Triangular numbers

Revision as of 12:31, 11 February 2023 by PureFox (talk | contribs) (Added Go)

A triangular number is a count of objects arranged into an equilateral triangle. Much like how a square number is a count of objects arranged into a square.

Triangular numbers is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The nth triangular number is the sum of the first n non-negative integers.

Triangular numbers may be calculated by the explicit formulas:

where is the binomial coefficient "n plus one choose two".


Analogous to square roots, we may also calculate a triangular root. Numbers that have an integer triangular root are triangular numbers.

The real triangular root of a number x may be found using:


Similar to how cubic numbers are square numbers extended into a third dimension, triangular numbers extended into a third dimension are known as tetrahedral numbers.

The nth tetrahedral number is the sum of the first n triangular numbers.

Or, may be calculated directly: (Binomial "n plus two choose three".)

One may find the real tetrahedral root of x using the formula:
Depending on the math precision of your particular language, may need to be rounded to the nearest 1e-16 or so.


Extending into a fourth dimension we get pentatopic numbers.

Again, the nth pentatope is the sum of the first n tetrahedral numbers,

or explicitly: (Binomial "n plus three choose four".)

The pentatopic real root of x may be found using:


In general, these all belong to the class figurate numbers as they are based on r dimensional geometric figures. Sometimes they are referred to as r-simplex numbers. In geometry a simplex is the simplest r-dimensional object possible.

You may easily extend to an arbitrary dimension r using binomials. Each term n in dimension r is

There is no known general formula to find roots of higher r-simplex numbers.


Task
  • Find and display the first 30 triangular numbers (r = 2).
  • Find and display the first 30 tetrahedral numbers (r = 3).
  • Find and display the first 30 pentatopic numbers (r = 4).
  • Find and display the first 30 12-simplex numbers (r = 12).
  • Find and display the triangular root, the tetrahedral root, and the pentatopic root for the integers:
    • 7140
    • 21408696
    • 26728085384
    • 14545501785001


See also


Go

Translation of: Wren
Library: Go-rcu
Library: bigfloat

I've had to use a third party library to calculate cube roots as the big.Float type in the standard library doesn't have a function for this. The results (to 24 d.p) are the same as the Raku example with the exception of the tetrahedral root for the largest integer which differs in the last three places.

package main

import (
    "fmt"
    "github.com/ALTree/bigfloat"
    "math/big"
    "rcu"
)

func main() {
    t := make([]int, 30)
    for n := 1; n < 30; n++ {
        t[n] = t[n-1] + n
    }
    fmt.Println("The first 30 triangular numbers are:")
    rcu.PrintTable(t, 6, 3, false)

    for n := 1; n < 30; n++ {
        t[n] += t[n-1]
    }
    fmt.Println("\nThe first 30 tetrahedral numbers are:")
    rcu.PrintTable(t, 6, 4, false)

    for n := 1; n < 30; n++ {
        t[n] += t[n-1]
    }
    fmt.Println("\nThe first 30 pentatopic numbers are:")
    rcu.PrintTable(t, 6, 5, false)

    for r := 5; r <= 12; r++ {
        for n := 1; n < 30; n++ {
            t[n] += t[n-1]
        }
    }
    fmt.Println("\nThe first 30 12-simplex numbers are:")
    rcu.PrintTable(t, 6, 10, false)

    const prec = 256
    xs := []float64{7140, 21408696, 26728085384, 14545501785001}
    root := new(big.Float)
    temp := new(big.Float)
    temp2 := new(big.Float)
    one := big.NewFloat(1)
    two := big.NewFloat(2)
    three := big.NewFloat(3)
    four := big.NewFloat(4)
    five := big.NewFloat(5)
    eight := big.NewFloat(8)
    nine := big.NewFloat(9)
    twentyFour := big.NewFloat(24)
    twentySeven := big.NewFloat(27)
    third := new(big.Float).SetPrec(prec).Quo(one, three)
    for _, x := range xs {
        bx := big.NewFloat(x).SetPrec(prec)
        fmt.Printf("\nRoots of %d:\n", int(x))
        root.Mul(bx, eight)
        root.Add(root, one)
        root.Sqrt(root)
        root.Sub(root, one)
        root.Quo(root, two)
        fmt.Printf("%14s: %.24f\n", "triangular", root)

        temp.Mul(bx, bx)
        temp.Mul(temp, nine)
        temp.Sub(temp, new(big.Float).SetPrec(prec).Quo(one, twentySeven))
        temp.Sqrt(temp)
        temp2.Mul(bx, three)
        temp2.Sub(temp2, temp)
        temp2 = bigfloat.Pow(temp2, third)
        root.Mul(bx, three)
        root.Add(root, temp)
        root = bigfloat.Pow(root, third)
        root.Add(root, temp2)
        root.Sub(root, one)
        fmt.Printf("%14s: %.24f\n", "tetrahedral", root)

        root.Mul(bx, twentyFour)
        root.Add(root, one)
        root.Sqrt(root)
        root.Mul(root, four)
        root.Add(root, five)
        root.Sqrt(root)
        root.Sub(root, three)
        root.Quo(root, two)
        fmt.Printf("%14s: %.24f\n", "pentatonic", root)
    }
}
Output:
The first 30 triangular numbers are:
  0   1   3   6  10  15 
 21  28  36  45  55  66 
 78  91 105 120 136 153 
171 190 210 231 253 276 
300 325 351 378 406 435 

The first 30 tetrahedral numbers are:
   0    1    4   10   20   35 
  56   84  120  165  220  286 
 364  455  560  680  816  969 
1140 1330 1540 1771 2024 2300 
2600 2925 3276 3654 4060 4495 

The first 30 pentatopic numbers are:
    0     1     5    15    35    70 
  126   210   330   495   715  1001 
 1365  1820  2380  3060  3876  4845 
 5985  7315  8855 10626 12650 14950 
17550 20475 23751 27405 31465 35960 

The first 30 12-simplex numbers are:
         0          1         13         91        455       1820 
      6188      18564      50388     125970     293930     646646 
   1352078    2704156    5200300    9657700   17383860   30421755 
  51895935   86493225  141120525  225792840  354817320  548354040 
 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 

Roots of 7140:
    triangular: 119.000000000000000000000000
   tetrahedral: 34.000000000000000000000000
    pentatonic: 18.876646615928006607901783

Roots of 21408696:
    triangular: 6543.000000000000000000000000
   tetrahedral: 503.561826974636514048196130
    pentatonic: 149.060947375265867484387575

Roots of 26728085384:
    triangular: 231205.405565255836957291031961
   tetrahedral: 5432.000000000000000000000000
    pentatonic: 893.442456751684869888466212

Roots of 14545501785001:
    triangular: 5393607.158145172316497304724655
   tetrahedral: 44355.777384073256052620916889
    pentatonic: 4321.000000000000000000000000

J

In J, it's usually more natural to start counting from 0 rather than 1. That shows up subtly in this task, since the specified roots assume counting starts from 1.

Anyways:

   tri=: [!+
   2 tri 1+i.5 6
  3   6  10  15  21  28
 36  45  55  66  78  91
105 120 136 153 171 190
210 231 253 276 300 325
351 378 406 435 465 496
   3 tri 1+i.5 6
   4   10   20   35   56   84
 120  165  220  286  364  455
 560  680  816  969 1140 1330
1540 1771 2024 2300 2600 2925
3276 3654 4060 4495 4960 5456
   4 tri 1+i.5 6
    5    15    35    70   126   210
  330   495   715  1001  1365  1820
 2380  3060  3876  4845  5985  7315
 8855 10626 12650 14950 17550 20475
23751 27405 31465 35960 40920 46376
   12 tri 1+i.10 3
        13         91         455
      1820       6188       18564
     50388     125970      293930
    646646    1352078     2704156
   5200300    9657700    17383860
  30421755   51895935    86493225
 141120525  225792840   354817320
 548354040  834451800  1251677700
1852482996 2707475148  3910797436
5586853480 7898654920 11058116888

And, for the roots:

   r2=: 2 %~ _1 + 2 %: 1 8&p.
   r3=: _1 + 0 3&p. (+ +&(3%:]) -) 2 %: _1r27 0 9&p.
   r4=: 2 %~ _3 + 2 %: 5 + 4 * 2 %: 1 + 24 * ] 
   (r2,r3,r4) 7140
119 34 18.8766
   (r2,r3,r4) 21408696
6543 503.564 149.061
   (r2,r3,r4) 26728085384
231205 5432 893.442
   (r2,r3,r4) 14545501785001
5.39361e6 44356.2 4321

Julia

Translation of: Raku
""" rosettacode.org task Triangular_numbers """


polytopic(r, range) = map(n -> binomial(n + r - 1, r), range)

triangular_root(x) = (sqrt(8x + 1) - 1) / 2

function tetrahedral_root(x)
    return Float64(round((3x + sqrt(9 * big(x)^2 - 1/27))^(1/3) +
       (3x - sqrt(9 * big(x)^2 - 1/27))^(1/3) - 1, digits=11))
end

pentatopic_root(x) = (sqrt(5 + 4 * sqrt(24x + 1)) - 3) / 2

function valuelisting(a, N=6)
    c = maximum(length, string.(a)) + 1
    return join([join([lpad(x, c) for x in v]) for v in Iterators.partition(a, N)], "\n")
end

for (r, name) in [[2, "triangular"], [3, "tetrahedral"], [4, "pentatopic"], [12, "12-simplex"]]
    println("\nFirst 30 $name numbers:\n", valuelisting(polytopic(r, 0:29)))
end

for n in [7140, 21408696, 26728085384, 14545501785001]
    println("\nRoots of $n:")
    println("   triangular-root: ", triangular_root(n))
    println("   tetrahedral-root: ", tetrahedral_root(n))
    println("   pentatopic-root: ", pentatopic_root(n))
end
Output:
First 30 triangular numbers:
   0   1   3   6  10  15
  21  28  36  45  55  66
  78  91 105 120 136 153
 171 190 210 231 253 276
 300 325 351 378 406 435

First 30 tetrahedral numbers:
    0    1    4   10   20   35
   56   84  120  165  220  286
  364  455  560  680  816  969
 1140 1330 1540 1771 2024 2300
 2600 2925 3276 3654 4060 4495

First 30 pentatopic numbers:
     0     1     5    15    35    70
   126   210   330   495   715  1001
  1365  1820  2380  3060  3876  4845
  5985  7315  8855 10626 12650 14950
 17550 20475 23751 27405 31465 35960

First 30 12-simplex numbers:
          0          1         13         91        455       1820
       6188      18564      50388     125970     293930     646646
    1352078    2704156    5200300    9657700   17383860   30421755
   51895935   86493225  141120525  225792840  354817320  548354040
  834451800 1251677700 1852482996 2707475148 3910797436 5586853480

Roots of 7140:
   triangular-root: 119.0
   tetrahedral-root: 34.0
   pentatopic-root: 18.876646615928006

Roots of 21408696:
   triangular-root: 6543.0
   tetrahedral-root: 503.56182697464
   pentatopic-root: 149.06094737526587

Roots of 26728085384:
   triangular-root: 231205.40556525585
   tetrahedral-root: 5432.0
   pentatopic-root: 893.4424567516849

Roots of 14545501785001:
   triangular-root: 5.3936071581451725e6
   tetrahedral-root: 44355.77738407323
   pentatopic-root: 4321.0

Pascal

Pascal

Using only extended isn't that precise for tetrahedral roots.
sqrt(sqr(3x)+1/27) is nearly 3x for bigger x values.

program XangularNumbers;
const 
  MAXIDX = 29;
  MAXLINECNT = 13;
  cNames : array[0..4] of string =
     ('','','triangular','tetrahedral','pentatopic');
  cCheckRootValues :array[0..3] of Uint64 = 
       (7140,21408696,26728085384,14545501785001)   ;
type
  tOneLine  = array[0..MAXIDX+2] of Uint64;
  tpOneLine = ^tOneLine;
  tSimplexs  = array[0..MAXLINECNT-1] of tOneLine;  

procedure OutLine(var S:tSimplexs;idx: NativeInt);
const
  cColCnt = 6;cColWidth = 80 DIV cColCnt;
var
  i,colcnt : NativeInt;
begin
  if idx > High(cNames) then
    writeln('First ',MAXIDX+1,' ',idx,'-simplex numbers')  
  else
    writeln('First ',MAXIDX+1,' ',cNames[idx],' numbers');
  colcnt := cColCnt;
  For i := 0 to MAXIDX do
  begin
    write(S[idx,i]:cColWidth);
    dec(colCnt);
    if ColCnt = 0 then
    Begin
      writeln;
      ColCnt := cColCnt;
    end;
  end; 
  if ColCnt <  cColCnt then
    writeln;
  writeln;   
end;  

procedure CalcNextLine(var S:tSimplexs;idx: NativeInt);  
var
  s1,s2: Uint64;  
  i : NativeInt;
begin
  s1 := S[idx,0];  
  S[idx+1,0] := s1;
  For i := 1 to MAXIDX do
  begin
    s2:= S[idx,i];
    S[idx+1,i] := s1+s2;
    inc(s1,s2);
  end;  
end;

procedure InitSimplexs(var S:tSimplexs);
var
  i: NativeInt;
begin
  fillChar(S,Sizeof(S),#0);
  For i := 1 to MAXIDX do
    S[0,i] := 1;
  For i := 0 to MAXLINECNT-2 do    
    CalcNextLine(S,i);    
end;

function TriangularRoot(n: Uint64): extended;
begin
  if n < High(Uint64) DIV 8 then
    TriangularRoot := (sqrt(8*n+1)-1) / 2
  else
    TriangularRoot := (sqrt(8)*sqrt(n)-1)/2;
end;  

function tetrahedralRoot(n: Uint64): extended;
const
  cRec27 = 1/sqrt(27);
var
  x,y : extended;
begin
  y := 3.0*n;  
  x := sqrt((y-cRec27)*(y+cRec27));//sqrt(sqr(3*n)-1/27)
  if x < y then
    tetrahedralRoot := exp(ln(y+x)/3.0)+exp(ln(y-x)/3.0)-1.0
  else
    //( 6*n)^(1/3)-1
    tetrahedralRoot :=exp(ln(6)/3.0)*exp(ln(n)/3.0)-1.0; //6^(1/3)* n^(1/3)-1  
end;

function PentatopicRoot(n: Uint64): extended;
begin
  PentatopicRoot := (sqrt(5 + 4 * sqrt(24*n + 1)) - 3) / 2;
end; 

var
  Simplexs  : tSimplexs;
  n : Uint64;
  i : NativeInt;
Begin
  InitSimplexs(Simplexs);
  OutLine(Simplexs,2);
  OutLine(Simplexs,3);
  OutLine(Simplexs,4);
  OutLine(Simplexs,12);
  For i := 0 to High(cCheckRootValues) do
  begin
    n := cCheckRootValues[i];
    writeln('Roots of ',n,':');
    writeln('triangular -root : ',TriangularRoot(n):20:12);
    writeln('tetrahedral-root : ',tetrahedralRoot(n):20:12);
    writeln('pentatopic -root : ',PentatopicRoot(n):20:12);
    writeln;
  end;
end.
Output:
First 30 triangular numbers
            0            1            3            6           10           15
           21           28           36           45           55           66
           78           91          105          120          136          153
          171          190          210          231          253          276
          300          325          351          378          406          435

First 30 tetrahedral numbers
            0            1            4           10           20           35
           56           84          120          165          220          286
          364          455          560          680          816          969
         1140         1330         1540         1771         2024         2300
         2600         2925         3276         3654         4060         4495

First 30 pentatopic numbers
            0            1            5           15           35           70
          126          210          330          495          715         1001
         1365         1820         2380         3060         3876         4845
         5985         7315         8855        10626        12650        14950
        17550        20475        23751        27405        31465        35960

First 30 12-simplex numbers
            0            1           13           91          455         1820
         6188        18564        50388       125970       293930       646646
      1352078      2704156      5200300      9657700     17383860     30421755
     51895935     86493225    141120525    225792840    354817320    548354040
    834451800   1251677700   1852482996   2707475148   3910797436   5586853480

Roots of 7140:
triangular -root :     119.000000000000
tetrahedral-root :      34.000000000003
pentatopic -root :      18.876646615928

Roots of 21408696:
triangular -root :    6543.000000000000
tetrahedral-root :     503.561826261328
pentatopic -root :     149.060947375266

Roots of 26728085384:
triangular -root :  231205.405565255837
tetrahedral-root :    5431.999938646542 <<==
pentatopic -root :     893.442456751685

Roots of 14545501785001:
triangular -root : 5393607.158145172316
tetrahedral-root :   44355.777376558433
pentatopic -root :    4321.000000000000

Raku

use Math::Root;

my \ε = FatRat.new: 1, 10**24;

sub binomial { [×] ($^n0) Z/ 1 .. $^p }

sub polytopic (Int $r, @range) { @range.map: { binomial $_ + $r - 1, $r } }

sub triangular-root ($x) { round ((8 × $x + 1).&root - 1) / 2, ε }

sub tetrahedral-root ($x) {
    ((3 × $x + (9 × $x² - 1/27).&root).&root(3) +
     (3 × $x - (9 × $x² - 1/27).&root).&root(3) - 1).round: ε
}

sub pentatopic-root ($x) { round ((5 + 4 × (24 × $x + 1).&root).&root - 3) / 2, ε }

sub display (@values) {
    my $c = @values.max.chars;
    @values.batch(6)».fmt("%{$c}d").join: "\n";
}

for 2, 'triangular', 3, 'tetrahedral', 4, 'pentatopic', 12, '12-simplex'
  -> $r, $name { say "\nFirst 30 $name numbers:\n" ~ display polytopic $r, ^30 }

say '';

for 7140, 21408696, 26728085384, 14545501785001 {
  say qq:to/R/;
  Roots of $_:
    triangular-root: {.&triangular-root}
   tetrahedral-root: {.&tetrahedral-root}
    pentatopic-root: {.&pentatopic-root}
  R
}
Output:
First 30 triangular numbers:
  0   1   3   6  10  15
 21  28  36  45  55  66
 78  91 105 120 136 153
171 190 210 231 253 276
300 325 351 378 406 435

First 30 tetrahedral numbers:
   0    1    4   10   20   35
  56   84  120  165  220  286
 364  455  560  680  816  969
1140 1330 1540 1771 2024 2300
2600 2925 3276 3654 4060 4495

First 30 pentatopic numbers:
    0     1     5    15    35    70
  126   210   330   495   715  1001
 1365  1820  2380  3060  3876  4845
 5985  7315  8855 10626 12650 14950
17550 20475 23751 27405 31465 35960

First 30 12-simplex numbers:
         0          1         13         91        455       1820
      6188      18564      50388     125970     293930     646646
   1352078    2704156    5200300    9657700   17383860   30421755
  51895935   86493225  141120525  225792840  354817320  548354040
 834451800 1251677700 1852482996 2707475148 3910797436 5586853480

Roots of 7140:
  triangular-root: 119
 tetrahedral-root: 34
  pentatopic-root: 18.876646615928006607901783

Roots of 21408696:
  triangular-root: 6543
 tetrahedral-root: 503.56182697463651404819613
  pentatopic-root: 149.060947375265867484387575

Roots of 26728085384:
  triangular-root: 231205.405565255836957291031961
 tetrahedral-root: 5432
  pentatopic-root: 893.442456751684869888466212

Roots of 14545501785001:
  triangular-root: 5393607.158145172316497304724655
 tetrahedral-root: 44355.777384073256052620916903
  pentatopic-root: 4321

Wren

Library: Wren-fmt
Library: Wren-big
import "./fmt" for Fmt
import "./big" for BigRat

var t = List.filled(30, 0)
for (n in 1..29) t[n] = t[n-1] + n
System.print("The first 30 triangular numbers are:")
Fmt.tprint("$3d", t, 6)

for (n in 1..29) t[n] = t[n] + t[n-1]
System.print("\nThe first 30 tetrahedral numbers are:")
Fmt.tprint("$4d", t, 6)

for (n in 1..29) t[n] = t[n] + t[n-1]
System.print("\nThe first 30 pentatopic numbers are:")
Fmt.tprint("$5d", t, 6)

for (r in 5..12) {
    for (n in 1..29) t[n] = t[n] + t[n-1]
}
System.print("\nThe first 30 12-simplex numbers are:")
Fmt.tprint("$10d", t, 6)

var xs = [7140, 21408696, 26728085384, 14545501785001]
var digs = 16
for (x in xs) {
    var bx = BigRat.new(x)
    System.print("\nRoots of %(x):")
    var root = ((bx*8 + 1).sqrt(digs) - 1)/2
    Fmt.print("$14s: $s", "triangular", root.toDecimal(digs-5))

    var temp = (bx*bx*9 - BigRat.new(1, 27)).sqrt(digs)
    root = (bx*3 + temp).cbrt(digs) + (bx*3 - temp).cbrt(digs) - 1
    Fmt.print("$14s: $s", "tetrahedral", root.toDecimal(digs-5))

    root = (((bx*24 + 1).sqrt(digs)*4 + 5).sqrt(digs) - 3) / 2
    Fmt.print("$14s: $s", "pentatopic", root.toDecimal(digs-5))
}
Output:
The first 30 triangular numbers are:
  0   1   3   6  10  15 
 21  28  36  45  55  66 
 78  91 105 120 136 153 
171 190 210 231 253 276 
300 325 351 378 406 435 

The first 30 tetrahedral numbers are:
   0    1    4   10   20   35 
  56   84  120  165  220  286 
 364  455  560  680  816  969 
1140 1330 1540 1771 2024 2300 
2600 2925 3276 3654 4060 4495 

The first 30 pentatopic numbers are:
    0     1     5    15    35    70 
  126   210   330   495   715  1001 
 1365  1820  2380  3060  3876  4845 
 5985  7315  8855 10626 12650 14950 
17550 20475 23751 27405 31465 35960 

The first 30 12-simplex numbers are:
         0          1         13         91        455       1820 
      6188      18564      50388     125970     293930     646646 
   1352078    2704156    5200300    9657700   17383860   30421755 
  51895935   86493225  141120525  225792840  354817320  548354040 
 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 

Roots of 7140:
    triangular: 119
   tetrahedral: 34.00000000000
    pentatopic: 18.87664661593

Roots of 21408696:
    triangular: 6543
   tetrahedral: 503.56182697464
    pentatopic: 149.06094737527

Roots of 26728085384:
    triangular: 231205.40556525584
   tetrahedral: 5432.00000000000
    pentatopic: 893.44245675168

Roots of 14545501785001:
    triangular: 5393607.15814517232
   tetrahedral: 44355.77738407326
    pentatopic: 4321