    0.0530    
9         0.0458    0.0450    

Forth

<lang forth>: 3drop drop 2drop ;

f2drop fdrop fdrop ;
int-array create cells allot does> swap cells + ;
1st-fib 0e 1e ;
next-fib ftuck f+ ;
1st-digit ( fp -- n )
   pad 6 represent 3drop pad c@ [char] 0 - ;

10 int-array counts

tally
   0 counts 10 cells erase
   1st-fib
   1000 0 DO
       1 fdup 1st-digit counts +!
       next-fib
   LOOP f2drop ;
benford ( d -- fp )
   s>f 1/f 1e f+ flog ;
tab 9 emit ;
heading ( -- )
   cr ." Leading digital distribution of the first 1,000 Fibonacci numbers:"
   cr ." Digit" tab ." Actual" tab ." Expected" ;
.fixed ( n -- ) \ print count as decimal fraction
   s>d <# # # # [char] . hold #s #> type space ;
report ( -- )
   precision  3 set-precision
   heading
   10 1 DO
       cr i 3 .r
       tab i counts @ .fixed
       tab i benford f.
   LOOP
   set-precision ;
compute-benford tally report ;</lang>
Output:
Gforth 0.7.2, Copyright (C) 1995-2008 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type `license'
Type `bye' to exit
compute-benford 
Leading digital distribution of the first 1,000 Fibonacci numbers:
Digit	Actual	Expected
  1	0.301 	0.301 
  2	0.177 	0.176 
  3	0.125 	0.125 
  4	0.096 	0.0969 
  5	0.080 	0.0792 
  6	0.067 	0.0669 
  7	0.056 	0.058 
  8	0.053 	0.0512 
  9	0.045 	0.0458  ok

Fortran

FORTRAN 90. Compilation and output of this program using emacs compile command and a fairly obvious Makefile entry: <lang fortran>-*- mode: compilation; default-directory: "/tmp/" -*- Compilation started at Sat May 18 01:13:00

a=./f && make $a && $a f95 -Wall -ffree-form f.F -o f

 0.301030010      0.176091254      0.124938756       9.69100147E-02   7.91812614E-02   6.69467747E-02   5.79919666E-02   5.11525236E-02   4.57575098E-02 THE LAW
 0.300999999      0.177000001      0.125000000       9.60000008E-02   7.99999982E-02   6.70000017E-02   5.70000000E-02   5.29999994E-02   4.50000018E-02 LEADING FIBONACCI DIGIT

Compilation finished at Sat May 18 01:13:00</lang>

<lang fortran>subroutine fibber(a,b,c,d)

 ! compute most significant digits, Fibonacci like.
 implicit none
 integer (kind=8), intent(in) :: a,b
 integer (kind=8), intent(out) :: c,d
 d = a + b
 if (15 .lt. log10(float(d))) then
   c = b/10
   d = d/10
 else
   c = b
 endif

end subroutine fibber

integer function leadingDigit(a)

 implicit none
 integer (kind=8), intent(in) :: a
 integer (kind=8) :: b
 b = a
 do while (9 .lt. b)
   b = b/10
 end do
 leadingDigit = transfer(b,leadingDigit)

end function leadingDigit

real function benfordsLaw(a)

 implicit none
 integer, intent(in) :: a
 benfordsLaw = log10(1.0 + 1.0 / a)

end function benfordsLaw

program benford

 implicit none
 interface
   subroutine fibber(a,b,c,d)
     implicit none
     integer (kind=8), intent(in) :: a,b
     integer (kind=8), intent(out) :: c,d
   end subroutine fibber
   integer function leadingDigit(a)
     implicit none
     integer (kind=8), intent(in) :: a
   end function leadingDigit
   real function benfordsLaw(a)
     implicit none
     integer, intent(in) :: a
   end function benfordsLaw
 end interface
 integer (kind=8) :: a, b, c, d
 integer :: i, count(10)
 data count/10*0/
 a = 1
 b = 1
 do i = 1, 1001
   count(leadingDigit(a)) = count(leadingDigit(a)) + 1
   call fibber(a,b,c,d)
   a = c
   b = d
 end do
 write(6,*) (benfordsLaw(i),i=1,9),'THE LAW'
 write(6,*) (count(i)/1000.0 ,i=1,9),'LEADING FIBONACCI DIGIT'

end program benford</lang>

FreeBASIC

Library: GMP

<lang freebasic>' version 27-10-2016 ' compile with: fbc -s console

  1. Define max 1000 ' total number of Fibonacci numbers
  2. Define max_sieve 15485863 ' should give 1,000,000
  1. Include Once "gmp.bi" ' uses the GMP libary

Dim As ZString Ptr z_str Dim As ULong n, d ReDim As ULong digit(1 To 9) Dim As Double expect, found

Dim As mpz_ptr fib1, fib2 fib1 = Allocate(Len(__mpz_struct)) : Mpz_init_set_ui(fib1, 0) fib2 = Allocate(Len(__mpz_struct)) : Mpz_init_set_ui(fib2, 1)

digit(1) = 1 ' fib2 For n = 2 To max

   Swap fib1, fib2                   ' fib1 = 1, fib2 = 0
   mpz_add(fib2, fib1, fib2)         ' fib1 = 1, fib2 = 1 (fib1 + fib2)
   z_str = mpz_get_str(0, 10, fib2)
   d = Val(Left(*z_str, 1))          ' strip the 1 digit on the left off
   digit(d) = digit(d) +1

Next

mpz_clear(fib1) : DeAllocate(fib1) mpz_clear(fib2) : DeAllocate(fib2)

Print Print "First 1000 Fibonacci numbers" Print "nr: total found expected difference"

For d = 1 To 9

   n = digit(d)
   found = n / 10
   expect = (Log(1 + 1 / d) / Log(10)) * 100
   Print Using " ##  #####  ###.## %   ###.## %    ##.### %"; _
                           d; n ; found; expect; expect - found  

Next


ReDim digit(1 To 9) ReDim As UByte sieve(max_sieve)

'For d = 4 To max_sieve Step 2 ' sieve(d) = 1 'Next Print : Print "start sieve" For d = 3 To sqr(max_sieve)

   If sieve(d) = 0 Then
       For n = d * d To max_sieve Step d * 2
           sieve(n) = 1
       Next
   End If

Next

digit(2) = 1 ' 2

Print "start collecting first digits" For n = 3 To max_sieve Step 2

   If sieve(n) = 0 Then
       d = Val(Left(Trim(Str(n)), 1))
       digit(d) = digit(d) +1
   End If

Next

Dim As ulong total For n = 1 To 9

   total = total + digit(n)

Next

Print Print "First";total; " primes" Print "nr: total found expected difference"

For d = 1 To 9

   n = digit(d)
   found = n / total * 100
   expect = (Log(1 + 1 / d) / Log(10)) * 100
   Print Using " ##  ########  ###.## %   ###.## %    ###.### %"; _
                               d; n ; found; expect; expect - found  

Next


' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
First 1000 Fibonacci numbers
nr:  total     found   expected  difference
  1    301   30.10 %    30.10 %     0.003 %
  2    177   17.70 %    17.61 %    -0.091 %
  3    125   12.50 %    12.49 %    -0.006 %
  4     96    9.60 %     9.69 %     0.091 %
  5     80    8.00 %     7.92 %    -0.082 %
  6     67    6.70 %     6.69 %    -0.005 %
  7     56    5.60 %     5.80 %     0.199 %
  8     53    5.30 %     5.12 %    -0.185 %
  9     45    4.50 %     4.58 %     0.076 %

start sieve
start collecting first digits

First1000000 primes
nr:     total     found   expected   difference
  1    415441   41.54 %    30.10 %    -11.441 %
  2     77025    7.70 %    17.61 %      9.907 %
  3     75290    7.53 %    12.49 %      4.965 %
  4     74114    7.41 %     9.69 %      2.280 %
  5     72951    7.30 %     7.92 %      0.623 %
  6     72257    7.23 %     6.69 %     -0.531 %
  7     71564    7.16 %     5.80 %     -1.357 %
  8     71038    7.10 %     5.12 %     -1.989 %
  9     70320    7.03 %     4.58 %     -2.456 %

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

In this page you can see the program(s) related to this task and their results.

Go

<lang go>package main

import (

   "fmt"
   "math"

)

func Fib1000() []float64 {

   a, b, r := 0., 1., [1000]float64{}
   for i := range r {
       r[i], a, b = b, b, b+a
   }
   return r[:]

}

func main() {

   show(Fib1000(), "First 1000 Fibonacci numbers")

}

func show(c []float64, title string) {

   var f [9]int
   for _, v := range c {
       f[fmt.Sprintf("%g", v)[0]-'1']++
   }
   fmt.Println(title)
   fmt.Println("Digit  Observed  Predicted")
   for i, n := range f {
       fmt.Printf("  %d  %9.3f  %8.3f\n", i+1, float64(n)/float64(len(c)),
           math.Log10(1+1/float64(i+1)))
   }

}</lang>

Output:
First 1000 Fibonacci numbers
Digit  Observed  Predicted
  1      0.301     0.301
  2      0.177     0.176
  3      0.125     0.125
  4      0.096     0.097
  5      0.080     0.079
  6      0.067     0.067
  7      0.056     0.058
  8      0.053     0.051
  9      0.045     0.046

Groovy

Solution:
Uses Fibonacci sequence analytic formula

Translation of: Java

<lang groovy>def tallyFirstDigits = { size, generator ->

   def population = (0..<size).collect { generator(it) }
   def firstDigits = [0]*10
   population.each { number ->
       firstDigits[(number as String)[0] as int] ++
   }
   firstDigits

}</lang>

Test: <lang groovy>def digitCounts = tallyFirstDigits(1000, aFib) println "d actual predicted" (1..<10).each {

   printf ("%d %10.6f %10.6f\n", it, digitCounts[it]/1000, Math.log10(1.0 + 1.0/it))

}</lang>

Output:

d    actual    predicted
1   0.301000   0.301030
2   0.177000   0.176091
3   0.125000   0.124939
4   0.095000   0.096910
5   0.080000   0.079181
6   0.067000   0.066947
7   0.056000   0.057992
8   0.053000   0.051153
9   0.045000   0.045757

Haskell

<lang haskell>import qualified Data.Map as M import Data.Char (digitToInt)

fstdigit :: Integer -> Int fstdigit = digitToInt . head . show

n = 1000 :: Int

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fibdata = map fstdigit $ take n fibs

freqs = M.fromListWith (+) $ zip fibdata (repeat 1)

tab :: [(Int, Double, Double)] tab =

 [ ( d
   , fromIntegral (M.findWithDefault 0 d freqs) / fromIntegral n
   , logBase 10.0 $ 1 + 1 / fromIntegral d)
 | d <- [1 .. 9] ]

main = print tab</lang>

Output:
[(1,0.301,0.301029995663981),
(2,0.177,0.176091259055681),
(3,0.125,0.1249387366083),
(4,0.096,0.0969100130080564),
(5,0.08,0.0791812460476248),
(6,0.067,0.0669467896306132),
(7,0.056,0.0579919469776867),
(8,0.053,0.0511525224473813),
(9,0.045,0.0457574905606751)]

Icon and Unicon

The following solution works in both languages.

<lang unicon>global counts, total

procedure main()

  counts := table(0)
  total := 0.0
  every benlaw(fib(1 to 1000))
  every i := 1 to 9 do 
     write(i,": ",right(100*counts[string(i)]/total,9)," ",100*P(i))

end

procedure benlaw(n)

  if counts[n ? (tab(upto('123456789')),move(1))] +:= 1 then total +:= 1

end

procedure P(d)

  return log(1+1.0/d, 10)

end

procedure fib(n) # From Fibonacci Sequence task

   return fibMat(n)[1]

end

procedure fibMat(n)

   if n <= 0 then return [0,0]
   if n  = 1 then return [1,0]
   fp := fibMat(n/2)
   c := fp[1]*fp[1] + fp[2]*fp[2]
   d := fp[1]*(fp[1]+2*fp[2])
   if n%2 = 1 then return [c+d, d]
   else return [d, c]

end</lang>

Sample run:

->benlaw
1:      30.1 30.10299956639811
2:      17.7 17.60912590556812
3:      12.5 12.49387366082999
4:       9.6 9.69100130080564
5:       8.0 7.918124604762481
6:       6.7 6.694678963061322
7:       5.6 5.799194697768673
8:       5.3 5.115252244738128
9:       4.5 4.575749056067514
->

J

We show the correlation coefficient of Benford's law with the leading digits of the first 1000 Fibonacci numbers is almost unity. <lang J>log10 =: 10&^. benford =: log10@:(1+%) assert '0.30 0.18 0.12 0.10 0.08 0.07 0.06 0.05 0.05' -: 5j2 ": benford >: i. 9


append_next_fib =: , +/@:(_2&{.) assert 5 8 13 -: append_next_fib 5 8

leading_digits =: {.@":&> assert '581' -: leading_digits 5 8 13x

count =: #/.~ /: ~. assert 2 1 3 4 -: count 'XCXBAXACXC' NB. 2 A's, 1 B, 3 C's, and some X's.

normalize =: % +/ assert 1r3 2r3 -: normalize 1 2x

FIB =: append_next_fib ^: (1000-#) 1 1 LDF =: leading_digits FIB


TALLY_BY_KEY =: count LDF assert 9 -: # TALLY_BY_KEY NB. If all of [1-9] are present then we know what the digits are.

mean =: +/ % # center=: - mean mp =: $:~ :(+/ .*) num =: mp&:center den =: %:@:(*&:(+/@:(*:@:center))) r =: num % den NB. r is the LibreOffice correl function assert '_0.982' -: 6j3 ": 1 2 3 r 6 5 3 NB. confirmed using LibreOffice correl function


assert '0.9999' -: 6j4 ": (normalize TALLY_BY_KEY) r benford >: i.9

assert '0.9999' -: 6j4 ": TALLY_BY_KEY r benford >: i.9 NB. Of course we don't need normalization</lang>

Java

<lang Java>import java.math.BigInteger; import java.util.Locale;

public class BenfordsLaw {

   private static BigInteger[] generateFibonacci(int n) {
       BigInteger[] fib = new BigInteger[n];
       fib[0] = BigInteger.ONE;
       fib[1] = BigInteger.ONE;
       for (int i = 2; i < fib.length; i++) {
           fib[i] = fib[i - 2].add(fib[i - 1]);
       }
       return fib;
   }
   public static void main(String[] args) {
       BigInteger[] numbers = generateFibonacci(1000);
       int[] firstDigits = new int[10];
       for (BigInteger number : numbers) {
           firstDigits[Integer.valueOf(number.toString().substring(0, 1))]++;
       }
       for (int i = 1; i < firstDigits.length; i++) {
           System.out.printf(Locale.ROOT, "%d %10.6f %10.6f%n",
                   i, (double) firstDigits[i] / numbers.length, Math.log10(1.0 + 1.0 / i));
       }
   }

}</lang> The output is:

1   0.301000   0.301030
2   0.177000   0.176091
3   0.125000   0.124939
4   0.096000   0.096910
5   0.080000   0.079181
6   0.067000   0.066947
7   0.056000   0.057992
8   0.053000   0.051153
9   0.045000   0.045757

To use other number sequences, implement a suitable NumberGenerator, construct a Benford instance with it and print it.

JavaScript

<lang javascript>const fibseries = n => [...Array(n)]

   .reduce(
       (fib, _, i) => i < 2 ? (
           fib
       ) : fib.concat(fib[i - 1] + fib[i - 2]),
       [1, 1]
   );

const benford = array => [1, 2, 3, 4, 5, 6, 7, 8, 9]

   .map(val => [val, array
       .reduce(
           (sum, item) => sum + (
               `${item}` [0] === `${val}`
           ),
           0
       ) / array.length, Math.log10(1 + 1 / val)
   ]);

console.log(benford(fibseries(1000)))</lang>

Output:
0: (3) [1, 0.301, 0.3010299956639812]
1: (3) [2, 0.177, 0.17609125905568124]
2: (3) [3, 0.125, 0.12493873660829992]
3: (3) [4, 0.096, 0.09691001300805642]
4: (3) [5, 0.08, 0.07918124604762482]
5: (3) [6, 0.067, 0.06694678963061322]
6: (3) [7, 0.056, 0.05799194697768673]
7: (3) [8, 0.053, 0.05115252244738129]
8: (3) [9, 0.045, 0.04575749056067514]

jq

Works with: jq version 1.4

This implementation shows the observed and expected number of occurrences together with the χ² statistic.

For the sake of being self-contained, the following includes a generator for Fibonacci numbers, and a prime number generator that is inefficient but brief and can generate numbers within an arbitrary range.<lang jq># Generate the first n Fibonacci numbers: 1, 1, ...

  1. Numerical accuracy is insufficient beyond about 1450.

def fibonacci(n):

 # input: [f(i-2), f(i-1), countdown]
 def fib: (.[0] + .[1]) as $sum
          | if .[2] <= 0 then empty
            elif .[2] == 1 then $sum
            else $sum, ([ .[1], $sum, .[2] - 1 ] | fib)
            end;
 [1, 0, n] | fib ;
  1. is_prime is tailored to work with jq 1.4

def is_prime:

 if . == 2 then true
 else 2 < . and . % 2 == 1 and
      . as $in
      | (($in + 1) | sqrt) as $m
      | (((($m - 1) / 2) | floor) + 1) as $max
      | reduce range(1; $max) as $i
          (true; if . then ($in % ((2 * $i) + 1)) > 0 else false end)
 end ;
  1. primes in [m,n)

def primes(m;n):

 range(m;n) | select(is_prime);

def runs:

 reduce .[] as $item
   ( [];
     if . == [] then [ [ $item, 1] ] 
     else  .[length-1] as $last
           | if $last[0] == $item
             then (.[0:length-1] + [ [$item, $last[1] + 1] ] )
             else . + $item, 1
             end
     end ) ;
  1. Inefficient but brief:

def histogram: sort | runs;

def benford_probability:

 tonumber
 | if . > 0 then ((1 + (1 /.)) | log) / (10|log) 
   else 0
   end ;
  1. benford takes a stream and produces an array of [ "d", observed, expected ]

def benford(stream):

 [stream | tostring | .[0:1] ] | histogram as $histogram
 | reduce ($histogram | .[] | .[0]) as $digit
     ([]; . + [$digit, ($digit|benford_probability)] ) 
 | map(select(type == "number")) as $probabilities
 | ([ $histogram | .[] | .[1] ] | add) as $total
 | reduce range(0; $histogram|length) as $i
     ([]; . + ([$histogram[$i] + [$total * $probabilities[$i]] ] ) ) ;
  1. given an array of [value, observed, expected] values,
  2. produce the χ² statistic

def chiSquared:

 reduce .[] as $triple
   (0;
    if $triple[2] == 0 then .
    else . + ($triple[1] as $o | $triple[2] as $e | ($o - $e) | (.*.)/$e)
    end) ;
  1. truncate n places after the decimal point;
  2. return a string since it can readily be converted back to a number

def precision(n):

 tostring as $s | $s | index(".")
 | if . then $s[0:.+n+1] else $s end ;
  1. Right-justify but do not truncate

def rjustify(n):

 length as $length | if n <= $length then . else " " * (n-$length) + . end;
  1. Attempt to align decimals so integer part is in a field of width n

def align(n):

 index(".") as $ix
 | if n < $ix then .
   elif $ix then (.[0:$ix]|rjustify(n)) +.[$ix:]
   else rjustify(n)
   end ;
  1. given an array of [value, observed, expected] values,
  2. produce rows of the form: value observed expected

def print_rows(prec):

 .[] | map( precision(prec)|align(5) + "  ") | add ;

def report(heading; stream):

   benford(stream) as $array
   | heading,
     " Digit Observed Expected",
     ( $array | print_rows(2) ),
     "",
     " χ² = \( $array | chiSquared | precision(4))",
     ""

def task:

 report("First 100 fibonacci numbers:"; fibonacci( 100) ),
 report("First 1000 fibonacci numbers:"; fibonacci(1000) ),
 report("Primes less than 1000:"; primes(2;1000)),
 report("Primes between 1000 and 10000:"; primes(1000;10000)),
 report("Primes less than 100000:"; primes(2;100000)) 

task</lang>

Output:
First 100 fibonacci numbers:
 Digit Observed Expected
    1     30     30.10  
    2     18     17.60  
    3     13     12.49  
    4      9      9.69  
    5      8      7.91  
    6      6      6.69  
    7      5      5.79  
    8      7      5.11  
    9      4      4.57  

 χ² = 1.0287

First 1000 fibonacci numbers:
 Digit Observed Expected
    1    301    301.02  
    2    177    176.09  
    3    125    124.93  
    4     96     96.91  
    5     80     79.18  
    6     67     66.94  
    7     56     57.99  
    8     53     51.15  
    9     45     45.75  

 χ² = 0.1694

Primes less than 1000:
 Digit Observed Expected
    1     25     50.57  
    2     19     29.58  
    3     19     20.98  
    4     20     16.28  
    5     17     13.30  
    6     18     11.24  
    7     18      9.74  
    8     17      8.59  
    9     15      7.68  

 χ² = 45.0162

Primes between 1000 and 10000:
 Digit Observed Expected
    1    135    319.39  
    2    127    186.83  
    3    120    132.55  
    4    119    102.82  
    5    114     84.01  
    6    117     71.03  
    7    107     61.52  
    8    110     54.27  
    9    112     48.54  

 χ² = 343.5583

Primes less than 100000:
 Digit Observed Expected
    1   1193   2887.47  
    2   1129   1689.06  
    3   1097   1198.41  
    4   1069    929.56  
    5   1055    759.50  
    6   1013    642.15  
    7   1027    556.25  
    8   1003    490.65  
    9   1006    438.90  

 χ² = 3204.8072

Julia

<lang Julia>fib(n) = ([one(n) one(n) ; one(n) zero(n)]^n)[1,2]

ben(l) = [count(x->x==i, map(n->string(n)[1],l)) for i='1':'9']./length(l)

benford(l) = [Number[1:9;] ben(l) log10(1.+1./[1:9;])]</lang>

Output:
julia> benford([fib(big(n)) for n = 1:1000])
9x3 Array{Number,2}:
 1  0.301  0.30103  
 2  0.177  0.176091 
 3  0.125  0.124939 
 4  0.096  0.09691  
 5  0.08   0.0791812
 6  0.067  0.0669468
 7  0.056  0.0579919
 8  0.053  0.0511525
 9  0.045  0.0457575

Kotlin

<lang scala>import java.math.BigInteger

interface NumberGenerator {

   val numbers: Array<BigInteger>

}

class Benford(ng: NumberGenerator) {

   override fun toString() = str
   private val firstDigits = IntArray(9)
   private val count = ng.numbers.size.toDouble()
   private val str: String
   init {
       for (n in ng.numbers) {
           firstDigits[n.toString().substring(0, 1).toInt() - 1]++
       }
       str = with(StringBuilder()) {
           for (i in firstDigits.indices) {
               append(i + 1).append('\t').append(firstDigits[i] / count)
               append('\t').append(Math.log10(1 + 1.0 / (i + 1))).append('\n')
           }
           toString()
       }
   }

}

object FibonacciGenerator : NumberGenerator {

   override val numbers: Array<BigInteger> by lazy {
       val fib = Array<BigInteger>(1000, { BigInteger.ONE })
       for (i in 2 until fib.size)
           fib[i] = fib[i - 2].add(fib[i - 1])
       fib
   }

}

fun main(a: Array<String>) = println(Benford(FibonacciGenerator))</lang>

Liberty BASIC

Using function from http://rosettacode.org/wiki/Fibonacci_sequence#Liberty_BASIC <lang lb> dim bin(9)

N=1000 for i = 0 to N-1

   num$ = str$(fiboI(i))
   d=val(left$(num$,1))
   'print num$, d
   bin(d)=bin(d)+1

next print

print "Digit", "Actual freq", "Expected freq" for i = 1 to 9

   print i, bin(i)/N, using("#.###", P(i))

next


function P(d)

   P = log10(d+1)-log10(d)

end function

function log10(x)

   log10 = log(x)/log(10)

end function

function fiboI(n)

   a = 0
   b = 1
   for i = 1 to n
       temp = a + b
       a = b
       b = temp
   next i
   fiboI = a

end function </lang>

Output:
Digit         Actual freq   Expected freq
1             0.301         0.301
2             0.177         0.176
3             0.125         0.125
4             0.095         0.097
5             0.08          0.079
6             0.067         0.067
7             0.056         0.058
8             0.053         0.051
9             0.045         0.046

Lua

<lang lua>actual = {} expected = {} for i = 1, 9 do

   actual[i] = 0
   expected[i] = math.log10(1 + 1 / i)

end

n = 0 file = io.open("fibs1000.txt", "r") for line in file:lines() do

   digit = string.byte(line, 1) - 48
   actual[digit] = actual[digit] + 1
   n = n + 1

end file:close()

print("digit actual expected") for i = 1, 9 do

   print(i, actual[i] / n, expected[i])

end</lang>

Output:
digit   actual  expected
1       0.301   0.30102999566398
2       0.177   0.17609125905568
3       0.125   0.1249387366083
4       0.096   0.096910013008056
5       0.08    0.079181246047625
6       0.067   0.066946789630613
7       0.056   0.057991946977687
8       0.053   0.051152522447381
9       0.045   0.045757490560675

Mathematica / Wolfram Language

<lang mathematica>fibdata = Array[First@IntegerDigits@Fibonacci@# &, 1000]; Table[{d, N@Count[fibdata, d]/Length@fibdata, Log10[1. + 1/d]}, {d, 1,

   9}] // Grid</lang>
Output:
1	0.301	0.30103
2	0.177	0.176091
3	0.125	0.124939
4	0.096	0.09691
5	0.08	0.0791812
6	0.067	0.0669468
7	0.056	0.0579919
8	0.053	0.0511525
9	0.045	0.0457575

NetRexx

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

runSample(arg) return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method brenfordDeveation(nlist = Rexx[]) public static

 observed = 0
 loop n_ over nlist
   d1 = n_.left(1)
   if d1 = 0 then iterate n_
   observed[d1] = observed[d1] + 1
   end n_
 say ' '.right(4) 'Observed'.right(11) 'Expected'.right(11) 'Deviation'.right(11)
 loop n_ = 1 to 9
   actual = (observed[n_] / (nlist.length - 1))
   expect = Rexx(Math.log10(1 + 1 / n_))
   deviat = expect - actual
   say n_.right(3)':' (actual * 100).format(3, 6)'%' (expect * 100).format(3, 6)'%' (deviat * 100).abs().format(3, 6)'%'
   end n_
 return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method fibonacciList(size = 1000) public static returns Rexx[]

 fibs = Rexx[size + 1]
 fibs[0] = 0
 fibs[1] = 1
 loop n_ = 2 to size
   fibs[n_] = fibs[n_ - 1] + fibs[n_ - 2]
   end n_
 return fibs
 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static

 parse arg n_ .
 if n_ =  then n_ = 1000
 fibList = fibonacciList(n_)
 say 'Fibonacci sequence to' n_
 brenfordDeveation(fibList)
 return

</lang>

Output:
Fibonacci sequence to 1000
        Observed    Expected   Deviation
  1:  30.100000%  30.103000%   0.003000%
  2:  17.700000%  17.609126%   0.090874%
  3:  12.500000%  12.493874%   0.006127%
  4:   9.600000%   9.691001%   0.091001%
  5:   8.000000%   7.918125%   0.081875%
  6:   6.700000%   6.694679%   0.005321%
  7:   5.600000%   5.799195%   0.199195%
  8:   5.300000%   5.115252%   0.184748%
  9:   4.500000%   4.575749%   0.075749%

Nim

<lang Nim>import math import strformat

type

 # Non zero digit range.
 Digit = range[1..9]
 # Count array used to compute a distribution.
 Count = array[Digit, Natural]
 # Array to store frequencies.
 Distribution = array[Digit, float]


  1. Fibonacci numbers generation.

import bignum

proc fib(count: int): seq[Int] =

 ## Build a sequence of "count auccessive Finonacci numbers.
 result.setLen(count)
 result[0..1] = @[newInt(1), newInt(1)]
 for i in 2..<count:
   result[i] = result[i-1] + result[i-2]


  1. Benford distribution.

proc benfordDistrib(): Distribution =

 ## Compute Benford distribution.
 for d in 1..9:
   result[d] = log10(1 + 1 / d)

const BenfordDist = benfordDistrib()

  1. ---------------------------------------------------------------------------------------------------

template firstDigit(n: Int): Digit =

 # Return the first (non null) digit of "n".
 ord(($n)[0]) - ord('0')
  1. ---------------------------------------------------------------------------------------------------

proc actualDistrib(s: openArray[Int]): Distribution =

 ## Compute actual distribution of first digit.
 ## Null values are ignored.
 var counts: Count
 for val in s:
   if not val.isZero():
     inc counts[val.firstDigit()]
 let total = sum(counts)
 for d in 1..9:
   result[d] = counts[d] / total
  1. ---------------------------------------------------------------------------------------------------

proc display(distrib: Distribution) =

 ## Display an actual distribution versus the Benford reference distribution.
 echo "d   actual   expected"
 echo "---------------------"
 for d in 1..9:
   echo fmt"{d}   {distrib[d]:6.4f}    {BenfordDist[d]:6.4f}"


  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

let fibSeq = fib(1000) let distrib = actualDistrib(fibSeq) echo "Fibonacci numbers first digit distribution:\n" distrib.display()</lang>

Output:
Fibonacci numbers first digit distribution:

d   actual   expected
---------------------
1   0.3010    0.3010
2   0.1770    0.1761
3   0.1250    0.1249
4   0.0960    0.0969
5   0.0800    0.0792
6   0.0670    0.0669
7   0.0560    0.0580
8   0.0530    0.0512
9   0.0450    0.0458

Oberon-2

Works with: oo2c version 2

<lang oberon2> MODULE BenfordLaw; IMPORT

 LRealStr,
 LRealMath,
 Out := NPCT:Console;

VAR

 r: ARRAY 1000 OF LONGREAL;
 d: ARRAY 10 OF LONGINT;
 a: LONGREAL;
 i: LONGINT;

PROCEDURE Fibb(VAR r: ARRAY OF LONGREAL); VAR

 i: LONGINT;

BEGIN

 r[0] := 1.0;r[1] := 1.0;
 FOR i := 2 TO LEN(r) - 1 DO
   r[i] := r[i - 2] + r[i - 1]
 END

END Fibb;

PROCEDURE Dist(r [NO_COPY]: ARRAY OF LONGREAL; VAR d: ARRAY OF LONGINT); VAR

 i: LONGINT;
 str: ARRAY 256 OF CHAR;

BEGIN

 FOR i := 0 TO LEN(r) - 1 DO
   LRealStr.RealToStr(r[i],str);
   INC(d[ORD(str[0]) - ORD('0')])
 END

END Dist;

BEGIN

 Fibb(r);
 Dist(r,d);
 Out.String("First 1000 fibonacci numbers: ");Out.Ln;
 Out.String(" digit ");Out.String(" observed ");Out.String(" predicted ");Out.Ln;
 FOR i := 1 TO LEN(d) - 1 DO
   a := LRealMath.ln(1.0 + 1.0 / i ) / LRealMath.ln(10);
   Out.Int(i,5);Out.LongRealFix(d[i] / 1000.0,9,3);Out.LongRealFix(a,10,3);Out.Ln
 END

END BenfordLaw. </lang>

Output:
First 1000 fibonacci numbers: 
 digit  observed  predicted 
    1    0.301     0.301
    2    0.177     0.176
    3    0.125     0.125
    4    0.096     0.097
    5    0.080     0.079
    6    0.067     0.067
    7    0.056     0.058
    8    0.053     0.051
    9    0.045     0.046

OCaml

For the Fibonacci sequence, we use the function from https://rosettacode.org/wiki/Fibonacci_sequence#Arbitrary_Precision
Note the remark about the compilation of the program there. <lang ocaml> open Num

let fib =

 let rec fib_aux f0 f1 = function
   | 0 -> f0
   | 1 -> f1
   | n -> fib_aux f1 (f1 +/ f0) (n - 1)
 in
 fib_aux (num_of_int 0) (num_of_int 1) ;;

let create_fibo_string = function n -> string_of_num (fib n) ;; let rec range i j = if i > j then [] else i :: (range (i + 1) j)

let n_max = 1000 ;;

let numbers = range 1 n_max in

 let get_first_digit = function s -> Char.escaped (String.get s 0) in
   let first_digits = List.map get_first_digit (List.map create_fibo_string numbers) in
 let data = Array.create 9 0 in
   let fill_data vec = function n -> vec.(n - 1) <- vec.(n - 1) + 1 in
   List.iter (fill_data data) (List.map int_of_string first_digits) ;
   Printf.printf "\nFrequency of the first digits in the Fibonacci sequence:\n" ;
   Array.iter (Printf.printf "%f ")
     (Array.map (fun x -> (float x) /. float (n_max)) data) ;

let xvalues = range 1 9 in

 let benfords_law = function x -> log10 (1.0 +. 1.0 /. float (x)) in
   Printf.printf "\nPrediction of Benford's law:\n " ;
   List.iter (Printf.printf "%f ") (List.map benfords_law xvalues) ;
   Printf.printf "\n" ;;

</lang>

Output:
Frequency of the first digits in the Fibonacci sequence:
0.301000 0.177000 0.125000 0.096000 0.080000 0.067000 0.056000 0.053000 0.045000 
Prediction of Benford's law:
 0.301030 0.176091 0.124939 0.096910 0.079181 0.066947 0.057992 0.051153 0.045757

PARI/GP

<lang parigp>distribution(v)={ my(t=vector(9,n,sum(i=1,#v,v[i]==n))); print("Digit\tActual\tExpected"); for(i=1,9,print(i, "\t", t[i], "\t", round(#v*(log(i+1)-log(i))/log(10)))) }; dist(f)=distribution(vector(1000,n,digits(f(n))[1])); lucas(n)=fibonacci(n-1)+fibonacci(n+1); dist(fibonacci) dist(lucas)</lang>

Output:
Digit   Actual  Expected
1       301     301
2       177     176
3       125     125
4       96      97
5       80      79
6       67      67
7       56      58
8       53      51
9       45      46

Digit   Actual  Expected
1       301     301
2       174     176
3       127     125
4       97      97
5       79      79
6       66      67
7       59      58
8       51      51
9       46      46

Pascal

<lang pascal>program fibFirstdigit; {$IFDEF FPC}{$MODE Delphi}{$ELSE}{$APPTYPE CONSOLE}{$ENDIF} uses

 sysutils;

type

 tDigitCount = array[0..9] of LongInt;

var

 s: Ansistring;
 dgtCnt,
 expectedCnt : tDigitCount;

procedure GetFirstDigitFibonacci(var dgtCnt:tDigitCount;n:LongInt=1000); //summing up only the first 9 digits //n = 1000 -> difference to first 9 digits complete fib < 100 == 2 digits var

 a,b,c : LongWord;//about 9.6 decimals

Begin

 for a in dgtCnt do dgtCnt[a] := 0;
 a := 0;b := 1;
 while n > 0 do
 Begin
   c := a+b;
   //overflow? round and divide by base 10
   IF c < a then
     Begin a := (a+5) div 10;b := (b+5) div 10;c := a+b;end;
   a := b;b := c;
   s := IntToStr(a);inc(dgtCnt[Ord(s[1])-Ord('0')]);
   dec(n);
 end;

end;

procedure InitExpected(var dgtCnt:tDigitCount;n:LongInt=1000); var

 i: integer;

begin

 for i := 1 to 9  do
   dgtCnt[i] := trunc(n*ln(1 + 1 / i)/ln(10));

end;

var

 reldiff: double;
 i,cnt: integer;

begin

 cnt := 1000;
 InitExpected(expectedCnt,cnt);
 GetFirstDigitFibonacci(dgtCnt,cnt);
 writeln('Digit  count  expected  rel diff');
 For i := 1 to 9 do
 Begin
   reldiff := 100*(expectedCnt[i]-dgtCnt[i])/expectedCnt[i];
   writeln(i:5,dgtCnt[i]:7,expectedCnt[i]:10,reldiff:10:5,' %');
 end;

end.</lang>

Digit  Count  Expected  rel Diff
    1    301       301   0.00000 %
    2    177       176  -0.56818 %
    3    125       124  -0.80645 %
    4     96        96   0.00000 %
    5     80        79  -1.26582 %
    6     67        66  -1.51515 %
    7     56        57   1.75439 %
    8     53        51  -3.92157 %
    9     45        45   0.00000 %

Perl

<lang Perl>#!/usr/bin/perl use strict ; use warnings ; use POSIX qw( log10 ) ;

my @fibonacci = ( 0 , 1 ) ; while ( @fibonacci != 1000 ) {

  push @fibonacci , $fibonacci[ -1 ] + $fibonacci[ -2 ] ;

} my @actuals ; my @expected ; for my $i( 1..9 ) {

  my $sum = 0 ;
  map { $sum++ if $_ =~ /\A$i/ } @fibonacci ;
  push @actuals , $sum / 1000  ;
  push @expected , log10( 1 + 1/$i ) ;

} print " Observed Expected\n" ; for my $i( 1..9 ) {

  print "$i : " ;
  my $result = sprintf ( "%.2f" , 100 * $actuals[ $i - 1 ] ) ;
  printf "%11s %%" , $result ;
  $result = sprintf ( "%.2f" , 100 * $expected[ $i - 1 ] ) ;
  printf "%15s %%\n" , $result ;

}</lang>

Output:
 
         Observed         Expected
1 :       30.10 %          30.10 %
2 :       17.70 %          17.61 %
3 :       12.50 %          12.49 %
4 :        9.50 %           9.69 %
5 :        8.00 %           7.92 %
6 :        6.70 %           6.69 %
7 :        5.60 %           5.80 %
8 :        5.30 %           5.12 %
9 :        4.50 %           4.58 %

Phix

Translation of: Go

<lang Phix>procedure main(sequence s, string title) sequence f = repeat(0,9)

   for i=1 to length(s) do
       f[sprint(s[i])[1]-'0'] += 1
   end for
   puts(1,title)
   puts(1,"Digit  Observed%  Predicted%\n")
   for i=1 to length(f) do
       printf(1,"  %d  %9.3f  %8.3f\n", {i, f[i]/length(s)*100, log10(1+1/i)*100})
   end for

end procedure main(fib(1000),"First 1000 Fibonacci numbers\n") main(primes(10000),"First 10000 Prime numbers\n") main(threes(500),"First 500 powers of three\n")</lang> Supporting staff: <lang Phix>function fib(integer lim) atom a=0, b=1 sequence res = repeat(0,lim)

   for i=1 to lim do
       {res[i], a, b} = {b, b, b+a}
   end for
   return res

end function

function primes(integer lim) integer n = 1, k, p sequence res = {2}

   while length(res)<lim do
       k = 3
       p = 1
       n += 2
       while k*k<=n and p do
           p = floor(n/k)*k!=n
           k += 2
       end while
       if p then
           res = append(res,n)
       end if
   end while
   return res

end function

function threes(integer lim) sequence res = repeat(0,lim)

   for i=1 to lim do
       res[i] = power(3,i)
   end for
   return res

end function

constant INVLN10 = 0.43429_44819_03251_82765 function log10(object x1)

   return log(x1) * INVLN10

end function</lang>

Output:

(put into columns by hand)

First 1000 Fibonacci numbers            First 10000 Prime numbers               First 500 powers of three
Digit  Observed%  Predicted%            Digit  Observed%  Predicted%            Digit  Observed%  Predicted%
  1     30.100    30.103                  1     16.010    30.103                  1     30.000    30.103
  2     17.700    17.609                  2     11.290    17.609                  2     17.600    17.609
  3     12.500    12.494                  3     10.970    12.494                  3     12.400    12.494
  4      9.600     9.691                  4     10.690     9.691                  4      9.800     9.691
  5      8.000     7.918                  5     10.550     7.918                  5      8.000     7.918
  6      6.700     6.695                  6     10.130     6.695                  6      6.600     6.695
  7      5.600     5.799                  7     10.270     5.799                  7      5.800     5.799
  8      5.300     5.115                  8     10.030     5.115                  8      5.200     5.115
  9      4.500     4.576                  9     10.060     4.576                  9      4.600     4.576

PicoLisp

Picolisp does not support floating point math, but it can call libc math functions and convert the results to a fixed point number for e.g. natural logarithm. <lang PicoLisp> (scl 4) (load "@lib/misc.l") (load "@lib/math.l")

(setq LOG10E 0.4343)

(de fibo (N)

  (let (A 0  B 1  C NIL)
     (make
        (link B)
        (do (dec N)
           (setq  C (+ A B)  A B  B C)
           (link B)))))

(setq Actual

  (let (
     Digits (sort (mapcar '((N) (format (car (chop N)))) (fibo 1000)))
     Count  0
  )
  (make
     (for (Ds Digits  Ds  (cdr Ds))
        (inc 'Count)
        (when (n== (car Ds) (cadr Ds))
           (link Count)
           (setq Count 0))))))

(setq Expected

  (mapcar
     '((D) (*/ (log (+ 1. (/ 1. D))) LOG10E 1.))
     (range 1 9)))

(prinl "Digit\tActual\tExpected") (let (As Actual Bs Expected)

  (for D 9
     (prinl D "\t" (format (pop 'As) 3) "\t" (round (pop 'Bs) 3))))

(bye) </lang>

Output:
Digit  Actual  Expected
1      0.301   0.301
2      0.177   0.176
3      0.125   0.125
4      0.096   0.097
5      0.080   0.079
6      0.067   0.067
7      0.056   0.058
8      0.053   0.051
9      0.045   0.046

PL/I

<lang PL/I> (fofl, size, subrg): Benford: procedure options(main); /* 20 October 2013 */

  declare sc(1000) char(1), f(1000) float (16);
  declare d fixed (1);
  call Fibonacci(f);
  call digits(sc, f);
  put skip list ('digit  expected     obtained');
  do d= 1 upthru 9;
     put skip edit (d, log10(1 + 1/d), tally(sc, trim(d))/1000)
        (f(3), 2 f(13,8) );
  end;

Fibonacci: procedure (f);

  declare f(*) float (16);
  declare i fixed binary;
  f(1), f(2) = 1;
  do i = 3 to 1000;
     f(i) = f(i-1) + f(i-2);
  end;

end Fibonacci;

digits: procedure (sc, f);

  declare sc(*) char(1), f(*) float (16);
  sc = substr(trim(f), 1, 1);

end digits;

tally: procedure (sc, d) returns (fixed binary);

  declare sc(*) char(1), d char(1);
  declare (i, t) fixed binary;
  t = 0;
  do i = 1 to 1000;
     if sc(i) = d then t = t + 1;
  end;
  return (t);

end tally; end Benford; </lang> Results:

digit  expected     obtained 
  1   0.30103000   0.30099487
  2   0.17609126   0.17698669
  3   0.12493874   0.12500000
  4   0.09691001   0.09599304
  5   0.07918125   0.07998657
  6   0.06694679   0.06698608
  7   0.05799195   0.05599976
  8   0.05115252   0.05299377
  9   0.04575749   0.04499817

PL/pgSQL

<lang SQL> WITH recursive constant(val) AS ( select 1000. ) , fib(a,b) AS ( SELECT CAST(0 AS numeric), CAST(1 AS numeric) UNION ALL SELECT b,a+b FROM fib ) , benford(first_digit, probability_real, probability_theoretical) AS ( SELECT *, CAST(log(1. + 1./CAST(first_digit AS INT)) AS NUMERIC(5,4)) probability_theoretical FROM ( SELECT first_digit, CAST(COUNT(1)/(select val from constant) AS NUMERIC(5,4)) probability_real FROM ( SELECT SUBSTRING(CAST(a AS VARCHAR(100)),1,1) first_digit FROM fib WHERE SUBSTRING(CAST(a AS VARCHAR(100)),1,1) <> '0' LIMIT (select val from constant) ) t GROUP BY first_digit ) f ORDER BY first_digit ASC ) select * from benford cross join

    (select cast(corr(probability_theoretical,probability_real) as numeric(5,4)) correlation
     from benford) c

</lang>

PowerShell

The sample file was not found. I selected another that contained the first two-thousand in the Fibonacci sequence, so there is a small amount of extra filtering. <lang PowerShell> $url = "https://oeis.org/A000045/b000045.txt" $file = "$env:TEMP\FibonacciNumbers.txt" (New-Object System.Net.WebClient).DownloadFile($url, $file)

$benford = Get-Content -Path $file |

        Select-Object -Skip 1 -First 1000 |
        ForEach-Object {(($_ -split " ")[1].ToString().ToCharArray())[0]} |
        Group-Object |
        Select-Object -Property @{Name="Digit"   ; Expression={[int]($_.Name)}},
                                Count,
                                @{Name="Actual"  ; Expression={$_.Count/1000}},
                                @{Name="Expected"; Expression={[double]("{0:f5}" -f [Math]::Log10(1 + 1 / $_.Name))}}

$benford | Sort-Object -Property Digit | Format-Table -AutoSize

Remove-Item -Path $file -Force -ErrorAction SilentlyContinue </lang>

Output:
Digit Count Actual Expected
----- ----- ------ --------
    1   301  0.301  0.30103
    2   177  0.177  0.17609
    3   125  0.125  0.12494
    4    96  0.096  0.09691
    5    80   0.08  0.07918
    6    67  0.067  0.06695
    7    56  0.056  0.05799
    8    53  0.053  0.05115
    9    45  0.045  0.04576

Prolog

Works with: SWI Prolog version 6.2.6 by Jan Wielemaker, University of Amsterdam

Note: SWI Prolog implements arbitrary precision integer arithmetic through use of the GNU MP library <lang Prolog>%_________________________________________________________________ % Does the Fibonacci sequence follow Benford's law? %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % Fibonacci sequence generator fib(C, [P,S], C, N)  :- N is P + S. fib(C, [P,S], Cv, V) :- succ(C, Cn), N is P + S, !, fib(Cn, [S,N], Cv, V).

fib(0, 0). fib(1, 1). fib(C, N) :- fib(2, [0,1], C, N). % Generate from 3rd sequence on

% The benford law calculated benford(D, Val) :- Val is log10(1+1/D).

% Retrieves the first characters of the first 1000 fibonacci numbers % (excluding zero) firstchar(V) :- fib(C,N), N =\= 0, atom_chars(N, [Ch|_]), number_chars(V, [Ch]), (C>999-> !; true).

% Increment the n'th list item (1 based), result -> third argument. incNth(1, [Dh|Dt], [Ch|Dt]) :- !, succ(Dh, Ch). incNth(H, [Dh|Dt], [Dh|Ct]) :- succ(Hn, H), !, incNth(Hn, Dt, Ct).

% Calculate the frequency of the all the list items freq([], D, D). freq([H|T], D, C) :- incNth(H, D, L), !, freq(T, L, C).

freq([H|T], Freq) :- length([H|T], Len), min_list([H|T], Min), max_list([H|T], Max), findall(0, between(Min,Max,_), In), freq([H|T], In, F),  % Frequency stored in F findall(N, (member(V, F), N is V/Len), Freq). % Normalise F->Freq

% Output the results writeHdr :- format('~t~w~15| - ~t~w\n', ['Benford', 'Measured']). writeData(Benford, Freq) :- format('~t~2f%~15| - ~t~2f%\n', [Benford*100, Freq*100]).

go :- % main goal findall(B, (between(1,9,N), benford(N,B)), Benford), findall(C, firstchar(C), Fc), freq(Fc, Freq), writeHdr, maplist(writeData, Benford, Freq).</lang>

Output:
?- go.
        Benford - Measured
         30.10% - 30.10%
         17.61% - 17.70%
         12.49% - 12.50%
          9.69% - 9.60%
          7.92% - 8.00%
          6.69% - 6.70%
          5.80% - 5.60%
          5.12% - 5.30%
          4.58% - 4.50%

PureBasic

<lang purebasic>#MAX_N=1000 NewMap d1.i() Dim fi.s(#MAX_N) fi(0)="0" : fi(1)="1" Declare.s Sigma(sx.s,sy.s)

For I=2 To #MAX_N

 fi(I)=Sigma(fi(I-2),fi(I-1))

Next

For I=1 To #MAX_N

 d1(Left(fi(I),1))+1  

Next

Procedure.s Sigma(sx.s, sy.s)

 Define i.i, v1.i, v2.i, r.i
 Define s.s, sa.s
 sy=ReverseString(sy) : s=ReverseString(sx)
 For i=1 To Len(s)*Bool(Len(s)>Len(sy))+Len(sy)*Bool(Len(sy)>=Len(s))
   v1=Val(Mid(s,i,1))
   v2=Val(Mid(sy,i,1))
   r+v1+v2    
   sa+Str(r%10)
   r/10
 Next i  
 If r : sa+Str(r%10) : EndIf
 ProcedureReturn ReverseString(sa)

EndProcedure

OpenConsole("Benford's law: Fibonacci sequence 1.."+Str(#MAX_N))

Print(~"Dig.\t\tCnt."+~"\t\tExp.\t\tDif.\n\n") ForEach d1()

 Print(RSet(MapKey(d1()),4," ")+~"\t:\t"+RSet(Str(d1()),3," ")+~"\t\t")
 ex=Int(#MAX_N*Log(1+1/Val(MapKey(d1())))/Log(10))
 PrintN(RSet(Str(ex),3," ")+~"\t\t"+RSet(StrF((ex-d1())*100/ex,5),8," ")+" %")  

Next

PrintN(~"\nPress Enter...") Input()</lang>

Output:
Dig.            Cnt.            Exp.            Dif.

   1    :       301             301              0.00000 %
   2    :       177             176             -0.56818 %
   3    :       125             124             -0.80645 %
   4    :        96              96              0.00000 %
   5    :        80              79             -1.26582 %
   6    :        67              66             -1.51515 %
   7    :        56              57              1.75439 %
   8    :        53              51             -3.92157 %
   9    :        45              45              0.00000 %

Press Enter...

Python

Works with Python 3.X & 2.7 <lang python>from __future__ import division from itertools import islice, count from collections import Counter from math import log10 from random import randint

expected = [log10(1+1/d) for d in range(1,10)]

def fib():

   a,b = 1,1
   while True:
       yield a
       a,b = b,a+b
  1. powers of 3 as a test sequence

def power_of_threes():

   return (3**k for k in count(0))

def heads(s):

   for a in s: yield int(str(a)[0])

def show_dist(title, s):

   c = Counter(s)
   size = sum(c.values())
   res = [c[d]/size for d in range(1,10)]
   print("\n%s Benfords deviation" % title)
   for r, e in zip(res, expected):
       print("%5.1f%% %5.1f%%  %5.1f%%" % (r*100., e*100., abs(r - e)*100.))

def rand1000():

   while True: yield randint(1,9999)

if __name__ == '__main__':

   show_dist("fibbed", islice(heads(fib()), 1000))
   show_dist("threes", islice(heads(power_of_threes()), 1000))
   # just to show that not all kind-of-random sets behave like that
   show_dist("random", islice(heads(rand1000()), 10000))</lang>
Output:
fibbed Benfords deviation
 30.1%  30.1%    0.0%
 17.7%  17.6%    0.1%
 12.5%  12.5%    0.0%
  9.6%   9.7%    0.1%
  8.0%   7.9%    0.1%
  6.7%   6.7%    0.0%
  5.6%   5.8%    0.2%
  5.3%   5.1%    0.2%
  4.5%   4.6%    0.1%

threes Benfords deviation
 30.0%  30.1%    0.1%
 17.7%  17.6%    0.1%
 12.3%  12.5%    0.2%
  9.8%   9.7%    0.1%
  7.9%   7.9%    0.0%
  6.6%   6.7%    0.1%
  5.9%   5.8%    0.1%
  5.2%   5.1%    0.1%
  4.6%   4.6%    0.0%

random Benfords deviation
 11.2%  30.1%   18.9%
 10.9%  17.6%    6.7%
 11.6%  12.5%    0.9%
 11.1%   9.7%    1.4%
 11.6%   7.9%    3.7%
 11.4%   6.7%    4.7%
 10.3%   5.8%    4.5%
 11.0%   5.1%    5.9%
 10.9%   4.6%    6.3%

R

<lang R> pbenford <- function(d){

 return(log10(1+(1/d)))

}

get_lead_digit <- function(number){

 return(as.numeric(substr(number,1,1)))

}

fib_iter <- function(n){

 first <- 1
 second <- 0
 for(i in 1:n){
   sum <- first + second
   first <- second
   second <- sum
 }
 return(sum)

}

fib_sequence <- mapply(fib_iter,c(1:1000)) lead_digits <- mapply(get_lead_digit,fib_sequence)

observed_frequencies <- table(lead_digits)/1000 expected_frequencies <- mapply(pbenford,c(1:9))

data <- data.frame(observed_frequencies,expected_frequencies) colnames(data) <- c("digit","obs.frequency","exp.frequency") dev_percentage <- abs((data$obs.frequency-data$exp.frequency)*100) data <- data.frame(data,dev_percentage)

print(data) </lang>

Output:
digit obs.frequency exp.frequency dev_percentage
    1         0.301       0.30103       0.003000
    2         0.177       0.17609       0.090874
    3         0.125       0.12494       0.006126
    4         0.096       0.09691       0.091001
    5         0.080       0.07918       0.081875
    6         0.067       0.06695       0.005321
    7         0.056       0.05799       0.199195
    8         0.053       0.05115       0.184748
    9         0.045       0.04576       0.075749

Racket

<lang Racket>#lang racket

(define (log10 n) (/ (log n) (log 10)))

(define (first-digit n)

 (quotient n (expt 10 (inexact->exact (floor (log10 n))))))

(define N 10000)

(define fibs

 (let loop ([n N] [a 0] [b 1])
   (if (zero? n) '() (cons b (loop (sub1 n) b (+ a b))))))

(define v (make-vector 10 0)) (for ([n fibs])

 (define f (first-digit n))
 (vector-set! v f (add1 (vector-ref v f))))

(printf "N OBS EXP\n") (define (pct n) (~r (* n 100.0) #:precision 1 #:min-width 4)) (for ([i (in-range 1 10)])

 (printf "~a: ~a% ~a%\n" i
         (pct (/ (vector-ref v i) N))
         (pct (log10 (+ 1 (/ i))))))
Output
N OBS EXP
1
30.1% 30.1%
2
17.6% 17.6%
3
12.5% 12.5%
4
9.7% 9.7%
5
7.9% 7.9%
6
6.7% 6.7%
7
5.8% 5.8%
8
5.1% 5.1%
9
4.6% 4.6%</lang>

Raku

(formerly Perl 6)

Works with: rakudo version 2016-10-24

<lang perl6>sub benford(@a) { bag +« @a».substr(0,1) }

sub show(%distribution) {

   printf "%9s %9s  %s\n", <Actual Expected Deviation>;
   for 1 .. 9 -> $digit {
       my $actual = %distribution{$digit} * 100 / [+] %distribution.values;
       my $expected = (1 + 1 / $digit).log(10) * 100;
       printf "%d: %5.2f%% | %5.2f%% | %.2f%%\n",
         $digit, $actual, $expected, abs($expected - $actual);
   }

}

multi MAIN($file) { show benford $file.IO.lines } multi MAIN() { show benford ( 1, 1, 2, *+* ... * )[^1000] }</lang>

Output: First 1000 Fibonaccis

   Actual  Expected  Deviation
1: 30.10% | 30.10% | 0.00%
2: 17.70% | 17.61% | 0.09%
3: 12.50% | 12.49% | 0.01%
4:  9.60% |  9.69% | 0.09%
5:  8.00% |  7.92% | 0.08%
6:  6.70% |  6.69% | 0.01%
7:  5.60% |  5.80% | 0.20%
8:  5.30% |  5.12% | 0.18%
9:  4.50% |  4.58% | 0.08%

Extra credit: Square Kilometers of land under cultivation, by country / territory. First column from Wikipedia: Land use statistics by country.

   Actual  Expected  Deviation
1: 33.33% | 30.10% | 3.23%
2: 18.31% | 17.61% | 0.70%
3: 13.15% | 12.49% | 0.65%
4:  8.45% |  9.69% | 1.24%
5:  9.39% |  7.92% | 1.47%
6:  5.63% |  6.69% | 1.06%
7:  4.69% |  5.80% | 1.10%
8:  5.16% |  5.12% | 0.05%
9:  1.88% |  4.58% | 2.70%

REXX

The REXX language (for the most part) hasn't any high math functions, so the   e,   ln,   and log   functions were included herein.

For the extra credit stuff, it was chosen to generate Fibonacci and factorials rather than find a web─page with them listed,   as each list is very easy to generate. <lang rexx>/*REXX pgm demonstrates Benford's law applied to 2 common functions (30 dec. digs used).*/ numeric digits length( e() ) - length(.) /*width of (e) for LN & LOG precision.*/ parse arg N .; if N== | N=="," then N= 1000 /*allow sample size to be specified. */ pad= " " /*W1, W2: # digs past the decimal point*/ w1= max(2 + length('observed'), length(N-2) ) /*for aligning output for a number. */ w2= max(2 + length('expected'), length(N ) ) /* " " frequency distributions.*/ LN10= ln(10) /*calculate the ln(10) {used by LOG}*/ call coef /*generate nine frequency coefficients.*/ call fib /*generate N Fibonacci numbers. */ call show "Benford's law applied to" N 'Fibonacci numbers' call fact /*generate N factorials. */ call show "Benford's law applied to" N 'factorial products' exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ coef: do j=1 for 9; #.j=pad center(format(log(1+1/j),,length(N)+2),w2); end; return fact: @.=1; do j=2 for N-1; a= j-1; @.j= @.a * j; end; return fib: @.=1; do j=3 for N-2; a= j-1; b= a-1; @.j= @.a + @.b; end; return e: return 2.71828182845904523536028747135266249775724709369995957496696762772407663035 log: return ln( arg(1) ) / LN10 /*──────────────────────────────────────────────────────────────────────────────────────*/ ln: procedure; parse arg x; e= e(); _= e; ig= (x>1.5); is= 1 - 2 * (ig\=1); i= 0; s= x

     do while ig&s>1.5  |  \ig&s<.5             /*nitty─gritty part of  LN  calculation*/
       do k=-1; iz=s*_**-is; if k>=0&(ig&iz<1|\ig&iz>.5)  then leave; _=_*_; izz=iz;  end
     s=izz;  i= i + is* 2**k; end  /*while*/;    x= x * e** - i - 1;  z= 0;  _= -1;  p= z
       do k=1;  _= -_ * x; z= z + _/k; if z=p  then leave;  p= z;  end /*k*/;  return z+i

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: say; say pad ' digit ' pad center("observed",w1) pad center('expected',w2)

     say pad  '───────'   pad   center("", w1, '─')  pad  center("",w2,'─')   pad  arg(1)
     !.=0;     do j=1  for N;   _= left(@.j, 1);     !._= !._ + 1  /*get the 1st digit.*/
               end   /*j*/
       do f=1  for 9;  say pad center(f,7) pad center(format(!.f/N,,length(N-2)),w1)  #.f
       end   /*k*/
     return</lang>
output   when using the default (1000 numbers)   for the input:
     digit       observed       expected
    ───────     ──────────     ──────────     Benford's law applied to 1000 Fibonacci numbers
       1          0.301         0.301030
       2          0.177         0.176091
       3          0.125         0.124939
       4          0.096         0.096910
       5          0.080         0.079181
       6          0.067         0.066947
       7          0.056         0.057992
       8          0.053         0.051153
       9          0.045         0.045757

     digit       observed       expected
    ───────     ──────────     ──────────     Benford's law applied to 1000 factorial products
       1          0.293         0.301030
       2          0.176         0.176091
       3          0.124         0.124939
       4          0.102         0.096910
       5          0.069         0.079181
       6          0.087         0.066947
       7          0.051         0.057992
       8          0.051         0.051153
       9          0.047         0.045757
output   when using the following for the input:     10000
     digit       observed       expected
    ───────     ──────────     ──────────     Benford's law applied to 10000 Fibonacci numbers
       1          0.3011       0.3010300
       2          0.1762       0.1760913
       3          0.1250       0.1249387
       4          0.0968       0.0969100
       5          0.0792       0.0791812
       6          0.0668       0.0669468
       7          0.0580       0.0579919
       8          0.0513       0.0511525
       9          0.0456       0.0457575

     digit       observed       expected
    ───────     ──────────     ──────────     Benford's law applied to 10000 factorial products
       1          0.2956       0.3010300
       2          0.1789       0.1760913
       3          0.1276       0.1249387
       4          0.0963       0.0969100
       5          0.0794       0.0791812
       6          0.0715       0.0669468
       7          0.0571       0.0579919
       8          0.0510       0.0511525
       9          0.0426       0.0457575

Ring

<lang ring>

  1. Project : Benford's law

decimals(3) n= 1000 actual = list(n) for x = 1 to len(actual)

    actual[x] = 0

next

for nr = 1 to n

    n1 = string(fibonacci(nr))
    j = number(left(n1,1))
    actual[j] = actual[j] + 1

next

see "Digit " + "Actual " + "Expected" + nl for m = 1 to 9

    fr = frequency(m)*100
    see "" + m + "   " + (actual[m]/10) + "   " + fr + nl

next

func frequency(n)

     freq = log10(n+1) - log10(n)             
     return freq

func log10(n)

     log1 = log(n) / log(10)
     return log1

func fibonacci(y)

      if y = 0 return 0 ok
      if y = 1 return 1 ok 
      if y > 1 return fibonacci(y-1) + fibonacci(y-2) ok

</lang> Output:

Digit	Actual	Expected
1	30.100	30.103
2	17.700	17.609
3	12.500	12.494
4	9.500	9.691
5	8.000	7.918
6	6.700	6.695
7	5.600	5.799
8	5.300	5.115
9	4.500	4.576

Ruby

Translation of: Python

<lang ruby>EXPECTED = (1..9).map{|d| Math.log10(1+1.0/d)}

def fib(n)

 a,b = 0,1
 n.times.map{ret, a, b = a, b, a+b; ret}

end

  1. powers of 3 as a test sequence

def power_of_threes(n)

 n.times.map{|k| 3**k}

end

def heads(s)

 s.map{|a| a.to_s[0].to_i}

end

def show_dist(title, s)

 s = heads(s)
 c = Array.new(10, 0)
 s.each{|x| c[x] += 1}
 size = s.size.to_f
 res = (1..9).map{|d| c[d]/size}
 puts "\n    %s Benfords deviation" % title
 res.zip(EXPECTED).each.with_index(1) do |(r, e), i|
   puts "%2d: %5.1f%%  %5.1f%%  %5.1f%%" % [i, r*100, e*100, (r - e).abs*100]
 end

end

def random(n)

 n.times.map{rand(1..n)}

end

show_dist("fibbed", fib(1000)) show_dist("threes", power_of_threes(1000))

  1. just to show that not all kind-of-random sets behave like that

show_dist("random", random(10000))</lang>

Output:
    fibbed Benfords deviation
 1:  30.1%   30.1%    0.0%
 2:  17.7%   17.6%    0.1%
 3:  12.5%   12.5%    0.0%
 4:   9.5%    9.7%    0.2%
 5:   8.0%    7.9%    0.1%
 6:   6.7%    6.7%    0.0%
 7:   5.6%    5.8%    0.2%
 8:   5.3%    5.1%    0.2%
 9:   4.5%    4.6%    0.1%

    threes Benfords deviation
 1:  30.0%   30.1%    0.1%
 2:  17.7%   17.6%    0.1%
 3:  12.3%   12.5%    0.2%
 4:   9.8%    9.7%    0.1%
 5:   7.9%    7.9%    0.0%
 6:   6.6%    6.7%    0.1%
 7:   5.9%    5.8%    0.1%
 8:   5.2%    5.1%    0.1%
 9:   4.6%    4.6%    0.0%

    random Benfords deviation
 1:  10.9%   30.1%   19.2%
 2:  10.9%   17.6%    6.7%
 3:  11.7%   12.5%    0.8%
 4:  10.8%    9.7%    1.1%
 5:  11.2%    7.9%    3.3%
 6:  11.9%    6.7%    5.2%
 7:  10.7%    5.8%    4.9%
 8:  11.1%    5.1%    6.0%
 9:  10.8%    4.6%    6.2%

Run BASIC

<lang runbasic> N = 1000 for i = 0 to N - 1

   n$	= str$(fibonacci(i))
   j	= val(left$(n$,1))
   actual(j) = actual(j) +1

next print

html "

"

for i = 1 to 9

html ""

next

html "
DigitActualExpected
";i;"";using("##.###",actual(i)/10);"";using("##.###", frequency(i)*100);"

"

end

function frequency(n)

   frequency = log10(n+1) - log10(n)

end function

function log10(n)

   log10 = log(n) / log(10)

end function

function fibonacci(n)

   b = 1
   for i = 1 to n
       temp		= fibonacci + b
       fibonacci	= b
       b		= temp
   next i

end function </lang>

DigitActualExpected
130.10030.103
217.70017.609
312.50012.494
4 9.500 9.691
5 8.000 7.918
6 6.700 6.695
7 5.600 5.799
8 5.300 5.115
9 4.500 4.576

Rust

Works with: rustc version 1.12 stable

This solution uses the num create for arbitrary-precision integers and the num_traits create for the zero and one implementations. It computes the Fibonacci numbers from scratch via the fib function.

<lang rust> extern crate num_traits; extern crate num;

use num::bigint::{BigInt, ToBigInt}; use num_traits::{Zero, One}; use std::collections::HashMap;

// Return a vector of all fibonacci results from fib(1) to fib(n) fn fib(n: usize) -> Vec<BigInt> {

   let mut result = Vec::with_capacity(n);
   let mut a = BigInt::zero();
   let mut b = BigInt::one();
   result.push(b.clone());
   for i in 1..n {
       let t = b.clone();
       b = a+b;
       a = t;
       result.push(b.clone());
   }
   result

}

// Return the first digit of a `BigInt` fn first_digit(x: &BigInt) -> u8 {

   let zero = BigInt::zero();
   assert!(x > &zero);
   let s = x.to_str_radix(10);
   // parse the first digit of the stringified integer
   *&s[..1].parse::<u8>().unwrap()

}

fn main() {

   const N: usize = 1000;
   let mut counter: HashMap<u8, u32> = HashMap::new();
   for x in fib(N) {
       let d = first_digit(&x);
       *counter.entry(d).or_insert(0) += 1;
   }
   println!("{:>13}    {:>10}", "real", "predicted");
   for y in 1..10 {
       println!("{}: {:10.3} v. {:10.3}", y, *counter.get(&y).unwrap_or(&0) as f32 / N as f32,
       (1.0 + 1.0 / (y as f32)).log10());
   }

} </lang>

Output:
         real     predicted
1:      0.301 v.      0.301
2:      0.177 v.      0.176
3:      0.125 v.      0.125
4:      0.096 v.      0.097
5:      0.080 v.      0.079
6:      0.067 v.      0.067
7:      0.056 v.      0.058
8:      0.053 v.      0.051
9:      0.045 v.      0.046

Scala

<lang scala>// Fibonacci Sequence (begining with 1,1): 1 1 2 3 5 8 13 21 34 55 ... val fibs : Stream[BigInt] = { def series(i:BigInt,j:BigInt):Stream[BigInt] = i #:: series(j, i+j); series(1,0).tail.tail }


/**

* Given a numeric sequence, return the distribution of the most-signicant-digit 
* as expected by Benford's Law and then by actual distribution.
*/

def benford[N:Numeric]( data:Seq[N] ) : Map[Int,(Double,Double)] = {

 import scala.math._
 
 val maxSize = 10000000  // An arbitrary size to avoid problems with endless streams
 
 val size = (data.take(maxSize)).size.toDouble
 
 val distribution = data.take(maxSize).groupBy(_.toString.head.toString.toInt).map{ case (d,l) => (d -> l.size) }
 
 (for( i <- (1 to 9) ) yield { (i -> (log10(1D + 1D / i), (distribution(i) / size))) }).toMap

}

{

 println( "Fibonacci Sequence (size=1000): 1 1 2 3 5 8 13 21 34 55 ...\n" )
 println( "%9s %9s %9s".format( "Actual", "Expected", "Deviation" ) )
 benford( fibs.take(1000) ).toList.sorted foreach { 
   case (k, v) => println( "%d: %5.2f%% | %5.2f%% | %5.4f%%".format(k,v._2*100,v._1*100,math.abs(v._2-v._1)*100) ) 
 }

}</lang>

Output:
Fibonacci Sequence (size=1000): 1 1 2 3 5 8 13 21 34 55 ...

   Actual  Expected Deviation
1: 30.10% | 30.10% | 0.0030%
2: 17.70% | 17.61% | 0.0909%
3: 12.50% | 12.49% | 0.0061%
4:  9.60% |  9.69% | 0.0910%
5:  8.00% |  7.92% | 0.0819%
6:  6.70% |  6.69% | 0.0053%
7:  5.60% |  5.80% | 0.1992%
8:  5.30% |  5.12% | 0.1847%
9:  4.50% |  4.58% | 0.0757%

Sidef

<lang ruby>var (actuals, expected) = ([], []) var fibonacci = 1000.of {|i| fib(i).digit(0) }

for i (1..9) {

   var num = fibonacci.count_by {|j| j == i }
   actuals.append(num / 1000)
   expected.append(1 + (1/i) -> log10)

}

"%17s%17s\n".printf("Observed","Expected") for i (1..9) {

   "%d : %11s %%%15s %%\n".printf(
           i, "%.2f".sprintf(100 *  actuals[i - 1]),
              "%.2f".sprintf(100 * expected[i - 1]),
   )

}</lang>

Output:
         Observed         Expected
1 :       30.10 %          30.10 %
2 :       17.70 %          17.61 %
3 :       12.50 %          12.49 %
4 :        9.50 %           9.69 %
5 :        8.00 %           7.92 %
6 :        6.70 %           6.69 %
7 :        5.60 %           5.80 %
8 :        5.30 %           5.12 %
9 :        4.50 %           4.58 %

SQL

If we load some numbers into a table, we can do the sums without too much difficulty. I tried to make this as database-neutral as possible, but I only had Oracle handy to test it on.

The query is the same for any number sequence you care to put in the benford table.

<lang SQL>-- Create table create table benford (num integer);

-- Seed table insert into benford (num) values (1); insert into benford (num) values (1); insert into benford (num) values (2);

-- Populate table insert into benford (num)

 select
   ult + penult
 from
   (select max(num) as ult from benford),
   (select max(num) as penult from benford where num not in (select max(num) from benford))

-- Repeat as many times as desired -- in Oracle SQL*Plus, press "Slash, Enter" a lot of times -- or wrap this in a loop, but that will require something db-specific...

-- Do sums select

 digit,
 count(digit) / numbers as actual,
 log(10, 1 + 1 / digit) as expected

from

 (
   select
     floor(num/power(10,length(num)-1)) as digit
   from
     benford
 ),
 (
   select
     count(*) as numbers
   from
     benford
 )

group by digit, numbers order by digit;

-- Tidy up drop table benford;</lang>

Output:

I only loaded the first 100 Fibonacci numbers before my fingers were sore from repeating the data load. 8~)

     DIGIT     ACTUAL   EXPECTED
---------- ---------- ----------
         1         .3 .301029996
         2        .18 .176091259
         3        .13 .124938737
         4        .09 .096910013
         5        .08 .079181246
         6        .06  .06694679
         7        .05 .057991947
         8        .07 .051152522
         9        .04 .045757491

9 rows selected.

Stata

<lang stata>clear set obs 1000 scalar phi=(1+sqrt(5))/2 gen fib=(phi^_n-(-1/phi)^_n)/sqrt(5) gen k=real(substr(string(fib),1,1)) hist k, discrete // show a histogram qui tabulate k, matcell(f) // compute frequencies

mata f=st_matrix("f") p=log10(1:+1:/(1::9))*sum(f) // print observed vs predicted probabilities f,p

                1             2
   +-----------------------------+
 1 |          297   301.0299957  |
 2 |          178   176.0912591  |
 3 |          127   124.9387366  |
 4 |           96   96.91001301  |
 5 |           80   79.18124605  |
 6 |           67   66.94678963  |
 7 |           57   57.99194698  |
 8 |           53   51.15252245  |
 9 |           45   45.75749056  |
   +-----------------------------+</lang>

Assuming the data are random, one can also do a goodness of fit chi-square test:

<lang stata>// chi-square statistic chisq=sum((f-p):^2:/p) chisq

 .2219340262

// p-value chi2tail(8,chisq)

 .9999942179

end</lang>

The p-value is very close to 1, showing that the observed distribution is very close to the Benford law.

The fit is not as good with the sequence (2+sqrt(2))^n:

<lang stata>clear set obs 500 scalar s=2+sqrt(2) gen a=s^_n gen k=real(substr(string(a),1,1)) hist k, discrete qui tabulate k, matcell(f)

mata f=st_matrix("f") p=log10(1:+1:/(1::9))*sum(f) f,p

                1             2
   +-----------------------------+
 1 |          134   150.5149978  |
 2 |           99   88.04562953  |
 3 |           68    62.4693683  |
 4 |           34    48.4550065  |
 5 |           33   39.59062302  |
 6 |           33   33.47339482  |
 7 |           33   28.99597349  |
 8 |           33   25.57626122  |
 9 |           33   22.87874528  |
   +-----------------------------+

chisq=sum((f-p):^2:/p) chisq

 16.26588528

chi2tail(8,chisq)

 .0387287805

end</lang>

Now the p-value is less than the usual 5% risk, and one would reject the hypothesis that the data follow the Benford law.

Swift

<lang Swift>import Foundation

/* Reads from a file and returns the content as a String */ func readFromFile(fileName file:String) -> String{

   var ret:String = ""
   
   let path = Foundation.URL(string: "file://"+file)
   
   do {
       ret = try String(contentsOf: path!, encoding: String.Encoding.utf8)
   }
   catch {
       print("Could not read from file!")
       exit(-1)
   }
  
   return ret

}

/* Calculates the probability following Benford's law */ func benford(digit z:Int) -> Double {

   if z<=0 || z>9 {
       perror("Argument must be between 1 and 9.")
       return 0
   }
   
   return log10(Double(1)+Double(1)/Double(z))

}

// get CLI input if CommandLine.arguments.count < 2 {

   print("Usage: Benford [FILE]")
   exit(-1)

}

let pathToFile = CommandLine.arguments[1]

// Read from given file and parse into lines let content = readFromFile(fileName: pathToFile) let lines = content.components(separatedBy: "\n")

var digitCount:UInt64 = 0 var countDigit:[UInt64] = [0,0,0,0,0,0,0,0,0]

// check digits line by line for line in lines {

   if line == "" {
       continue
   }
   let charLine = Array(line.characters)
       switch(charLine[0]){
           case "1":
               countDigit[0] += 1
               digitCount += 1
               break
           case "2":
               countDigit[1] += 1
               digitCount += 1
               break
           case "3":
               countDigit[2] += 1
               digitCount += 1
               break
           case "4":
               countDigit[3] += 1
               digitCount += 1
               break
           case "5":
               countDigit[4] += 1
               digitCount += 1
               break
           case "6":
               countDigit[5] += 1
               digitCount += 1
               break
           case "7":
               countDigit[6] += 1
               digitCount += 1
               break
           case "8":
               countDigit[7] += 1
               digitCount += 1
               break
           case "9":
               countDigit[8] += 1
               digitCount += 1
               break
           default:
               break
       }
   

}

// print result print("Digit\tBenford [%]\tObserved [%]\tDeviation") print("~~~~~\t~~~~~~~~~~~~\t~~~~~~~~~~~~\t~~~~~~~~~") for i in 0..<9 {

   let temp:Double = Double(countDigit[i])/Double(digitCount)
   let ben = benford(digit: i+1)
   print(String(format: "%d\t%.2f\t\t%.2f\t\t%.4f", i+1,ben*100,temp*100,ben-temp))

}</lang>

Output:
$ ./Benford
Usage: Benford [FILE]
$ ./Benford Fibonacci.txt
Digit	Benford [%]	Observed [%]	Deviation
~~~~~	~~~~~~~~~~~~	~~~~~~~~~~~~	~~~~~~~~~
1	30.10		30.10		0.0000
2	17.61		17.70		-0.0009
3	12.49		12.50		-0.0001
4	9.69		9.60		0.0009
5	7.92		8.00		-0.0008
6	6.69		6.70		-0.0001
7	5.80		5.60		0.0020
8	5.12		5.30		-0.0018
9	4.58		4.50		0.0008

Tcl

<lang tcl>proc benfordTest {numbers} {

   # Count the leading digits (RE matches first digit in each number,
   # even if negative)
   set accum {1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0}
   foreach n $numbers {

if {[regexp {[1-9]} $n digit]} { dict incr accum $digit }

   }
   # Print the report
   puts " digit | measured | theory"
   puts "-------+----------+--------"
   dict for {digit count} $accum {

puts [format "%6d | %7.2f%% | %5.2f%%" $digit \ [expr {$count * 100.0 / [llength $numbers]}] \ [expr {log(1+1./$digit)/log(10)*100.0}]]

   }

}</lang> Demonstrating with Fibonacci numbers: <lang tcl>proc fibs n {

   for {set a 1;set b [set i 0]} {$i < $n} {incr i} {

lappend result [set b [expr {$a + [set a $b]}]]

   }
   return $result

} benfordTest [fibs 1000]</lang>

Output:
 digit | measured | theory
-------+----------+--------
     1 |   30.10% | 30.10%
     2 |   17.70% | 17.61%
     3 |   12.50% | 12.49%
     4 |    9.60% |  9.69%
     5 |    8.00% |  7.92%
     6 |    6.70% |  6.69%
     7 |    5.60% |  5.80%
     8 |    5.30% |  5.12%
     9 |    4.50% |  4.58%

Visual FoxPro

<lang vfp>

  1. DEFINE CTAB CHR(9)
  2. DEFINE COMMA ","
  3. DEFINE CRLF CHR(13) + CHR(10)

LOCAL i As Integer, n As Integer, n1 As Integer, rho As Double, c As String n = 1000 LOCAL ARRAY a[n,2], res[1] CLOSE DATABASES ALL CREATE CURSOR fibo(dig C(1)) INDEX ON dig TAG dig COLLATE "Machine" SET ORDER TO 0

  • !* Populate the cursor with the leading digit of the first 1000 Fibonacci numbers

a[1,1] = "1" a[1,2] = 1 a[2,1] = "1" a[2,2] = 1 FOR i = 3 TO n

   a[i,2] = a[i-2,2] + a[i-1,2]
   a[i,1] = LEFT(TRANSFORM(a[i,2]), 1)

ENDFOR APPEND FROM ARRAY a FIELDS dig CREATE CURSOR results (digit I, count I, prob B(6), expected B(6)) INSERT INTO results ; SELECT dig, COUNT(1), COUNT(1)/n, Pr(VAL(dig)) FROM fibo GROUP BY dig ORDER BY dig n1 = RECCOUNT()

  • !* Correlation coefficient

SELECT (n1*SUM(prob*expected) - SUM(prob)*SUM(expected))/; (SQRT(n1*SUM(prob*prob) - SUM(prob)*SUM(prob))*SQRT(n1*SUM(expected*expected) - SUM(expected)*SUM(expected))) ; FROM results INTO ARRAY res rho = CAST(res[1] As B(6)) SET SAFETY OFF COPY TO benford.txt TYPE CSV c = FILETOSTR("benford.txt")

  • !* Replace commas with tabs

c = STRTRAN(c, COMMA, CTAB) + CRLF + "Correlation Coefficient: " + TRANSFORM(rho) STRTOFILE(c, "benford.txt", 0) SET SAFETY ON

FUNCTION Pr(d As Integer) As Double RETURN LOG10(1 + 1/d) ENDFUNC </lang>

Output:
digit	count	prob	expected
1		301	0.301000	0.301000
2		177	0.177000	0.176100
3		125	0.125000	0.124900
4		 96	0.096000	0.096900
5		 80	0.080000	0.079200
6		 67	0.067000	0.066900
7		 56	0.056000	0.058000
8		 53	0.053000	0.051200
9		 45	0.045000	0.045800

Correlation Coefficient: 0.999908

Wren

Translation of: Go
Library: Wren-fmt

<lang ecmascript>import "/fmt" for Fmt

var fib1000 = Fn.new {

   var a = 0
   var b = 1
   var r = List.filled(1000, 0)
   for (i in 0...r.count) {
       var oa = a
       var ob = b
       r[i] = ob
       a = ob
       b = ob + oa
   }
   return r

}

var LN10 = 2.3025850929940457

var log10 = Fn.new { |x| x.log / LN10 }

var show = Fn.new { |c, title|

   var f = List.filled(9, 0)
   for (v in c) {
       var t = "%(v)".bytes[0] - 49
       f[t] = f[t] + 1
   }
   System.print(title)
   System.print("Digit  Observed  Predicted")
   for (i in 0...f.count) {
       var n = f[i]
       var obs = Fmt.f(9, n/c.count, 3)
       var t = log10.call(1/(i + 1) + 1)
       var pred = Fmt.f(8, t, 3)
       System.print("  %(i+1) %(obs)  %(pred)")       
   }

}

show.call(fib1000.call(), "First 1000 Fibonacci numbers:")</lang>

Output:
First 1000 Fibonacci numbers:
Digit  Observed  Predicted
  1     0.301     0.301
  2     0.177     0.176
  3     0.125     0.125
  4     0.096     0.097
  5     0.080     0.079
  6     0.067     0.067
  7     0.056     0.058
  8     0.053     0.051
  9     0.045     0.046

zkl

Translation of: Go

<lang zkl>show( // use list (fib(1)...fib(1000)) --> (1..4.34666e+208)

  (0).pump(1000,List,fcn(ab){ab.append(ab.sum(0.0)).pop(0)}.fp(L(1,1))),
  "First 1000 Fibonacci numbers");

fcn show(data,title){

  f:=(0).pump(9,List,Ref.fp(0)); // (Ref(0),Ref(0)...
  foreach v in (data){ // eg  1.49707e+207 ("g" format) --> "1" (first digit)
     f[v.toString()[0].toInt()-1].inc(); }
  println(title);
  println("Digit  Observed  Predicted");
  foreach i,n in ([1..].zip(f)){ // -->(1,Ref)...(9,Ref)
     println("  %d  %9.3f  %8.3f".fmt(i,n.value.toFloat()/data.len(),
           (1.0+1.0/i).log10()))
  }

}</lang>

Translation of: CoffeeScript

<lang zkl>var BN=Import("zklBigNum");

fcn fibgen(a,b) { return(a,self.fcn.fp(b,a+b)) } //-->L(fib,fcn)

benford := [0..9].pump(List,Ref.fp(0)).copy(); //L(Ref(0),...)

const N=1000;

[1..N].reduce('wrap(fiber,_){

  n,f:=fiber;
  benford[n.toString()[0]].inc(); // first digit of fib
  f() // next (fib,fcn) pair

},fibgen(BN(1),BN(1)));

  // de-ref Refs ie convert to int to float, divide by N

actual  := benford.apply(T("value","toFloat",'/(N))); expected := [1..9].apply(fcn(x){(1.0 + 1.0/x).log10()});

println("Leading digital distribution of the first 1,000 Fibonacci numbers"); println("Digit\tActual\tExpected"); foreach i in ([1..9]){ println("%d\t%.3f\t%.3f".fmt(i,actual[i], expected[i-1])); }</lang>

Output:
First 1000 Fibonacci numbers
Digit  Observed  Predicted
  1      0.301     0.301
  2      0.177     0.176
  3      0.125     0.125
  4      0.096     0.097
  5      0.080     0.079
  6      0.067     0.067
  7      0.056     0.058
  8      0.053     0.051
  9      0.045     0.046

ZX Spectrum Basic

Translation of: Liberty BASIC

<lang zxbasic>10 RANDOMIZE 20 DIM b(9) 30 LET n=100 40 FOR i=1 TO n 50 GO SUB 1000 60 LET n$=STR$ fiboI 70 LET d=VAL n$(1) 80 LET b(d)=b(d)+1 90 NEXT i 100 PRINT "Digit";TAB 6;"Actual freq";TAB 18;"Expected freq" 110 FOR i=1 TO 9 120 LET pdi=(LN (i+1)/LN 10)-(LN i/LN 10) 130 PRINT i;TAB 6;b(i)/n;TAB 18;pdi 140 NEXT i 150 STOP 1000 REM Fibonacci 1010 LET fiboI=0: LET b=1 1020 FOR j=1 TO i 1030 LET temp=fiboI+b 1040 LET fiboI=b 1050 LET b=temp 1060 NEXT j 1070 RETURN </lang> The results obtained are adjusted fairly well, except for the number 8. This occurs with Sinclair BASIC, Sam BASIC and SpecBAS fits.