# Cistercian numerals

Cistercian numerals
You are encouraged to solve this task according to the task description, using any language you may know.

Cistercian numerals were used across Europe by Cistercian monks during the Late Medieval Period as an alternative to Roman numerals. They were used to represent base 10 integers from 0 to 9999.

How they work

All Cistercian numerals begin with a vertical line segment, which by itself represents the number 0. Then, glyphs representing the digits 1 through 9 are optionally added to the four quadrants surrounding the vertical line segment. These glyphs are drawn with vertical and horizontal symmetry about the initial line segment. Each quadrant corresponds to a digit place in the number:

• The upper-right quadrant represents the ones place.
• The upper-left quadrant represents the tens place.
• The lower-right quadrant represents the hundreds place.
• The lower-left quadrant represents the thousands place.

Please consult the following image for examples of Cistercian numerals showing each glyph: [1]

• Write a function/procedure/routine to display any given Cistercian numeral. This could be done by drawing to the display, creating an image, or even as text (as long as it is a reasonable facsimile).
• Use the routine to show the following Cistercian numerals:
• 0
• 1
• 20
• 300
• 4000
• 5555
• 6789
• And a number of your choice!
Notes

Due to the inability to upload images to Rosetta Code as of this task's creation, showing output here on this page is not required. However, it is welcomed — especially for text output.

## 68000 Assembly

This Sega Genesis cartridge can be compiled with VASM and run in the Fusion emulator.

```;CONSTANTS
VFLIP equ %0001000000000000
HFLIP equ %0000100000000000
;Ram Variables
Cursor_X equ \$00FF0000
Cursor_Y equ Cursor_X+1
temp_cursor_x equ \$00FF0002
temp_cursor_y equ \$00FF0003
;Video Ports
VDP_data	EQU	\$C00000	; VDP data, R/W word or longword access only
VDP_ctrl	EQU	\$C00004	; VDP control, word or longword writes only
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 					Traps
DC.L	\$FFFFFE00		;SP register value
DC.L	ProgramStart	        ;Start of Program Code
DS.L	7,IntReturn		; bus err,addr err,illegal inst,divzero,CHK,TRAPV,priv viol
DC.L	IntReturn		; TRACE
DC.L	IntReturn		; Line A (1010) emulator
DC.L	IntReturn		; Line F (1111) emulator
DS.L	4,IntReturn		; Reserverd /Coprocessor/Format err/ Uninit Interrupt
DS.L	8,IntReturn		; Reserved
DC.L	IntReturn		; spurious interrupt
DC.L	IntReturn		; IRQ level 1
DC.L	IntReturn		; IRQ level 2 EXT
DC.L	IntReturn		; IRQ level 3
DC.L	IntReturn		; IRQ level 4 Hsync
DC.L	IntReturn		; IRQ level 5
DC.L	IntReturn		; IRQ level 6 Vsync
DC.L	IntReturn		; IRQ level 7
DS.L	16,IntReturn	; TRAPs
DS.L	16,IntReturn	; Misc (FP/MMU)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DC.B	"SEGA GENESIS    "	;System Name
DC.B	"2019.JAN"			;Date
DC.B	"ChibiAkumas.com                                 " ; Cart Name
DC.B	"ChibiAkumas.com                                 " ; Cart Name (Alt)
DC.B	"GM CHIBI001-00"	;TT NNNNNNNN-RR T=Type (GM=Game) N=game Num  R=Revision
DC.W	\$0000				;16-bit Checksum (Address \$000200+)
DC.B	"J               "	;Control Data (J=3button K=Keyboard 6=6button C=cdrom)
DC.L	\$00000000			;ROM Start
DC.L	\$003FFFFF			;ROM Length
DC.L	\$00FF0000,\$00FFFFFF	;RAM start/end (fixed)
DC.B	"            "		;External RAM Data
DC.B	"            "		;Modem Data
DC.B	"                                        " ;MEMO
DC.B	"JUE             "	;Regions Allowed

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;					Generic Interrupt Handler
IntReturn:
rte
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;					Program Start
ProgramStart:
move.b (\$A10001),D0		;A10001 test the hardware version
and.b #\$0F,D0
beq	NoTmss				;branch if no TMSS chip
move.l #'SEGA',(\$A14000);A14000 disable TMSS
NoTmss:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;					Set Up Screen Settings

lea VDPSettings,A5		;Initialize Screen Registers
move.l #VDPSettingsEnd-VDPSettings,D1 ;length of Settings

move.w (VDP_ctrl),D0	;C00004 read VDP status (interrupt acknowledge?)
move.l #\$00008000,d5	;VDP Reg command (%8rvv)

NextInitByte:
move.b (A5)+,D5			;get next video control byte
move.w D5,(VDP_ctrl)	;C00004 send write register command to VDP
;   8RVV - R=Reg V=Value
add.w #\$0100,D5			;point to next VDP register
dbra D1,NextInitByte	;loop for rest of block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;					Set up palette and graphics

move.l #\$C0000000,d0	;Color 0
move.l d0,VDP_Ctrl
MOVE.W #\$0A00,VDP_Data		;BLUE

move.l #\$C01E0000,d0	;Color 0
move.l d0,VDP_Ctrl
MOVE.W #\$00EE,VDP_Data		;YELLOW

lea Graphics,a0						;background tiles
move.w #(GraphicsEnd-Graphics)-1,d1	;data size
jsr DefineTiles

;Turn on screen
move.w	#\$8144,(VDP_Ctrl);C00004 reg 1 = 0x44 unblank display

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Main:
CLR.B Cursor_X
CLR.B Cursor_Y

LEA TestData,a3
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jsr PrintCistercian
jmp *					;halt the cpu - we're done
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
PrintCistercian:
;input:A3 = address of test data.
MOVE.B Cursor_X,temp_Cursor_X
MOVE.B Cursor_Y,temp_Cursor_Y
MOVE.L (A3)+,D1
;thousands, hundreds, tens, ones

;PRINT TENS PLACE
MOVE.L D1,D0
ROR.W #8,D0		;get tens place into low byte
AND.W #\$FF,D0
OR.W #HFLIP,D0
jsr doPrint

;PRINT ONES PLACE
MOVE.L D1,D0
AND.W #\$FF,D0
JSR doPrint

MOVE.B temp_Cursor_X,Cursor_X

;PRINT STICK CENTER
MOVE.W #10,D0	;the center of the stick
OR.W #HFLIP,D0
jsr doPrint
MOVE.W #10,D0	;the center of the stick
jsr doPrint

MOVE.B temp_Cursor_X,Cursor_X

;PRINT THOUSANDS PLACE
MOVE.L D1,D0
SWAP D0
ROR.W #8,D0		;get thousands place into low byte
AND.W #\$FF,D0
OR.W #(HFLIP|VFLIP),D0
jsr doPrint

MOVE.L D1,D0
SWAP D0
AND.W #\$FF,D0
OR.W #(VFLIP),D0
jsr doPrint

MOVE.B temp_Cursor_X,Cursor_X
MOVE.B temp_Cursor_Y,Cursor_Y

rts
doPrint:
;;; this code outputs the tile index in D0 to the Genesis's tilemap... don't worry if it doesn't make sense!
Move.L  #\$40000003,d5
clr.l d4

Move.B (Cursor_Y),D4
rol.L #8,D4
rol.L #8,D4
rol.L #7,D4

Move.B (Cursor_X),D4
rol.L #8,D4
rol.L #8,D4
rol.L #1,D4

MOVE.L D5,(VDP_ctrl)
MOVE.W D0,(VDP_data)

rts
TestData:
;I used 10 for zero since otherwise we'd have a bunch of sticks as the blank tile... not good!
DC.B 10,10,10,10
DC.B 10,10,10,1
DC.B 10,10,2,10
DC.B 10,3,10,10
DC.B 4,10,10,10
DC.B 5,5,5,5
DC.B 6,7,8,9
DC.B 1,2,3,4

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

DefineTiles:						;Copy D1 bytes of data from A0 to VDP memory D2
jsr prepareVram					;Calculate the memory location we want to write
.again:								; the tile pattern definitions to
move.l (a0)+,(VDP_data)
dbra d1,.again
rts

prepareVram:
;input: D2 = the vram memory address you want to write to.
;To select a memory location D2 we need to calculate
;the command byte... depending on the memory location
MOVEM.L D0-D7/A0-A6,-(SP)							;\$7FFF0003 = Vram \$FFFF.... \$40000000=Vram \$0000
move.l d2,d0
and.w #%1100000000000000,d0		;Shift the top two bits to the far right
rol.w #2,d0

and.l #%0011111111111111,d2	    ; shift all the other bits left two bytes
rol.l #8,d2
rol.l #8,d2

or.l d0,d2
or.l #\$40000000,d2				;Set the second bit from the top to 1
;#%01000000 00000000 00000000 00000000
move.l d2,(VDP_ctrl)
MOVEM.L (SP)+,D0-D7/A0-A6
rts
Graphics:
;cistercian numerals
DC.L 0,0,0,0,0,0,0,0	;padding - this determines the default background tile.
dc.l \$FFFFFFFF,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000		;1
dc.l \$F0000000,\$F0000000,\$F0000000,\$F0000000,\$FFFFFFFF,\$F0000000,\$F0000000,\$F0000000		;2
dc.l \$FF000000,\$F0F00000,\$F00F0000,\$F000F000,\$F0000F00,\$F00000F0,\$F000000F,\$F0000000		;3
dc.l \$F0000000,\$F000000F,\$F00000F0,\$F0000F00,\$F000F000,\$F00F0000,\$F0F00000,\$FF000000		;4
dc.l \$FFFFFFFF,\$F00000F0,\$F0000F00,\$F000F000,\$F00F0000,\$F0F00000,\$FF000000,\$F0000000		;5
dc.l \$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F		;6
dc.l \$FFFFFFFF,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F		;7
dc.l \$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$FFFFFFFF		;8
dc.l \$FFFFFFFF,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$F000000F,\$FFFFFFFF		;9
DC.L \$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000,\$F0000000		;the "stick"
GraphicsEnd:
VDPSettings:
DC.B \$04 ; 0 mode register 1											---H-1M-
DC.B \$04 ; 1 mode register 2											-DVdP---
DC.B \$30 ; 2 name table base for scroll A (A=top 3 bits)				--AAA--- = \$C000
DC.B \$3C ; 3 name table base for window (A=top 4 bits / 5 in H40 Mode)	--AAAAA- = \$F000
DC.B \$07 ; 4 name table base for scroll B (A=top 3 bits)				-----AAA = \$E000
DC.B \$6C ; 5 sprite attribute table base (A=top 7 bits / 6 in H40)		-AAAAAAA = \$D800
DC.B \$00 ; 6 unused register											--------
DC.B \$00 ; 7 background color (P=Palette C=Color)						--PPCCCC
DC.B \$00 ; 8 unused register											--------
DC.B \$00 ; 9 unused register											--------
DC.B \$FF ;10 H interrupt register (L=Number of lines)					LLLLLLLL
DC.B \$00 ;11 mode register 3											----IVHL
DC.B \$81 ;12 mode register 4 (C bits both1 = H40 Cell)					C---SIIC
DC.B \$37 ;13 H scroll table base (A=Top 6 bits)							--AAAAAA = \$FC00
DC.B \$00 ;14 unused register											--------
DC.B \$02 ;15 auto increment (After each Read/Write)						NNNNNNNN
DC.B \$01 ;16 scroll size (Horiz & Vert size of ScrollA & B)				--VV--HH = 64x32 tiles
DC.B \$00 ;17 window H position (D=Direction C=Cells)					D--CCCCC
DC.B \$00 ;18 window V position (D=Direction C=Cells)					D--CCCCC
DC.B \$FF ;19 DMA length count low										LLLLLLLL
DC.B \$FF ;20 DMA length count high										HHHHHHHH
DC.B \$00 ;21 DMA source address low										LLLLLLLL
DC.B \$00 ;22 DMA source address mid										MMMMMMMM
DC.B \$80 ;23 DMA source address high (C=CMD)							CCHHHHHH
VDPSettingsEnd:
even```
Output:

## Action!

```BYTE FUNC AtasciiToInternal(CHAR c)
BYTE c2

c2=c&\$7F
IF c2<32 THEN RETURN (c+64)
ELSEIF c2<96 THEN RETURN (c-32) FI
RETURN (c)

PROC CharOut(CARD x BYTE y CHAR c)
BYTE i,j,v

FOR j=0 TO 7
DO
WHILE i>0
DO
IF (v&1)=0 THEN Color=0
ELSE Color=1 FI
Plot(x+i,y+j)
v=v RSH 1 i==-1
OD
OD
RETURN

PROC TextOut(CARD x BYTE y CHAR ARRAY text)
BYTE i

FOR i=1 TO text(0)
DO
CharOut(x,y,text(i))
x==+8
OD
RETURN

PROC DrawDigit(BYTE d INT x BYTE y INT dx,dy)
IF d=1 THEN
Plot(x,y) DrawTo(x+dx,y)
ELSEIF d=2 THEN
Plot(x,y+dy) DrawTo(x+dx,y+dy)
ELSEIF d=3 THEN
Plot(x,y) DrawTo(x+dx,y+dy)
ELSEIF d=4 THEN
Plot(x,y+dy) DrawTo(x+dx,y)
ELSEIF d=5 THEN
Plot(x,y) DrawTo(x+dx,y) DrawTo(x,y+dy)
ELSEIF d=6 THEN
Plot(x+dx,y) DrawTo(x+dx,y+dy)
ELSEIF d=7 THEN
Plot(x,y) DrawTo(x+dx,y) DrawTo(x+dx,y+dy)
ELSEIF d=8 THEN
Plot(x,y+dy) DrawTo(x+dx,y+dy) DrawTo(x+dx,y)
ELSEIF d=9 THEN
Plot(x,y) DrawTo(x+dx,y)
DrawTo(x+dx,y+dy) DrawTo(x,y+dy)
FI
RETURN

PROC Cystersian(CARD n INT x BYTE y,s)
INT ms

ms=-s
Color=1
Plot(x+s,y) DrawTo(x+s,y+3*s)

DrawDigit(n MOD 10,x+s,y,s,s)
n==/10
DrawDigit(n MOD 10,x+s,y,ms,s)
n==/10
DrawDigit(n MOD 10,x+s,y+3*s,s,ms)
n==/10
DrawDigit(n MOD 10,x+s,y+3*s,ms,ms)
RETURN

PROC Test(CARD n INT x BYTE y,s)
CHAR ARRAY text(5)

StrC(n,text)
TextOut(x+(2*s-text(0)*8)/2,y-10,text)
Cystersian(n,x,y,s)
RETURN

PROC Main()
CARD ARRAY numbers=[0 1 20 300 4000 5555 6789 6502 1977 2021]
BYTE CH=\$02FC,COLOR1=\$02C5,COLOR2=\$02C6
BYTE s=[16],i
INT x,y

Graphics(8+16)
COLOR1=\$0C
COLOR2=\$02

x=s y=2*s
FOR i=0 TO 9
DO
Test(numbers(i),x,y,s)
x==+4*s
IF x>=320-s THEN
x=s y==+5*s
FI
OD

DO UNTIL CH#\$FF OD
CH=\$FF
RETURN```
Output:

## ALGOL 68

```BEGIN # draw some Cistercian Numerals                                        #

INT ch = 6;       # height of the representation of a Cistercian Numeral #
INT cw = 5;        # width of the representation of a Cistercian Numeral #
INT cm = ( cw + 1 ) OVER 2; # mid-point of a line in the representation  #
# of a Cistercian Numeral #
# returns a 5x6 CHAR array representing the Cistercian Nuneral of n      #
#         0 <= m <= 9999 must be TRUE                                    #
OP   TOCISTERCIAN = ( INT n )[,]CHAR:
IF n < 0 OR n > 9999 THEN                               # invalid n #
( "?????", "?????", "?????", "?????", "?????", "?????" )
ELSE                                                      # n is OK #
# if ch isn't 6 or cw isn't 5, the strinngs above and below will #
[ 1 : ch, 1 : cw ]CHAR cn :=               # need to be adjusted #
( "     ", "  |  ", "  |  ", "  |  ", "  |  ", "  |  " );
[]STRING t digits = ( #1# "__",      #2# ";;__",    #3# "; /;/"
, #4# ";\; \",   #5# "__; /;/", #6# "; |; |"
, #7# "_; |; |", #8# "; |;_|",  #9# "_; |;_|"
);
[]STRING b digits = ( #1# "__",      #2# ";;__",    #3# "\; \"
, #4# " /;/",    #5# "_/;/",    #6# " |; |"
, #7# "_|; |",   #8# " |; |;_", #9# "_|; |;_"
);
# adds 1 digit to the numeral                                     #
PROC add digit = ( INT digit, BOOL flip horizontal, flip vertical )VOID:
IF digit > 0 THEN                     # have a visible digit #
STRING d   = IF flip vertical THEN b digits[ digit ] ELSE t digits[ digit ] FI;
INT x     := IF flip horizontal THEN -1 ELSE 1 FI + cm;
INT y     := IF flip vertical   THEN ch ELSE 1 FI;
INT x init = x;
INT x step = IF flip horizontal THEN -1 ELSE 1 FI;
INT y step = IF flip vertical   THEN -1 ELSE 1 FI;
FOR c pos FROM LWB d TO UPB d DO
CHAR c = d[ c pos ];
IF c = ";" THEN
y +:= y step;
x  := x init
ELSE
cn[ y, x ] := IF ( flip horizontal XOR flip vertical ) THEN
IF c = "/" THEN "\" ELIF c = "\" THEN "/" ELSE c FI
ELSE c
FI;
x +:= x step
FI
OD
FI # add digit # ;
INT v := n;
add digit( v MOD 10, FALSE, FALSE ); v OVERAB 10;
add digit( v MOD 10, TRUE,  FALSE ); v OVERAB 10;
add digit( v MOD 10, FALSE, TRUE  ); v OVERAB 10;
add digit( v MOD 10, TRUE,  TRUE  );
cn
FI # TOCISTERCIAN # ;
# inserts a Cistercian Numeral representation of n into an set of lines  #
PROC insert cistercian = ( [,]CHAR cn, REF[]STRING lines, INT pos )VOID:
FOR i FROM 1 TO ch DO
lines[ i ][ pos : ( pos + cw ) - 1 ] := STRING( cn[ i, : ] )
OD # print cistercian # ;

[]INT tests = ( 0, 20, 300, 4000, 5555, 6789, 1968 );
# construct an array of blank lines and insert the Cistercian Numereals  #
[ 1 : ch ]STRING lines;                                     # into them  #
FOR i FROM LWB lines TO UPB lines DO
lines[ i ] := " " * ( ( ( UPB tests -LWB tests ) + 1 ) * ( cw * 2 ) )
OD;
FOR i FROM LWB tests TO UPB tests DO print( ( whole( tests[ i ], - cw ), " " * cw ) ) OD;
print( ( newline ) );
INT i pos := 1 - ( cw * 2 );
FOR i FROM LWB tests TO UPB tests DO
insert cistercian( TOCISTERCIAN tests[ i ], lines, i pos +:= cw * 2 )
OD;
FOR i FROM LWB lines TO UPB lines DO print( ( lines[ i ], newline ) ) OD

END```
Output:
```    0        20       300      4000      5555      6789      1968
__ __        _
|         |         |         |       \ | /     | | |     | | |
|       __|         |         |        \|/      |_|_|     | |_|
|         |         |         |         |         |         |_
|         |         | /      /|        /|\      | | |       | |
|         |         |/      / |       /_|_\     | |_|     __|_|
```

## AutoHotkey

```CistercianNumerals(num){
x := []
;UPPER LEFT      0     1     2     3     4     5     6     7     8     9
x[1, "UL"] := ["000","111","000","000","100","111","100","111","100","111"]
x[2, "UL"] := ["000","000","000","001","010","010","100","100","100","100"]
x[3, "UL"] := ["000","000","000","010","001","001","100","100","100","100"]
x[4, "UL"] := ["000","000","111","100","000","000","100","100","111","111"]

;UPPER RIGHT     0     1     2     3     4     5     6     7     8     9
x[1, "UR"] := ["000","111","000","000","001","111","001","111","001","111"]
x[2, "UR"] := ["000","000","000","100","010","010","001","001","001","001"]
x[3, "UR"] := ["000","000","000","010","100","100","001","001","001","001"]
x[4, "UR"] := ["000","000","111","001","000","000","001","001","111","111"]

;BOTTOM LEFT     0     1     2     3     4     5     6     7     8     9
x[1, "BL"] := ["000","000","111","100","000","000","100","100","111","111"]
x[2, "BL"] := ["000","000","000","010","001","001","100","100","100","100"]
x[3, "BL"] := ["000","000","000","001","010","010","100","100","100","100"]
x[4, "BL"] := ["000","111","000","000","100","111","100","111","100","111"]

;BOTTOM RIGHT    0     1     2     3     4     5     6     7     8     9
x[1, "BR"] := ["000","000","111","001","000","000","001","001","111","111"]
x[2, "BR"] := ["000","000","000","010","100","100","001","001","001","001"]
x[3, "BR"] := ["000","000","000","100","010","010","001","001","001","001"]
x[4, "BR"] := ["000","111","000","000","001","111","001","111","001","111"]

num := SubStr("0000" num, -3)
n := StrSplit(num)    ; n.1*1000 + n.2*100 + n.3*10 + n.4
loop 4
res .= x[A_Index, "UL", 1+n.3] . "1" . x[A_Index, "UR", 1+n.4] . "`n"
loop 4
res .= "0001`n"
loop 4
res .= x[A_Index, "BL", 1+n.1] . "1" . x[A_Index, "BR", 1+n.2] . "`n"
res := StrReplace(res, 0, " ")
res := StrReplace(res, 1, "#")
return Trim(res, "`n")
}
```

Examples:

```Gui, font, S24, Consolas
Gui, add, Text, vE1 w150 r12
Gui, show, x0 y0
for i, num in [0, 1, 20, 300, 4000, 5555, 6789, 2022]
{
GuiControl,, E1, % CistercianNumerals(num)
MsgBox % num
}
return
```
Output:
```   0   		   1    	   20   	   300   	   4000   	   5555   	   6789   	   2022

#   		   ####		   #   		   #   		   #   		#######		#  ####		   #
#   		   #   		   #   		   #   		   #   		 # # # 		#  #  #		   #
#   		   #   		   #   		   #   		   #   		  ###  		#  #  #		   #
#   		   #   		####   		   #   		   #   		   #   		#######		#######
#		   #		   #		   #		   #		   #		   #		   #
#		   #		   #		   #		   #		   #		   #		   #
#		   #		   #		   #		   #		   #		   #		   #
#		   #		   #		   #		   #		   #		   #		   #
#   		   #   		   #   		   #  #		   #   		   #   		#  #  #		####
#   		   #   		   #   		   # # 		  ##   		  ###  		#  #  #		   #
#   		   #   		   #   		   ##  		 # #   		 # # # 		#  #  #		   #
#   		   #   		   #   		   #   		#  #   		#######		#  ####		   #   ```

## AWK

```# syntax: GAWK -f CISTERCIAN_NUMERALS.AWK [-v debug={0|1}] [-v xc=anychar] numbers 0-9999 ...
#
# example: GAWK -f CISTERCIAN_NUMERALS.AWK 0 1 20 300 4000 5555 6789 1995 10000
#
# sorting:
#   PROCINFO["sorted_in"] is used by GAWK
#   SORTTYPE is used by Thompson Automation's TAWK
#
BEGIN {
cistercian_init()
for (i=1; i<=ARGC-1; i++) {
cistercian1(ARGV[i])
}
exit(0)
}
function cistercian1(n,  i) {
printf("\n%6s\n",n)
if (!(n ~ /^[0-9]+\$/ && length(n) <= 4)) {
print("invalid")
return
}
n = sprintf("%04d",n)
cistercian2(2,1,substr(n,3,1),substr(n,4,1))
for (i=1; i<=5; i++) { # separator between upper and lower parts
printf("%5s%1s%5s\n","",xc,"")
}
cistercian2(4,3,substr(n,1,1),substr(n,2,1))
}
function cistercian2(i1,i2,n1,n2,  i,L,R) {
for (i=1; i<=5; i++) {
L = substr(cn_arr[i1][i],n1*6+2,5)
R = substr(cn_arr[i2][i],n2*6+2,5)
printf("%5s%1s%5s\n",L,xc,R)
}
}
# 1-9 upper-right
cn_arr[1][++UR] = ":xxxxx:     :x    :    x:xxxxx:    x:xxxxx:    x:xxxxx:"
cn_arr[1][++UR] = ":     :     : x   :   x :   x :    x:    x:    x:    x:"
cn_arr[1][++UR] = ":     :     :  x  :  x  :  x  :    x:    x:    x:    x:"
cn_arr[1][++UR] = ":     :     :   x : x   : x   :    x:    x:    x:    x:"
cn_arr[1][++UR] = ":     :xxxxx:    x:x    :x    :    x:    x:xxxxx:xxxxx:"
# 10-90 upper-left
cn_arr[2][++UL] = ":xxxxx:     :    x:x    :xxxxx:x    :xxxxx:x    :xxxxx:"
cn_arr[2][++UL] = ":     :     :   x : x   : x   :x    :x    :x    :x    :"
cn_arr[2][++UL] = ":     :     :  x  :  x  :  x  :x    :x    :x    :x    :"
cn_arr[2][++UL] = ":     :     : x   :   x :   x :x    :x    :x    :x    :"
cn_arr[2][++UL] = ":     :xxxxx:x    :    x:    x:x    :x    :xxxxx:xxxxx:"
# 100-900 lower-right
cn_arr[3][++LR] = ":     :xxxxx:    x:x    :x    :    x:    x:xxxxx:xxxxx:"
cn_arr[3][++LR] = ":     :     :   x : x   : x   :    x:    x:    x:    x:"
cn_arr[3][++LR] = ":     :     :  x  :  x  :  x  :    x:    x:    x:    x:"
cn_arr[3][++LR] = ":     :     : x   :   x :   x :    x:    x:    x:    x:"
cn_arr[3][++LR] = ":xxxxx:     :x    :    x:xxxxx:    x:xxxxx:    x:xxxxx:"
# 1000-9000 lower-left
cn_arr[4][++LL] = ":     :xxxxx:x    :    x:    x:x    :x    :xxxxx:xxxxx:"
cn_arr[4][++LL] = ":     :     : x   :   x :   x :x    :x    :x    :x    :"
cn_arr[4][++LL] = ":     :     :  x  :  x  :  x  :x    :x    :x    :x    :"
cn_arr[4][++LL] = ":     :     :   x : x   : x   :x    :x    :x    :x    :"
cn_arr[4][++LL] = ":xxxxx:     :    x:x    :xxxxx:x    :xxxxx:x    :xxxxx:"
PROCINFO["sorted_in"] = "@ind_str_asc" ; SORTTYPE = 1
sub(/^ +/,"",xc)
xc = (xc == "") ? "x" : substr(xc,1,1) # substitution character
for (i in cn_arr) {
for (j in cn_arr[i]) {
gsub(/x/,xc,cn_arr[i][j]) # change "x" to substitution character
cn_arr[i][j] = sprintf(":%5s%s","",cn_arr[i][j]) # add zero column to table
if (debug == 1) { printf("%s %2s %d.%d\n",cn_arr[i][j],substr("URULLRLL",i*2-1,2),i,j) }
}
}
if (debug == 1) { printf("%s\n",header) }
}
```
Output:
```
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

1995
xxxxxxxxxxx
x    x   x
x    x  x
x    x x
xxxxxxx
x
x
x
x
x
xxxxxx
x    x
x    x
x    x
xxxxxxxxxxx

10000
invalid
```

## C

Translation of: C#
```#include <stdio.h>

#define GRID_SIZE 15
char canvas[GRID_SIZE][GRID_SIZE];

void initN() {
int i, j;
for (i = 0; i < GRID_SIZE; i++) {
for (j = 0; j < GRID_SIZE; j++) {
canvas[i][j] = ' ';
}
canvas[i][5] = 'x';
}
}

void horizontal(size_t c1, size_t c2, size_t r) {
size_t c;
for (c = c1; c <= c2; c++) {
canvas[r][c] = 'x';
}
}

void vertical(size_t r1, size_t r2, size_t c) {
size_t r;
for (r = r1; r <= r2; r++) {
canvas[r][c] = 'x';
}
}

void diagd(size_t c1, size_t c2, size_t r) {
size_t c;
for (c = c1; c <= c2; c++) {
canvas[r + c - c1][c] = 'x';
}
}

void diagu(size_t c1, size_t c2, size_t r) {
size_t c;
for (c = c1; c <= c2; c++) {
canvas[r - c + c1][c] = 'x';
}
}

void drawOnes(int v) {
switch (v) {
case 1:
horizontal(6, 10, 0);
break;
case 2:
horizontal(6, 10, 4);
break;
case 3:
diagd(6, 10, 0);
break;
case 4:
diagu(6, 10, 4);
break;
case 5:
drawOnes(1);
drawOnes(4);
break;
case 6:
vertical(0, 4, 10);
break;
case 7:
drawOnes(1);
drawOnes(6);
break;
case 8:
drawOnes(2);
drawOnes(6);
break;
case 9:
drawOnes(1);
drawOnes(8);
break;
default:
break;
}
}

void drawTens(int v) {
switch (v) {
case 1:
horizontal(0, 4, 0);
break;
case 2:
horizontal(0, 4, 4);
break;
case 3:
diagu(0, 4, 4);
break;
case 4:
diagd(0, 4, 0);
break;
case 5:
drawTens(1);
drawTens(4);
break;
case 6:
vertical(0, 4, 0);
break;
case 7:
drawTens(1);
drawTens(6);
break;
case 8:
drawTens(2);
drawTens(6);
break;
case 9:
drawTens(1);
drawTens(8);
break;
default:
break;
}
}

void drawHundreds(int hundreds) {
switch (hundreds) {
case 1:
horizontal(6, 10, 14);
break;
case 2:
horizontal(6, 10, 10);
break;
case 3:
diagu(6, 10, 14);
break;
case 4:
diagd(6, 10, 10);
break;
case 5:
drawHundreds(1);
drawHundreds(4);
break;
case 6:
vertical(10, 14, 10);
break;
case 7:
drawHundreds(1);
drawHundreds(6);
break;
case 8:
drawHundreds(2);
drawHundreds(6);
break;
case 9:
drawHundreds(1);
drawHundreds(8);
break;
default:
break;
}
}

void drawThousands(int thousands) {
switch (thousands) {
case 1:
horizontal(0, 4, 14);
break;
case 2:
horizontal(0, 4, 10);
break;
case 3:
diagd(0, 4, 10);
break;
case 4:
diagu(0, 4, 14);
break;
case 5:
drawThousands(1);
drawThousands(4);
break;
case 6:
vertical(10, 14, 0);
break;
case 7:
drawThousands(1);
drawThousands(6);
break;
case 8:
drawThousands(2);
drawThousands(6);
break;
case 9:
drawThousands(1);
drawThousands(8);
break;
default:
break;
}
}

void draw(int v) {
int thousands = v / 1000;
v %= 1000;

int hundreds = v / 100;
v %= 100;

int tens = v / 10;
int ones = v % 10;

if (thousands > 0) {
drawThousands(thousands);
}
if (hundreds > 0) {
drawHundreds(hundreds);
}
if (tens > 0) {
drawTens(tens);
}
if (ones > 0) {
drawOnes(ones);
}
}

void write(FILE *out) {
int i;
for (i = 0; i < GRID_SIZE; i++) {
fprintf(out, "%-.*s", GRID_SIZE, canvas[i]);
putc('\n', out);
}
}

void test(int n) {
printf("%d:\n", n);
initN();
draw(n);
write(stdout);
printf("\n\n");
}

int main() {
test(0);
test(1);
test(20);
test(300);
test(4000);
test(5555);
test(6789);
test(9999);

return 0;
}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx```

## C++

Translation of: Go
```#include <array>
#include <iostream>

template<typename T, size_t S>
using FixedSquareGrid = std::array<std::array<T, S>, S>;

struct Cistercian {
public:
Cistercian() {
initN();
}

Cistercian(int v) {
initN();
draw(v);
}

Cistercian &operator=(int v) {
initN();
draw(v);
}

friend std::ostream &operator<<(std::ostream &, const Cistercian &);

private:
FixedSquareGrid<char, 15> canvas;

void initN() {
for (auto &row : canvas) {
row.fill(' ');
row[5] = 'x';
}
}

void horizontal(size_t c1, size_t c2, size_t r) {
for (size_t c = c1; c <= c2; c++) {
canvas[r][c] = 'x';
}
}

void vertical(size_t r1, size_t r2, size_t c) {
for (size_t r = r1; r <= r2; r++) {
canvas[r][c] = 'x';
}
}

void diagd(size_t c1, size_t c2, size_t r) {
for (size_t c = c1; c <= c2; c++) {
canvas[r + c - c1][c] = 'x';
}
}

void diagu(size_t c1, size_t c2, size_t r) {
for (size_t c = c1; c <= c2; c++) {
canvas[r - c + c1][c] = 'x';
}
}

void drawOnes(int v) {
switch (v) {
case 1:
horizontal(6, 10, 0);
break;
case 2:
horizontal(6, 10, 4);
break;
case 3:
diagd(6, 10, 0);
break;
case 4:
diagu(6, 10, 4);
break;
case 5:
drawOnes(1);
drawOnes(4);
break;
case 6:
vertical(0, 4, 10);
break;
case 7:
drawOnes(1);
drawOnes(6);
break;
case 8:
drawOnes(2);
drawOnes(6);
break;
case 9:
drawOnes(1);
drawOnes(8);
break;
default:
break;
}
}

void drawTens(int v) {
switch (v) {
case 1:
horizontal(0, 4, 0);
break;
case 2:
horizontal(0, 4, 4);
break;
case 3:
diagu(0, 4, 4);
break;
case 4:
diagd(0, 4, 0);
break;
case 5:
drawTens(1);
drawTens(4);
break;
case 6:
vertical(0, 4, 0);
break;
case 7:
drawTens(1);
drawTens(6);
break;
case 8:
drawTens(2);
drawTens(6);
break;
case 9:
drawTens(1);
drawTens(8);
break;
default:
break;
}
}

void drawHundreds(int hundreds) {
switch (hundreds) {
case 1:
horizontal(6, 10, 14);
break;
case 2:
horizontal(6, 10, 10);
break;
case 3:
diagu(6, 10, 14);
break;
case 4:
diagd(6, 10, 10);
break;
case 5:
drawHundreds(1);
drawHundreds(4);
break;
case 6:
vertical(10, 14, 10);
break;
case 7:
drawHundreds(1);
drawHundreds(6);
break;
case 8:
drawHundreds(2);
drawHundreds(6);
break;
case 9:
drawHundreds(1);
drawHundreds(8);
break;
default:
break;
}
}

void drawThousands(int thousands) {
switch (thousands) {
case 1:
horizontal(0, 4, 14);
break;
case 2:
horizontal(0, 4, 10);
break;
case 3:
diagd(0, 4, 10);
break;
case 4:
diagu(0, 4, 14);
break;
case 5:
drawThousands(1);
drawThousands(4);
break;
case 6:
vertical(10, 14, 0);
break;
case 7:
drawThousands(1);
drawThousands(6);
break;
case 8:
drawThousands(2);
drawThousands(6);
break;
case 9:
drawThousands(1);
drawThousands(8);
break;
default:
break;
}
}

void draw(int v) {
int thousands = v / 1000;
v %= 1000;

int hundreds = v / 100;
v %= 100;

int tens = v / 10;
int ones = v % 10;

if (thousands > 0) {
drawThousands(thousands);
}
if (hundreds > 0) {
drawHundreds(hundreds);
}
if (tens > 0) {
drawTens(tens);
}
if (ones > 0) {
drawOnes(ones);
}
}
};

std::ostream &operator<<(std::ostream &os, const Cistercian &c) {
for (auto &row : c.canvas) {
for (auto cell : row) {
os << cell;
}
os << '\n';
}
return os;
}

int main() {
for (auto number : { 0, 1, 20, 300, 4000, 5555, 6789, 9999 }) {
std::cout << number << ":\n";

Cistercian c(number);
std::cout << c << '\n';
}

return 0;
}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx```

## D

Translation of: Java
```import std.stdio;

class Cistercian {
private immutable SIZE = 15;
private char[SIZE][SIZE] canvas;

public this(int n) {
initN();
draw(n);
}

private void initN() {
foreach (ref row; canvas) {
row[] = ' ';
row[5] = 'x';
}
}

private void horizontal(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r][c] = 'x';
}
}

private void vertical(int r1, int r2, int c) {
for (int r = r1; r <= r2; r++) {
canvas[r][c] = 'x';
}
}

private void diagd(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r + c - c1][c] = 'x';
}
}

private void diagu(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r - c + c1][c] = 'x';
}
}

private void draw(int v) {
auto thousands = v / 1000;
v %= 1000;

auto hundreds = v / 100;
v %= 100;

auto tens = v / 10;
auto ones = v % 10;

drawPart(1000 * thousands);
drawPart(100 * hundreds);
drawPart(10 * tens);
drawPart(ones);
}

private void drawPart(int v) {
switch(v) {
case 0:
break;

case 1:
horizontal(6, 10, 0);
break;
case 2:
horizontal(6, 10, 4);
break;
case 3:
diagd(6, 10, 0);
break;
case 4:
diagu(6, 10, 4);
break;
case 5:
drawPart(1);
drawPart(4);
break;
case 6:
vertical(0, 4, 10);
break;
case 7:
drawPart(1);
drawPart(6);
break;
case 8:
drawPart(2);
drawPart(6);
break;
case 9:
drawPart(1);
drawPart(8);
break;

case 10:
horizontal(0, 4, 0);
break;
case 20:
horizontal(0, 4, 4);
break;
case 30:
diagu(0, 4, 4);
break;
case 40:
diagd(0, 4, 0);
break;
case 50:
drawPart(10);
drawPart(40);
break;
case 60:
vertical(0, 4, 0);
break;
case 70:
drawPart(10);
drawPart(60);
break;
case 80:
drawPart(20);
drawPart(60);
break;
case 90:
drawPart(10);
drawPart(80);
break;

case 100:
horizontal(6, 10, 14);
break;
case 200:
horizontal(6, 10, 10);
break;
case 300:
diagu(6, 10, 14);
break;
case 400:
diagd(6, 10, 10);
break;
case 500:
drawPart(100);
drawPart(400);
break;
case 600:
vertical(10, 14, 10);
break;
case 700:
drawPart(100);
drawPart(600);
break;
case 800:
drawPart(200);
drawPart(600);
break;
case 900:
drawPart(100);
drawPart(800);
break;

case 1000:
horizontal(0, 4, 14);
break;
case 2000:
horizontal(0, 4, 10);
break;
case 3000:
diagd(0, 4, 10);
break;
case 4000:
diagu(0, 4, 14);
break;
case 5000:
drawPart(1000);
drawPart(4000);
break;
case 6000:
vertical(10, 14, 0);
break;
case 7000:
drawPart(1000);
drawPart(6000);
break;
case 8000:
drawPart(2000);
drawPart(6000);
break;
case 9000:
drawPart(1000);
drawPart(8000);
break;

default:
import std.conv;
assert(false, "Not handled: " ~ v.to!string);
}
}

public void toString(scope void delegate(const(char)[]) sink) const {
foreach (row; canvas) {
sink(row);
sink("\n");
}
}
}

void main() {
foreach (number; [0, 1, 20, 300, 4000, 5555, 6789, 9999]) {
writeln(number, ':');
auto c = new Cistercian(number);
writeln(c);
}
}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx```

## EasyLang

```proc cist x y n . .
linewidth 0.5
dx[] = [ 4 -4 4 -4 ]
dy[] = [ 4 4 -4 -4 ]
for i to 4
dx = dx[i]
dy = dy[i]
dy2 = 2 * dy
d = n mod 10
n = n div 10
move x y
#
line x y + 8
move x y - 8
line x y
if d = 1
move x y + dy2
line x + dx y + dy2
elif d = 2
move x y + dy
line x + dx y + dy
elif d = 3
move x y + dy2
line x + dx y + dy
elif d = 4
move x y + dy
line x + dx y + dy2
elif d = 5
move x y + dy
line x + dx y + dy2
line x y + dy2
elif d = 6
move x + dx y + dy
line x + dx y + dy2
elif d = 7
move x y + dy2
line x + dx y + dy2
line x + dx y + dy
elif d = 8
move x y + dy
line x + dx y + dy
line x + dx y + dy2
elif d = 9
move x y + dy
line x + dx y + dy
line x + dx y + dy2
line x y + dy2
.
.
x += 12
.
x = 8
for n in [ 0 1 20 300 4000 5555 6789 2023 ]
cist x 80 n
x += 12
.```

## F#

```// Cistercian numerals. Nigel Galloway: February 2nd., 2021
let N=[|[[|' ';' ';' '|];[|' ';' ';' '|];[|' ';' ';' '|]];
[[|'#';'#';'#'|];[|' ';' ';' '|];[|' ';' ';' '|]];
[[|' ';' ';' '|];[|'#';'#';'#'|];[|' ';' ';' '|]];
[[|'#';' ';' '|];[|' ';'#';' '|];[|' ';' ';'#'|]];
[[|' ';' ';'#'|];[|' ';'#';' '|];[|'#';' ';' '|]];
[[|'#';'#';'#'|];[|' ';'#';' '|];[|'#';' ';' '|]];
[[|' ';' ';'#'|];[|' ';' ';'#'|];[|' ';' ';'#'|]];
[[|'#';'#';'#'|];[|' ';' ';'#'|];[|' ';' ';'#'|]];
[[|' ';' ';'#'|];[|' ';' ';'#'|];[|'#';'#';'#'|]];
[[|'#';'#';'#'|];[|' ';' ';'#'|];[|'#';'#';'#'|]];|]

let fN i g e l=N.[l]|>List.iter2(fun n g->printfn "%sO%s" ((Array.rev>>System.String)n) (System.String g)) N.[e]
printfn "   O"
N.[g]|>List.rev|>List.iter2(fun n g->printfn "%sO%s" ((Array.rev>>System.String)n) (System.String g)) (N.[i]|>List.rev)

[(0,0,0,0);(0,0,0,1);(0,0,2,0);(0,3,0,0);(4,0,0,0);(5,5,5,5);(6,7,8,9)]|>List.iter(fun(i,g,e,l)->printfn "\n%d%d%d%d\n____" i g e l; fN i g e l)
```
Output:
```0000
____
O
O
O
O
O
O
O

0001
____
O###
O
O
O
O
O
O

0020
____
O
###O
O
O
O
O
O

0300
____
O
O
O
O
O  #
O #
O#

4000
____
O
O
O
O
#O
# O
#  O

5555
____
###O###
# O #
#O#
O
#O#
# O #
###O###

6789
____
#  O###
#  O  #
###O###
O
#  O  #
#  O  #
#  O###
```

## Factor

Works with: Factor version 0.99 2020-08-14
```USING: combinators continuations formatting grouping io kernel
literals math.order math.text.utils multiline sequences
splitting ;

CONSTANT: numerals \$[
HEREDOC: END
+    +-+  +    +    + +  +-+  + +  +-+  + +  +-+
|    |    |    |\   |/   |/   | |  | |  | |  | |
|    |    +-+  | +  +    +    | +  | +  +-+  +-+
|    |    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |
+    +    +    +    +    +    +    +    +    +
END
"\n" split harvest [ 5 group ] map flip
]

: precedence ( char char -- char )
2dup [ CHAR: + = ] either? [ 2drop CHAR: + ] [ max ] if ;

: overwrite ( glyph glyph -- newglyph )
[ [ precedence ] 2map ] 2map ;

: flip-slashes ( str -- new-str )
[
{
{ CHAR: / [ CHAR: \ ] }
{ CHAR: \ [ CHAR: / ] }
[ ]
} case
] map ;

: hflip ( seq -- newseq ) [ reverse flip-slashes ] map ;
: vflip ( seq -- newseq ) reverse [ flip-slashes ] map ;

: get-digits ( n -- seq ) 1 digit-groups 4 0 pad-tail ;

: check-cistercian ( n -- )
0 9999 between? [ "Must be from 0 to 9999." throw ] unless ;

: .cistercian ( n -- )
[ check-cistercian ] [ "%d:\n" printf ] [ get-digits ] tri
[ numerals nth ] map
[ { [ ] [ hflip ] [ vflip ] [ hflip vflip ] } spread ]
with-datastack [ ] [ overwrite ] map-reduce [ print ] each ;

{ 0 1 20 300 4000 5555 6789 8015 } [ .cistercian nl ] each
```
Output:
```0:
+
|
|
|
|
|
+

1:
+-+
|
|
|
|
|
+

20:
+
|
+-+
|
|
|
+

300:
+
|
|
|
| +
|/
+

4000:
+
|
|
|
+
/|
+ +

5555:
+-+-+
\|/
+
|
+
/|\
+-+-+

6789:
+ +-+
| | |
+-+-+
|
+ | +
| | |
+ +-+

8015:
+-+-+
|/
+
|
+-+
| |
+ +
```

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

We can take advantage of the coordinate transformations.

Part 1. Glyphs for each digit

The glyphs of each "digit" are the same, excepting they are mirrored according to its place ("units", "tens", "hundreds" and "thousands"), so we have generic code for each.

The following specification are for "units" and it is independent of size. They are referred to the top-right "quadrant" of the complete number, which has mathematical coordinate system, being (-1, -1) the bottom-left corner, and (1, 1) the opposite one, hence, the center is (0, 0).

Please notice that they are provided as an array of (9) lambda expressions. There is no glyph for zero.

Part 2. Mirroring for "tens", "hundreds" and "thousands"

The following is the specification to change the scale, according to the place and to produce the mirrored effect. Notice that there is no specification for "units", because the definitions of glyphs are based on this place and therefore there is no transformation to apply.

Part 3. Function to draw a Cistercian number

Finally, the following function creates the representation of the Cistercian number.

Notice that the origin is initially translated to the center of the graphics, and also is scaled to the size of the graphics too, in order to define the system of coordinates.

Test cases

Additional case. Creating all the Cistercian numerals in a single image

The following program creates a big image, and copies into it all the 10,000 different Cistercian numerals:

The result is a 4000 x 6010 pixels image. Click or tap on the following thumbnail to enlarge:

## FutureBasic

```_window = 1
begin enum 1
_numView
_numFld
end enum

_numHeight = 54
_lineLength = _numHeight/3

void local fn BuildWindow
subclass view _numView, (237,153,76,94)
ViewSetFlipped( _numView, YES )
textfield _numFld,, @"0", (237,20,76,21)
ControlSetAlignment( _numFld, NSTextAlignmentCenter )
ControlSetFormat( _numFld, @"0123456789", YES, 4, 0 )
WindowMakeFirstResponder( _window, _numFld )
end fn

void local fn PathDraw( path as BezierPathRef, lines as CFStringRef, x as CGFloat, y as CGFloat )
CGPoint pt1, pt2
long i
for i = 0 to 4
if ( intval(mid(lines,i,1)) )
select ( i )
case 0
pt1 = fn CGPointMake( x + _lineLength, y )
pt2 = fn CGPointMake( x + _lineLength, y + _lineLength )
case 1
pt1 = fn CGPointMake( x, y + _lineLength )
pt2 = fn CGPointMake( x + _lineLength, y )
case 2
pt1 = fn CGPointMake( x, y )
pt2 = fn CGPointMake( x + _lineLength, y + _lineLength )
case 3
pt1 = fn CGPointMake( x, y + _lineLength )
pt2 = fn CGPointMake( x + _lineLength, y + _lineLength )
case 4
pt1 = fn CGPointMake( x, y )
pt2 = fn CGPointMake( x + _lineLength, y )
end select
BezierPathMoveToPoint( path, pt1 )
BezierPathLineToPoint( path, pt2 )
end if
next
end fn

void local fn ViewDrawRect
CFArrayRef lines = @[@"00001",@"00010",@"00100",@"01000",@"01001",@"10000",@"10001",@"10010",@"10011"]
CFStringRef numString = fn ViewProperty( _numView, @"num" )
if ( numString )
CGFloat x = 38, y = 20

long i
for i = 0 to 3
BezierPathRef path = fn BezierPathWithRect( fn ViewBounds(_numView) )
BezierPathMoveToPoint( path, fn CGPointMake( x, y ) )
BezierPathLineToPoint( path, fn CGPointMake( x, y + _numHeight ) )

long num = intval( mid( numString, i, 1 ) )
if ( num )
fn PathDraw( path, lines[num-1], x, y )
if ( i < 3 )
CGFloat xScale = 1.0, yScale = 1.0
select ( i )
case 0 : xScale = -1.0 : yScale = -1.0 // 1000
case 1 : yScale = -1.0                 // 100
case 2 : xScale = -1.0                 // 10
end select

CGRect bounds = fn BezierPathBounds( path )
AffineTransformRef tx = fn AffineTransformInit
AffineTransformScaleXY( tx, xScale, yScale )
if ( xScale < 0.0 ) then AffineTransformTranslate( tx, -bounds.origin.x-bounds.size.width, 0.0 )
if ( yScale < 0.0 ) then AffineTransformTranslate( tx, 0.0, -bounds.size.height )

BezierPathTransformUsingAffineTranform( path, tx )
end if
end if

BezierPathStroke( path )
next
end if
end fn

void local fn DrawAction
CFStringRef string = fn StringWithFormat( @"%.4ld", fn ControlIntegerValue( _numFld ) )
ViewSetProperty( _numView, @"num", string )
ViewSetNeedsDisplay( _numView )
end fn

void local fn DoAppEvent( ev as long )
select ( ev )
case _appDidFinishLaunching
fn BuildWindow
fn DrawAction
case _appShouldTerminateAfterLastWindowClosed : AppEventSetBool(YES)
end select
end fn

void local fn DoDialog( ev as long, tag as long, wnd as long )
select ( ev )
case _btnClick
select ( tag )
case _numFld : fn DrawAction
end select

case _viewDrawRect
select ( tag )
case _numView : fn ViewDrawRect
end select
end select
end fn

on appevent fn DoAppEvent
on dialog fn DoDialog

HandleEvents```

## Go

Translation of: Wren
```package main

import "fmt"

var n = make([][]string, 15)

func initN() {
for i := 0; i < 15; i++ {
n[i] = make([]string, 11)
for j := 0; j < 11; j++ {
n[i][j] = " "
}
n[i][5] = "x"
}
}

func horiz(c1, c2, r int) {
for c := c1; c <= c2; c++ {
n[r][c] = "x"
}
}

func verti(r1, r2, c int) {
for r := r1; r <= r2; r++ {
n[r][c] = "x"
}
}

func diagd(c1, c2, r int) {
for c := c1; c <= c2; c++ {
n[r+c-c1][c] = "x"
}
}

func diagu(c1, c2, r int) {
for c := c1; c <= c2; c++ {
n[r-c+c1][c] = "x"
}
}

var draw map[int]func() // map contains recursive closures

func initDraw() {
draw = map[int]func(){
1: func() { horiz(6, 10, 0) },
2: func() { horiz(6, 10, 4) },
3: func() { diagd(6, 10, 0) },
4: func() { diagu(6, 10, 4) },
5: func() { draw[1](); draw[4]() },
6: func() { verti(0, 4, 10) },
7: func() { draw[1](); draw[6]() },
8: func() { draw[2](); draw[6]() },
9: func() { draw[1](); draw[8]() },

10: func() { horiz(0, 4, 0) },
20: func() { horiz(0, 4, 4) },
30: func() { diagu(0, 4, 4) },
40: func() { diagd(0, 4, 0) },
50: func() { draw[10](); draw[40]() },
60: func() { verti(0, 4, 0) },
70: func() { draw[10](); draw[60]() },
80: func() { draw[20](); draw[60]() },
90: func() { draw[10](); draw[80]() },

100: func() { horiz(6, 10, 14) },
200: func() { horiz(6, 10, 10) },
300: func() { diagu(6, 10, 14) },
400: func() { diagd(6, 10, 10) },
500: func() { draw[100](); draw[400]() },
600: func() { verti(10, 14, 10) },
700: func() { draw[100](); draw[600]() },
800: func() { draw[200](); draw[600]() },
900: func() { draw[100](); draw[800]() },

1000: func() { horiz(0, 4, 14) },
2000: func() { horiz(0, 4, 10) },
3000: func() { diagd(0, 4, 10) },
4000: func() { diagu(0, 4, 14) },
5000: func() { draw[1000](); draw[4000]() },
6000: func() { verti(10, 14, 0) },
7000: func() { draw[1000](); draw[6000]() },
8000: func() { draw[2000](); draw[6000]() },
9000: func() { draw[1000](); draw[8000]() },
}
}

func printNumeral() {
for i := 0; i < 15; i++ {
for j := 0; j < 11; j++ {
fmt.Printf("%s ", n[i][j])
}
fmt.Println()
}
fmt.Println()
}

func main() {
initDraw()
numbers := []int{0, 1, 20, 300, 4000, 5555, 6789, 9999}
for _, number := range numbers {
initN()
fmt.Printf("%d:\n", number)
thousands := number / 1000
number %= 1000
hundreds := number / 100
number %= 100
tens := number / 10
ones := number % 10
if thousands > 0 {
draw[thousands*1000]()
}
if hundreds > 0 {
draw[hundreds*100]()
}
if tens > 0 {
draw[tens*10]()
}
if ones > 0 {
draw[ones]()
}
printNumeral()
}
}
```
Output:
```Same as Wren example.
```

## J

Program writes a scalable vector graphics file containing all composable numbers. J code is alongside the original python source. Save as file jc.ijs, then invoke in a j session

```   main'jc.svg'[load'jc.ijs'
open browser to /tmp/jc.svg
```

The rc verb writes RC=. 0 1 20 300 666 4000 5555 6789

```NB. http://rosettacode.org/wiki/Cistercian_numerals
NB. converted from
NB. https://scipython.com/blog/cistercian-numerals/

NB. numeric_vector format 'python {} string'
format=: ''&\$: :([: ; (a: , [: ":&.> [) ,. '{}' ([ (E. <@}.;._1 ]) ,) ])  NB. literals x should be boxed

pwd=:1!:43
rm=: 1!:55@boxopen ::empty
print=: echo@[ NB. debug
open=: 1!:21
close=: 1!:22

NB.# http://en.kpartner.kr/data/warrant-check-pzmwqyk/qrf56.php?3fff1d=cistercian-numbers-unicode
NB.
NB.# The paths to create the digits 1–9 in the "units" position.
NB.d_paths = {
NB.(0, 1): ((1, 0), (2, 0)),
NB.(0, 2): ((1, 1), (2, 1)),
NB.(0, 3): ((1, 0), (2, 1)),
NB.(0, 4): ((1, 1), (2, 0)),
NB.(0, 5): ((1, 1), (2, 0), (1, 0)),
NB.(0, 6): ((2, 0), (2, 1)),
NB.(0, 7): ((1, 0), (2, 0), (2, 1)),
NB.(0, 8): ((1, 1), (2, 1), (2, 0)),
NB.(0, 9): ((1, 1), (2, 1), (2, 0), (1, 0)),
NB.}
NB.# Generate the paths for the digits in the 10s, 100s and 1000s position by
NB.# reflection.
NB.for i in range(1, 10):
NB.    d_paths[(1, i)] = [(2-x, y) for x, y in d_paths[(0, i)]]
NB.    d_paths[(2, i)] = [(x, 3-y) for x, y in d_paths[(0, i)]]
NB.    d_paths[(3, i)] = [(2-x, 3-y) for x, y in d_paths[(0, i)]]
NB.
d_paths=: _2[\L:0]((1, 0), (2, 0));((1, 1), (2, 1));((1, 0), (2, 1));((1, 1), (2, 0));((1, 1), (2, 0), (1, 0));((2, 0), (2, 1));((1, 0), (2, 0), (2, 1));((1, 1), (2, 1), (2, 0));((1, 1), (2, 1), (2, 0), (1, 0))
d_paths=: (, ((2-[),])/"1 L:0 , (,3&-)/"1 L:0 , ((2-[),(3-]))/"1 L:0) d_paths
d_paths=: , a: ,. _9]\ d_paths  NB. adjust indexing
NB.echo d_paths NB. test

NB.def transform(x, y, dx, dy, sc):
NB.    """Transform the coordinates (x, y) into the scaled, displaced system."""
NB.    return x*sc + dx, y*sc + dy
NB.
transform=: (] p.~ [: (2&{. (,.) 2 \$ 2&}.) [) Dyad  NB. (dx dy sx [sy]) transform (x y)

NB.def get_path(i, d):
NB.    """Return the SVG path to render the digit d in decimal position i."""
NB.    if d == 0:
NB.        return
NB.    path = d_paths[(i, d)]
NB.    return 'M{},{} '.format(*transform(*path[0], *tprms)) + ' '.join(
NB.                ['L{},{}'.format(*transform(*xy, *tprms)) for xy in path[1:]])
NB.
get_path=: 3 :0
'i d'=. y
if. d do.
path=. d_paths {::~ 10 #. y
result=. 'M{},{} 'format~ TPRMS transform {. path
result=. result , }: , ' ' ,.~ 'L{},{}'format"1~TPRMS transform"1 }. path
else.
''
end.
)

NB.def make_digit(i, d):
NB.    """Output the SVG path element for digit d in decimal position i."""
NB.    print('<path d="{}"/>'.format(get_path(i, d)), file=fo)
NB.
make_digit=: (print~ (('<path d="{}"/>') (format~ <) get_path)) Dyad NB. fo make_digit n

NB.def make_stave():
NB.    """Output the SVG line element for the vertical stave."""
NB.    x1, y1 = transform(1, 0, *tprms)
NB.    x2, y2 = transform(1, 3, *tprms)
NB.    print('<line x1="{}" y1="{}" x2="{}" y2="{}"/>'.format(x1, y1, x2, y2),
NB.          file=fo)
make_stave=: 3 :'y print~ ''<line x1="{}" y1="{}" x2="{}" y2="{}"/>'' format~ , TPRMS (transform"1) 1 0,:1 3'

NB.def svg_preamble(fo):
NB.    """Write the SVG preamble, including the styles."""
NB.
NB.    # Set the path stroke-width appropriate to the scale.
NB.    stroke_width = max(1.5, tprms[2] / 5)
NB.    print("""<?xml version="1.0" encoding="utf-8"?>
NB.<svg xmlns="http://www.w3.org/2000/svg"
NB.<defs>
NB.<style type="text/css"><![CDATA[
NB.line, path {
NB.  stroke: black;
NB.  stroke-width: %d;
NB.  stroke-linecap: square;
NB.}
NB.path {
NB.  fill: none;
NB.}
NB.]]>
NB.</style>
NB.</defs>
NB.""" % stroke_width, file=fo)
NB.
PREAMBLE=: 0 :0
<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg"
<defs>
<style type="text/css"><![CDATA[
line, path {
stroke: black;
stroke-width: {};
stroke-linecap: square;
}
path {
fill: none;
}
]]>
</style>
</defs>
)

svg_preamble=: 3 :'(PREAMBLE format~ 1.5 >. 5 *inv 2 { TPRMS) print y'

NB.def make_numeral(n, fo):
NB.    """Output the SVG for the number n using the current transform."""
NB.    make_stave()
NB.    for i, s_d in enumerate(str(n)[::-1]):
NB.        make_digit(i, int(s_d))
NB.
make_numeral=: 4 :0
fo=. x
n=. y
make_stave fo
if. y do.
fo make_digit"1 (,.~ i.@#) |. 10 #.inv n
end.
)

NB.# Transform parameters: dx, dy, scale.
NB.tprms = [5, 5, 5]
NB.
NB.with open('all_cistercian_numerals.svg', 'w') as fo:
NB.    svg_preamble(fo)
NB.    for i in range(10000):
NB.        # Locate this number at the position dx, dy = tprms[:2].
NB.        tprms[0] = 15 * (i % 125) + 5
NB.        tprms[1] = 25 * (i // 125) + 5
NB.        make_numeral(i, fo)
NB.    print("""</svg>""", file=fo)
main=: 3 :0 ::('Use: main ''filename.svg'''"_)
TPRMS=: 5 5 5
rm<y
fo=. open<y
svg_preamble fo
for_i. i. 10000 do.
TPRMS=: (5 ,~ (5 + 15 * 125 | ]) , 5 + 25 * [: (<.) 125 *^:_1 ]) i
fo make_numeral i
end.
'</svg>' print fo
empty close fo
'open browser to {}/{}' format~ (pwd'') ; y
)
rc=: 3 :0 ::('Use: rc ''filename.svg'''"_)
scale=. 5
TPRMS=: 5 5 , scale
rm<y
fo=. open<y
svg_preamble fo
RC=. 0 1 20 300 666 4000 5555 6789
echo 'writing {}' format~ < RC
for_k. (,.~ i.@#) RC do.
'j i'=. k
TPRMS=: (scale ,~ (5 + scale * 15 * 125 | ]) , 5 + scale * 25 * [: (<.) 125 *^:_1 ]) j
fo make_numeral i
end.
'</svg>' print fo
empty close fo
'open browser to {}{}{}' format~ (pwd'') ; PATHJSEP_j_ ; y
)
```

## Java

Translation of: Kotlin
```import java.util.Arrays;
import java.util.List;

public class Cistercian {
private static final int SIZE = 15;
private final char[][] canvas = new char[SIZE][SIZE];

public Cistercian(int n) {
initN();
draw(n);
}

public void initN() {
for (var row : canvas) {
Arrays.fill(row, ' ');
row[5] = 'x';
}
}

private void horizontal(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r][c] = 'x';
}
}

private void vertical(int r1, int r2, int c) {
for (int r = r1; r <= r2; r++) {
canvas[r][c] = 'x';
}
}

private void diagd(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r + c - c1][c] = 'x';
}
}

private void diagu(int c1, int c2, int r) {
for (int c = c1; c <= c2; c++) {
canvas[r - c + c1][c] = 'x';
}
}

private void draw(int v) {
var thousands = v / 1000;
v %= 1000;

var hundreds = v / 100;
v %= 100;

var tens = v / 10;
var ones = v % 10;

drawPart(1000 * thousands);
drawPart(100 * hundreds);
drawPart(10 * tens);
drawPart(ones);
}

private void drawPart(int v) {
switch (v) {
case 1:
horizontal(6, 10, 0);
break;
case 2:
horizontal(6, 10, 4);
break;
case 3:
diagd(6, 10, 0);
break;
case 4:
diagu(6, 10, 4);
break;
case 5:
drawPart(1);
drawPart(4);
break;
case 6:
vertical(0, 4, 10);
break;
case 7:
drawPart(1);
drawPart(6);
break;
case 8:
drawPart(2);
drawPart(6);
break;
case 9:
drawPart(1);
drawPart(8);
break;

case 10:
horizontal(0, 4, 0);
break;
case 20:
horizontal(0, 4, 4);
break;
case 30:
diagu(0, 4, 4);
break;
case 40:
diagd(0, 4, 0);
break;
case 50:
drawPart(10);
drawPart(40);
break;
case 60:
vertical(0, 4, 0);
break;
case 70:
drawPart(10);
drawPart(60);
break;
case 80:
drawPart(20);
drawPart(60);
break;
case 90:
drawPart(10);
drawPart(80);
break;

case 100:
horizontal(6, 10, 14);
break;
case 200:
horizontal(6, 10, 10);
break;
case 300:
diagu(6, 10, 14);
break;
case 400:
diagd(6, 10, 10);
break;
case 500:
drawPart(100);
drawPart(400);
break;
case 600:
vertical(10, 14, 10);
break;
case 700:
drawPart(100);
drawPart(600);
break;
case 800:
drawPart(200);
drawPart(600);
break;
case 900:
drawPart(100);
drawPart(800);
break;

case 1000:
horizontal(0, 4, 14);
break;
case 2000:
horizontal(0, 4, 10);
break;
case 3000:
diagd(0, 4, 10);
break;
case 4000:
diagu(0, 4, 14);
break;
case 5000:
drawPart(1000);
drawPart(4000);
break;
case 6000:
vertical(10, 14, 0);
break;
case 7000:
drawPart(1000);
drawPart(6000);
break;
case 8000:
drawPart(2000);
drawPart(6000);
break;
case 9000:
drawPart(1000);
drawPart(8000);
break;

}
}

@Override
public String toString() {
StringBuilder builder = new StringBuilder();
for (var row : canvas) {
builder.append(row);
builder.append('\n');
}
return builder.toString();
}

public static void main(String[] args) {
for (int number : List.of(0, 1, 20, 300, 4000, 5555, 6789, 9999)) {
System.out.printf("%d:\n", number);
var c = new Cistercian(number);
System.out.println(c);
}
}
}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx    ```

## JavaScript

Using a canvas.

```// html
document.write(`
<p><input id="num" type="number" min="0" max="9999" value="0" onchange="showCist()"></p>
<p><canvas id="cist" width="200" height="300"></canvas></p>
<p> <!-- EXAMPLES (can be deleted for normal use) -->
<button onclick="set(0)">0</button>
<button onclick="set(1)">1</button>
<button onclick="set(20)">20</button>
<button onclick="set(300)">300</button>
<button onclick="set(4000)">4000</button>
<button onclick="set(5555)">5555</button>
<button onclick="set(6789)">6789</button>
<button onclick="set(Math.floor(Math.random()*1e4))">Random</button>
</p>
`);

// to show given examples
// can be deleted for normal use
function set(num) {
document.getElementById('num').value = num;
showCist();
}

const SW = 10; // stroke width
let canvas = document.getElementById('cist'),
cx = canvas.getContext('2d');

function showCist() {
// reset canvas
cx.clearRect(0, 0, canvas.width, canvas.height);
cx.lineWidth = SW;
cx.beginPath();
cx.moveTo(100, 0+.5*SW);
cx.lineTo(100, 300-.5*SW);
cx.stroke();

let num = document.getElementById('num').value;
while (num.length < 4) num = '0' + num;  // fills leading zeros to \$num

/***********************\
|        POINTS:        |
| ********************* |
|                       |
|     a --- b --- c     |
|     |     |     |     |
|     d --- e --- f     |
|     |     |     |     |
|     g --- h --- i     |
|     |     |     |     |
|     j --- k --- l     |
|                       |
\***********************/
let
a = [0+SW,   0+SW],   b = [100,   0+SW],   c = [200-SW,   0+SW],
d = [0+SW,    100],   e = [100,    100],   f = [200-SW,    100],
g = [0+SW,    200],   h = [100,    200],   i = [200-SW,    200],
j = [0+SW, 300-SW],   k = [100, 300-SW],   l = [200-SW, 300-SW];

function draw() {
let x = 1;
cx.beginPath();
cx.moveTo(arguments[0][0], arguments[0][1]);
while (x < arguments.length) {
cx.lineTo(arguments[x][0], arguments[x][1]);
x++;
}
cx.stroke();
}

// 1000s
switch (num[0]) {
case '1': draw(j, k);       break;       case '2': draw(g, h);    break;
case '3': draw(g, k);       break;       case '4': draw(j, h);    break;
case '5': draw(k, j, h);    break;       case '6': draw(g, j);    break;
case '7': draw(g, j, k);    break;       case '8': draw(j, g, h); break;
case '9': draw(h, g, j, k); break;
}
// 100s
switch (num[1]) {
case '1': draw(k, l);       break;       case '2': draw(h, i);    break;
case '3': draw(k, i);       break;       case '4': draw(h, l);    break;
case '5': draw(h, l, k);    break;       case '6': draw(i, l);    break;
case '7': draw(k, l, i);    break;       case '8': draw(h, i, l); break;
case '9': draw(h, i, l, k); break;
}
// 10s
switch (num[2]) {
case '1': draw(a, b);       break;       case '2': draw(d, e);    break;
case '3': draw(d, b);       break;       case '4': draw(a, e);    break;
case '5': draw(b, a, e);    break;       case '6': draw(a, d);    break;
case '7': draw(d, a, b);    break;       case '8': draw(a, d, e); break;
case '9': draw(b, a, d, e); break;
}
// 1s
switch (num[3]) {
case '1': draw(b, c);       break;       case '2': draw(e, f);    break;
case '3': draw(b, f);       break;       case '4': draw(e, c);    break;
case '5': draw(b, c, e);    break;       case '6': draw(c, f);    break;
case '7': draw(b, c, f);    break;       case '8': draw(e, f, c); break;
case '9': draw(b, c, f, e); break;
}
}
```
Output:
```
https://jsfiddle.net/43tsmn9z```

## Julia

Gtk graphic version.

```using Gtk, Cairo

const can = GtkCanvas(800, 100)
const win = GtkWindow(can, "Canvas")
const numbers = [0, 1, 20, 300, 4000, 5555, 6789, 8123]

function drawcnum(ctx, xypairs)
move_to(ctx, xypairs[1][1], xypairs[1][2])
for p in xypairs[2:end]
line_to(ctx, p[1], p[2])
end
stroke(ctx)
end

@guarded draw(can) do widget
ctx = getgc(can)
hlen, wlen, len = height(can), width(can), length(numbers)
halfwspan, thirdcolspan, voffset = wlen ÷ (len * 2), wlen ÷ (len * 3), hlen ÷ 8
set_source_rgb(ctx, 0, 0, 2550)
for (i, n) in enumerate(numbers)
# paint vertical as width 2 rectangle
x = halfwspan * (2 * i - 1)
rectangle(ctx, x, voffset, 2, hlen - 2 * voffset)
stroke(ctx)
# determine quadrant and draw numeral lines there
dig = [(10^(i - 1), m) for (i, m) in enumerate(digits(n))]
for (d, m) in dig
y, dx, dy = (d == 1) ? (voffset, thirdcolspan, thirdcolspan) :
(d == 10) ? (voffset, -thirdcolspan, thirdcolspan) :
(d == 100) ? (hlen - voffset, thirdcolspan, -thirdcolspan) :
(hlen - voffset, -thirdcolspan, -thirdcolspan)
m == 1 && drawcnum(ctx, [[x, y], [x + dx, y]])
m == 2 && drawcnum(ctx, [[x, y + dy], [x + dx, y + dy]])
m == 3 && drawcnum(ctx, [[x, y], [x + dx, y + dy]])
m == 4 && drawcnum(ctx, [[x, y + dy], [x + dx, y]])
m == 5 && drawcnum(ctx, [[x, y + dy], [x + dx, y], [x, y]])
m == 6 && drawcnum(ctx, [[x + dx, y], [x + dx, y + dy]])
m == 7 && drawcnum(ctx, [[x, y], [x + dx, y], [x + dx, y + dy]])
m == 8 && drawcnum(ctx, [[x, y + dy], [x + dx, y + dy], [x + dx, y]])
m == 9 && drawcnum(ctx, [[x, y], [x + dx, y], [x + dx, y + dy], [x, y + dy]])
end
move_to(ctx, x - halfwspan ÷ 6, hlen - 4)
Cairo.show_text(ctx, string(n))
stroke(ctx)
end
end

function mooncipher()
draw(can)
cond = Condition()
endit(w) = notify(cond)
signal_connect(endit, win, :destroy)
show(can)
wait(cond)
end

mooncipher()
```

## Kotlin

Translation of: C++
```import java.io.StringWriter

class Cistercian() {
constructor(number: Int) : this() {
draw(number)
}

private val size = 15
private var canvas = Array(size) { Array(size) { ' ' } }

init {
initN()
}

private fun initN() {
for (row in canvas) {
row.fill(' ')
row[5] = 'x'
}
}

private fun horizontal(c1: Int, c2: Int, r: Int) {
for (c in c1..c2) {
canvas[r][c] = 'x'
}
}

private fun vertical(r1: Int, r2: Int, c: Int) {
for (r in r1..r2) {
canvas[r][c] = 'x'
}
}

private fun diagd(c1: Int, c2: Int, r: Int) {
for (c in c1..c2) {
canvas[r + c - c1][c] = 'x'
}
}

private fun diagu(c1: Int, c2: Int, r: Int) {
for (c in c1..c2) {
canvas[r - c + c1][c] = 'x'
}
}

private fun drawPart(v: Int) {
when (v) {
1 -> {
horizontal(6, 10, 0)
}
2 -> {
horizontal(6, 10, 4)
}
3 -> {
diagd(6, 10, 0)
}
4 -> {
diagu(6, 10, 4)
}
5 -> {
drawPart(1)
drawPart(4)
}
6 -> {
vertical(0, 4, 10)
}
7 -> {
drawPart(1)
drawPart(6)
}
8 -> {
drawPart(2)
drawPart(6)
}
9 -> {
drawPart(1)
drawPart(8)
}

10 -> {
horizontal(0, 4, 0)
}
20 -> {
horizontal(0, 4, 4)
}
30 -> {
diagu(0, 4, 4)
}
40 -> {
diagd(0, 4, 0)
}
50 -> {
drawPart(10)
drawPart(40)
}
60 -> {
vertical(0, 4, 0)
}
70 -> {
drawPart(10)
drawPart(60)
}
80 -> {
drawPart(20)
drawPart(60)
}
90 -> {
drawPart(10)
drawPart(80)
}

100 -> {
horizontal(6, 10, 14)
}
200 -> {
horizontal(6, 10, 10)
}
300 -> {
diagu(6, 10, 14)
}
400 -> {
diagd(6, 10, 10)
}
500 -> {
drawPart(100)
drawPart(400)
}
600 -> {
vertical(10, 14, 10)
}
700 -> {
drawPart(100)
drawPart(600)
}
800 -> {
drawPart(200)
drawPart(600)
}
900 -> {
drawPart(100)
drawPart(800)
}

1000 -> {
horizontal(0, 4, 14)
}
2000 -> {
horizontal(0, 4, 10)
}
3000 -> {
diagd(0, 4, 10)
}
4000 -> {
diagu(0, 4, 14)
}
5000 -> {
drawPart(1000)
drawPart(4000)
}
6000 -> {
vertical(10, 14, 0)
}
7000 -> {
drawPart(1000)
drawPart(6000)
}
8000 -> {
drawPart(2000)
drawPart(6000)
}
9000 -> {
drawPart(1000)
drawPart(8000)
}
}
}

private fun draw(v: Int) {
var v2 = v

val thousands = v2 / 1000
v2 %= 1000

val hundreds = v2 / 100
v2 %= 100

val tens = v2 / 10
val ones = v % 10

if (thousands > 0) {
drawPart(1000 * thousands)
}
if (hundreds > 0) {
drawPart(100 * hundreds)
}
if (tens > 0) {
drawPart(10 * tens)
}
if (ones > 0) {
drawPart(ones)
}
}

override fun toString(): String {
val sw = StringWriter()
for (row in canvas) {
for (cell in row) {
sw.append(cell)
}
sw.appendLine()
}
return sw.toString()
}
}

fun main() {
for (number in arrayOf(0, 1, 20, 300, 4000, 5555, 6789, 9999)) {
println("\$number:")

val c = Cistercian(number)
println(c)
}

}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx    ```

## Lua

Translation of: Go
```function initN()
local n = {}
for i=1,15 do
n[i] = {}
for j=1,11 do
n[i][j] = " "
end
n[i][6] = "x"
end
return n
end

function horiz(n, c1, c2, r)
for c=c1,c2 do
n[r+1][c+1] = "x"
end
end

function verti(n, r1, r2, c)
for r=r1,r2 do
n[r+1][c+1] = "x"
end
end

function diagd(n, c1, c2, r)
for c=c1,c2 do
n[r+c-c1+1][c+1] = "x"
end
end

function diagu(n, c1, c2, r)
for c=c1,c2 do
n[r-c+c1+1][c+1] = "x"
end
end

function initDraw()
local draw = {}

draw[1] = function(n) horiz(n, 6, 10, 0) end
draw[2] = function(n) horiz(n, 6, 10, 4) end
draw[3] = function(n) diagd(n, 6, 10, 0) end
draw[4] = function(n) diagu(n, 6, 10, 4) end
draw[5] = function(n) draw[1](n) draw[4](n) end
draw[6] = function(n) verti(n, 0, 4, 10) end
draw[7] = function(n) draw[1](n) draw[6](n) end
draw[8] = function(n) draw[2](n) draw[6](n) end
draw[9] = function(n) draw[1](n) draw[8](n) end

draw[10] = function(n) horiz(n, 0, 4, 0) end
draw[20] = function(n) horiz(n, 0, 4, 4) end
draw[30] = function(n) diagu(n, 0, 4, 4) end
draw[40] = function(n) diagd(n, 0, 4, 0) end
draw[50] = function(n) draw[10](n) draw[40](n) end
draw[60] = function(n) verti(n, 0, 4, 0) end
draw[70] = function(n) draw[10](n) draw[60](n) end
draw[80] = function(n) draw[20](n) draw[60](n) end
draw[90] = function(n) draw[10](n) draw[80](n) end

draw[100] = function(n) horiz(n, 6, 10, 14) end
draw[200] = function(n) horiz(n, 6, 10, 10) end
draw[300] = function(n) diagu(n, 6, 10, 14) end
draw[400] = function(n) diagd(n, 6, 10, 10) end
draw[500] = function(n) draw[100](n) draw[400](n) end
draw[600] = function(n) verti(n, 10, 14, 10) end
draw[700] = function(n) draw[100](n) draw[600](n) end
draw[800] = function(n) draw[200](n) draw[600](n) end
draw[900] = function(n) draw[100](n) draw[800](n) end

draw[1000] = function(n) horiz(n, 0, 4, 14) end
draw[2000] = function(n) horiz(n, 0, 4, 10) end
draw[3000] = function(n) diagd(n, 0, 4, 10) end
draw[4000] = function(n) diagu(n, 0, 4, 14) end
draw[5000] = function(n) draw[1000](n) draw[4000](n) end
draw[6000] = function(n) verti(n, 10, 14, 0) end
draw[7000] = function(n) draw[1000](n) draw[6000](n) end
draw[8000] = function(n) draw[2000](n) draw[6000](n) end
draw[9000] = function(n) draw[1000](n) draw[8000](n) end

return draw
end

function printNumeral(n)
for i,v in pairs(n) do
for j,w in pairs(v) do
io.write(w .. " ")
end
print()
end
print()
end

function main()
local draw = initDraw()
for i,number in pairs({0, 1, 20, 300, 4000, 5555, 6789, 9999}) do
local n = initN()
print(number..":")
local thousands = math.floor(number / 1000)
number = number % 1000
local hundreds = math.floor(number / 100)
number = number % 100
local tens = math.floor(number / 10)
local ones = number % 10
if thousands > 0 then
draw[thousands * 1000](n)
end
if hundreds > 0 then
draw[hundreds * 100](n)
end
if tens > 0 then
draw[tens * 10](n)
end
if ones > 0 then
draw[ones](n)
end
printNumeral(n)
end
end

main()
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
x x x x x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
x x x x x x
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x         x
x       x
x     x
x   x
x x

4000:
x
x
x
x
x
x
x
x
x
x
x x
x   x
x     x
x       x
x         x

5555:
x x x x x x x x x x x
x       x       x
x     x     x
x   x   x
x x x
x
x
x
x
x
x x x
x   x   x
x     x     x
x       x       x
x x x x x x x x x x x

6789:
x         x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x
x
x
x
x
x
x         x         x
x         x         x
x         x         x
x         x         x
x         x x x x x x

9999:
x x x x x x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x
x
x
x
x
x
x x x x x x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x```

## Mathematica/Wolfram Language

```ClearAll[CistercianNumberEncodeHelper, CistercianNumberEncode]
\[Delta] = 0.25;
CistercianNumberEncodeHelper[0] := {}
CistercianNumberEncodeHelper[1] := Line[{{0, 1}, {\[Delta], 1}}]
CistercianNumberEncodeHelper[2] := Line[{{0, 1 - \[Delta]}, {\[Delta], 1 - \[Delta]}}]
CistercianNumberEncodeHelper[3] := Line[{{0, 1}, {\[Delta], 1 - \[Delta]}}]
CistercianNumberEncodeHelper[4] := Line[{{0, 1 - \[Delta]}, {\[Delta], 1}}]
CistercianNumberEncodeHelper[5] := Line[{{0, 1 - \[Delta]}, {\[Delta], 1}, {0, 1}}]
CistercianNumberEncodeHelper[6] := Line[{{\[Delta], 1 - \[Delta]}, {\[Delta], 1}}]
CistercianNumberEncodeHelper[7] := Line[{{\[Delta], 1 - \[Delta]}, {\[Delta], 1}, {0, 1}}]
CistercianNumberEncodeHelper[8] := Line[{{0, 1 - \[Delta]}, {\[Delta], 1 - \[Delta]}, {\[Delta], 1}}]
CistercianNumberEncodeHelper[9] := Line[{{0, 1}, {\[Delta], 1}, {\[Delta], 1 - \[Delta]}, {0, 1 - \[Delta]}}]
CistercianNumberEncode::nnarg = "The argument `1` should be an integer between 0 and 9999 (inclusive).";
CistercianNumberEncode[n_Integer] := Module[{digs},
If[0 <= n <= 9999,
digs = IntegerDigits[n, 10, 4];
Graphics[{Line[{{0, 0}, {0, 1}}],
CistercianNumberEncodeHelper[digs[[4]]],
GeometricTransformation[CistercianNumberEncodeHelper[digs[[3]]],
ReflectionTransform[{1, 0}]],
GeometricTransformation[CistercianNumberEncodeHelper[digs[[2]]],
ReflectionTransform[{0, 1}, {0, 1/2}]],
GeometricTransformation[CistercianNumberEncodeHelper[digs[[1]]],
RotationTransform[Pi, {0, 1/2}]]
},
PlotRange -> {{-1.5 \[Delta], 1.5 \[Delta]}, {0 - 0.5 \[Delta],
1 + 0.5 \[Delta]}},
ImageSize -> 50
]
,
Message[CistercianNumberEncode::nnarg, n]
]
]
CistercianNumberEncode[0]
CistercianNumberEncode[1]
CistercianNumberEncode[20]
CistercianNumberEncode[300]
CistercianNumberEncode[4000]
CistercianNumberEncode[5555]
CistercianNumberEncode[6789]
CistercianNumberEncode[1337]
```
Output:

A set of Graphics is shown for each of the numerals.

## Nim

Translation of: Kotlin
```const Size = 15

type Canvas = array[Size, array[Size, char]]

func horizontal(canvas: var Canvas; col1, col2, row: Natural) =
for col in col1..col2:
canvas[row][col] = 'x'

func vertical(canvas: var Canvas; row1, row2, col: Natural) =
for row in row1..row2:
canvas[row][col] = 'x'

func diagd(canvas: var Canvas; col1, col2, row: Natural) =
for col in col1..col2:
canvas[row + col - col1][col] = 'x'

func diagu(canvas: var Canvas; col1, col2, row: Natural) =
for col in col1..col2:
canvas[row - col + col1][col] = 'x'

func drawPart(canvas: var Canvas; value: Natural) =

case value
of 1:
canvas.horizontal(6, 10, 0)
of 2:
canvas.horizontal(6, 10, 4)
of 3:
canvas.diagd(6, 10, 0)
of 4:
canvas.diagu(6, 10, 4)
of 5:
canvas.drawPart(1)
canvas.drawPart(4)
of 6:
canvas.vertical(0, 4, 10)
of 7:
canvas.drawPart(1)
canvas.drawPart(6)
of 8:
canvas.drawPart(2)
canvas.drawPart(6)
of 9:
canvas.drawPart(1)
canvas.drawPart(8)
of 10:
canvas.horizontal(0, 4, 0)
of 20:
canvas.horizontal(0, 4, 4)
of 30:
canvas.diagu(0, 4, 4)
of 40:
canvas.diagd(0, 4, 0)
of 50:
canvas.drawPart(10)
canvas.drawPart(40)
of 60:
canvas.vertical(0, 4, 0)
of 70:
canvas.drawPart(10)
canvas.drawPart(60)
of 80:
canvas.drawPart(20)
canvas.drawPart(60)
of 90:
canvas.drawPart(10)
canvas.drawPart(80)
of 100:
canvas.horizontal(6, 10, 14)
of 200:
canvas.horizontal(6, 10, 10)
of 300:
canvas.diagu(6, 10, 14)
of 400:
canvas.diagd(6, 10, 10)
of 500:
canvas.drawPart(100)
canvas.drawPart(400)
of 600:
canvas.vertical(10, 14, 10)
of 700:
canvas.drawPart(100)
canvas.drawPart(600)
of 800:
canvas.drawPart(200)
canvas.drawPart(600)
of 900:
canvas.drawPart(100)
canvas.drawPart(800)
of 1000:
canvas.horizontal(0, 4, 14)
of 2000:
canvas.horizontal(0, 4, 10)
of 3000:
canvas.diagd(0, 4, 10)
of 4000:
canvas.diagu(0, 4, 14)
of 5000:
canvas.drawPart(1000)
canvas.drawPart(4000)
of 6000:
canvas.vertical(10, 14, 0)
of 7000:
canvas.drawPart(1000)
canvas.drawPart(6000)
of 8000:
canvas.drawPart(2000)
canvas.drawPart(6000)
of 9000:
canvas.drawPart(1000)
canvas.drawPart(8000)
else:
raise newException(ValueError, "wrong value for 'drawPart'")

func draw(canvas: var Canvas; value: Natural) =

var val = value
let thousands = val div 1000
val = val mod 1000
let hundreds = val div 100
val = val mod 100
let tens = val div 10
let ones = val mod 10

if thousands != 0:
canvas.drawPart(1000 * thousands)
if hundreds != 0:
canvas.drawPart(100 * hundreds)
if tens != 0:
canvas.drawPart(10 * tens)
if ones != 0:
canvas.drawPart(ones)

func cistercian(n: Natural): Canvas =
for row in result.mitems:
for cell in row.mitems: cell = ' '
row[5] = 'x'
result.draw(n)

proc `\$`(canvas: Canvas): string =
for row in canvas:
for cell in row:

when isMainModule:

for number in [0, 1, 20, 300, 4000, 5555, 6789, 9999]:
echo number, ':'
echo cistercian(number)
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
```

## Perl

```#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Cistercian_numerals
use warnings;

my @pts = ('', qw( 01 23 03 12 012 13 013 132 0132) );
my @dots = qw( 4-0 8-0 4-4 8-4 );

my @images = map { sprintf("%-9s\n", "\$_:") . draw(\$_) }
0, 1, 20, 300, 4000, 5555, 6789, 1133;
for ( 1 .. 13 )
{
s/(.+)\n/ print " \$1"; '' /e for @images;
print "\n";
}

sub draw
{
my \$n = shift;
local \$_ = "    #    \n" x 12;
for my \$digit ( reverse split //, sprintf "%04d", \$n )
{
my (\$oldx, \$oldy);
for my \$cell ( split //, \$pts[\$digit] )
{
my (\$x, \$y) = split /-/, \$dots[\$cell];
if( defined \$oldx )
{
my \$dirx = \$x <=> \$oldx;
my \$diry = \$y <=> \$oldy;
for my \$place ( 0 .. 3 )
{
substr \$_, \$oldx + \$oldy * 10, 1, '#';
\$oldx += \$dirx;
\$oldy += \$diry;
}
}
(\$oldx, \$oldy) = (\$x, \$y);
}
s/.+/ reverse \$& /ge;
++\$quadrant & 1 or \$_ = join '', reverse /.+\n/g;
}
return \$_;
}
```
Output:
``` 0:        1:        20:       300:      4000:     5555:     6789:     1133:
#         ####      #         #         #     ######### #   #####     #
#         #         #         #         #      #  #  #  #   #   #    ###
#         #         #         #         #       # # #   #   #   #   # # #
#         #         #         #         #        ###    #   #   #  #  #  #
#         #      ####         #         #         #     #########     #
#         #         #         #         #         #         #         #
#         #         #         #         #         #         #         #
#         #         #         #         #         #         #         #
#         #         #         #  #     ##        ###    #   #   #     #
#         #         #         # #     # #       # # #   #   #   #     #
#         #         #         ##     #  #      #  #  #  #   #   #     #
#         #         #         #     #   #     ######### #   #####  #######
```

## Phix

```--
-- Define each digit as {up-down multiplier, left-right multiplier, char},
--              that is starting each drawing from line 1 or 7, column 3,
--              and with `/` and `\` being flipped below when necessary.
--
with javascript_semantics
constant ds = {{{0,0,'+'},{0,1,'-'},{0,2,'-'}},     -- 1
{{2,0,'+'},{2,1,'-'},{2,2,'-'}},     -- 2
{{0,0,'+'},{1,1,'\\'},{2,2,'\\'}},   -- 3
{{2,0,'+'},{1,1,'/'},{0,2,'/'}},     -- 4
{{2,0,'+'},{1,1,'/'},{0,2,'+'},
{0,0,'+'},{0,1,'-'}},     -- 5
{{0,2,'|'},{1,2,'|'},{2,2,'|'}},     -- 6
{{0,0,'+'},{0,1,'-'},{0,2,'+'},
{1,2,'|'},{2,2,'|'}},     -- 7
{{2,0,'+'},{2,1,'-'},{2,2,'+'},
{1,2,'|'},{0,2,'|'}},     -- 8
{{2,0,'+'},{2,1,'-'},{2,2,'+'},
{1,2,'|'},{0,2,'+'},
{0,1,'-'},{0,0,'+'}}}     -- 9

function cdigit(sequence s, integer d, pos)
--
-- s is our canvas, 7 lines of 5 characters
-- d is the digit, 0..9
-- pos is 4..1 for bl,br,tl,tr (easier to say/see 'backwards')
--
if d then
integer ud = {+1,+1,-1,-1}[pos],
lr = {+1,-1,+1,-1}[pos],
l = {1,1,7,7}[pos]
sequence dset = ds[d]
for i=1 to length(dset) do
integer {udm, lrm, ch} = dset[i],
tf = find(ch,`/\`)
if tf and ud!=lr then ch=`\/`[tf] end if
s[l+ud*udm][3+lr*lrm] = ch
end for
end if
return s
end function

procedure cisterian(sequence n)
sequence res = {}
for i=1 to length(n) do
integer cn = n[i]
res = append(res,sprintf("%4d:",cn))
sequence s = repeat("  |  ",7)
integer pos = 1
while cn do
s = cdigit(s, remainder(cn,10), pos)
pos += 1
cn = floor(cn/10)
end while
res &= s
end for
puts(1,join_by(res,8,10))
end procedure

cisterian({0,1,2,3,4,5,6,7,8,9,20, 300, 4000, 5555, 6789, 9394, 7922, 9999})
```
Output:
```   0:      1:      2:      3:      4:      5:      6:      7:      8:      9:
|       +--     |       +       | /     +-+     | |     +-+     | |     +-+
|       |       |       |\      |/      |/      | |     | |     | |     | |
|       |       +--     | \     +       +       | |     | |     +-+     +-+
|       |       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |       |

20:    300:   4000:   5555:   6789:   9394:   7922:   9999:
|       |       |     +-+-+   | +-+   +-+ /     |     +-+-+
|       |       |      \|/    | | |   | |/      |     | | |
--+       |       |       +     +-+-+   +-+     --+--   +-+-+
|       |       |       |       |       |       |       |
|       | /     +       +     | | |   +-+ /   | +-+   +-+-+
|       |/     /|      /|\    | | |   | |/    | | |   | | |
|       +     / |     +-+-+   | +-+   +-+     +-+-+   +-+-+
```

## Plain English

```To run:
Start up.
Show some example Cistercian numbers.
Wait for the escape key.
Shut down.

To show some example Cistercian numbers:
Put the screen's left plus 1 inch into the context's spot's x.
Clear the screen to the lightest gray color.
Use the black color.
Use the fat pen.
Draw 0.
Draw 1.
Draw 20.
Draw 300.
Draw 4000.
Draw 5555.
Draw 6789.
Draw 9394.
Refresh the screen.

The mirror flag is a flag.

To draw a Cistercian number:
Split the Cistercian number into some thousands and some hundreds and some tens and some ones.
Stroke zero.
Set the mirror flag.
Stroke the ones.
Clear the mirror flag.
Stroke the tens.
Turn around.
Stroke the hundreds.
Set the mirror flag.
Stroke the thousands.
Turn around.
Label the Cistercian number.
Move the context's spot right 1 inch.

To label a Cistercian number:
Save the context.
Move down the half stem plus the small stem.
Imagine a box with the context's spot and the context's spot.
Draw "" then the Cistercian number in the center of the box with the dark gray color.
Restore the context.

Some tens are a number.

Some ones are a number.

To split a number into some thousands and some hundreds and some tens and some ones:
Divide the number by 10 giving a quotient and a remainder.
Put the remainder into the ones.
Divide the quotient by 10 giving another quotient and another remainder.
Put the other remainder into the tens.
Divide the other quotient by 10 giving a third quotient and a third remainder.
Put the third remainder into the hundreds.
Divide the third quotient by 10 giving a fourth quotient and a fourth remainder.
Put the fourth remainder into the thousands.

The small stem is a length equal to 1/6 inch.

The half stem is a length equal to 1/2 inch.

The tail is a length equal to 1/3 inch.

The slanted tail is a length equal to 6/13 inch.

To stroke a number:
Save the context.
If the number is 1, stroke one.
If the number is 2, stroke two.
If the number is 3, stroke three.
If the number is 4, stroke four.
If the number is 5, stroke five.
If the number is 6, stroke six.
If the number is 7, stroke seven.
If the number is 8, stroke eight.
If the number is 9, stroke nine.
Restore the context.

To turn home:
If the mirror flag is set, turn right; exit.
Turn left.

To turn home some fraction of the way:
If the mirror flag is set, turn right the fraction; exit.
Turn left the fraction.

To stroke zero:
Save the context.
Stroke the half stem.
Turn around.
Move the half stem.
Stroke the half stem.
Restore the context.

To stroke one:
Move the half stem.
Turn home.
Stroke the tail.

To stroke two:
Move the small stem.
Turn home.
Stroke the tail.

To stroke three:
Move the half stem.
Turn home 3/8 of the way.
Stroke the slanted tail.

To stroke four:
Move the small stem.
Turn home 1/8 of the way.
Stroke the slanted tail.

To stroke five:
Stroke 1.
Stroke 4.

To stroke six:
Move the half stem.
Turn home.
Move the tail.
Turn home.
Stroke the tail.

To stroke seven:
Stroke 1.
Stroke 6.

To stroke eight:
Stroke 2.
Stroke 6.

To stroke nine:
Stroke 1.
Stroke 8.```
Output:

## Python

I tried to create a three-line font from UTF8 characters taking three lines per Cistercian number.

```# -*- coding: utf-8 -*-
"""
Some UTF-8 chars used:

‾	8254	203E	&oline;	OVERLINE
┃	9475	2503	 	BOX DRAWINGS HEAVY VERTICAL
╱	9585	2571	 	BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT
╲	9586	2572	 	BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT
◸	9720	25F8	 	UPPER LEFT TRIANGLE
◹	9721	25F9	 	UPPER RIGHT TRIANGLE
◺	9722	25FA	 	LOWER LEFT TRIANGLE
◻	9723	25FB	 	WHITE MEDIUM SQUARE
◿	9727	25FF	 	LOWER RIGHT TRIANGLE

"""

#%% digit sections

def _init():
"digit sections for forming numbers"
digi_bits = """
#0  1   2  3  4  5  6   7   8   9
#
.  ‾   _  ╲  ╱  ◸  .|  ‾|  _|  ◻
#
.  ‾   _  ╱  ╲  ◹  |.  |‾  |_  ◻
#
.  _  ‾   ╱  ╲  ◺  .|  _|  ‾|  ◻
#
.  _  ‾   ╲  ╱  ◿  |.  |_  |‾  ◻

""".strip()

lines = [[d.replace('.', ' ') for d in ln.strip().split()]
for ln in digi_bits.strip().split('\n')
if '#' not in ln]
formats = '<2 >2 <2 >2'.split()
digits = [[f"{dig:{f}}" for dig in line]
for f, line in zip(formats, lines)]

return digits

_digits = _init()

#%% int to 3-line strings
def _to_digits(n):
assert 0 <= n < 10_000 and int(n) == n

return [int(digit) for digit in f"{int(n):04}"][::-1]

def num_to_lines(n):
global _digits
d = _to_digits(n)
lines = [
''.join((_digits[1][d[1]], '┃',  _digits[0][d[0]])),
''.join((_digits[0][   0], '┃',  _digits[0][   0])),
''.join((_digits[3][d[3]], '┃',  _digits[2][d[2]])),
]

return lines

def cjoin(c1, c2, spaces='   '):
return [spaces.join(by_row) for by_row in zip(c1, c2)]

#%% main
if __name__ == '__main__':
#n = 6666
#print(f"Arabic {n} to Cistercian:\n")
#print('\n'.join(num_to_lines(n)))

for pow10 in range(4):
step = 10 ** pow10
print(f'\nArabic {step}-to-{9*step} by {step} in Cistercian:\n')
lines = num_to_lines(step)
for n in range(step*2, step*10, step):
lines = cjoin(lines, num_to_lines(n))
print('\n'.join(lines))

numbers = [0, 5555, 6789, 6666]
print(f'\nArabic {str(numbers)[1:-1]} in Cistercian:\n')
lines = num_to_lines(numbers[0])
for n in numbers[1:]:
lines = cjoin(lines, num_to_lines(n))
print('\n'.join(lines))
```
Output:
```Arabic 1-to-9 by 1 in Cistercian:

┃‾      ┃_      ┃╲      ┃╱      ┃◸      ┃ |     ┃‾|     ┃_|     ┃◻
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃

Arabic 10-to-90 by 10 in Cistercian:

‾┃      _┃      ╱┃      ╲┃      ◹┃     | ┃     |‾┃     |_┃      ◻┃
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃

Arabic 100-to-900 by 100 in Cistercian:

┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
┃_      ┃‾      ┃╱      ┃╲      ┃◺      ┃ |     ┃_|     ┃‾|     ┃◻

Arabic 1000-to-9000 by 1000 in Cistercian:

┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃       ┃
_┃      ‾┃      ╲┃      ╱┃      ◿┃     | ┃     |_┃     |‾┃      ◻┃

Arabic 0, 5555, 6789, 6666 in Cistercian:

┃      ◹┃◸    |_┃◻    | ┃ |
┃       ┃       ┃       ┃
┃      ◿┃◺    | ┃_|   | ┃ |```

Note: There may be some horizontal placement issues evident in the HTML rendering between pre tags that may not be shown in the monospace rendering of a terminal (or the edit pane in firefox).
The pre tag may have to shift from one monospace font to a second that contains a character missing from the first. Those two individually monospaced fonts may have differing character widths between fonts (although consistent within individual monospaced fonts).
Paste the output into a monospace code editor and the stems of each number might well align!

## Quackery

```  [ \$ "turtleduck.qky" loadfile ] now!

[ [ 50 dup * 2 * 1
10 vsqrt drop
join ] constant
do ]                 is diag       (   --> n/d )

[ stack 1 ]            is side       (   --> s   )

[ 0 side take
- side put ]         is otherside  (   -->     )

[ 150 1 walk
-150 1 fly ]         is trunk      (   -->     )

[ 50 1 fly ]           is inset      (   -->     )

[ -50 1 fly ]          is outset     (   -->     )

[ 150 1 fly
1 2 turn ]           is otherend   (   -->     )

[ ]                    is zero       (   -->     )

[ -1 4 turn
50 side share *
dup 1 walk
negate 1 fly
1 4 turn ]           is one        (   -->     )

[ inset one outset ]   is two        (   -->     )

[ -1 side share *
8 turn
diag walk
diag -v fly
1 side share *
8 turn ]             is three      (   -->     )

[ inset
-3 side share *
8 turn
diag walk
diag -v fly
3 side share *
8 turn
outset ]             is four       (   -->     )

[ one four ]           is five       (   -->     )

[ 1 side share *
4 turn outset
one
inset
-1 side share *
4 turn ]             is six        (   -->     )

[ one six ]            is seven      (   -->     )

[ two six ]            is eight      (   -->     )

[ one two six ]        is nine       (   -->     )

[ [ table
zero one two
three four five
six seven eight
nine ] do ]        is thousands  ( n -->     )

[ otherend
thousands
otherend ]           is units      ( n -->     )

[ otherside
units
otherside ]          is tens       ( n -->     )

[ otherside
thousands
otherside ]          is hundreds   ( n -->     )

[ inset
-1 4 turn
trunk
' [ units tens
hundreds
thousands ]
witheach
[ dip
[ 10 /mod ]
do ]
drop
1 4 turn
outset ]             is cistercian ( n -->     )

[ dup witheach
[ cistercian
3 times inset ]
size 3 * times
outset ]          is task       ( [ -->     )

turtle 5 wide -600 1 fly
' [ 0 1 20 300 4000 5555 6789 1234 ] task```
Output:

## Raku

Handles 0 through 9999 only. No error trapping. If you feed it an unsupported number it will truncate to maximum 4 digits.

```my @line-segments = (0, 0, 0, 100),
(0,  0, 35,  0), (0, 35, 35, 35), (0,  0, 35, 35), (0, 35, 35,  0), ( 35,  0, 35, 35),
(0,  0,-35,  0), (0, 35,-35, 35), (0,  0,-35, 35), (0, 35,-35,  0), (-35,  0,-35, 35),
(0,100, 35,100), (0, 65, 35, 65), (0,100, 35, 65), (0, 65, 35,100), ( 35, 65, 35,100),
(0,100,-35,100), (0, 65,-35, 65), (0,100,-35, 65), (0, 65,-35,100), (-35, 65,-35,100);

my @components = map {@line-segments[\$_]}, |((0, 5, 10, 15).map: -> \$m {
|((0,), (1,), (2,), (3,), (4,), (1,4), (5,), (1,5), (2,5), (1,2,5)).map: {\$_ »+» \$m}
});

my \$out = 'Cistercian-raku.svg'.IO.open(:w);

q|<svg  width="875" height="470" style="stroke:black;" version="1.1" xmlns="http://www.w3.org/2000/svg">
<rect width="100%" height="100%" style="fill:white;"/>|;

my \$hs = 50; # horizontal spacing
my \$vs = 25; # vertical spacing

for flat ^10, 20, 300, 4000, 5555, 6789, 9394, (^10000).pick(14) -> \$cistercian {

\$out.say: |@components[0].map: { # draw zero / base vertical bar
qq|<line x1="{.[0] + \$hs}" y1="{.[1] + \$vs}" x2="{.[2] + \$hs}" y2="{.[3] + \$vs}"/>|
};

my @orders-of-magnitude = \$cistercian.polymod(10 xx *);

for @orders-of-magnitude.kv -> \$order, \$value {
next unless \$value; # skip zeros, already drew zero bar
last if \$order > 3; # truncate too large integers

# draw the component line segments
\$out.say: join "\n", @components[\$order * 10 + \$value].map: {
qq|<line x1="{.[0] + \$hs}" y1="{.[1] + \$vs}" x2="{.[2] + \$hs}" y2="{.[3] + \$vs}"/>|
}
}

# insert the decimal number below
\$out.say: qq|<text x="{\$hs - 5}" y="{\$vs + 120}">{\$cistercian}</text>|;

if ++\$ %% 10 { # next row
\$hs = -35;
\$vs += 150;
}

\$hs += 85; # increment horizontal spacing

}
\$out.say: q|</svg>|; # insert footer
```
Output:

## REXX

A fair amount of code dealt with displaying multiple Cistercian numerals on the terminal,   and also trying to present
ASCII characters that tried mimicking what a scribe might draw.

Comprehensive error checking was also included.

```/*REXX program displays a (non-negative 4-digit) integer in  Cistercian (monk) numerals.*/
parse arg m                                      /*obtain optional arguments from the CL*/
if m='' | m=","  then m= 0 1 20 300 4000 5555 6789 9393  /*Not specified?  Use defaults.*/
\$.=;                     nnn= words(m)
do j=1  for nnn;   z= word(m, j)            /*process each of the numbers. */
if \datatype(z, 'W')  then call serr  "number isn't numeric: "           z
if \datatype(z, 'N')  then call serr  "number isn't an integer: "        z
z= z / 1                            /*normalize the number:  006  5.0  +4  */
if z<0                then call serr  "number can't be negative: "       z
if z>9999             then call serr  "number is too large (>9,999): "   z
call monk z / 1                     /*create the Cistercian quad numeral.  */
end   /*j*/
call show                                        /*display   "      "       "     "     */
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
@:    parse arg @x,@y;  return @.@x.@y           /*return a value from the point (@x,@y)*/
quad: parse arg #;   if #\==0  then interpret 'call' #;  return       /*build a numeral.*/
serr: say '***error*** '  arg(1);    exit 13                          /*issue error msg.*/
app:   do r= 9 for 10 by -1; do c=-5 for 11; \$.r= \$.r||@.c.r; end; \$.r=\$.r b5; end; return
eye:   do a=0  for 10; @.0.a= '│';   end; return /*build an "eye" glyph (vertical axis).*/
p:     do k=1  by 3  until k>arg(); x= arg(k); y= arg(k+1); @.x.y= arg(k+2); end;   return
sect:  do q=1  for 4; call quad s.q; end; return /*build a Cistercian numeral character.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
monk: parse arg n; n= right(n, 4, 0);  @.= ' '   /*zero─fill N;  blank─out numeral grid.*/
b4= left('', 4);  b5= b4" ";   \$.11= \$.11  ||  b4  ||  n  ||  b4  ||  b5;   call eye
parse var n s.4 2 s.3 3 s.2 4 s.1;    call sect;    call nice;    call app;   return
/*──────────────────────────────────────────────────────────────────────────────────────*/
nice: if @(-1, 9)=='─'     then call p 0, 9, "┐";    if @(1,9)=='─'  then call p 0, 9, "┌"
if @(-1, 9)=='─'  &  @(1,9)=='─'                               then call p 0, 9, "┬"
if @(-1, 0)=='─'     then call p 0, 0, "┘";    if @(1,0)=='─'  then call p 0, 0, "└"
if @(-1, 0)=='─'  &  @(1,0)=='─'                               then call p 0, 0, "┴"
do i=4  to 5
if @(-1, i)=='─'  then call p 0, i, "┤";    if @(1,i)=='─'  then call p 0, i, "├"
if @(-1, i)=='─'  &  @(1,i)=="─"                            then call p 0, i, "┼"
end   /*i*/;                                                               return
/*──────────────────────────────────────────────────────────────────────────────────────*/
show:    do jj= 11  for 10+2  by -1;    say strip(\$.jj, 'T')  /*display 1 row at a time.*/
if jj==5  then do 3;           say strip( copies(b5'│'b5 b5, nnn), 'T');     end
end   /*r*/;                   return
/*──────────────────────────────────────────────────────────────────────────────────────*/
1: ?= '─';  if q==1  then call p  1, 9, ?,  2, 9, ?,  3, 9, ?,  4, 9, ?,  5, 9, ?
if q==2  then call p -1, 9, ?, -2, 9, ?, -3, 9, ?, -4, 9, ?, -5, 9, ?
if q==3  then call p  1, 0, ?,  2, 0, ?,  3, 0, ?,  4, 0, ?,  5, 0, ?
if q==4  then call p -1, 0, ?, -2, 0, ?, -3, 0, ?, -4, 0, ?, -5, 0, ?;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
2: ?= '─';  if q==1  then call p  1, 5, ?,  2, 5, ?,  3, 5, ?,  4, 5, ?,  5, 5, ?
if q==2  then call p -1, 5, ?, -2, 5, ?, -3, 5, ?, -4, 5, ?, -5, 5, ?
if q==3  then call p  1, 4, ?,  2, 4, ?,  3, 4, ?,  4, 4, ?,  5, 4, ?
if q==4  then call p -1, 4, ?, -2, 4, ?, -3, 4, ?, -4, 4, ?, -5, 4, ?;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
3: ?= '\';  if q==1  then call p  1, 9, ?,  2, 8, ?,  3, 7, ?,  4, 6, ?,  5, 5, ?
?= '/';  if q==2  then call p -1, 9, ?, -2, 8, ?, -3, 7, ?, -4, 6, ?, -5, 5, ?
?= '/';  if q==3  then call p  1, 0, ?,  2, 1, ?,  3, 2, ?,  4, 3, ?,  5, 4, ?
?= '\';  if q==4  then call p -5, 4, ?, -4, 3, ?, -3, 2, ?, -2, 1, ?, -1, 0, ?;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
4: ?= '/';  if q==1  then call p  1, 5, ?,  2, 6, ?,  3, 7, ?,  4, 8, ?,  5, 9, ?
?= '\';  if q==2  then call p -5, 9, ?, -4, 8, ?, -3, 7, ?, -2, 6, ?, -1, 5, ?
?= '\';  if q==3  then call p  1, 4, ?,  2, 3, ?,  3, 2, ?,  4, 1, ?,  5, 0, ?
?= '/';  if q==4  then call p -5, 0, ?, -4, 1, ?, -3, 2, ?, -2, 3, ?, -1, 4, ?;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
5: ?= '/';  if q==1  then call p  1, 5, ?,  2, 6, ?,  3, 7, ?,  4, 8, ?
?= '\';  if q==2  then call p -4, 8, ?, -3, 7, ?, -2, 6, ?, -1, 5, ?
?= '\';  if q==3  then call p  1, 4, ?,  2, 3, ?,  3, 2, ?,  4, 1, ?
?= '/';  if q==4  then call p -4, 1, ?, -3, 2, ?, -2, 3, ?, -1, 4, ?;  call 1;   return
/*──────────────────────────────────────────────────────────────────────────────────────*/
6: ?= '│';  if q==1  then call p  5, 9, ?,  5, 8, ?,  5, 7, ?,  5, 6, ?,  5, 5, ?
if q==2  then call p -5, 9, ?, -5, 8, ?, -5, 7, ?, -5, 6, ?, -5, 5, ?
if q==3  then call p  5, 0, ?,  5, 1, ?,  5, 2, ?,  5, 3, ?,  5, 4, ?
if q==4  then call p -5, 0, ?, -5, 1, ?, -5, 2, ?, -5, 3, ?, -5, 4, ?;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
7:          call 1;  call 6;         if q==1  then call p  5, 9, '┐'
if q==2  then call p -5, 9, '┌'
if q==3  then call p  5, 0, '┘'
if q==4  then call p -5, 0, '└';               return
/*──────────────────────────────────────────────────────────────────────────────────────*/
8:          call 2;  call 6;         if q==1  then call p  5, 5, '┘'
if q==2  then call p -5, 5, '└'
if q==3  then call p  5, 4, '┐'
if q==4  then call p -5, 4, '┌';               return
/*──────────────────────────────────────────────────────────────────────────────────────*/
9:          call 1; call 2; call 6;  if q==1  then call p  5, 5, '┘',  5, 9, "┐"
if q==2  then call p -5, 5, '└', -5, 9, "┌"
if q==3  then call p  5, 0, '┘',  5, 4, "┐"
if q==4  then call p -5, 0, '└', -5, 4, "┌";   return
```
output   when using the default inputs:

(Shown at three-quarter size.)

```    0000             0001             0020             0300             4000             5555             6789             9393

│                ┌─────           │                │                │           ─────┬─────      │    ┌────┐      ┌────┐\
│                │                │                │                │            \   │   /       │    │    │      │    │ \
│                │                │                │                │             \  │  /        │    │    │      │    │  \
│                │                │                │                │              \ │ /         │    │    │      │    │   \
│                │           ─────┤                │                │               \│/          └────┼────┘      └────┤    \
│                │                │                │                │                │                │                │
│                │                │                │                │                │                │                │
│                │                │                │                │                │                │                │
│                │                │                │    /          /│               /│\          │    │    │      ┌────┤    /
│                │                │                │   /          / │              / │ \         │    │    │      │    │   /
│                │                │                │  /          /  │             /  │  \        │    │    │      │    │  /
│                │                │                │ /          /   │            /   │   \       │    │    │      │    │ /
│                │                │                │/          /    │           ─────┴─────      │    └────┘      └────┘/
```

## Ruby

Translation of: Lua
```def initN
n = Array.new(15){Array.new(11, ' ')}
for i in 1..15
n[i - 1][5] = 'x'
end
return n
end

def horiz(n, c1, c2, r)
for c in c1..c2
n[r][c] = 'x'
end
end

def verti(n, r1, r2, c)
for r in r1..r2
n[r][c] = 'x'
end
end

def diagd(n, c1, c2, r)
for c in c1..c2
n[r+c-c1][c] = 'x'
end
end

def diagu(n, c1, c2, r)
for c in c1..c2
n[r-c+c1][c] = 'x'
end
end

def initDraw
draw = []

draw[1] = lambda do |n| horiz(n, 6, 10, 0) end
draw[2] = lambda do |n| horiz(n, 6, 10, 4) end
draw[3] = lambda do |n| diagd(n, 6, 10, 0) end
draw[4] = lambda do |n| diagu(n, 6, 10, 4) end
draw[5] = lambda do |n|
draw[1].call(n)
draw[4].call(n)
end
draw[6] = lambda do |n| verti(n, 0, 4, 10) end
draw[7] = lambda do |n|
draw[1].call(n)
draw[6].call(n)
end
draw[8] = lambda do |n|
draw[2].call(n)
draw[6].call(n)
end
draw[9] = lambda do |n|
draw[1].call(n)
draw[8].call(n)
end

draw[10] = lambda do |n| horiz(n, 0, 4, 0) end
draw[20] = lambda do |n| horiz(n, 0, 4, 4) end
draw[30] = lambda do |n| diagu(n, 0, 4, 4) end
draw[40] = lambda do |n| diagd(n, 0, 4, 0) end
draw[50] = lambda do |n|
draw[10].call(n)
draw[40].call(n)
end
draw[60] = lambda do |n| verti(n, 0, 4, 0) end
draw[70] = lambda do |n|
draw[10].call(n)
draw[60].call(n)
end
draw[80] = lambda do |n|
draw[20].call(n)
draw[60].call(n)
end
draw[90] = lambda do |n|
draw[10].call(n)
draw[80].call(n)
end

draw[100] = lambda do |n| horiz(n, 6, 10, 14) end
draw[200] = lambda do |n| horiz(n, 6, 10, 10) end
draw[300] = lambda do |n| diagu(n, 6, 10, 14) end
draw[400] = lambda do |n| diagd(n, 6, 10, 10) end
draw[500] = lambda do |n|
draw[100].call(n)
draw[400].call(n)
end
draw[600] = lambda do |n| verti(n, 10, 14, 10) end
draw[700] = lambda do |n|
draw[100].call(n)
draw[600].call(n)
end
draw[800] = lambda do |n|
draw[200].call(n)
draw[600].call(n)
end
draw[900] = lambda do |n|
draw[100].call(n)
draw[800].call(n)
end

draw[1000] = lambda do |n| horiz(n, 0, 4, 14) end
draw[2000] = lambda do |n| horiz(n, 0, 4, 10) end
draw[3000] = lambda do |n| diagd(n, 0, 4, 10) end
draw[4000] = lambda do |n| diagu(n, 0, 4, 14) end
draw[5000] = lambda do |n|
draw[1000].call(n)
draw[4000].call(n)
end
draw[6000] = lambda do |n| verti(n, 10, 14, 0) end
draw[7000] = lambda do |n|
draw[1000].call(n)
draw[6000].call(n)
end
draw[8000] = lambda do |n|
draw[2000].call(n)
draw[6000].call(n)
end
draw[9000] = lambda do |n|
draw[1000].call(n)
draw[8000].call(n)
end

return draw
end

def printNumeral(n)
for a in n
for b in a
print b
end
print "\n"
end
print "\n"
end

draw = initDraw()
for number in [0, 1, 20, 300, 4000, 5555, 6789, 9999]
n = initN()
print number, ":\n"

thousands = (number / 1000).floor
number = number % 1000

hundreds = (number / 100).floor
number = number % 100

tens = (number / 10).floor
ones = number % 10

if thousands > 0 then
draw[thousands * 1000].call(n)
end
if hundreds > 0 then
draw[hundreds * 100].call(n)
end
if tens > 0 then
draw[tens * 10].call(n)
end
if ones > 0 then
draw[ones].call(n)
end
printNumeral(n)
end
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
xxxxxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
xxxxxx
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x    x
x   x
x  x
x x
xx

4000:
x
x
x
x
x
x
x
x
x
x
xx
x x
x  x
x   x
x    x

5555:
xxxxxxxxxxx
x   x   x
x  x  x
x x x
xxx
x
x
x
x
x
xxx
x x x
x  x  x
x   x   x
xxxxxxxxxxx

6789:
x    xxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
x    x    x
x    x    x
x    x    x
x    x    x
x    xxxxxx

9999:
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx
x
x
x
x
x
xxxxxxxxxxx
x    x    x
x    x    x
x    x    x
xxxxxxxxxxx```

## Rust

Translation of: C
```use once_cell::sync::Lazy;

const GRID_SIZE: usize = 15;
static mut CANVAS: Lazy<Vec<[char; GRID_SIZE]>> = Lazy::new(|| vec![[' '; GRID_SIZE]; GRID_SIZE],);

/// initialize CANVAS
fn init_n() {
for i in 0..GRID_SIZE {
for j in 0..GRID_SIZE {
unsafe { CANVAS[i][j] = ' '; }
}
unsafe { CANVAS[i][5] = '#'; }
}
}

/// draw horizontal
fn horizontal(c1: usize, c2: usize, r: usize) {
for c in c1..=c2 {
unsafe { CANVAS[r][c] = '#'; }
}
}

/// draw vertical
fn vertical(r1: usize, r2: usize, c: usize) {
for r in r1..=r2 {
unsafe { CANVAS[r][c] = '#'; }
}
}

/// draw diagonal NE to SW
fn diag_d(c1 : usize, c2: usize, r: usize) {
for c in c1..=c2 {
unsafe { CANVAS[r + c - c1][c] = '#'; }
}
}

/// draw diagonal SE to NW
fn diag_u(c1: usize, c2: usize, r: usize) {
for c in c1..=c2 {
unsafe { CANVAS[r + c1 - c][c] = '#'; }
}
}

/// Mark the portions of the ones place.
fn draw_ones(v: i32) {
match v {
1 => horizontal(6, 10, 0),
2 => horizontal(6, 10, 4),
3 => diag_d(6, 10, 0),
4 => diag_u(6, 10, 4),
5 => { draw_ones(1); draw_ones(4); },
6 => vertical(0, 4, 10),
7 => { draw_ones(1); draw_ones(6); },
8 => { draw_ones(2); draw_ones(6); },
9 => { draw_ones(1); draw_ones(8); },
_ => {},
}
}

/// Mark the portions of the tens place.
fn draw_tens(v: i32) {
match v {
1 => horizontal(0, 4, 0),
2 => horizontal(0, 4, 4),
3 => diag_u(0, 4, 4),
4 => diag_d(0, 4, 0),
5 => { draw_tens(1); draw_tens(4); },
6 => vertical(0, 4, 0),
7 => { draw_tens(1); draw_tens(6); },
8 => { draw_tens(2); draw_tens(6); },
9 => { draw_tens(1); draw_tens(8); },
_ => {},
}
}

/// Mark the portions of the hundreds place.
fn draw_hundreds(hundreds: i32) {
match hundreds {
1 => horizontal(6, 10, 14),
2 => horizontal(6, 10, 10),
3 => diag_u(6, 10, 14),
4 => diag_d(6, 10, 10),
5 => { draw_hundreds(1); draw_hundreds(4) },
6 => vertical(10, 14, 10),
7 => { draw_hundreds(1); draw_hundreds(6); },
8 => { draw_hundreds(2); draw_hundreds(6); },
9 => { draw_hundreds(1); draw_hundreds(8); },
_ => {},
}
}

/// Mark the portions of the thousands place.
fn draw_thousands(thousands: i32) {
match thousands {
1 => horizontal(0, 4, 14),
2 => horizontal(0, 4, 10),
3 => diag_d(0, 4, 10),
4 => diag_u(0, 4, 14),
5 => { draw_thousands(1); draw_thousands(4); },
6 => vertical(10, 14, 0),
7 => { draw_thousands(1); draw_thousands(6); },
8 => { draw_thousands(2); draw_thousands(6); },
9 => { draw_thousands(1); draw_thousands(8); },
_ => {},
}
}

/// Mark the char matrix for the numeral drawing.
fn draw(mut v: i32) {
let thousands: i32 = v / 1000;
v %= 1000;
let hundreds: i32 = v / 100;
v %= 100;
let tens: i32 = v / 10;
let ones: i32 = v % 10;
if thousands > 0 {
draw_thousands(thousands);
}
if hundreds > 0 {
draw_hundreds(hundreds);
}
if tens > 0 {
draw_tens(tens);
}
if ones > 0 {
draw_ones(ones);
}
}

/// Test the drawings as outout to stdout.
fn test_output(n: i32) {
println!("{n}");
init_n();
draw(n);
unsafe {
for line in CANVAS.iter() {
for c in line.iter() {
print!("{}", *c);
}
println!();
}
}
println!("\n");
}

fn main() {
for n in [0, 1, 20, 300, 2022, 4000, 5555, 6789, 9999] {
test_output(n);
}
}
```
Output:
```0
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

1
######
#
#
#
#
#
#
#
#
#
#
#
#
#
#

20
#
#
#
#
######
#
#
#
#
#
#
#
#
#
#

300
#
#
#
#
#
#
#
#
#
#
#    #
#   #
#  #
# #
##

2022
#
#
#
#
###########
#
#
#
#
#
######
#
#
#
#

4000
#
#
#
#
#
#
#
#
#
#
##
# #
#  #
#   #
#    #

5555
###########
#   #   #
#  #  #
# # #
###
#
#
#
#
#
###
# # #
#  #  #
#   #   #
###########

6789
#    ######
#    #    #
#    #    #
#    #    #
###########
#
#
#
#
#
#    #    #
#    #    #
#    #    #
#    #    #
#    ######

9999
###########
#    #    #
#    #    #
#    #    #
###########
#
#
#
#
#
###########
#    #    #
#    #    #
#    #    #
###########
```

## Wren

Library: Wren-fmt

This draws each Cistercian numeral on the terminal within a grid of 15 rows by 11 columns. The vertical line segment is drawn at column 5 (zero indexed) so there are 5 columns at either side.

```import "./fmt" for Fmt

var n

var init = Fn.new {
n = List.filled(15, null)
for (i in 0..14) {
n[i] = List.filled(11, " ")
n[i][5] = "x"
}
}

var horiz = Fn.new { |c1, c2, r| (c1..c2).each { |c| n[r][c] = "x" } }
var verti = Fn.new { |r1, r2, c| (r1..r2).each { |r| n[r][c] = "x" } }
var diagd = Fn.new { |c1, c2, r| (c1..c2).each { |c| n[r+c-c1][c] = "x" } }
var diagu = Fn.new { |c1, c2, r| (c1..c2).each { |c| n[r-c+c1][c] = "x" } }

var draw // map contains recursive closures
draw = {
1: Fn.new { horiz.call(6, 10, 0) },
2: Fn.new { horiz.call(6, 10, 4) },
3: Fn.new { diagd.call(6, 10, 0) },
4: Fn.new { diagu.call(6, 10, 4) },
5: Fn.new {
draw[1].call()
draw[4].call()
},
6: Fn.new { verti.call(0, 4, 10) },
7: Fn.new {
draw[1].call()
draw[6].call()
},
8: Fn.new {
draw[2].call()
draw[6].call()
},
9: Fn.new {
draw[1].call()
draw[8].call()
},
10: Fn.new { horiz.call(0, 4, 0) },
20: Fn.new { horiz.call(0, 4, 4) },
30: Fn.new { diagu.call(0, 4, 4) },
40: Fn.new { diagd.call(0, 4, 0) },
50: Fn.new {
draw[10].call()
draw[40].call()
},
60: Fn.new { verti.call(0, 4, 0) },
70: Fn.new {
draw[10].call()
draw[60].call()
},
80: Fn.new {
draw[20].call()
draw[60].call()
},
90: Fn.new {
draw[10].call()
draw[80].call()
},
100: Fn.new { horiz.call(6, 10, 14) },
200: Fn.new { horiz.call(6, 10, 10) },
300: Fn.new { diagu.call(6, 10, 14) },
400: Fn.new { diagd.call(6, 10, 10) },
500: Fn.new {
draw[100].call()
draw[400].call()
},
600: Fn.new { verti.call(10, 14, 10) },
700: Fn.new {
draw[100].call()
draw[600].call()
},
800: Fn.new {
draw[200].call()
draw[600].call()
},
900: Fn.new {
draw[100].call()
draw[800].call()
},
1000: Fn.new { horiz.call(0, 4, 14) },
2000: Fn.new { horiz.call(0, 4, 10) },
3000: Fn.new { diagd.call(0, 4, 10) },
4000: Fn.new { diagu.call(0, 4, 14) },
5000: Fn.new {
draw[1000].call()
draw[4000].call()
},
6000: Fn.new { verti.call(10, 14, 0) },
7000: Fn.new {
draw[1000].call()
draw[6000].call()
},
8000: Fn.new {
draw[2000].call()
draw[6000].call()
},
9000: Fn.new {
draw[1000].call()
draw[8000].call()
}
}

var numbers = [0, 1, 20, 300, 4000, 5555, 6789, 9999]
for (number in numbers) {
init.call()
System.print("%(number):")
var thousands = (number/1000).floor
number = number % 1000
var hundreds  = (number/100).floor
number = number % 100
var tens = (number/10).floor
var ones = number % 10
if (thousands > 0) draw[thousands*1000].call()
if (hundreds > 0) draw[hundreds*100].call()
if (tens > 0) draw[tens*10].call()
if (ones > 0) draw[ones].call()
Fmt.mprint(n, 1, 0, "")
System.print()
}
```
Output:
```0:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1:
x x x x x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

20:
x
x
x
x
x x x x x x
x
x
x
x
x
x
x
x
x
x

300:
x
x
x
x
x
x
x
x
x
x
x         x
x       x
x     x
x   x
x x

4000:
x
x
x
x
x
x
x
x
x
x
x x
x   x
x     x
x       x
x         x

5555:
x x x x x x x x x x x
x       x       x
x     x     x
x   x   x
x x x
x
x
x
x
x
x x x
x   x   x
x     x     x
x       x       x
x x x x x x x x x x x

6789:
x         x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x
x
x
x
x
x
x         x         x
x         x         x
x         x         x
x         x         x
x         x x x x x x

9999:
x x x x x x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x
x
x
x
x
x
x x x x x x x x x x x
x         x         x
x         x         x
x         x         x
x x x x x x x x x x x
```