Sunflower fractal: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|Perl 6}}: Argh. Tau not pi)
m (→‎{{header|Go}}: Added libheader for Go Graphics library and edited the preamble accordingly.)
Line 5: Line 5:
<br>
<br>
=={{header|Go}}==
=={{header|Go}}==
{{libheader|Go Graphics}}
{{trans|Ring}}
{{trans|Ring}}
<br>
<br>
This uses the [https://github.com/fogleman/gg Go Graphics library] for rendering 2D graphics in pure Go. The image produced, when viewed with (for example) EOG, is similar to the Ring entry.
The image produced, when viewed with (for example) EOG, is similar to the Ring entry.
<lang go>package main
<lang go>package main



Revision as of 09:48, 14 August 2018

Sunflower fractal is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Draw Sunflower fractal


Go

Library: Go Graphics
Translation of: Ring


The image produced, when viewed with (for example) EOG, is similar to the Ring entry. <lang go>package main

import (

   "github.com/fogleman/gg"
   "math"

)

func main() {

   dc := gg.NewContext(400, 400)
   dc.SetRGB(1, 1, 1)
   dc.Clear()
   dc.SetRGB(0, 0, 1)
   c := (math.Sqrt(5) + 1) / 2
   numberOfSeeds := 3000
   for i := 0; i <= numberOfSeeds; i++ {
       fi := float64(i)
       fn := float64(numberOfSeeds)
       r := math.Pow(fi, c) / fn
       angle := 2 * math.Pi * c * fi
       x := r*math.Sin(angle) + 200
       y := r*math.Cos(angle) + 200
       fi /= fn / 5
       dc.DrawCircle(x, y, fi)
   }
   dc.SetLineWidth(1)
   dc.Stroke()
   dc.SavePNG("sunflower_fractal.png")

}</lang>

Microsoft Small Basic

Translation of: Ring

<lang smallbasic>' Sunflower fractal - 24/07/2018

 GraphicsWindow.Width=410
 GraphicsWindow.Height=400
 c=(Math.SquareRoot(5)+1)/2
 numberofseeds=3000
 For i=0 To numberofseeds
   r=Math.Power(i,c)/numberofseeds
   angle=2*Math.Pi*c*i
   x=r*Math.Sin(angle)+200
   y=r*Math.Cos(angle)+200
   GraphicsWindow.DrawEllipse(x, y, i/numberofseeds*10, i/numberofseeds*10)
 EndFor </lang>
Output:

Sunflower fractal

Perl 6

Works with: Rakudo version 2018.06

This is not really a fractal. It is more accurately an example of a Fibonacci spiral or Phi-packing.

Or, to be completely accurate: It is a variation of a generative Fermat's spiral using the Vogel model to implement phi-packing. See: https://thatsmaths.com/2014/06/05/sunflowers-and-fibonacci-models-of-efficiency

<lang perl6>use SVG;

my $seeds = 3000; my @center = 300, 300; my $scale = 5;

constant \φ = (3 - 5.sqrt) / 2;

my @c = map {

   my ($x, $y) = ($scale * .sqrt) «*« |cis($_ * φ * τ).reals »+« @center;
   [ $x.round(.01), $y.round(.01), (.sqrt * $scale / 100).round(.1) ]

}, 1 .. $seeds;

say SVG.serialize(

   svg => [
       :600width, :600height, :style<stroke:yellow>,
       :rect[:width<100%>, :height<100%>, :fill<black>],
       |@c.map( { :circle[:cx(.[0]), :cy(.[1]), :r(.[2])] } ),
   ],

);</lang> See: Phi packing (SVG image)

Ring

<lang ring>

  1. Project : Sunflower fractal

load "guilib.ring"

paint = null

new qapp

       {
       win1 = new qwidget() {
                 setwindowtitle("Sunflower fractal")
                 setgeometry(100,100,320,500)
                 label1 = new qlabel(win1) {
                             setgeometry(10,10,400,400)
                             settext("")
                 }
                 new qpushbutton(win1) {
                         setgeometry(100,400,100,30)
                         settext("draw")
                         setclickevent("draw()")
                 }
                 show()
       }
       exec()
       }

func draw

       p1 = new qpicture()
              color = new qcolor() {
              setrgb(0,0,255,255)
       }
       pen = new qpen() {
                setcolor(color)
                setwidth(1)
       }
       paint = new qpainter() {
                 begin(p1)
                 setpen(pen)
       c = (sqrt(5) + 1) / 2
       numberofseeds = 3000
       for i = 0 to numberofseeds
             r = pow(i, c ) / (numberofseeds)
             angle = 2 * 3.14 * c * i
             x = r * sin(angle) + 100
             y = r * cos(angle) + 100
            drawellipse(x, y, i / (numberofseeds / 10), i / (numberofseeds / 10))
       next
       endpaint()
       }
       label1 { setpicture(p1) show() }

</lang> Output:

Sunflower fractal

Sidef

Translation of: Go

<lang ruby>require('Imager')

func draw_sunflower(seeds=3000) {

   var img = %O<Imager>.new(
       xsize => 400,
       ysize => 400,
   )
   var c = (sqrt(1.25) + 0.5)
   { |i|
       var r = (i**c / seeds)
       var θ = (2 * Num.pi * c * i)
       var x = (r * sin(θ) + 200)
       var y = (r * cos(θ) + 200)
       img.circle(x => x, y => y, r => i/(5*seeds))
   } * seeds
   return img

}

var img = draw_sunflower() img.write(file => "sunflower.png")</lang>

Output:

Sunflower fractal


zkl

Translation of: Go

Uses Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl <lang zkl>fcn sunflower(seeds=3000){

  img,color := PPM(400,400), 0x00ff00;		// green
  c:=((5.0).sqrt() + 1)/2;
  foreach n in ([0.0 .. seeds]){  // floats
     r:=n.pow(c)/seeds;
     x,y := r.toRectangular(r.pi*c*n*2);
     r=(n/seeds*5).toInt();
     img.circle(200 + x, 200 + y, r,color);
  }
  img.writeJPGFile("sunflower.zkl.jpg");

}();</lang>

Output:

Image at sunflower fractal