# Resistance network calculator

Resistance network calculator is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Introduction

Calculate the resistance of any resistor network.

• The network is stated with a string.
• The resistors are separated by a vertical dash.
• Each resistor has
• a starting node
• an ending node
• a resistance

Background

Regular 3x3 mesh, using twelve one ohm resistors
```0 - 1 - 2
|   |   |
3 - 4 - 5
|   |   |
6 - 7 - 8
```

Battery connection nodes: 0 and 8

```assert 3/2 == network(9,0,8,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
```

Regular 4x4 mesh, using 24 one ohm resistors
``` 0 - 1 - 2 - 3
|   |   |   |
4 - 5 - 6 - 7
|   |   |   |
8 - 9 -10 -11
|   |   |   |
12 -13 -14 -15
```

Battery connection nodes: 0 and 15

```assert 13/7 == network(16,0,15,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
```

Ten resistor network

Battery connection nodes: 0 and 1

```assert 10 == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
```

Wheatstone network

This network is not possible to solve using the previous Resistance Calculator as there is no natural starting point.

```assert 180 == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
```

## 11l

Translation of: Python
```F gauss(&m)
V (n, p) = (m.len, m[0].len)
L(i) 0 .< n
V k = max(i .< n, key' x -> abs(@m[x][@i]))
swap(&m[i], &m[k])
V t = 1 / m[i][i]
L(j) i + 1 .< p
m[i][j] *= t
L(j) i + 1 .< n
t = m[j][i]
L(k) i + 1 .< p
m[j][k] -= t * m[i][k]
L(i) (n - 1 .< -1).step(-1)
L(j) 0 .< i
m[j].last -= m[j][i] * m[i].last
R m.map(row -> row.last)

F network(n, k0, k1, s)
V m = [[0.0] * (n+1)] * n
V resistors = s.split(‘|’)
L(resistor) resistors
V (aa, bb, rr) = resistor.split(‘ ’)
V (a, b, r) = (Int(aa), Int(bb), (1 / Int(rr)))
m[a][a] += r
m[b][b] += r
I a > 0
m[a][b] -= r
I b > 0
m[b][a] -= r
m[k0][k0] = 1
m[k1].last = 1
R gauss(&m)[k1]

F is_equal(a, b)
R abs(a - b) < 1e-6

assert(is_equal(10  , network(7, 0, 1, ‘0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8’)))
assert(is_equal(3/2 , network(3*3, 0, 3*3-1, ‘0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1’)))
assert(is_equal(13/7, network(4*4, 0, 4*4-1, ‘0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1’)))
assert(is_equal(180 , network(4, 0, 3, ‘0 1 150|0 2 50|1 3 300|2 3 250’)))
print(‘OK’)```

## Go

Translation of: Python
```package main

import (
"fmt"
"math"
"strconv"
"strings"
)

func argmax(m [][]float64, i int) int {
col := make([]float64, len(m))
max, maxx := -1.0, -1
for x := 0; x < len(m); x++ {
col[x] = math.Abs(m[x][i])
if col[x] > max {
max = col[x]
maxx = x
}
}
return maxx
}

func gauss(m [][]float64) []float64 {
n, p := len(m), len(m[0])
for i := 0; i < n; i++ {
k := i + argmax(m[i:n], i)
m[i], m[k] = m[k], m[i]
t := 1 / m[i][i]
for j := i + 1; j < p; j++ {
m[i][j] *= t
}
for j := i + 1; j < n; j++ {
t = m[j][i]
for l := i + 1; l < p; l++ {
m[j][l] -= t * m[i][l]
}
}
}
for i := n - 1; i >= 0; i-- {
for j := 0; j < i; j++ {
m[j][p-1] -= m[j][i] * m[i][p-1]
}
}
col := make([]float64, len(m))
for x := 0; x < len(m); x++ {
col[x] = m[x][p-1]
}
return col
}

func network(n, k0, k1 int, s string) float64 {
m := make([][]float64, n)
for i := 0; i < n; i++ {
m[i] = make([]float64, n+1)
}
for _, resistor := range strings.Split(s, "|") {
rarr := strings.Fields(resistor)
a, _ := strconv.Atoi(rarr[0])
b, _ := strconv.Atoi(rarr[1])
ri, _ := strconv.Atoi(rarr[2])
r := 1.0 / float64(ri)
m[a][a] += r
m[b][b] += r
if a > 0 {
m[a][b] -= r
}
if b > 0 {
m[b][a] -= r
}
}
m[k0][k0] = 1
m[k1][n] = 1
return gauss(m)[k1]
}

func main() {
var fa [4]float64
fa[0] = network(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
fa[1] = network(9, 0, 8, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
fa[2] = network(16, 0, 15, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
fa[3] = network(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250")
for _, f := range fa {
fmt.Printf("%.6g\n", f)
}
}
```
Output:
```10
1.5
1.85714
180
```

## Julia

Translation of: Python
```function gauss(m)
n, p = length(m), length(m[1])
for i in 1:n
_, k = findmax(map(x -> abs(m[x][i]), i:n)) .+ (i - 1)
m[i], m[k] = m[k], m[i]
t = 1 // m[i][i]
for j in i+1:p
m[i][j] *= t
end
for j in i+1:n
t = m[j][i]
for k in i+1:p
m[j][k] -= t * m[i][k]
end
end
end
for i in n:-1:1, j in 1:i-1; m[j][end] -= m[j][i] * m[i][end]; end
return [row[end] for row in m]
end

function network(n, k0, k1, s)
m = [[0//1 for i in 1:n + 1] for j in 1:n]
resistors = split(s, "|")
for resistor in resistors
astr, bstr, rstr = split(resistor, " ")
a, b, r = parse(Int, astr), parse(Int, bstr), 1 // parse(Int, rstr)
m[a + 1][a + 1] += r
m[b + 1][b + 1] += r
if a > 0; m[a + 1][b + 1] -= r end
if b > 0; m[b + 1][a + 1] -= r end
end
m[k0+1][k0+1] = m[k1+1][end] = 1 // 1
return gauss(m)[k1+1]
end

@assert(10     == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8"))
@assert(3//2   == network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1"))
@assert(13//7 == network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1"))
@assert(180   == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250"))
```

No assertion errors.

## Nim

Translation of: Python
```import rationals, sequtils, strscans, strutils, sugar

type Fraction = Rational[int]

func argmax(m: seq[seq[Fraction]]; i: int): int =
var max = -1 // 1
for x in i..m.high:
let val = abs(m[x][i])
if val > max:
max = val
result = x

func gauss(m: var seq[seq[Fraction]]): seq[Fraction] =
let n = m.len
let p = m[0].len

for i in 0..<n:
let k = m.argmax(i)
swap m[i], m[k]
let t = 1 / m[i][i]
for j in (i + 1)..<p:
m[i][j] *= t
for j in (i + 1)..<n:
let t = m[j][i]
for k in (i + 1)..<p:
m[j][k] -= t * m[i][k]

for i in countdown(n - 1, 0):
for j in 0..<i:
m[j][^1] -= m[j][i] * m[i][^1]

result = collect(newSeq, for row in m: row[^1])

func network(n, k0, k1: int; s: string): Fraction =
var m = newSeqWith(n, repeat(0 // 1, n + 1))
let resistors = s.split('|')
for resistor in resistors:
var a, b, c: int
if not resistor.scanf("\$i \$i \$i", a, b, c):
raise newException(ValueError, "Wrong resistor: " & resistor)
let r: Fraction = 1 // c
m[a][a] += r
m[b][b] += r
if a > 0: m[a][b] -= r
if b > 0: m[b][a] -= r
m[k0][k0] = 1 // 1
m[k1][^1] = 1 // 1
result = gauss(m)[k1]

assert 10 // 1 == network(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
assert 3 // 2 == network(3*3, 0, 3*3-1, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
assert 13 // 7 == network(4*4, 0, 4*4-1, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
assert 180 // 1 == network(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250")
```
Output:

No assertion failed.

## Perl

```use strict;
use warnings;

sub gauss {
our @m; local *m = shift;
my (\$lead, \$rows, \$cols) = (0, scalar(@m), scalar(@{\$m[0]}));
foreach my \$r (0 .. \$rows - 1) {
my \$i = \$r;
{++\$i == \$rows or next;
\$i = \$r;
@m[\$i, \$r] = @m[\$r, \$i];
\$_ /= \$lv foreach @{ \$m[\$r] };
my @mr = @{ \$m[\$r] };
foreach my \$i (0 .. \$rows - 1)
{\$i == \$r and next;
(\$lv, my \$n) = (\$m[\$i][\$lead], -1);
\$_ -= \$lv * \$mr[++\$n] foreach @{ \$m[\$i] };}
}

sub network {
my(\$n,\$k0,\$k1,\$grid) = @_;
my @m;
push @m, [(0)x(\$n+1)] for 1..\$n;

for my \$resistor (split '\|', \$grid) {
my (\$a,\$b,\$r_inv) = split /\s+/, \$resistor;
my \$r = 1 / \$r_inv;
\$m[\$a][\$a] += \$r;
\$m[\$b][\$b] += \$r;
\$m[\$a][\$b] -= \$r if \$a > 0;
\$m[\$b][\$a] -= \$r if \$b > 0;
}
\$m[\$k0][\$k0] = 1;
\$m[\$k1][ -1] = 1;
gauss(\@m);
return \$m[\$k1][-1];
}

for (
[   7, 0,     1, '0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8' ],
[ 3*3, 0, 3*3-1, '0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1' ],
[ 4*4, 0, 4*4-1, '0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13
1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1' ],
[   4, 0,     3, '0 1 150|0 2 50|1 3 300|2 3 250' ],
) {
printf "%10.3f\n", network(@\$_);
}
```
Output:
```    10.000
1.500
1.857
180.000```

## Phix

Translation of: Go
```with javascript_semantics
function argmax(sequence m, integer i)
sequence col := sq_abs(vslice(m,i))
return largest(col,return_index:=true)
end function

function gauss(sequence m)
m = deep_copy(m)
integer n = length(m),
p = length(m[1])
for i=1 to n do
integer k := i + argmax(m[i..n],i)-1
{m[i], m[k]} = {m[k], m[i]}
atom t := 1/m[i][i]
for j=i+1 to p do m[i][j] *= t end for
for j=i+1 to n do
t = m[j][i]
for l=i+1 to p do m[j][l] -= t * m[i][l] end for
end for
end for
for i=n to 1 by -1 do
atom mip = m[i][p]
for j=1 to i-1 do m[j][p] -= m[j][i] * mip end for
end for
return vslice(m,p)
end function

function network(integer n, k0, k1, sequence s)
sequence m := repeat(repeat(0,n+1), n)
s = split(s,'|')
for i=1 to length(s) do
integer {{a,b,ri}} = sq_add(scanf(s[i],"%d %d %d"),{{1,1,0}})
atom r = 1/ri
m[a][a] += r
m[b][b] += r
if a > 1 then m[a][b] -= r end if
if b > 1 then m[b][a] -= r end if
end for
k0 += 1;  m[k0][k0] = 1
k1 += 1;  m[k1][n+1] = 1
return gauss(m)[k1]
end function

printf(1,"%.6g\n",network(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8"))
printf(1,"%.6g\n",network(9, 0, 8, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1"))
printf(1,"%.6g\n",network(16, 0, 15, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|"&
"0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1"))
printf(1,"%.6g\n",network(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250"))
```
Output:
```10
1.5
1.85714
180
```

## Python

```from fractions import Fraction

def gauss(m):
n, p = len(m), len(m[0])
for i in range(n):
k = max(range(i, n), key = lambda x: abs(m[x][i]))
m[i], m[k] = m[k], m[i]
t = 1 / m[i][i]
for j in range(i + 1, p): m[i][j] *= t
for j in range(i + 1, n):
t = m[j][i]
for k in range(i + 1, p): m[j][k] -= t * m[i][k]
for i in range(n - 1, -1, -1):
for j in range(i): m[j][-1] -= m[j][i] * m[i][-1]
return [row[-1] for row in m]

def network(n,k0,k1,s):
m = [[0] * (n+1) for i in range(n)]
resistors = s.split('|')
for resistor in resistors:
a,b,r = resistor.split(' ')
a,b,r = int(a), int(b), Fraction(1,int(r))
m[a][a] += r
m[b][b] += r
if a > 0: m[a][b] -= r
if b > 0: m[b][a] -= r
m[k0][k0] = Fraction(1, 1)
m[k1][-1] = Fraction(1, 1)
return gauss(m)[k1]

assert 10             == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
assert 3/2            == network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
assert Fraction(13,7) == network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
assert 180            == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
```

## Raku

(formerly Perl 6)

Translation of: Python
```sub gauss ( @m is copy ) {
for @m.keys -> \i {
my \k = max |(i .. @m.end), :by({ @m[\$_][i].abs });

@m[i, k] .= reverse if \k != i;

.[i ^.. *] »/=» .[i] given @m[i];

for i ^.. @m.end -> \j {
@m[j][i ^.. *] »-=« ( @m[j][i] «*« @m[i][i ^.. *] );
}
}
for @m.keys.reverse -> \i {
@m[^i]».[*-1] »-=« ( @m[^i]».[i] »*» @m[i][*-1] );
}
return @m».[*-1];
}
sub network ( Int \n, Int \k0, Int \k1, Str \grid ) {
my @m = [0 xx n+1] xx n;

for grid.split('|') -> \resistor {
my ( \a, \b, \r_inv ) = resistor.split(/\s+/, :skip-empty);
my \r = 1 / r_inv;

@m[a][a] += r;
@m[b][b] += r;
@m[a][b] -= r if a > 0;
@m[b][a] -= r if b > 0;
}
@m[k0][k0]  = 1;
@m[k1][*-1] = 1;

return gauss(@m)[k1];
}
use Test;
my @tests =
(   10,   7, 0,     1, '0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8' ),
(  3/2, 3*3, 0, 3*3-1, '0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1' ),
( 13/7, 4*4, 0, 4*4-1, '0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1' ),
(  180,   4, 0,     3, '0 1 150|0 2 50|1 3 300|2 3 250' ),
;
plan +@tests;
is .[0], network( |.[1..4] ), .[4].substr(0,10)~'…' for @tests;
```

## Wren

Translation of: Go
Library: Wren-fmt
```import "./fmt" for Fmt

var argmax = Fn.new { |m, i|
var lm = m.count
var col = List.filled(lm, 0)
var max = -1
var maxx = -1
for (x in 0...lm) {
col[x] = m[x][i].abs
if (col[x] > max ) {
max = col[x]
maxx = x
}
}
return maxx
}

var gauss = Fn.new { |m|
var n = m.count
var p = m[0].count
for (i in 0...n) {
var k = i + argmax.call(m[i...n], i)
var t = m[i]
m[i] = m[k]
m[k] = t
t = 1 / m[i][i]
var j = i + 1
while (j < p) {
m[i][j] = m[i][j] * t
j = j + 1
}
j = i + 1
while (j < n) {
t = m[j][i]
var l = i + 1
while (l < p) {
m[j][l] = m[j][l] - t*m[i][l]
l = l + 1
}
j = j + 1
}
}
for (i in n-1..0) {
for (j in 0...i) {
m[j][p-1] = m[j][p-1] - m[j][i]*m[i][p-1]
}
}
var col = List.filled(n, 0)
for (x in 0...n) col[x] = m[x][p-1]
return col
}

var network = Fn.new { |n, k0, k1, s|
var m = List.filled(n, null)
for (i in 0...n) m[i] = List.filled(n+1, 0)
for (resistor in s.split("|")) {
var rarr = resistor.split(" ")
var a = Num.fromString(rarr[0])
var b = Num.fromString(rarr[1])
var ri = Num.fromString(rarr[2])
var r = 1/ri
m[a][a] = m[a][a] + r
m[b][b] = m[b][b] + r
if (a > 0) m[a][b] = m[a][b] - r
if (b > 0) m[b][a] = m[b][a] - r
}
m[k0][k0] = 1
m[k1][n] = 1
return gauss.call(m)[k1]
}

var fa = [
network.call(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8"),
network.call(9, 0, 8, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1"),
network.call(16, 0, 15, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1"),
network.call(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250")
]
for (f in fa) Fmt.print("\$.5g", f)
```
Output:
```10.0
1.5
1.85714
180.0
```

## zkl

Library: GSL

GNU Scientific Library

This a tweak of Resistor_mesh#zkl

```var [const] GSL=Import.lib("zklGSL");	// libGSL (GNU Scientific Library)

fcn network(n,k0,k1,mesh){
A:=GSL.Matrix(n,n);  // zero filled
foreach resistor in (mesh.split("|")){
a,b,r := resistor.split().apply("toInt");
r=1.0/r;
A[a,a]=A[a,a] + r;
A[b,b]=A[b,b] + r;
if(a>0) A[a,b]=A[a,b] - r;
if(b>0) A[b,a]=A[b,a] - r;
}
A[k0,k0]=1;
b:=GSL.Vector(n);  // zero filled
b[k1]=1;
A.AxEQb(b)[k1];
}```
```network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
.println();

network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
.println();

network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
.println();

network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
.println();```
Output:
```10
1.5
1.85714
180
```