Continued fraction convergents
Given a positive real number, if we truncate its continued fraction representation at a certain depth, we obtain a rational approximation to the real number. The sequence of successively better such approximations is its convergent sequence.
Problem:
- Given a positive rational number , specified by two positive integers , output its entire sequence of convergents.
- Given a quadratic real number , specified by integers , where is not a perfect square, output the first convergents when given a positive number .
The output format can be whatever is necessary to represent rational numbers, but it probably should be a 2-tuple of integers.
For example, given , sincethe program should output .
A simple check is to do this for the golden ratio , that is, , which should output .
Print the results for 415/93, 649/200, , , and the golden ratio.
- References and related tasks
- Wikipedia: Continued fraction
- Continued fraction
- Continued fraction/Arithmetic
- Continued fraction/Arithmetic/Construct from rational number
- Calkin-Wilf sequence
FreeBASIC
Function convergents(x As Double, maxcount As Integer) As String
Dim As Double epsilon = 1e-9
Dim As Integer components(maxcount)
Dim As String rationals = ""
Dim As Integer cont = 0
Dim As Double fpart, ipart
While cont < maxcount
ipart = Int(x)
fpart = x - ipart
components(cont) = ipart
cont += 1
If Abs(fpart) < epsilon Then Exit While
x = 1 / fpart
Wend
Dim As Integer numa = 1, denoma = 0, numb = components(0), denomb = 1
rationals &= Str(numb)
rationals &= Iif(denomb <> 1, "/" & Str(denomb), " ")
For i As Integer = 1 To cont - 1
Dim As Integer comp = components(i)
Dim As Integer temp_num = numa + comp * numb
Dim As Integer temp_den = denoma + comp * denomb
numa = numb
denoma = denomb
numb = temp_num
denomb = temp_den
rationals &= Str(numb)
rationals &= Iif(denomb <> 1, "/" & Str(denomb), " ")
Next
Return rationals
End Function
Function parseFraction(fraction As String) As Double
Dim As Integer posic = Instr(fraction, "/")
If posic > 0 Then
Dim As Double numerator = Val(Left(fraction, posic - 1))
Dim As Double denominator = Val(Mid(fraction, posic + 1))
Return numerator / denominator
Else
Return Val(fraction)
End If
End Function
Dim As String tests(5, 2) = { _
{"415/93", "415/93"}, _
{"649/200", "649/200"}, _
{"sqrt(2)", Str(Sqr(2))}, _
{"sqrt(5)", Str(Sqr(5))}, _
{"golden ratio", Str((Sqr(5) + 1) / 2)} }
Print "The continued fraction convergents for the following (maximum 8 terms) are:"
For i As Integer = 0 To 4
Dim As String s = tests(i, 0)
Dim As Double x = parseFraction(tests(i, 1))
Print Space(15 - Len(s)) & s & " = " & convergents(x, 8)
Next
Sleep
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = 4 9/2 58/13 415/93 649/200 = 3 13/4 159/49 490/151 649/200 sqrt(2) = 1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 sqrt(5) = 2 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184 golden ratio = 1 2 3/2 5/3 8/5 13/8 21/13 34/21
Julia
function convergents(x::Real, maxcount::T) where T <: Integer
components = T[]
rationals = Rational{T}[]
for _ in 1:maxcount
fpart, ipart = modf(x)
push!(components, T(ipart))
fpart == 0 && break
x = inv(fpart)
end
numa, denoma, numb, denomb = T(1), T(0), T(components[begin]), T(1)
push!(rationals, numb // denomb)
for comp in components[begin+1:end]
numa, denoma, numb, denomb = numb, denomb, numa + comp * numb, denoma + comp * denomb
push!(rationals, numb // denomb)
end
return rationals
end
const tests = [("415/93", 415//93), ("649/200", 649//200), ("sqrt(2)", sqrt(2)),
("sqrt(5)", sqrt(5)), ("golden ratio", (sqrt(5) + 1) / 2)]
println("The continued fraction convergents for the following (maximum 8 terms) are:")
for (s, x) in tests
println(lpad(s, 15), " = ", convergents(x, 8))
end
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = Rational{Int64}[4, 9//2, 58//13, 415//93] 649/200 = Rational{Int64}[3, 13//4, 159//49, 649//200] sqrt(2) = Rational{Int64}[1, 3//2, 7//5, 17//12, 41//29, 99//70, 239//169, 577//408] sqrt(5) = Rational{Int64}[2, 9//4, 38//17, 161//72, 682//305, 2889//1292, 12238//5473, 51841//23184] golden ratio = Rational{Int64}[1, 2, 3//2, 5//3, 8//5, 13//8, 21//13, 34//21]
Perl
# 20240906 Perl programming solution
use strict;
use warnings;
sub convergents {
my ($x, $maxcount) = @_;
my ($epsilon, @comp) = 1e-9;
for (1..$maxcount) {
push(@comp, my $ix = int($x));
my $fpart = $x - $ix;
abs($fpart) < $epsilon ? ( last ) : ( $x = 1 / $fpart )
}
my ($numa, $denoma, $numb, $denomb) = ( 1, 0, $comp[0], 1 );
my @return = ( "$numb/$denomb" ) ;
for my $i (1 .. $#comp) {
( $numa, $denoma, $numb , $denomb )
= ($numb, $denomb, $numa + $comp[$i]*$numb, $denoma + $comp[$i]*$denomb );
push(@return, "$numb/$denomb")
}
@return
}
my @tests = (
[ "415/93", 415/93 ], [ "649/200", 649/200 ], [ "sqrt(2)", sqrt(2) ],
[ "sqrt(5)", sqrt(5) ], [ "golden ratio", (sqrt(5) + 1) / 2 ]
);
print "The continued fraction convergents for the following (maximum 8 terms) are:\n";
foreach my $test (@tests) {
my ($s, $x) = @$test;
printf "%15s = %s\n", $s, join(' ', convergents($x, 8));
}
You may Attempt This Online!
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = 4/1 9/2 58/13 415/93 649/200 = 3/1 13/4 159/49 490/151 649/200 sqrt(2) = 1/1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 sqrt(5) = 2/1 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184 golden ratio = 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21
Phix
with javascript_semantics
requires("1.0.5") -- mpq_get_d() added
include mpfr.e
procedure cfcRat(integer m, n)
sequence p = {mpq_init(0), mpq_init(1)},
q = {mpq_init(1), mpq_init(0)},
s = {},
t = sprintf("%d/%d",{m,n})
mpq r = mpq_init_set_si(m, n),
rem = mpq_init_set(r)
while true do
mpq whole = mpq_init_set_si(trunc(mpq_get_d(rem)))
mpq {pn, qn, sn} = mpq_inits(3)
mpq_mul(pn,whole,p[-1])
mpq_add(pn,pn,p[-2])
mpq_mul(qn,whole,q[-1])
mpq_add(qn,qn,q[-2])
mpq_div(sn,pn,qn)
p &= pn
q &= qn
s &= {mpq_get_str(sn)}
if mpq_cmp(r,sn)=0 then exit end if
mpq_sub(rem,rem,whole)
mpq_inv(rem,rem)
end while
printf(1,"%14s = %s\n",{t,join(s)})
end procedure
procedure cfcQuad(string d, integer a, b, m, n, k)
sequence p = {0, 1},
q = {1, 0},
s = {}
atom rem = (sqrt(a)*b + m) / n
for i=1 to k do
integer whole = trunc(rem),
pn = whole * p[-1] + p[-2],
qn = whole * q[-1] + q[-2]
mpq sn = mpq_init_set_si(pn, qn)
p &= pn
q &= qn
s &= {mpq_get_str(sn)}
rem = 1/(rem-whole)
end for
printf(1,"%14s = %s\n",{d,join(s)})
end procedure
printf(1,"The continued fraction convergents for the following (maximum 8 terms) are:\n")
cfcRat(415,93)
cfcRat(649,200)
cfcQuad("sqrt(2)",2, 1, 0, 1, 8)
cfcQuad("sqrt(5)",5, 1, 0, 1, 8)
cfcQuad("golden ratio",5, 1, 1, 2, 8)
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = 4 9/2 58/13 415/93 649/200 = 3 13/4 159/49 649/200 sqrt(2) = 1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 sqrt(5) = 2 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184 golden ratio = 1 2 3/2 5/3 8/5 13/8 21/13 34/21
Python
#!/usr/bin/python3
def convergents(x, maxcount):
epsilon = 1e-9
components = []
for _ in range(maxcount):
ix = int(x)
components.append(ix)
fpart = x - ix
if abs(fpart) < epsilon:
break
x = 1 / fpart
numa, denoma = 1, 0
numb, denomb = components[0], 1
rationals = [f"{numb}/{denomb}" if denomb != 1 else f"{numb}"]
for comp in components[1:]:
numa, denoma, numb, denomb = numb, denomb, numa + comp * numb, denoma + comp * denomb
rationals.append(f"{numb}/{denomb}" if denomb != 1 else f"{numb}")
return rationals
if __name__ == "__main__":
tests = [
("415/93", 415/93),
("649/200", 649/200),
("sqrt(2)", 2**0.5),
("sqrt(5)", 5**0.5),
("golden ratio", (5**0.5 + 1) / 2)
]
print("The continued fraction convergents for the following (maximum 8 terms) are:")
for s, x in tests:
print(f"{s:>15} = {' '.join(convergents(x, 8))}")
- Output:
Same as FreeBASIC entry.
Raku
# 20240210 Raku programming solution
sub convergents(Real $x is copy, Int $maxcount) {
my @components = gather for ^$maxcount {
my $fpart = $x - take $x.Int;
$fpart == 0 ?? ( last ) !! ( $x = 1 / $fpart )
}
my ($numa, $denoma, $numb, $denomb) = 1, 0, @components[0], 1;
return [ Rat.new($numb, $denomb) ].append: gather for @components[1..*] -> $comp {
( $numa, $denoma, $numb , $denomb )
= $numb, $denomb, $numa + $comp * $numb, $denoma + $comp * $denomb;
take Rat.new($numb, $denomb);
}
}
my @tests = [ "415/93", 415/93, "649/200", 649/200, "sqrt(2)", sqrt(2),
"sqrt(5)", sqrt(5), "golden ratio", (sqrt(5) + 1) / 2 ];
say "The continued fraction convergents for the following (maximum 8 terms) are:";
for @tests -> $s, $x {
say $s.fmt('%15s') ~ " = { convergents($x, 8).map: *.nude.join('/') } ";
}
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = 4/1 9/2 58/13 415/93 649/200 = 3/1 13/4 159/49 649/200 sqrt(2) = 1/1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 sqrt(5) = 2/1 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184 golden ratio = 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21
You may Attempt This Online!
Sidef
func num2cfrac(n, r) {
gather {
r.times {
n = 1/((n - take(n.floor.int)) || break)
}
}
}
func convergents(x, n) {
var cfrac = num2cfrac(x, n)
var(n1, n2) = (0, 1)
var(d1, d2) = (1, 0)
gather {
for z in (cfrac) {
(n1, n2) = (n2, n2*z + n1)
(d1, d2) = (d2, d2*z + d1)
take(n2/d2)
}
}
}
var tests = ["415/93", 415/93, "649/200", 649/200, "sqrt(2)", sqrt(2),
"sqrt(5)", sqrt(5), "golden ratio", (sqrt(5) + 1) / 2 ]
var terms = 8
say "The continued fraction convergents for the following (maximum #{terms} terms) are:"
tests.each_slice(2, {|s,x|
printf("%15s = %s\n", s, convergents(x, terms).map { .as_frac }.join(' '))
})
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = 4/1 9/2 58/13 415/93 649/200 = 3/1 13/4 159/49 649/200 sqrt(2) = 1/1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 sqrt(5) = 2/1 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184 golden ratio = 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21
Wren
The following is loosely based on the Python code here. If a large number of terms were required for quadratic real numbers, then one might need to use 'arbitrary precision' arithmetic to minimize round-off errors when converting between floats and rationals.
import "./rat" for Rat
var cfcRat = Fn.new { |m, n|
var p = [0, 1]
var q = [1, 0]
var s = []
var r = Rat.new(m, n)
var rem = r
while (true) {
var whole = rem.truncate
var frac = rem.fraction
var pn = whole * p[-1] + p[-2]
var qn = whole * q[-1] + q[-2]
var sn = pn / qn
p.add(pn)
q.add(qn)
s.add(sn)
if (r == sn) break
rem = frac.inverse
}
return s
}
var cfcQuad = Fn.new { |a, b, m, n, k|
var p = [0, 1]
var q = [1, 0]
var s = []
var rem = (a.sqrt * b + m) / n
for (i in 1..k) {
var whole = rem.truncate
var frac = rem.fraction
var pn = whole * p[-1] + p[-2]
var qn = whole * q[-1] + q[-2]
var sn = Rat.new(pn, qn)
p.add(pn)
q.add(qn)
s.add(sn)
rem = 1 / frac
}
return s
}
System.print("The continued fraction convergents for the following (maximum 8 terms) are:")
System.print("415/93 = %(cfcRat.call(415, 93))")
System.print("649/200 = %(cfcRat.call(649, 200))")
System.print("√2 = %(cfcQuad.call(2, 1, 0, 1, 8))")
System.print("√5 = %(cfcQuad.call(5, 1, 0, 1, 8))")
System.print("phi = %(cfcQuad.call(5, 1, 1, 2, 8))")
- Output:
The continued fraction convergents for the following (maximum 8 terms) are: 415/93 = [4/1, 9/2, 58/13, 415/93] 649/200 = [3/1, 13/4, 159/49, 649/200] √2 = [1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408] √5 = [2/1, 9/4, 38/17, 161/72, 682/305, 2889/1292, 12238/5473, 51841/23184] phi = [1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21]