Ramsey's theorem: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 979: Line 979:
<lang ring>
<lang ring>
# Project : Ramsey's theorem
# Project : Ramsey's theorem
# Date : 2017/10/22
# Date : 2017/10/23
# Author : Gal Zsolt (~ CalmoSoft ~)
# Author : Gal Zsolt (~ CalmoSoft ~)
# Email : <calmosoft@gmail.com>
# Email : <calmosoft@gmail.com>

Revision as of 05:51, 23 October 2017

Ramsey's theorem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Find a graph with 17 Nodes such that any 4 Nodes are neither totally connected nor totally unconnected, so demonstrating Ramsey's theorem.

A specially-nominated solution may be used, but if so it must be checked to see if if there are any sub-graphs that are totally connected or totally unconnected.

360 Assembly

Translation of: C

<lang 360asm>* Ramsey's theorem 19/03/2017 RAMSEY CSECT

        USING  RAMSEY,R13         base register
        B      72(R15)            skip savearea
        DC     17F'0'             savearea
        STM    R14,R12,12(R13)    save previous context
        ST     R13,4(R15)         link backward
        ST     R15,8(R13)         link forward
        LR     R13,R15            set addressability
        LA     R6,1               i=1
      DO WHILE=(C,R6,LE,NN)       do i=1 to nn
        LR     R1,R6                i
        MH     R1,=AL2(N)           *n
        LR     R0,R6                i
        AR     R1,R0                i*i+i
        SLA    R1,1                 *2
        LA     R0,2                 2
        STH    R0,A-36(R1)          a(i,i)=2
        LA     R6,1(R6)             i++
      ENDDO    ,                  enddo i
        LA     R6,1               i=1
      DO WHILE=(C,R6,LE,=F'8')    do while i<=8
        LA     R7,1                 j=1
      DO WHILE=(C,R7,LE,NN)         do j=1 to nn
        LR     R8,R7                  j
        AR     R8,R6                  +i
        BCTR   R8,0                   -1
        SRDA   R8,32                  ~
        D      R8,NN                  /nn
        LA     R8,1(R8)               k=((j+i-1) mod nn)+1
        LR     R1,R7                  j
        MH     R1,=AL2(N)             *n
        LR     R0,R8                  k
        AR     R1,R0                  j*n+ki
        SLA    R1,1                   *2
        LA     R0,1                   1
        STH    R0,A-36(R1)            a(j,k)=1
        LR     R1,R8                  k
        MH     R1,=AL2(N)             *n
        LR     R0,R7                  j
        AR     R1,R0                  k*n+j
        SLA    R1,1                   *2
        LA     R0,1                   1
        STH    R0,A-36(R1)            a(k,j)=1
        LA     R7,1(R7)               j++
      ENDDO    ,                    enddo j
        AR     R6,R6                i=i+i
      ENDDO    ,                  enddo i
        LA     R6,1               i=1
      DO WHILE=(C,R6,LE,NN)       do i=1 to nn
        LA     R7,1                 j=1
        LA     R10,PG               pgi=0
      DO WHILE=(C,R7,LE,NN)         do j=1 to nn
        LR     R1,R6                  i
        MH     R1,=AL2(N)             *n
        LR     R0,R7                  j
        AR     R1,R0                  i*n+j
        SLA    R1,1                   *2
        LH     R4,A-36(R1)            a(i,j)
      IF CH,R4,EQ,=H'2' THEN          if a(i,j)=2 then
        MVC    0(2,R10),=C' -'          output '-'
      ELSE     ,                      else
        XDECO  R4,XDEC                  edit a(i,j)
        MVC    0(2,R10),XDEC+10         output a(i,j)
      ENDIF    ,                      endif
        LA     R10,2(R10)             pgi+=2          
        LA     R7,1(R7)               j++
      ENDDO    ,                    enddo j
        XPRNT  PG,L'PG              print buffer
        LA     R6,1(R6)             i++
      ENDDO    ,                  enddo i
        LA     R6,1               i=1
      DO WHILE=(C,R6,LE,NN)       do i=1 to nn
        SR     R0,R0                0
        STH    R0,BH                bh=0
        STH    R0,BV                bv=0
        LA     R7,1                 j=1
      DO WHILE=(C,R7,LE,NN)         do j=1 to nn
        LR     R1,R6                  i
        MH     R1,=AL2(N)             *n
        LR     R0,R7                  j
        AR     R1,R0                  i*n+j
        SLA    R1,1                   *2
        LH     R2,A-36(R1)            a(i,j)
      IF CH,R2,EQ,=H'1' THEN          if a(i,j)=1 then
        LH     R2,BH                    bh
        LA     R2,1(R2)                 +1
        STH    R2,BH                    bh=bh+1
      ENDIF    ,                      endif
        LR     R1,R7                  j
        MH     R1,=AL2(N)             *n
        LR     R0,R6                  i
        AR     R1,R0                  j*n+i
        SLA    R1,1                   *2
        LH     R2,A-36(R1)            a(j,i)
      IF CH,R2,EQ,=H'1' THEN          if a(j,i)=1 then
        LH     R2,BV                    bv
        LA     R2,1(R2)                 +1
        STH    R2,BV                    bv=bv+1
      ENDIF    ,                      endif
        LA     R7,1(R7)               j++
      ENDDO    ,                    enddo j
        L      R2,NN                nn
        SRA    R2,1                 /2
        MVI    XX,X'01'             xx=true
      IF CH,R2,NE,BH THEN           if bh<>nn/2 then
        MVI    XX,X'00'               xx=false
      ENDIF    ,                    endif
        NC     OKH,XX               okh=okh and (bh=nn/2)
        L      R2,NN                nn
        SRA    R2,1                 /2
        MVI    XX,X'01'             xx=true
      IF CH,R2,NE,BV THEN           if bv<>nn/2 then
        MVI    XX,X'00'               xx=false
      ENDIF    ,                    endif
        NC     OKV,XX               okv=okv and (bv=nn/2)
        LA     R6,1(R6)             i++
      ENDDO    ,                  enddo i
        MVC    XX,OKH             xx=okh
        NC     XX(1),OKV          xx=okh and okv
      IF CLI,XX,EQ,X'01' THEN     if okh and okv then
        MVC    WOK,=CL4'yes'        wok='yes'
      ELSE     ,                  else
        MVC    WOK,=CL4'no'         wok='no'
      ENDIF    ,                  endif
        MVC    PG,=CL80'check='   output 'check='
        MVC    PG+6(L'WOK),WOK    output wok
        XPRNT  PG,L'PG            print buffer
        L      R13,4(0,R13)       restore previous savearea pointer
        LM     R14,R12,12(R13)    restore previous context
        XR     R15,R15            return_code=0
        BR     R14                exit

N EQU 17 n=17 NN DC A(N) nn=n A DC (N*N)H'0' table a(n,n) halfword init 0 BH DS H count horizontal BV DS H count vertical OKH DC X'01' check horizontal OKV DC X'01' check vertical WOK DS CL4 temp ok XX DS X temp logical PG DC CL80' ' buffer XDEC DS CL12 temp xdeco

        YREGS
        END    RAMSEY</lang>
Output:
 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
check=yes


C

For 17 nodes, (4,4) happens to have a special solution: arrange nodes on a circle, and connect all pairs with distances 1, 2, 4, and 8. It's easier to prove it on paper and just show the result than let a computer find it (you can call it optimization).

No issue with the code or the output, there seems to be a bug with Rosettacode's tag handlers. - aamrun <lang c>#include <stdio.h>

int a[17][17], idx[4];

int find_group(int type, int min_n, int max_n, int depth) { int i, n; if (depth == 4) { printf("totally %sconnected group:", type ? "" : "un"); for (i = 0; i < 4; i++) printf(" %d", idx[i]); putchar('\n'); return 1; }

for (i = min_n; i < max_n; i++) { for (n = 0; n < depth; n++) if (a[idx[n]][i] != type) break;

if (n == depth) { idx[n] = i; if (find_group(type, 1, max_n, depth + 1)) return 1; } } return 0; }

int main() { int i, j, k; const char *mark = "01-";

for (i = 0; i < 17; i++) a[i][i] = 2;

for (k = 1; k <= 8; k <<= 1) { for (i = 0; i < 17; i++) { j = (i + k) % 17; a[i][j] = a[j][i] = 1; } }

for (i = 0; i < 17; i++) { for (j = 0; j < 17; j++) printf("%c ", mark[a[i][j]]); putchar('\n'); }

// testcase breakage // a[2][1] = a[1][2] = 0;

// it's symmetric, so only need to test groups containing node 0 for (i = 0; i < 17; i++) { idx[0] = i; if (find_group(1, i+1, 17, 1) || find_group(0, i+1, 17, 1)) { puts("no good"); return 0; } } puts("all good"); return 0; }</lang>

Output:

(17 x 17 connectivity matrix)

- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 
all good

D

Translation of: Tcl

<lang d>import std.stdio, std.string, std.algorithm, std.range;

/// Generate the connectivity matrix. immutable(char)[][] generateMatrix() {

   immutable r = format("-%b", 53643);
   return r.length.iota.map!(i => r[$-i .. $] ~ r[0 .. $-i]).array;

}

/**Check that every clique of four has at least one pair connected and one pair unconnected. It requires a symmetric matrix.*/ string ramseyCheck(in char[][] mat) pure @safe in {

   foreach (immutable r, const row; mat) {
       assert(row.length == mat.length);
       foreach (immutable c, immutable x; row)
           assert(x == mat[c][r]);
   }

} body {

   immutable N = mat.length;
   char[6] connectivity = '-';
   foreach (immutable a; 0 .. N) {
       foreach (immutable b; 0 .. N) {
           if (a == b) continue;
           connectivity[0] = mat[a][b];
           foreach (immutable c; 0 .. N) {
               if (a == c || b == c) continue;
               connectivity[1] = mat[a][c];
               connectivity[2] = mat[b][c];
               foreach (immutable d; 0 .. N) {
                   if (a == d || b == d || c == d) continue;
                   connectivity[3] = mat[a][d];
                   connectivity[4] = mat[b][d];
                   connectivity[5] = mat[c][d];
                   // We've extracted a meaningful subgraph,
                   // check its connectivity.
                   if (!connectivity[].canFind('0'))
                       return format("Fail, found wholly connected: ",
                                     a, " ", b," ", c, " ", d);
                   else if (!connectivity[].canFind('1'))
                       return format("Fail, found wholly " ~
                                     "unconnected: ",
                                     a, " ", b," ", c, " ", d);
               }
           }
       }
   }
   return "Satisfies Ramsey condition.";

}

void main() {

   const mat = generateMatrix;
   writefln("%-(%(%c %)\n%)", mat);
   mat.ramseyCheck.writeln;

}</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
Satisfies Ramsey condition.

Elixir

Translation of: Erlang

<lang elixir>defmodule Ramsey do

 def main(n\\17) do
   vertices = Enum.to_list(0 .. n-1)
   g = create_graph(n,vertices)
   edges = for v1 <- :digraph.vertices(g), v2 <- :digraph.out_neighbours(g, v1), do: {v1,v2}
   print_graph(vertices,edges)
   case ramsey_check(vertices,edges) do
     true           -> "Satisfies Ramsey condition."
     {false,reason} -> "Not satisfies Ramsey condition:\n#{inspect reason}"
   end
   |> IO.puts
 end
 
 def create_graph(n,vertices) do
   g = :digraph.new([:cyclic])
   for v <- vertices, do: :digraph.add_vertex(g,v)
   for i <- vertices, k <- [1,2,4,8] do
     j = rem(i + k, n)
     :digraph.add_edge(g, i, j)
     :digraph.add_edge(g, j, i)
   end
   g
 end
 
 def print_graph(vertices,edges) do
   Enum.each(vertices, fn j ->
     Enum.map_join(vertices, " ", fn i ->
       cond do
         i==j           -> "-"
         {i,j} in edges -> "1"
         true           -> "0"
       end
     end)
     |> IO.puts
   end)
 end
 
 def ramsey_check(vertices,edges) do
   listconditions =
     for v1 <- vertices, v2 <- vertices, v3 <- vertices, v4 <- vertices,
         v1 != v2, v1 != v3, v1 != v4, v2 != v3, v2 != v4, v3 != v4
         do
           all_cases = [ {v1,v2} in edges, {v1,v3} in edges, {v1,v4} in edges,
                         {v2,v3} in edges, {v2,v4} in edges, {v3,v4} in edges ]
           {v1, v2, v3, v4, Enum.any?(all_cases), not(Enum.all?(all_cases))}
         end
   if Enum.all?(listconditions, fn {_,_,_,_,c1,c2} -> c1 and c2 end) do
     true
   else
     {false, (for {v1,v2,v3,v4,false,_} <- listconditions, do: {:wholly_unconnected,v1,v2,v3,v4})
          ++ (for {v1,v2,v3,v4,_,false} <- listconditions, do: {:wholly_connected,v1,v2,v3,v4}) }
   end
 end

end

Ramsey.main</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
Satisfies Ramsey condition.

Erlang

Translation of: C

<lang erlang>-module(ramsey_theorem). -export([main/0]).

main() -> Vertices = lists:seq(0,16), G = create_graph(Vertices), String_ramsey = case ramsey_check(G,Vertices) of true -> "Satisfies Ramsey condition."; {false,Reason} -> "Not satisfies Ramsey condition:\n" ++ io_lib:format("~p\n",[Reason]) end, io:format("~s\n~s\n",[print_graph(G,Vertices),String_ramsey]).

create_graph(Vertices) -> G = digraph:new([cyclic]), [digraph:add_vertex(G,V) || V <- Vertices], [begin J = ((I + K) rem 17), digraph:add_edge(G, I, J), digraph:add_edge(G, J, I) end || I <- Vertices, K <- [1,2,4,8]], G.

print_graph(G,Vertices) -> Edges = [{V1,V2} || V1 <- digraph:vertices(G), V2 <- digraph:out_neighbours(G, V1)], lists:flatten( [[ [case I of J -> $-; _ -> case lists:member({I,J},Edges) of true -> $1; false -> $0 end end,$ ] || I <- Vertices] ++ [$\n] || J <- Vertices]).

ramsey_check(G,Vertices) -> Edges = [{V1,V2} || V1 <- digraph:vertices(G), V2 <- digraph:out_neighbours(G, V1)], ListConditions = [begin All_cases = [lists:member({V1,V2},Edges), lists:member({V1,V3},Edges), lists:member({V1,V4},Edges), lists:member({V2,V3},Edges), lists:member({V2,V4},Edges), lists:member({V3,V4},Edges)], {V1,V2,V3,V4, lists:any(fun(X) -> X end, All_cases), not(lists:all(fun(X) -> X end, All_cases))} end || V1 <- Vertices, V2 <- Vertices, V3 <- Vertices, V4 <- Vertices, V1/=V2,V1/=V3,V1/=V4,V2/=V3,V2/=V4,V3/=V4], case lists:all(fun({_,_,_,_,C1,C2}) -> C1 and C2 end,ListConditions) of true -> true; false -> {false, [{wholly_unconnected,V1,V2,V3,V4} || {V1,V2,V3,V4,false,_} <- ListConditions] ++ [{wholly_connected,V1,V2,V3,V4} || {V1,V2,V3,V4,_,false} <- ListConditions]} end.</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -

Satisfies Ramsey condition.

J

Interpreting this task as "reproduce the output of all the other examples", then here's a stroll to the goal through the J interpreter: <lang j> i.@<.&.(2&^.) N =: 17 NB. Count to N by powers of 2 1 2 4 8

  1 #~ 1 j. 0 _1:} i.@<.&.(2&^.) N =: 17                          NB.  Turn indices into bit mask

1 0 1 0 0 1 0 0 0 0 1

  (, |.) 1 #~ 1 j. 0 _1:} i.@<.&.(2&^.) N =: 17                   NB.  Cat the bitmask with its own reflection

1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1

  _1 |.^:(<N) _ , (, |.) 1 #~ 1 j. 0 _1:} <: i.@<.&.(2&^.) N=:17  NB.  Then rotate N times to produce the array

_ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _

  NB. Packaged up as a re-usable function
  ramsey =: _1&|.^:((<@])`(_ , [: (, |.) 1 #~ 1 j. 0 _1:} [: <: i.@<.&.(2&^.)@])) 

  ramsey 17

_ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _ 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 _</lang>

To test if all combinations of 4 rows and columns contain both a 0 and a 1 <lang j>

  comb=: 4 : 0 M.   NB. All size x combinations of i.y
    if. (x>:y)+.0=x do. i.(x<:y),x else. (0,.x comb&.<: y),1+x comb y-1 end.
  )
  NB. returns 1 iff the subbmatrix of y consisting of the columns and rows labelled x contains both 1 and 0
  checkRow =. 4 : 0 "1 _
    *./ 0 1 e. ,x{"1 x{y
  )
  *./ (4 comb 17) checkRow ramsey 17

1 </lang>

Java

Translation of Tcl via D

Works with: Java version 8

<lang java>import java.util.Arrays; import java.util.stream.IntStream;

public class RamseysTheorem {

   static char[][] createMatrix() {
       String r = "-" + Integer.toBinaryString(53643);
       int len = r.length();
       return IntStream.range(0, len)
               .mapToObj(i -> r.substring(len - i) + r.substring(0, len - i))
               .map(String::toCharArray)
               .toArray(char[][]::new);
   }
   /**
    * Check that every clique of four has at least one pair connected and one
    * pair unconnected. It requires a symmetric matrix.
    */
   static String ramseyCheck(char[][] mat) {
       int len = mat.length;
       char[] connectivity = "------".toCharArray();
       for (int a = 0; a < len; a++) {
           for (int b = 0; b < len; b++) {
               if (a == b)
                   continue;
               connectivity[0] = mat[a][b];
               for (int c = 0; c < len; c++) {
                   if (a == c || b == c)
                       continue;
                   connectivity[1] = mat[a][c];
                   connectivity[2] = mat[b][c];
                   for (int d = 0; d < len; d++) {
                       if (a == d || b == d || c == d)
                           continue;
                       connectivity[3] = mat[a][d];
                       connectivity[4] = mat[b][d];
                       connectivity[5] = mat[c][d];
                       // We've extracted a meaningful subgraph,
                       // check its connectivity.
                       String conn = new String(connectivity);
                       if (conn.indexOf('0') == -1)
                           return String.format("Fail, found wholly connected: "
                                   + "%d %d %d %d", a, b, c, d);
                       else if (conn.indexOf('1') == -1)
                           return String.format("Fail, found wholly unconnected: "
                                   + "%d %d %d %d", a, b, c, d);
                   }
               }
           }
       }
       return "Satisfies Ramsey condition.";
   }
   public static void main(String[] a) {
       char[][] mat = createMatrix();
       for (char[] s : mat)
           System.out.println(Arrays.toString(s));
       System.out.println(ramseyCheck(mat));
   }

}</lang>

[-, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]
[1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1]
[1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0]
[0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1]
[1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0]
[0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0]
[0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0]
[0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0, 1]
[1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0, 0]
[0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1, 0]
[0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0, 1]
[1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1, 0]
[0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1, 1]
[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -, 1]
[1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, -]
Satisfies Ramsey condition.

Kotlin

Translation of: C

<lang scala>// version 1.1.0

val a = Array(17) { IntArray(17) } val idx = IntArray(4)

fun findGroup(type: Int, minN: Int, maxN: Int, depth: Int): Boolean {

   if (depth == 4) {
       print("\nTotally ${if (type != 0) "" else "un"}connected group:")
       for (i in 0 until 4) print(" ${idx[i]}")
       println()
       return true
   }
   for (i in minN until maxN) {
       var n = depth
       for (m in 0 until depth) if (a[idx[m]][i] != type) {
           n = m
           break
       }
       if (n == depth) {
           idx[n] = i
           if (findGroup(type, 1, maxN, depth + 1)) return true
       }
   }
   return false

}

fun main(args: Array<String>) {

   for (i in 0 until 17) a[i][i] = 2
   var j: Int
   var k = 1
   while (k <= 8) {
       for (i in 0 until 17) {
           j = (i + k) % 17
           a[i][j] = 1
           a[j][i] = 1
       }
       k = k shl 1
   }
   val mark = "01-"
   for (i in 0 until 17) {
       for (m in 0 until 17) print("${mark[a[i][m]]} ")
       println() 
   }
   for (i in 0 until 17) {
       idx[0] = i
       if (findGroup(1, i + 1, 17, 1) || findGroup(0, i + 1, 17, 1)) {
           println("\nRamsey condition not satisfied.")
           return
       }
   }
   println("\nRamsey condition satisfied.")

}</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -

Ramsey condition satisfied.

Mathematica

This example may be incorrect.
The task has been changed to also require demonstrating that the graph is a solution.
Please verify it and remove this message. If the example does not match the requirements or does not work, replace this message with Template:incorrect or fix the code yourself.

<lang mathematica>CirculantGraph[17, {1, 2, 4, 8}]</lang>

Mathprog

Some lines in this example are too long (more than 80 characters). Please fix the code if it's possible and remove this message.

<lang>/*Ramsey 4 4 17

 This model finds a graph with 17 Nodes such that no clique of 4 Nodes is either fully
 connected, nor fully disconnected

 Nigel_Galloway
 January 18th., 2012
  • /

param Nodes := 17; var Arc{1..Nodes, 1..Nodes}, binary;

clique{a in 1..(Nodes-3), b in (a+1)..(Nodes-2), c in (b+1)..(Nodes-1), d in (c+1)..Nodes} : 1 <= Arc[a,b] + Arc[a,c] + Arc[a,d] + Arc[b,c] + Arc[b,d] + Arc[c,d] <= 5;

end;</lang>

This may be run with: <lang bash>glpsol --minisat --math R_4_4_17.mprog --output R_4_4_17.sol</lang> The solution may be viewed on this page. In the solution file, the first section identifies the number of nodes connected in this clique. In the second part of the solution, the status of each arc in the graph (connected=1, unconnected=0) is shown.

PARI/GP

This takes the C solution to its logical extreme. <lang parigp>

check(M)={

 my(n=#M);
 for(a=1,n-3,
   for(b=a+1,n-2,
     my(goal=!M[a,b]);
     for(c=b+1,n-1,
       if(M[a,c]==goal || M[b,c]==goal, next(2));
       for(d=c+1,n,
         if(M[a,d]==goal || M[b,d]==goal || M[c,d]==goal, next(3));
       )
     );
     print(a" "b);
     return(0)
   )
 );
 1

};

M=matrix(17,17,x,y,my(t=abs(x-y)%17);t==2^min(valuation(t,2),3)) check(M)</lang>

Perl 6

Works with: rakudo version 2017.01

<lang perl6>my @a = [ 0 xx 17 ] xx 17; @a[$_;$_] = '-' for ^17;

for flat ^17 X 1,2,4,8 -> $i, $k {

   my $j = ($i + $k) % 17;
   @a[$i;$j] = @a[$j;$i] = 1;

} .say for @a;

for combinations(17,4).Array -> $quartet {

   my $links = [+] $quartet.combinations(2).map: -> $i,$j { @a[$i;$j] }
   die "Bogus!" unless 0 < $links < 6;

} say "OK";</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
OK

Python

Works with: Python version 3.4.1
Translation of: C

<lang python>range17 = range(17) a = [['0'] * 17 for i in range17] idx = [0] * 4


def find_group(mark, min_n, max_n, depth=1):

   if (depth == 4):
       prefix = "" if (mark == '1') else "un"
       print("Fail, found totally {}connected group:".format(prefix))
       for i in range(4):
           print(idx[i])
       return True
   for i in range(min_n, max_n):
       n = 0
       while (n < depth):
           if (a[idx[n]][i] != mark):
               break
           n += 1
       if (n == depth):
           idx[n] = i
           if (find_group(mark, 1, max_n, depth + 1)):
               return True
   return False


if __name__ == '__main__':

   for i in range17:
       a[i][i] = '-'
   for k in range(4):
       for i in range17:
           j = (i + pow(2, k)) % 17
           a[i][j] = a[j][i] = '1'
   # testcase breakage
   # a[2][1] = a[1][2] = '0'
   for row in a:
       print(' '.join(row))
   for i in range17:
       idx[0] = i
       if (find_group('1', i + 1, 17) or find_group('0', i + 1, 17)):
           print("no good")
           exit()
   print("all good")</lang>
Output same as C:

Racket

This example does not show the output mentioned in the task description on this page (or a page linked to from here).
Please ensure that it meets all task requirements and remove this message.
Note that phrases in task descriptions such as "print and display" and "print and show" for example, indicate that (reasonable length) output be a part of a language's solution.



This example is incorrect. Please fix the code and remove this message.

Details: The task has been changed to also require demonstrating that the graph is a solution.

Kind of a translation of C (ie, reducing this problem to generating a printout of a specific matrix). <lang racket>#lang racket

(define N 17)

(define (dist i j)

 (define d (abs (- i j)))
 (if (<= d (quotient N 2)) d (- N d)))

(define v

 (build-vector N
   (λ(i) (build-vector N
           (λ(j) (case (dist i j) [(0) '-] [(1 2 4 8) 1] [else 0]))))))

(for ([row v]) (displayln row))</lang>

REXX

Mainline programming was borrowed from   C. <lang rexx>/*REXX program finds and displays a 17 node graph such that any four nodes are neither */ /*─────────────────────────────────────────── totally connected nor totally unconnected.*/ @.=0; #=17 /*initialize the node graph to zero. */

     do d=0  for #;  @.d.d=2;  end  /*d*/       /*set the diagonal elements to two.    */
     do k=1  by 0  while k<=8                   /*K  is doubled each time through loop.*/
           do i=0  for #;      j= (i+k) // #    /*set a  row,column  and  column,row.  */
           @.i.j=1;            @.j.i=1          /*set two array elements to unity.     */
           end   /*i*/
     k=k+k                                      /*double the value of  K  for each loop*/
     end         /*k*/
                                                /* [↓]  display a connection grid.     */
     do r=0  for #;  _=;       do c=0  for #    /*build rows;  build column by column. */
                               _=_  @.r.c       /*add  (append)  the column to the row.*/
                               end   /*c*/
     say left(, 9)     translate(_, "-", 2)   /*display the constructed row.         */
     end   /*r*/
                                                /*verify the sub-graphs connections.   */

!.=0; ok=1 /*Ramsey's connections; OK (so far).*/

                                                /* [↓]  check col. with row connections*/
     do   v=0  for #                            /*check the sub-graphs # of connections*/
       do h=0  for #                            /*check column connections to the rows.*/
       if @.v.h==1  then !._v.v= !._v.v + 1     /*if connected,  then bump the counter.*/
       end   /*h*/                              /* [↑]   Note:  we're counting each    */
     ok=ok  &  !._v.v==# % 2                    /*       connection twice,  so divide  */
     end     /*v*/                              /*       the total by two.             */
                                                /* [↓]  check col. with row connections*/
     do   h=0  for #                            /*check the sub-graphs # of connections*/
       do v=0  for #                            /*check the row connection to a column.*/
       if @.h.v==1  then !._h.h= !._h.h + 1     /*if connected,  then bump the counter.*/
       end   /*v*/                              /* [↑]   Note:  we're counting each    */
     ok=ok  &  !._h.h==# % 2                    /*       connection twice, so divide   */
     end     /*h*/                              /*       the total by two.             */

say /*stick a fork in it, we're all done. */ say space("Ramsey's condition is" word('not', 1+ok) "satisfied.") /*yea─or─nay.*/</lang>

output   (17x17 connectivity matrix):
           - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
           1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
           1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
           0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
           1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
           0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
           0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
           0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
           1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
           1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
           0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
           0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
           0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
           1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
           0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
           1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
           1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -

Ramsey's condition is satisfied.

Ring

<lang ring>

  1. Project : Ramsey's theorem
  2. Date  : 2017/10/23
  3. Author : Gal Zsolt (~ CalmoSoft ~)
  4. Email  : <calmosoft@gmail.com>

load "stdlib.ring"

a = newlist(17,17) for i = 1 to 17

   a[i][i] = -1

next k = 1 while k <= 8

     for i = 1 to 17
         j = (i + k) % 17
         if j != 0
            a[i][j] = 1
            a[j][i] = 1
         ok
     next
     k = k * 2

end for i = 1 to 17

   for j = 1 to 17
       see a[i][j] + " "
   next
   see nl

next </lang> Output:

-11101000110001011
1-1110100011000101
11-111010001100010
011-11101000110001
1011-1110100011000
01011-111010001100
001011-11101000110
0001011-1110100011
10001011-111010000
110001011-11101000
0110001011-1110100
00110001011-111010
000110001011-11100
1000110001011-1110
01000110001011-110
101000110001011-10
1101000100000000-1

Ruby

<lang ruby>a = Array.new(17){['0'] * 17} 17.times{|i| a[i][i] = '-'} 4.times do |k|

 17.times do |i|
   j = (i + 2 ** k) % 17
   a[i][j] = a[j][i] = '1'
 end

end a.each {|row| puts row.join(' ')}

  1. check taken from Perl6 version

(0...17).to_a.combination(4) do |quartet|

 links = quartet.combination(2).map{|i,j| a[i][j].to_i}.reduce(:+)
 abort "Bogus" unless 0 < links && links < 6

end puts "Ok" </lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
Ok

Run BASIC

This example is incorrect. Please fix the code and remove this message.

Details: The task has been changed to also require demonstrating that the graph is a solution.

<lang runbasic>dim a(17,17) for i = 1 to 17: a(i,i) = -1: next i k = 1 while k <= 8

 for i = 1 to 17
   j = (i + k) mod 17
   a(i,j) = 1
   a(j,i) = 1
 next i
 k = k * 2

wend for i = 1 to 17

 for j = 1 to 17
   print a(i,j);" ";
 next j
 print

next i</lang>

-1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 
1 -1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 
1 1 -1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 
0 1 1 -1 1 1 0 1 0 0 0 1 1 0 0 0 1 
1 0 1 1 -1 1 1 0 1 0 0 0 1 1 0 0 0 
0 1 0 1 1 -1 1 1 0 1 0 0 0 1 1 0 0 
0 0 1 0 1 1 -1 1 1 0 1 0 0 0 1 1 0 
0 0 0 1 0 1 1 -1 1 1 0 1 0 0 0 1 1 
1 0 0 0 1 0 1 1 -1 1 1 0 1 0 0 0 0 
1 1 0 0 0 1 0 1 1 -1 1 1 0 1 0 0 0 
0 1 1 0 0 0 1 0 1 1 -1 1 1 0 1 0 0 
0 0 1 1 0 0 0 1 0 1 1 -1 1 1 0 1 0 
0 0 0 1 1 0 0 0 1 0 1 1 -1 1 1 0 0 
1 0 0 0 1 1 0 0 0 1 0 1 1 -1 1 1 0 
0 1 0 0 0 1 1 0 0 0 1 0 1 1 -1 1 0 
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -1 0 
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1

Sidef

Translation of: Ruby

<lang ruby>var a = 17.of { 17.of(0) }

17.times {|i| a[i][i] = '-' } 4.times { |k|

 17.times { |i|
   var j = ((i + 1<<k) % 17)
   a[i][j] = (a[j][i] = 1)
 }

}

a.each {|row| say row.join(' ') }

combinations(17, 4, { |*quartet|

 var links = quartet.combinations(2).map{|p| a.dig(p...) }.sum
 ((0 < links) && (links < 6)) || die "Bogus!"

}) say "Ok"</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
Ok

Tcl

Works with: Tcl version 8.6

<lang tcl>package require Tcl 8.6

  1. Generate the connectivity matrix

set init [split [format -%b 53643] ""] set matrix {} for {set r $init} {$r ni $matrix} {set r [concat [lindex $r end] [lrange $r 0 end-1]]} {

   lappend matrix $r

}

  1. Check that every clique of four has at least *one* pair connected and one
  2. pair unconnected. ASSUMES that the graph is symmetric.

proc ramseyCheck4 {matrix} {

   set N [llength $matrix]
   set connectivity [lrepeat 6 -]
   for {set a 0} {$a < $N} {incr a} {

for {set b 0} {$b < $N} {incr b} { if {$a==$b} continue lset connectivity 0 [lindex $matrix $a $b] for {set c 0} {$c < $N} {incr c} { if {$a==$c || $b==$c} continue lset connectivity 1 [lindex $matrix $a $c] lset connectivity 2 [lindex $matrix $b $c] for {set d 0} {$d < $N} {incr d} { if {$a==$d || $b==$d || $c==$d} continue lset connectivity 3 [lindex $matrix $a $d] lset connectivity 4 [lindex $matrix $b $d] lset connectivity 5 [lindex $matrix $c $d]

# We've extracted a meaningful subgraph; check its connectivity if {0 ni $connectivity} { puts "FAIL! Found wholly connected: $a $b $c $d" return } elseif {1 ni $connectivity} { puts "FAIL! Found wholly unconnected: $a $b $c $d" return } } } }

   }
   puts "Satisfies Ramsey condition"

}

puts [join $matrix \n] ramseyCheck4 $matrix</lang>

Output:
- 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 - 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 -
Satisfies Ramsey condition