Sturmian word

Revision as of 08:28, 1 February 2024 by Petelomax (talk | contribs) (Added Phix)

A Sturmian word is a binary sequence, finite or infinite, that makes up the cutting sequence for a positive real number x, as shown in the picture.

Task
Sturmian word
You are encouraged to solve this task according to the task description, using any language you may know.
Example Sturmian word when x = 0.618..., the golden ratio.

The Sturmian word can be computed thus as an algorithm:

  • If , then it is the inverse of the Sturmian word for . So we have reduced to the case of .
  • Iterate over
  • If is an integer, then the program terminates. Else, if , then the program outputs 0, else, it outputs 10.

The problem:

  • Given a positive rational number , specified by two positive integers , output its entire Sturmian word.
  • Given a quadratic real number , specified by integers , where is not a perfect square, output the first letters of Sturmian words when given a positive number .

(If the programming language can represent infinite data structures, then that works too.)

A simple check is to do this for the golden ratio , that is, , which would just output the Fibonacci word.

Stretch goal: calculate the Sturmian word for other kinds of definable real numbers, such as cubic roots.

The key difficulty is accurately calculating for large . Floating point arithmetic would lose precision. One can either do this simply by directly searching for some integer such that , or by more trickly methods, such as the continued fraction approach.

First calculate the continued fraction convergents to . Let be a convergent to , such that , then since the convergent sequence is the best rational approximant for denominators up to that point, we know for sure that, if we write out , the sequence would stride right across the gap . Thus, we can take the largest such that , and we would know for sure that .

In summary,

where is the first continued fraction approximant to with a denominator


where is the first continued fraction approximant to with a denominator

Phix

Translation of: Python
with javascript_semantics
function sturmian_word(integer m, n)
    if m > n then
        return sq_sub('0'+'1',sturmian_word(n,m))
    end if
    string res = ""
    integer k = 1, prev = 0
    while remainder(k*m,n) do
        integer curr = floor(k*m/n)
        res &= iff(prev=curr?"0":"10")
        prev = curr
        k += 1
    end while
    return res
end function

function fibWord(integer n)
    string Sn_1 = "0",
             Sn = "01",
            tmp = ""
    for i=2 to n do
        tmp = Sn
        Sn &= Sn_1
        Sn_1 = tmp
    end for
    return Sn
end function

string fib = fibWord(7),
  sturmian = sturmian_word(13, 21)
assert(fib[1..length(sturmian)] == sturmian)
?sturmian
Output:
"01001010010010100101001001010010"

Python

For rational numbers:

def sturmian_word(m, n):
    sturmian = ""
    def invert(string):
      return ''.join(list(map(lambda b: {"0":"1", "1":"0"}[b], string)))
    if m > n:
      return invert(sturmian_word(n, m))

    k = 1
    while True:
        current_floor = int(k * m / n)
        previous_floor = int((k - 1) * m / n)
        if k * m % n == 0:
            break
        if previous_floor == current_floor:
            sturmian += "0"
        else:
            sturmian += "10"
        k += 1
    return sturmian

Checking that it works on the finite Fibonacci word:

def fibWord(n):
    Sn_1 = "0"
    Sn = "01"
    tmp = ""
    for i in range(2, n + 1):
        tmp = Sn
        Sn += Sn_1
        Sn_1 = tmp
    return Sn

fib = fibWord(10)
sturmian = sturmian_word(13, 21)
assert fib[:len(sturmian)] == sturmian
print(sturmian)

# Output:
# 01001010010010100101001001010010